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ABSTRACT 

We characterize the complex square matrices which are expressible as the product 
of finitely many positive semidefinite matrices; a matrix T can be expressed as such if 
and only if det T > 0; moreover, the number of factors can always be limited to five. 
We also determine those matrices which can be expressed as the product of two or 
four positive semidefinite matrices. These results are analogous to the ones obtained 
before by C. S. Ballantine for products of positive definite matrices. 

1. INTRODUCTION 

An n x n complex matrix T is positive semidefinite [positive definite] if 
(Tx,x)>O for any XEC~ [(Tx,x)>O for any x#O in C”], where C 
denotes the field of complex numbers. For convenience, we will abbreviate 
this to nonnegative [positive] and denote it by T > 0 [T > 01. In this paper, 
we characterize matrices which are expressible as the product of finitely 
many nonnegative matrices. The corresponding question with “nonnegative” 
replaced by “positive” has been solved already by C. S. Ballantine [l]. He 
showed that a matrix T is the product of finitely many positive matrices if 
and only if the determinant of T is positive, and in this case five positive 
matrices suffice. We will prove that any singular square matrix is the product 
of at most four nonnegative matrices (Theorem 4.1). Combined with the 
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above, this yields an analogous result for products of nonnegative matrices: 
T is such a product if and only if its determinant is nonnegative (Theorem 
4.3). 

In [l], Ballantine also completely determined those matrices which are 
expressible as products of two, three, or four positive matrices. We will show 
that similar results hold for the products of nonnegative matrices. In particu- 
lar, it is shown that T is the product of two nonnegative matrices if and only 
if it is similar to a nonnegative one (Theorem 2.2). The proof for this is 
slightly more involved than the corresponding one for positive products. The 
main step is to show that no nilpotent matrix, except the zero one, can be the 
product of two nonnegative matrices (Lemma 2.1). In the case of three 
nonnegative matrices, our attempt for a complete characterization has been 
less successful. We are able to show that any nilpotent matrix is the product 
of three nonnegative matrices (Corollary 3.4) and obtain a slightly more 
general sufficient condition (Theorem 3.3), which is in terms of Ballantine’s 
characterization of the products of three positive matrices. 

In the following, A ‘I2 always denotes the nonnegative square root of a 
nonnegative matrix A. For an arbitrary matrix A, a( A) denotes the set of its 
eigenvalues. For Tl and T2 on spaces H, and H,, respectively, 

acts on H,@H,, the orthogonal direct sum of H, and H,. Sections 2, 3, and 4 
below are concerned with the products of two, three, and four nonnegative 
matrices, respectively. 

2. TWO NONNEGATIVE MATRICES 

We start by proving the following negative result for nilpotent matrices. 

LEMMA 2.1. No nilpotent matrix, except the zero matrix, is the product 

of two nonnegative matrices. 

Proof. Let T = AB on the finite-dimensional space H, where T is 
nilpotent and A, B 2 0. Since u((A’/~B)A’/~) = u(A’/~(A~/~B)) (cf. [4, p. 
102, Exercise 131) and a(T) = (0) by the nilpotency of T, we infer that 
a( A”2BA”2) = (0). Th is, together with the nonnegativity of A’/2BA’/2, 
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implies that A1/2BA1/2 = 0. For any x in H, 

( BA’/% , A112x ) = ( A”2BA1’2x, x ) = 0. 

Since ran AlI2 = ran A, this implies that 

(BAy,Ay)=O for any y E H. 

Hence 

llB1/2Ay1)2 = ( B112Ay, B112Ay) = (BAY, Ay) = 0. 

Thus B’/‘A = 0. It follows that BA = 0 or T = 0. n 

A slight modification of the above arguments shows that no quasinilpotent 
operator on a (possibly infinite-dimensional) Hilbert space is the product of 
two nonnegative operators unless it is the zero operator. Now we are ready 
for the main result of this section. 

THEOREM 2.2. For an n x n complex matrix T, the following statements 
are equivalent: 

(1) T = AB, where A, B >, 0; 
(2) T=AB, whereA>O andB>O; 
(3) T is similar to a nonnegative matrix. 

Proof. The equivalence of (2) and (3) is easy to derive (and well known). 
Indeed, assuming (2), we infer that T is similar to A -1/2TA1/2 = A112BA112, 
which is nonnegative, where the invertibility of AlI2 follows from that of A. 
On the other hand, if (3) holds, say T = X- ‘CX, where X is invertible and 
C >, 0, then T = (X-‘X-‘*)(X*CX) is the product of the positive XP’X-‘* 
and the nonnegative X*CX. This proves (2). 

To complete the proof, we need only show that (1) * (3). Assume that (1) 
is true. Since the property of being the product of two nonnegative matrices 
is preserved under similarity, we may, in view of the Jordan canonical form 
for matrices, assume that T = T,@T, on the space H = H,@ H,, where Tl is 
invertible and T, is nilpotent. It is easily seen that H, = ran T” and H, = 
ker T”. Let S = A1/2BA1/2, K, = ran S”, and K, = ker S”. Since S is non- 
negative, K, and K, are orthogonal complements to each other. From 
A112S = TA1/2, we deduce that A112S” = TnA112, whence A112K, G H, and 
A’i2K2 c H,. It follows that A1/2*Hl’ G KIL and A112*H21 c K21, or, equiv- 
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alently A’12H2 c K, and A’/2H, c K,. Thus AH, = A’/2A’/2H, c A’/2K, & 
H, and, similarly, AH, c H,. Therefore, A = A,$A, on H = H,@ H,, where 
A j = A I Hi, j = 1, 2. In a similar fashion, B = B,@ B, on H = H,$ H,. From 
T = AB, we have T, = A,B, and T, = A,B,. Since Tl is invertible, A, and 
B, are both positive. Thus Tl is similar to a positive matrix by the proof of 
(2) j (3). On the other hand, since the nilpotent T2 is the product of the 
nonnegative matrices A, and B,, we infer from Lemma 2.1 that T, = 0. 
Therefore T = T,@ 0 is similar to a nonnegative matrix. n 

It is interesting to compare the preceding theorem with the correspond- 
ing results for the product of two positive matrices and the product of two 
Hermitian matrices: a matrix is the product of two positive matrices if and 
only if it is similar to a positive one (cf. [l, Theorem 21); it is the product of 
two Hermitian matrices if and only if it is similar to a matrix with real entries, 
and in this case one of the Hermitian matrices may be taken to be invertible 
(cf. [2] or [6, Theorem 11). Other related results are [7, Propositions 2.1 and 
2.31 concerning the products of a (real) symmetric matrix and a nonnegative 
matrix. 

The next corollary will be needed in Section 3 (in the proof of Proposition 
3.5). 

COROLLARY 2.3. lf 

T= 
Tl * 

[ 1 0 T, 

is the product of two nonnegative matrices, so are T, and T,. 

Proof. By Theorem 2.2, T is similar to a nonnegative diagonal matrix. It 
is easily seen that Tl and T2 are also similar to diagonal matrices and that 
their eigenvalues are nonnegative. Hence, by Theorem 2.2 again, they are 
products of two nonnegative matrices. n 

3. THREE NONNEGATIVE MATRICES 

In this section, we will give a sufficient condition, in terms of Ballantine’s 
characterization of the products of three positive matrices, for a matrix to be 
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factored as the product of three nonnegative matrices. We start with the 
following 

LEMMA 3.1. Let A be an n x n positive matrix and a be an arbitrary 
n x 1 matrix. Then there exists a positive number x such that the (n + 1) x 
(n +l) matrix 

T= A a 
[ 1 --t a x 

is positive. 

Proof Since a matrix is positive if and only if all its leading principal 
minors are positive (cf. [3, Theorem X.3]), to prove the positivity of T it 
suffices to show that for an appropriate choice of x, the determinant of T is 
positive. This can be seen by expanding the determinant along the last row, 
noting that det A > 0, and letting x be sufficiently large. n 

LEMMA 3.2. Any n x n matrix T is unitarily equivalent to a matrix of 
the fomz 

Tl * 
[ 1 0 T,’ 

where Tl is invertible and T, is nilpotent. Moreover, Tl and T2 are uniquely 
determined, up to unitary equivalence, by T. 

Proof. The first assertion follows from the Schur triangulation of T. 
Since the spaces on which Tl and T2 act are ran T” and ker T*“, respec- 
tively, the uniqueness of Tl and T, follows easily. n 

The next theorem gives the promised sufficient condition for the product 
of three nonnegative matrices. It is in terms of the “invertible part” of a 
matrix as given in Lemma 3.2. 

THEOREM 3.3. Let 

Tl * 
T=O T, 1 1 2 
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where T, is invertible and T2 is nilpotent. If T, is the product of three 
positive matrices, then T is the product of three nonnegative matrices. 

Proof. We may assume that T2 is upper triangular. Let m and n be the 
sizes of T, and T, respectively. We prove our assertion by induction on n 
starting with n = m. 

If n = m, that is, T = T,, then this is trivially true. Assume that the 
assertion holds for n - 1 ( > m). Let T’ be the matrix obtained from T by 
deleting its last row and column. We have 

and, by the induction hypothesis, T’ = A<AhA$, where A’, > 0 for i = 1,2,3. 
By Theorem 2.2, we may assume that A; and A)2 are positive. Let b = A;- ‘a 
and let x be such that 

is positive (by Lemma 3.1). Moreover, let 

A,= 
A; 0 

[ 1 0 0 and A,= A’ ’ . [ 1 0 1 

Then T = A,A,A, is a product of three nonnegative matrices. 

COROLLARY 3.4. Any nilpotent matrix is the product of three nonnega- 
tive matrices. 

It seems plausible that the converse of Theorem 3.3 is also true. In this 
respect, we have only the following special case as a supporting evidence. 

PROPOSITION 3.5. Let T = T,@O. Then T is the product of three rwn- 
negative matrices if and only if Tl is. 

Proof. Assume that T = A,A,A,, where Ai > 0 for i = 1,2,3. By Theo- 
rem 2.2, we may assume that A, is invertible. Let 
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Then 

T,B, ‘LB2 =A A 

0 1 
1 2 

is the product of two nonnegative matrices. It follows from Corollary 2.3 that 
the same is true for T,B,. Since B, is positive, we conclude that T, is the 
product of three nonnegative matrices. n 

4. FOUR NONNEGATIVE MATRICES 

THEOREM 4.1. Any singular square matrix is the product of four non- 
negative matrices, and four is the smallest such number. Moreover, any three 
of these matrices may be taken to be positive. 

Proof. Let T be an n x n singular matrix. By the Jordan canonical form, 
T is similar to a matrix T’ of the form R@S, where 

0 1 0 
. . 

s= 1 . . 
. . 
. 1 

0 0 

is of size m. Let R = UP, where U is unitary and P = (R*R)l12 >, 0, be the 
polar decomposition of R (cf. [4, p. 1691) and assume that U = [aij]. Let b 
satisfy ( - 1)” + ’ b det U > 0, and c be such that 0 belongs to the interior of 
the numerical range of the 2x2 matrix 

a n-mn-m c 

0 b 1 if m=l 

or 

I a n~mn~rn c 

0 0 1 if m&2. 

This is possible because the numerical range of a 2 x 2 matrix 
[ 1 t i is an 
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elliptical disk with foci at a and b and minor axis of length ]c] (cf. [5]). Let 

A= 

u 

- 

0 

0 . . . 0 

C . . . 0 
0 1 0 and B = . . 

. . 
. . 

. 1 
b 0 

P 0 

0 0 l---T 1 
0 

I 0 1 

Then T’= AB, det A = ( - l)“‘+r b det U > 0, and 0 belongs to the interior of 
the numerical range of A. The latter two conditions imply that A is the 
product of three positive matrices (cf. [l, Theorem 31). Since B > 0, we have 
that T’ is the product of four nonnegative matrices. Say T’= A,AaA,A,, 
where Ai > 0 for all i. Since T = X-‘T’X for some invertible X, we have 

T = ( X-lA,X-l*)( X*A~X)( x-~A~x-~*)(x*A~x) 

expresses T as a product of four nonnegative matrices. That any three of 
these matrices may be taken to be positive follows from Theorem 2.2. Since 

is not the product of three nonnegative matrices by Proposition 3.5, the 
minimality of four follows. n 

Using the preceding theorem and Ballantine’s results [l, Theorems 4 
and 51, we can characterize the products of four or more nonnegative 
matrices. 

THEOREM 4.2. An n x n matrix T is the product of four nonnegative 

matrices if and only if det T >, 0 and T is not a scalar matrix cl,, with c in 
C\{z:z~O}. 

THEOREM 4.3. A matrix T is the product of finitely many nonnegative 
matrices if and only if det T > 0. In this case, five such matrices suffice. 
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