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Abstract

In this thesis, the chaoticsbehavior of new Ge-Ku-Duffing system is studied by
phase portraits, time histories, Poincare maps; Lyapunov exponent and bifurcation
diagrams. A new kind of chaotic generalized synchronization, different translation
pragmatical generalized synchronization,” is obtained by pragmatical asymptotical
stability theorem and partial region stability theory. New type for chaotic
synchronization, double and multiple symplectic synchronization, are obtained by
active control. A new method, using new fuzzy model, is studied for fuzzy modeling
and synchronization of Sprott C, E systems. Moreover, the new fuzzy logic constant
controller is studied for projective synchronization and chaotic system with
uncertainty. Numerical analyses, such as phase portraits and time histories can be

provided to verify the effectiveness of all above studies.
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Chapter 1

Introduction

Synchronization of chaotic systems has become an important topic since the
pioneering work of Pecora and Carroll in 1990 [1]. Furthermore, chaos
synchronization has been applied in biological systems [2,3], secure communication
[4,5], and many other disciplines. Many methods of synchronization have been
proposed, such as linear and nonlinear feedback control[6-16], complete
synchronization[17],phase synchronization[18], lag synchronization[19], active
control[20-21], generalized synchronization[22-27] and fuzzy control[28-35] and are
investigated extensively in the past years.

In this thesis, a new generalized-different translation synchronization strategy by
partial region stability theory by which-the Lyapunov. function of error states becomes
a simple linear homogeneous_function is proposed. The controllers are more simple
since they are in lower degreesthan“that of traditional controllers. By pragmatical
asymptotical stability theorem, an adaptive control law is derived so that it can be
proved strictly that the common null solution of error dynamics and of parameter
dynamics is actually asymptotically stable.

Traditional generalized synchronization and symplectic synchronization are
special cases of the double symplectic synchronization. Since the symplectic
functions are presented on both the right hand side and the left hand side of the
equality, it is called “double symplectic synchronization”. When the double
symplectic  functions IS extended to a more general form,
G(x,Y,Z,...w,t)=F(x,y,z,...w,t) , it is called “multiple symplectic
synchronization”. G(X,Y,Z,...,w,t)and F(X,y,z,...,w,t) are given vector functions

of Xy,z,...,w and time. Due to the complexity of the form of the multiple



symplectic synchronization, it may be applied to increase the security of secret
communication.

In recent years, fuzzy logic proposed by L. A. Zadeh [36] has received much
attention as a powerful tool for the nonlinear control. Among various kinds of fuzzy
methods, Takagi-Sugeno fuzzy (T-S fuzzy) system is widely accepted as a useful tool
for design and analysis of fuzzy control system [37-42].

In traditional Takagi-Sugeno fuzzy (T-S fuzzy) model, we focus on the whole
system. The number of the linear subsystem is decided on how many nonlinear terms
should we linearize in original system. As a result, there will be 2™ linear subsystems
(according to 2N fuzzy rules) and m x 2" equations in the T-S fuzzy system, where N is
the number of minimum nonlinear terms.and m is the order of the system. If N is large,
the number of linear subsystems-in T-Ssfuzzy “system is huge. It becomes more
inefficient and complicated. Via the new fuzzy‘model, a complicated nonlinear system
is linearized to a simple form = linear-coupling.of only-two linear subsystems and the
numbers of fuzzy rules can be reduced from2M¥t02x N (where N is the number of
nonlinear terms). The fuzzy equations become much simpler.

In this thesis, a simplest controller, the fuzzy logic constant controller
(FLCC) ,which are derived via fuzzy logic design and Lyapunov direct method, are
presented for projective synchronization of non-autonomous chaotic systems with
deterministic and stochastic uncertainties. Controllers in traditional method by
Lyapunov direct method are always nonlinear and complicated. Unlike traditional
method, the simplest controllers are proposed via fuzzy logic design and Lyapunov
direct method. We propose a new idea to design constant numbers as controllers,
while the constant numbers are decided by the upper and lower bounds of the error
derivatives. The strength of controllers in our new approach can be adjusted according

to the error derivatives. This powerful tool is used for projective synchronization of
2



chaotic systems with uncertainty and stochastic disturbance to show the robustness
and effectiveness of FLCC.

This thesis is organized as follows. Chapter 2 gives the dynamic equations of
new Ge-Ku-Duffing system and its chaotic behaviors are studied. In Chapter 3, a new
generalized different translation synchronization strategy by partial region stability
theory and pragmatical asymptotical stability theorem are presented. In Chapter 4 and
Chapter 5, double and multiple symplectic synchronization for Ge-Ku-Duffing system
are presented. In Chapter 6, a new fuzzy model is used to simulate and synchronize
two different chaotic systems are presented. In Chapter 7, a simplest controller, the
fuzzy logic constant controller (FLCC) ,which are derived via fuzzy logic design and
Lyapunov direct method, are presented . for projective synchronization of
non-autonomous chaotic systems ‘with deterministic-and stochastic uncertainties. In

Chapter 8, conclusions are drawn:



Chapter 2

Chaos of a New Ge-Ku-Duffing System

2.1 Preliminary
In this Chapter, the chaotic behaviors of a new Ge-ku-Duffing system is studied
numerically by phase portraits, time histories, Poincaré maps, Lyapunov exponents,

and bifurcation diagrams.

2.2 Description of New Ge-Ke-Duffing System

Ge and Ku[43] gave a chaotic system formed by simple pendulum with its pivot

rotating about an axis as Fig 2.1. This chaotic system is

X =X,
%, = (2.1)

—ax, —sinx, [ b, (¢, +cos x )%+ d sinet |,

where a,b,c,d are parameters. Combining the Ge-Ku system with Duffing

equation

Xy =X,

B (2.2)
X, ==X, —X; — fX, + g cosQt,

2

after simplification sinx, = Xx;,C0S X, :1—%, and substitutionsin ot = X,,CosQt = X,

and addition of coupling terms, we get the Ge-Ku-Duffing system

X =X,
X, = —ax, —xl[b(c—xf)+dx3] (2.3)

X, ==X, — X5 — X, + gx,,
where a,b,c,d, f,g are parameters.
2.3 Computational Analysis of a New Ge-Ku-Duffing System

For numerical analysis of computation, this system exhibits chaos when the

parameters of system are a=0.1,b=11,c=40,d=54,f =6,9 =30 and the initial
4



states of system are X,(0)=2,x,(0)=2.4,x,(0)=5. The bifurcation diagram by
changing damping parameter f is shown in Fig. 2.2. Its corresponding Lyapunov
exponents are shown in Fig. 2.3. The phase portraits, time histories, and Poincaré
maps of the systems are showed in Fig. 2.4~Fig. 2.8.When f=4.4, period 1 phenomena
are shown in Fig. 2.4. When =5, period 2 phenomena are shown in Fig. 2.5. When
f=5.3, period 4 phenomena are shown in Fig. 2.6. When f=5.33, period 8 phenomena

are shown in Fig. 2.7.When =6, the chaotic behaviors are given in Fig. 2.8.

Fig 2.1. The pendulum on rotating arm
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Fig. 2.3 The Lyapunov exponents for new Ge-Ku-Duffing system
6



phase portraits
60 T T T T T T T T

time histories
5 T T T T T T T T T

5 | | | | | | | | |

0 10 20 30 40 50 60 70 80 90 100
50
|
| |
) |
-100
150 1 1 | | 1 1 1 | 1
0 10 20 30 40 50 60 70 80 90 100
10 T T T T T T T T T
| |
m
M |
N I
10 | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100

Fig. 2.4 Phase portrait, Poincaré maps, and time histories for new Ge-Ku-Duffing
system with f =4.4 (period 1).
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Fig. 2.5 Phase portrait, Poincaré maps, and time histories for new Ge-Ku-Duffing
system with f =5 (period 2).
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Fig. 2.6 Phase portrait, Poincaré maps, and time histories for new Ge-Ku-Duffing
system with f =5.3 (period 4).
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Chapter 3
Using Partial Region Stability Theory for Different

Translation Pragmatical Generalized Synchronization

3.1 Preliminary

In this Chapter, a new generalized different translation synchronization strategy
by partial region stability theory is proposed. By using partial regional stability
theory, the Lyapunov function becomes a simple linear homogeneous function of error
states and the controllers are more simple since they are in lower degree than that of
traditional controllers while the tranditional Lyapunov function is a quadratic form

of error states.

3.2 The Scheme of Different Translation Pragmatical Generalized
Synchronization by Partial'/Region-Theory

There are two identical nonlinear dynamical systems, and the master system
synchronizes the slave system. The master system is given by
X = Ax+ f(x,B) (3.1)
The master system after the origin of x-coordinate system is translated to (k. K;,....Kk;)
is
X'=Ax'+ f(x',B) (3.19)
where X'=[x";, X', X" 1" =x—k, =[x —K,X, —K;,...x, —k]J €R" denotes a state
vector, where K, =[k;,k;,....k ] is a constant vector with positive component k; as
shown in Fig 3.1. Alisan nxn uncertain constant coefficient matrix, f is a nonlinear
vector function, and B is a vector of uncertain constant coefficients in f. The

slave system is given by

12



y=Ay+f(y,B)+u(t) (3.2)
The slave system after the origin of y-coordinate system is translated to
(Ky, Ky, ky) i

y'=Ay'+ f(y', B)+u(t) (3.2")

where y'=[y', v,y I =y =K, = [V =Ky, Yo =Ky, Yo =K, " € R™ - denotes

a state vector, where k, is a constant vector with constant component k, as

A A

shown in Fig 3.2. A isan nxn  estimated coefficient matrix, B is a vector
of estimated coefficients in f, and u(t) =[u,(t),u,(t),....u ()" eR" is a

control input vector.

Our goal is to design a controller u(t) so-that.the state vector of the translated
slave system ( 3.2') asymptotically approaches: the state vector of the
translated master system (3.1") plus' a given nonchaotic or chaotic vector function
F(O) =[RO), KO, F O :
y'=G(X)=x+F(t). (3.3)
The synchronization can be accomplished when t — oo, the limit of the error vector

e(t)=[e.e,,---e,]' approaches zero:

lime=0 (3.4)
where
e=x-y+F(t) (3.5)

From Eq. (3.5) we have
é=X"-y'+F(t) (3.6)
6= Ax'— Ay'+ f(x',B)— f(y', B)+ F(t)-u(t). (3.7)

where k, and k, are chosen to guarantee that the error dynamics always occurs

13



in first quadrant of e coordinate system.
A Lyapnuov function V(e, A l§c) is chosen as a positive definite function in

first quadrant of e coordinate system by stability theory in partial region as shown

in Appendix A:
V(e A,B)=e+A +B (3.8)

where A =A-A , B,=B-B, AandB, are two column matrices whose elements

are all the elements of matrix A and of column matrix B, , respectively. Its

c

derivative along any solution of the differential equation system consisting of Eq.

(3.7) and updated parameter differential equations for A, and B, is

Ve, A,B.) = Ax— Ayt f(x',B)=f(y" B) + F()~ul)+ A +B.
(3.9)

where u(t), & and |§c are chosen o that V:=Ce /C'is a diagonal negative definite
matrix, and V is a negative semi-definitefunction of e and parameter differences A

and B..

In this Chapter, a new Ge-ku-Duffing system is used as an example. By
pragmatical asymptotically stability theorem in Appendix B, the Lyapunov function
used is a simple linear homogeneous function of states and the controllers are simpler
because they in lower order than the that of traditional controllers. In many
papers[44-48], traditional Lyapunov stability theorem and Babalat lemma are used to
prove the error vector approaches zero, as time approaches infinity. But the question,
why the estimated parameters also approach to the uncertain parameters, remains no
answer. By pragmatical asymptotical stability theorem, the question can be answered

strictly.
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3.3 Different Translation Pragmatical Synchronization of New

Ge-Ku-Duffing Chaotic System
Case 1.
The following chaotic system are two translated Ge-Ku-Duffings system of which

the origins are translated to (x,, X,,X;) = (250, 250, 250) , (y,,Y,.Ys) = (50, 50, 50) to

guarantee the error dynamics always happens in the first quadrant of e coordinate

system. The translated master system and slave system are:

Xm
2 (x. — 250

% = —a(x, — 250) — (x, — 250)[b(C — (X, — 250)2) +d (X, — 250)] (3.10)

% = —(X3 - 250) - (X3 - 250)3 —f (Xz - 250) + g(X1 N 250)

d
%=(yz—50)+ul

% =—4(y, —50) - (y, —50)[b(¢ = (¥, —=50)*) + d (y, +50)] + u, (3.11)

d ~ A
f:-(ys —50) - (Y, —50)° —F (5 =50)+§(y;—50)+u,

Let initial states be x,(0) =2,x,(0)=2.4,%,(0)=5,y,(0)=2,y,(0) =2.4,y,(0) =5
and system parameters a=0.1,b=11,c=40, d =54, f =6,9 =30. The generalized
synchronization error vector is
e=X—y+F(t)=x—-y+cos(t) (3.12)
We find that the error dynamic without controllers always exists in first quadrant as

shown in Fig. 3.3.
Our goal is !im e, =0.We obtain the error dynamics :

& = (x, —250) — (y, —50) —sin(t) —u,
&, =—a(x, — 250) — (x, — 250)[b(c — (X, — 250)?) + d (x, — 250)]

+4(y, —50) + (y, —50)[b(E — (y, —50)2) +d (y, —50)] —sin(t) —u, (3.13)
6, = —(X; — 250) — (X, — 250)° — f (x, —250) + g(x, — 250) + (y, —50)

+(y, —50)° + f (y, —50) — §(y, —50) —sin(t) —u,

15



where d=a—4, b=b-b, é=c-¢, d=d-d, f=f-fandg=g—§ are
estimates of uncertain parameters a, b, c, d, f and g respectively.

Using different translation pragmatical synchronization by partial region stability
theory, we can choose a Lyapunov function in the form of a positive definite function
in first quadrant:

V=e+e,+e+a+b+c+d+f+§ (3.14)
The time derivative of V is
V:Q&€?+Q+é+5+6+5+f+d
=(x, —250) - (y, —50) —sin(t) —u,
—a(x, —250) — (x, — 250)[b(c — (X, — 250)%) +d (X, — 250)]
+a(y, —50) + (y, —50)[b(¢ — (y, —=50)2) +d (y, —50)]—sin(t) —u, (3.15)
— (X, —250) — (X, — 250)° — f (x, —250) + g (x, — 250) + (Y, —50)
+ (¥, —50)°* + f (y, —50) - §(y, —50) —sin(t) - u,
+E+brérdrfag
Choose
u, = (X, — 250) — (y, —50) —sin(t)=ae, — be, +€,
u, =—a(x, — 250) — (x, — 250)fb(c — (%, =250)%) + d (Xg= 250)] + &(y, — 50)
+(y, —50)[b(€ - (y, —50)2)+d (y, —50)]=sin(t)=ce, — de, +e, (3.16)
U, = —(X, — 250) — (X, — 250)° — f (%, =250)=g (X, — 250) + (Y, —50)
+ (¥, —50)° + f (y, —50) - §(y, —50) —sin(t) - fe, — e, +e,

a=-dae
b =—be,
€ =—Ce,
P (3.17)
d =—de,
f =—fe,
g= _ge3
We obtain
V=-e-e-¢ <0
(3.18)

which is negative semi-definite function ofel,ez,e3,a”1,5,6,(1~, f and d. The Lyapunov
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asymptotical stability theorem is not satisfied. We cannot obtain that common origin
of error dynamics (3.13) and parameter dynamics (3.17) is asymptotically stable. By

pragmatical asymptotically stability theorem , D is a 9-manifold, n=9and the

number of error state variablesp=3. When e, =e, =e; =0and 4,b,¢d,f, g take

arbitrary values, V =0,s0 X is of 6 dimensions, m=n—p=9-3=6, m+1<n is
satisfied. According to the pragmatical asymptotically stability theorem, error vector e
approaches zero and the estimated parameters also approach the uncertain parameters.
The equilibrium point is pragmatically asymptotically stable. Under the assumption of
equal probability, it is actually asymptotically stable. The simulation results are shown
in Figs. 3.4~3.6.

Case 2.

The following chaotic system are two translated Ge-Ku-Duffings system of which
the origin is translated to (X, X, %s) = (250;-250, 250), (y,.¥,.Y,) = (50, 50, 50) to
guarantee the error dynamics-always happens.in the-first quadrant of e coordinate

system. The translated master system and slave system are:

dx,
—L =(x,—250

% = —a(x, — 250) — (x, — 250)[b(c — (X, — 250)2) +d (X, — 250)] (3.19)

% =—(X,—250) - (x, - 250)° - f (x, =250) + g(x, —250)

d
%=(yz—50)+ul

% = —4(y, —50) — (y, —=50)[b(¢ - (y, —50)?) +d (y, — 50)] +u, (3.20)

d ~ A
fz_(yg ~50) - (y, —50)° - f (y, —=50) + g (y, —50) +u,

Let initial states be x,(0) =2,x,(0) =2.4,%,(0)=5,y,(0)=2,y,(0) =2.4,y,(0) =5
and system parameters a=0.1b=11,c=40, d =54, f =6,9 =30. The generalized
synchronization error vector is

e=x-y+F(t) (3.21)
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where F(t)=[2,2,,2,]" isthe state vector of Ge-Ku Mathieu system:

dz,

@

dz

d—;:—kzz—zl[m(r—zf)+szzzg] (3.22)
% =—(n+hz,)z,+1z, + pz,z,

We find that the error dynamic without controllers always exists in first quadrant as
shown in Fig. 3.7.

This system exhibits chaos when the parameters of system are k=-0.6,m=5,
r=11, s=0.3,n=8h=10,1=0.5p=0.2 and the initial states of system are
2,(0)=0.01, z,(0)=0.01, z,(0)=0.01, its phase portrait as shown in Fig. 3.8. Our

goal is lime, =0.We obtain the error dynamics becomes:

oo

€ = (X, —250)—(y,—50)+z, —u,

6, = —a(x, — 250) — (x, — 250)[b(e:2x — 250)2) 4 (x, — 250)]
+4(y, —50) + (y, —50)[b{E~ (%, =50)?) +d(y; £50)] - kz,
—zl[m(r—zf)+szzza]—u2

&, = —(X; — 250) — (X, — 250)* = f (x3=.250)+@ (% —250) + (y, —50)
+ (Y5 —50)* + f(y, —50) ~ G(¥s—50) — (n +hz) z, + 1z, + pz,z, ~ U,

(3.23)

where d=a-4, b=b-b, €=c-¢, d=d-d, f=f-fandg=g—g are
estimates of uncertain parameters a, b, c, d, f and g respectively.

Using different translation pragmatical synchronization by partial region stability

theory, we can choose a Lyapunov function in the form of a positive definite function
in first quadrant:

V=e+e,+e,+a+b+c+d+f+§ (3.24)

The time derivative of V is
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V=g 16 +6+a+b+é+d+f+g
=(x, —250)—(y, —50)+z, —u,
—a(x, - 250) — (X, — 250)[b(c — (x, — 250)2) + d (X, — 250)]
+4(y, —50) + (y, —50)[b(€ — (y, —50)*) +d (y, —50)] - kz,
—zl[m(r—zf)Jrszzzg]—u2 (3.25)
— (%, — 250) — (X, — 250)° — f (x, — 250) + g (X, — 250) + (y, —50)
+(y, —50)° + f (y, —50)—§(y, —50) —(n+hz,)z, +1z, + pz,z, —u,
tEt1brérdrfag
Choose
u, = (X, — 250) — (y, —50) + z, — e, —be, +e,
U, = —a(x, — 250) — (X, — 250)[b(c — (X, — 250)2) +d (x, - 250)]
+4(y, —50) + (y, —50)[b(€ — (¥, —50)) +d (y, —50)] - kz,
—zl[m(r—zf)+szzzg}—ée2—cTe2+e2 (3.26)
U, = —(X, — 250) — (X, — 250)° — f (x3=250)-+g(x,— 250) + (Y, —50)
+(y, —50)° + f (y, —50) =G (y=50) =(n+hz)z, +1z, + pz,2,

— fe, — ge, +e,
4 =—de,
b =—be,
¢ =—ce,
. (3.27)
d =—de,
f=—fe,
g = —Ge3
We obtain
V=-=e-6-¢ <0

(3.28)
which is negative semi-definite function ofel,ez,eB,é,B,C,J, f and g . The Lyapunov

asymptotical stability theorem is not satisfied. We cannot obtain that common origin
of error dynamics (3.23) and parameter dynamics (3.27) is asymptotically stable. By

pragmatical asymptotically stability theorem , D is a 9-manifold, n=9and the
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number of error state variablesp=3. When e, =e, =e, =0and4,b,¢,d, f,§ take

arbitrary values, V=0,s0 X is of 6 dimensions, m=n—p=9-3=6, m+1<n is
satisfied. According to the pragmatical asymptotically stability theorem, error vector e
approaches zero and the estimated parameters also approach the uncertain parameters.
The equilibrium point is pragmatically asymptotically stable. Under the assumption of
equal probability, it is actually asymptotically stable. The simulation results are shown

in Figs. 3.9~3.11.

Case 3.

The following chaotic system are two translated Ge-Ku-Duffings system of which
the origin is translated to (X, X,,X;) = (250, 250, 250) , (y,,¥,,Y,;) = (50, 50, 50) to
guarantee the error dynamics always happens/in the first quadrant of e coordinate
system. The translated master system andslave system are:

L

e (x, —250)

% = —a(x, —250) — (x, — 250)[b(c— (%, =250)%) +d (X, — 250)] (3.29)
dx, _

(X, — 250) — (X, — 250)° — f (X, £ 250) g (x, — 250)

B _(y, -50)+u,

dt

d R AL n

& ==(y, ~50)~ (y, ~50)[B( (¥, ~50)") + (¥, ~50)] +u, (3:30)
d : .

fz_(ys —50) - (y; —50)° - f (y, —50)+ §(y, —50) +u,

Let initial states be x,(0) =2,x,(0) =2.4,%,(0)=5,y,(0)=2,y,(0) =2.4,y,(0) =5
and system parameters a=0.1b=11,c=40, d=54,f =6,9=30.
The generalized synchronization error vector is
e=x-y+F(t) (3.31)

where F(t)=[2,2,,2,]" isthe state vector of Rdssler system:
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E: (Zz+23)

dz

d_t2 =7, +kz, (3.32)
%—m+zz —rz

dt - 173 3

We find that the error dynamic without controllers always exists in first quadrant as
shown in Fig. 3.12.

This system exhibits chaos when the parameters of system are k=0.15,
m=0.2,r=10 and the initial states of system are z,(0)=2, z,(0)=2.4, z,(0)=5,

its phase portraits and time histories as shown in Fig. 3.13.0ur goal is !im e =0.We

obtain the error dynamics :

& = (X, —250) - (y, —50)—(z, + z;) —u,

6, = —a(x, — 250) — (x, — 250)[b(c — (X, — 250)*) + d (X, — 250)]
+4(y, —50) + (¥, —50)[b(¢ —(y=50)%)£d(y, —50)] + 2,
+kz, —u,

&, = —(X, — 250) — (X, — 250)° = f (X, =250) + g{(%; ~ 250) + (y, —50)
+(y, —50)° + f (y, —50)= §(y, =50y +M+ 7,2, ¥z, —u,

(3.33)

~ A

where d=a-4, b=b-b, T=c<¢, d=d-d, f=f-fandg=g—g are
estimates of uncertain parameters a, b, €; dyfand g respectively.

Using different translation pragmatical synchronization by partial region stability
theory, we can choose a Lyapunov function in the form of a positive definite function
in first quadrant:

V=g+e,+e+a+b+c+d+f+g (3.34)
The time derivative of V is
V=g +6+6+arbrérdsfrg
=(x, —250) —(y, —50) - (z, + ;) —u,
—a(x, —250) — (x, — 250)[b(c — (x, — 250)?) + d (X, — 250)]

+8(Y, —50) + (y, —~50)[0(€ - (y, —50)*) +d (y, ~50)] +z,
+kz, -u, (3.35)

— (X, — 250) — (%, — 250)° — f (x, — 250) + g(x, — 250) + (y, —50)
+(y, —50)° + f(y2 —-50)—§(y, —50) + M+ 2z, —rz, —u,

Larbrérd e fag
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Choose

=(x,—250)—-(y,-50)+z, - be +e
=—a(x, —250) - (x, - 250)[b(c — (X, —250)?) +d(x, —250)]
+a(y, ~50)+ (v, ~50)[b(E - (v, ~50)") +d (¥, ~50)] + 2, (3.36)
+kz, - Ce, —de, +e,
U, = —(X, —250) — (X, — 250)° — f (x, —250) + g (¥, — 250)+(y3 50)
+(y,—50)° + f (y, —50)— §(y, —50) + m+ 2,2, — rz, — fe, — ge, +e,
a=-ae
b =—be,
€ =—Ce,
. (3.37)
d =—de,
f =—fe,
g= _ge3
We obtain
V=-e-e-¢ <0
(3.38)
which is negative semi-definite function-efe;;e;.e, a,b,é,d, f and g . The Lyapunov

asymptotical stability theorem is not satisfied. We cannot obtain that common origin
of error dynamics (3.33) and parameter dynamics (3.37) is asymptotically stable. By

pragmatical asymptotically stability theorem , D is a 9-manifold, n=9and the

number of error state variablesp=3. When e, =e, =e; =0and 4&,b,¢,d, f,§ take

arbitrary values, V=0,s0 X is of 6 dimensions, m=n—p=9-3=6, m+1<n is
satisfied. According to the pragmatical asymptotically stability theorem, error vector e
approaches zero and the estimated parameters also approach the uncertain parameters.
The equilibrium point is pragmatically asymptotically stable. Under the assumption of
equal probability, it is actually asymptotically stable. The simulation results are shown
in Figs. 3.14~3.16.
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Fig. 3.11 Time histories-of the parameter errors for Case 2.
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Chapter 4
Double Symplectic Synchronization

for Ge-Ku-Duffing System
4.1 Preliminary
In this Chapter, a new double symplectic synchronization G(x,y,t) =F(x,y,t)
is studied, where X,y are state vectors of Partner A and Partner B , respectively,
G(x,y,t)and F(x,y,t)are given vector functions of x,y and time. Since the
symplectic functions are presented on both the right hand side and the left hand side
of the equality, it is called “double symplectic synchronization”. When

G(x,y,t)=y , the double symplectic synchronization is reduced to the symplectic
synchronization.Due to the complexity=of.the . form of the double symplectic

synchronization, it may be applied:ito increase the security of secret communication.

4.2 Double Symplectic Synchrenization’Scheme

Consider two different nonlinear chaotic systems, Partner A and Partner B,
described by
x=f(x1t), (4.1)
y=C()y+g(y,t)+u, (4.2)
where X=[x,X,,...,x.]" €eR"and y=[y,,Y,,....¥,]' €R" are the state vectors of

Partner A and Partner B, CeR™ is a given matrix, f and g are continuous

nonlinear vector functions, and u is the controller vector. Our goal is to design the
controller u such that G(x,Y,t) asymptotically approaches F(x,y,t) . For

simplicity let G(x,y,t)=x+Yy and F isa continuous nonlinear vector function.
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Property 1 [49]: An mxn matrix A of real elements defines a linear mapping
y=Ax from R" into R", and the induced p-norm of A for p=1 2, and o is

given by
Al = m?x;‘aij L AL =[ A AT (AL = miasz_;‘aij | (4.3)

The useful property of induced matrix norms for real matrix A is as follow:

Al < IALIAL - (4.4)

Theorem : For chaotic systems Partner A (4.1) and Partner B (4.2), if the
controller u is designed as

u=(I- DyF)’l[DXFf(x,t) +D,F(C(t)y +9(y,1)) + DF —f(x,t) —g(y,1)

(4.5)
+Ct)(x—F)-K((x+y-F)],

where D,F , DJF , D “are the “Jacobian matrices of F(x,y,t) ,

K =diag(k,k,,...,k,) , and satisfies

min(k;)
[l

>1, (4.6)

then the double symplectic synchronization will be achieved.

Proof: Define the error vectors as
e=x+y—-F(x,y,t), 4.7)
then the following error dynamics can be obtained by introducing the designed
controller

L y—D,Fx—D, Fy—DF

dt
=f(x,t)+C(t)y +9(y.,t) -D,Ff(x,t) -D ,F(C(t)y +9(y,t)) —-D,F (4.8)
+(1-D,Fu
= (C(t)-K)e.
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Choose a positive definite Lyapunov function of the form
i
V(t) =Ee e. (4.9)

Taking the time derivative of V (t) along the trajectory of Eq. (4.8), we have
V(t)=e"é

=e'C(t)e—e'Ke

<[[C)] -l - min(k,)el

= (lc®)] - min(k.) el

(4.10)

Let M =min(k)—[C@)|>0, then V(t) <M |e| =—2MV (t). Therefore, it can be
obtained that

V(t) <V (0)e ™ (4.11)

and !imj;[\/(§)|d§ is bounded. Besides, - V:(t) is uniformly continuous. According

to Barbalat’s lemma [27], the conclusion can be ‘drawn that limV (t)=0, i.e.

t—o

!im||e(t)||:0. Thus, the double  symplectic=synchronization can be achieved

asymptotically.

4.3 Synchronization of Two Different New Chaotic Systems
Case 1.

Consider a new Ge-Ku Mathieu(GKM) system[43] as Partner A described by

, =—ax2—x1[b(c—xf)+dx2x3], (4.12)
Xy =—(g+hx) X +1x, + px,X,,
where a=-0.6,b=5,c=11,d=0.3,g=8h=10,1=05,p=0.2 , and the initial

conditions are x,(0)=0.01, x,(0)=0.01, x,(0)=0.01. Eq. (4.12) can be rewritten
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X2

in the form of Eq. (2.1), where f(x,t)=| —ax, —xl[b(c—xf)+dx2x3} . The chaotic
—(g+hx) X, +1Ix, + px,X,

attractor of the new Ge-Ku-Mathieu system is shown in Fig. 4.1.

The controlled a new Ge-Ku-Duffing(GKD) system[43] is considered as Partner B

described by
Yo=Y, +U,
V= —ky, =i [ m(r=y7)+sy, ]+, (4.13)

ys :—y3—y§‘—ny2+wyl+u3,

where k=0.1,m=11r=40,s=54,n=6,w=30, u=[u, uz,us]T is the controller,
and the initial conditions are y,(0) =251y5(0) =2.4,y,(0)=5. The chaotic attractor
of the uncontrolled new GKD system.is shown in*Fig. 4.2. The Lyapunov exponents

and the bifurcation diagram of the uncontrolled new GKD system are shown in Fig.

4.3 and Fig. 4.4. Eq. (4.13)-can'be rewritten in‘the form of Eq. (4.2), where

0 1 o0 0

Ct)=|-mr —k 0 | and g(y,t)=|my; —sy,y, |. By applying Property 1, it can
w -n -1 -y:

be  derived  that ICt)], =mr-w IC®)| =mr+k ,  and

IC®)], < /(mr—w)(mr +k) =+/180441. Then |[C(t)|=424 is estimated.

XYy
Define F(x,Y,t)=|X,Y> |, and our goal is to achieve the double symplectic

2
X3 y3

synchronization x+Yy=F(x,y,t) . According to the Theorem , the inequality
min(k)
[col

>1 must be satisfied. It can be obtained that min(k;) >424. Thus we
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choose K=|0 =| 0 426 0 | and design the controller as
0

U = (X, + Y, = X7 —2X, Y, Y, + X + Yy — X Y7),

u, =—{(=ax, = x (b(c—x/) +dx,X;) + (—Ky, = y, (M(r — y;/) +5y,))
— (—ax, — %, (b(c = X) + dx,X,) y; — 2X,Y, (=Ky, — Y, (M(r — ) +5Y,))

2
+X,t+Y, _Xzyz}

Uy = ~{~(g + 1) % +1%, + PxiXs + (=Y, = Y5 —ny, +wy,)
= (=(Q+ X)X +1%, + PXX3) Y5 = 2% Y5 (=Y — Y5 — 1Y,
+Wy1) + X3 + y3 - X3y§}
When the double symplectic synchranization/is achieved, the phase portrait of the

controlled new GKD system and the-time histories of the state errors and the time
histories of x +y, and XY= are shown-in Fig. 4.5-and Fig. 4.6 and Fig. 4.7,

respectively.

Case 2.
Consider a new Ge-Ku-van der Pol(GKv)system[43] as Partner A described by

% =%,

X, = —ax, — X, [b(c—xf)+dx3], (4.14)

X, =—0% —h(1-x)x, +Ix,

where a=0.08,b=-0.35,c=100.56,d =-1000.02,g =0.61,h=0.08,1=0.01 and

the initial condition is x,(0) =0.01, x,(0) =0.01 ,x,(0) =0.01. Eq. (3.14) can be
X2

rewritten in the form of Eq. (4.1), where f(x,t)=|—ax, —X, [b(c— xf)+dx3] . The
—g%, —h (1= ) %, +1x,

chaotic attractor of the new Ge-Ku-van der Pol system is shown in Fig. 4.8.
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The controlled Ge-Ku-Duffing(GKD) system is considered as Partner B
described by

Yi =Y, tU,
Y2 :_kyz_yl[m(r_y].z)+sy3:|+u2’ (4.15)
ya :—y3—y§’—ny2+wyl+u3,

where k=0.L,m=11r=40,5=54,n=6,w=30, u=[u,u,,u,]" is the controller,

and the initial condition is y,(0)=2, y,(0)=24,y,(0)=5. Eq.(4.15) can be

0 1 0
rewritten in the form of Eq. (4.2), where C(t)=|-mr -k 0| and
w -n -1
0
g(y,t)=| my; —sy,y, | . By applyingsProperty-1,it is derived that |C(t)[, =mr—w,
Y3

ICt)|, =mr+k, and |C@)|;</(mr—w)(mr+k)=~180441. Then |C(t)] =424

is estimated.
XY
Define F(x,y,t)=| X,y |, and our goal is to achieve the double symplectic
X;Ys

synchronization x+y=F(x,y,t). Accordingto the Theorem, the inequality

min(k e . .
HT(t)“) >1 has to be satisfied. It can be obtained that min(k,) > 424 . Thus we
choose
kk 0 O 425 0 0
K=|0 k, 0|=| 0 426 0 | and design the controller as
0 0 Kk, 0 0 427

2 2
U =X+Y, =X ¥, _2X1y1y2 +X+Y — X,
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u, = _{_axz - Xs(b(c_ Xlz) + dX3) + (_kyz - yl(m(r - ylz) + sy3))
= (=%, = X, (B(C —x) + dX.) Y5 = 2%, Y, (=ky, = y,(m(r — y;) +sy,))
XY, - XzYz2

us = —{—gx3 + h(l_ X;)Xz + |X1 - y3 - y33 - kyz +Wy1
— (g%, +h(@L—=X3)X, +1%,) Y3 —2X,Y;(=Y; — ¥5 —ky, +wy;)

X+ Y, — %Yo}
When the double symplectic synchronization is achieved, the phase portrait of the

controlled Ge-Ku-Duffing system and the time histories of the state errors and the
time histories of x +y, and Xy’ areshown in Fig. 4.9 and Fig. 4.10 and Fig. 4.11,

respectively.
Case 3.
Consider a new Double Ge-Ku system as Partner A described by

X =X,
X, = —ax, —xl[b(c—xf)+dx3], (4.16)

X, :—axg—x3[b(c—x32)+ex1},
where a=-05b=-1.4,¢c=1.9,d=54,e=6.2and the initial conditions are

X,(0) =0.01, x,(0) =0.01 ,x,(0) =0.01. Eq. (3.16) can be rewritten in the form of

X,

Eq.(3.1), where f(x,t)=|—-ax, —x, [b(c - )+ dxs] . The chaotic attractor of the

—ax, —xs[b(c—x§)+ex1]

new Double Ge-Ku system is shown in Fig. 4.12.

The controlled Ge-Ku-Duffing system is considered as Partner B described by

Yi =Y, tu,
V= —ky, =i [ m(r=y7)+sy, ]+, (417)
ys :—y3—y§‘—ny2+wyl+u3,

where k=0.1,m=11r=40,5=54,n=6,w=30, u=[u,u,u,]" is the controller,
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and the initial conditions are y,(0)=2, y,(0)=2.4,y,(0)=5.Eq. (4.17) can be

0 1 0
rewritten in the form of Eq. (4.2), where C(t)=|-mr -k 0 | and
w -n -1
0
g(y,t)=| my; —sy,y, | . By applying Property 1, it is derived that |C(t)||, =mr—w,
-Y;

ICt)|, =mr+k,and ||C(t)], </(mr —w)(mr +k) =~/180441. Then |C(t)|=424 is

estimated.
XY
Define F(x,Y,t)=| x,y> |, and our goal is to achieve the double symplectic
X;Ys

synchronization x+y=F(X,y,t). According to the’Theorem , the inequality

min(k e g .
HT(t)“) >1 has to be satisfied. It can be obtained that =min(k,) > 424 . Thus we
choose
kk 0 O 425 0 0
K=|0 k, 0|=| 0 426 0 | and design the controlleras
0 0 Kk, 0 0 427

u = _{Xz +Y, - X2y12 _2X1y1y2 +XtY _X1y12}1

u, = —{—aX2 - X1(b(c_ X12) +dX3) - kyz - yl(m(r - y12) + Sys)
—(=ax, =X (b(c—X7) + dx)) Y; =2, Y, (=ky, = y,(m(r = y7) +5Y,))
+X,t+Y, —X2y22}

U; = —{—aX3 _Xs(b(C_X§)+eX1)_ Ys— yg —ny, + Wy,
— (=% — X, (D(C — X5) +€X) Y; = 2%;Y5 (=Y, — Y5 — Ny, + Wy,)
XY, - X3y5}
When the double symplectic synchronization is achieved, the phase portrait of the

controlled Ge-Ku-Duffing system and the time histories of the state errors and the
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time histories of x. +y, and XY’ are shown in Fig. 4.13 and Fig. 4.14 and Fig. 4.15,

respectively.
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Fig. 4.1 The chaotic attractor of a new Ge-Ku-Mathieu system.
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Fig. 4.2 The chaotic attractor of a uncontrolled new Ge-Ku-Duffing system.
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Fig. 4.4 The bifurcation diagram of a uncontrolled new Ge-Ku-Duffing system.
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Fig. 4.5 Phase portrait of a controlled,new Ge-Ku-Duffing system for Case 1.
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Fig. 4.6 Time histories of x,+y, and XYy’ for Case 1.
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Fig. 4.8 The chaotic attractor of a new Ge-Ku-van der Pol system.
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Fig. 4.9 Phase portrait of the controlled Ge-Ku-Duffing system for Case 2.

3000 T T T T T T T T I
x4yl
2000 1 y12
1000 ‘
0 |
1000 1 | 1 | ! | ! 1 !
1] 10 20 30 40 50 60 70 80 90 100
x10°
2 T T T T T T T T T
H2+y2
TP x2y2? []
D
Ak _
2 1 ! 1 1 1 1 1 1 1
i} 10 20 30 40 50 B0 70 80 90 100

Fig. 4.10 Time histories of x +y, and Xy’ for Case 2.
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45



y2

25 T T T T

)|
1 I
-180 -100 -50 1] 50 100
y1

500 T T T T T T T T
x4yl
)(1y12
1]
500 1 | 1 | ! | ! 1 !
1] 10 20 30 40 50 60 70 80 90 100
3 10
2 T T i} T T T T T
H2+y2
0o, ‘,HJL.TH ﬂllﬂ }LJ l“l.lml.hLlL.llJ“Lu u.tJhIJLM g2
LI W A8 AEL L AU N T
2 i
4 1 ! 1 1 1 1 1 1 1
o 10 20 30 40 50 60 70 80 90 100
3000 T T T T T T T T T
*3+y3
2000 F x3y32 |
1000% -
1]
1] 10 20 30 40 50 60 70 80 90 100

Fig. 4.14 Time histories of x +y, and Xy’ for Case 3

46



Fig. 4.15 Time historie tate errors for Case 3.

47



Chapter 5
Multiple Symplectic Synchronization for

Ge-Ku-Duffing System

5.1 Preliminary

In this Chapter, a new type of synchronization, multiple symplectic
synchronization is studied. Symplectic synchronization and double symplectic
synchronization are special cases of the multiple symplectic synchronization. When
the double symplectic functions is extended to a more general form,
G(x,Y,z,..wt)=F(x,y,z,...w,t) , it is called “multiple  symplectic
synchronization”. The multiple symplecti¢ synchronization may be applied to increase
the security of secret communication due ite.the.complexity of its synchronization

form.

5.2 Multiple Symplectic Synchronization:Scheme

Generalized synchronization refers to a functional relation between the state
vectors of master and of slave, i.e. y=F(x,t), where x and y are the state vectors
of master and slave. Recently[50], generalized synchronization is extended to a more
general form, y=F(x,y,t). This means that the final desired state y of the “slave”
system not only depends upon the “master” system state x but also depends upon
the state y itself. Therefore the “slave” system is not traditional pure slave obeying
the master system completely but plays a role to determine the final desired state of
the “slave” system. This kind of synchronization, is called “symplectic
synchronization”, and the “master” system is called Partner A, the “slave” system is
called Partner B.

Since the symplectic functions are presented at both the right hand side and the
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left hand side of the equality, it is called double symplectic synchronization,
G(x,y,t) =F(x,y,t), where x, y are state vectors of Partner A and Partner B ,
respectively, G(x,y,t)and F(x,y,t)are given vector functions of x,y and time.
When the double symplectic functions is extended to a more general form,
G(x, Y, z,...w,t) =F(x,y,z,..w,t) , it is called “multiple symplectic
synchronization”, where X,y,z,..,w are state vectors of studied systems.
G(x,Y,z,..,w,t)and F(x,Y,z,...,w,t)are given vector functions of x,y,z,...w and

time.

5.3 Synchronization of Three Different Chaotic Systems
Case 1.

Consider a new Ge-Ku-van«der Pol(GKw)systemris described by
% =%,
X, :—axz—xs[b(c—xf)erxB], (5.1)
X, =—0% —h(1=x)x, +Ix,,
where a=0.08,b=-0.35¢=100.56,d'=-1000.02,g =0.61,h=0.08,1 =0.01 and
the initial condition is x;(0) =0.01, x,(0) =0.01 ,x,(0) =0.01. The chaotic attractor
of the new Ge-Ku-van der Pol system is shown in Fig. 5.1.

The Chen system is described by

2, =7, —a,z,,
z,=(c,—a,)z,— 2,2, +C2,, (5.2)
2, =12, -bz,
where a =35Db =3,c, =28 and the initial condition IS

z,(0)=0.5, z,(0) =0.26 ,z,(0) =0.35. The chaotic attractor of the Chen system is
shown in Fig. 5.2.

The controlled Ge-Ku-Duffing(GKD) system is described by
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Yi =Y, +U,

yz:_kyz_yl[m(r_ylz)+sy3]+u2’ (5.3)
ya :—y3—y33—ny2 + Wy, + U,

where k=0.1,m=11r=40,5=54n=6w=30, u=[u,u,,u,]" is the controller,
and the initial condition is y,(0)=2, y,(0)=2.4,y,(0)=5. The chaotic attractor of
uncontrolled Ge-Ku-Duffing system is shown in Fig. 5.3. The Lyapunov exponents

and the bifurcation diagram of uncontrolled GKD system are shown in Fig. 5.4 and

Fig. 5.5.
X1+ yl+zl X1y121+X2y221+X3y321
Define G(X,Y,z,t)=| X, +Y,+2, | , F(X,¥,Z,t) =| X\V,Z, + X, ¥,Z, + X332, |,
X3+ Y3 t1 X Y123+ X, Y,25 + X3Y324

and our goal is to achieve the multiple’symplectic:synchronization
G(xy,z,t)=F(x,y,2,t).
Define e=G(x,Y,z,t)—F(x, y;Z,t). Thus-we design the-controller as
U =—{X + Y, +aZ, - &z — XY= XY, = XY, (3122 2 aizl)
—(—ax2 =X (b(c- X12) + an)) Y24 _(_kyz =Y, (m(r - y12) + Sys))xzzl
_(3122 _aizl)xzyz _(_9X3+h(1_X32)X2+|X2)y321 '
- (_Y3 - yg o kYQ + WY1)X321 _(alzz - alzl) XY T X+ Y1+ 4 =X Y4
=X Y2l =% y3zl}
u, =—{-ax, - x(b(c— Xlz) +dx,) + (=ky, — y,(m(r - ylz) +5Ys))
+ ((Cl - a1) 2= 2,2+ CZ,) = X Y12, = X Y,Z, = XY, ((Cl - a1) 2y —1)Z, +C122)
_(_axz —X;(b(c—x7) + dX3)) Y22, _(_kYZ =y, (m(r—yy)+ Sys))xzzz
- ((Cl - ai) Z,— L3+ C122)X2y2 - (—gx3 + h(l_ X;)Xz + IXz)Yazz
_(_ys o yg o kyz +WY1)X322 _((Cl _a1)21 — 43 +C122)X3y3 X+ Y, 7,

=X Y12, =X Y52, — Xsyszz}
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Uy = —{(=0% + (L= %)%, +1x) + (Y5 = Y5 =Ky, +Wy,)
+ (2122 - b123) =X V23 =X Y23 — XY, (2122 - blZS)
_(_axz - X3(b(C - X12) + dX3)) YaZs _(_kyz - y1(m(r - y12) + SY3)) X123
(2,2, —b,2,)%, Y, — (9%, + h(L—X2)X, +1X,)Y,Z,
- (_y3 o yes, - kY2 + WY1)X323 _(lez o blzs)xsya TX+ Y3+ 3= X Y7,
X Y525 =X yszz}

When the multiple symplectic synchronization is achieved, the phase portrait of
the controlled Ge-Ku-Duffing system and the time histories of the state errors and the
time histories of G(x,y,z,t) and F(x,y,zt) areshown in Fig. 5.6 and Fig. 5.7 and
Fig. 5.8, respectively.

Case 2.

Consider a new Ge-Ku-Mathieu(GKM) system is described by
X =X,
X, =—ax2—x1[b(c—xf)+dx2x3}, (5.4)
X3 =—(g+hx) X + 1%, + px X3,
where a=-0.6,b=5,c=11,d=0.3,g=8h=10,1 =05 p=0.2 , and the initial
conditions are x,(0) =0.01, x,(0)'=0:0%,-x5(0)=0.01. The chaotic attractor of the
new Ge-Ku Mathieu system is shown in Fig. 5.9.

The Rossler system is described by
1, =-1,—1,,

Z,=17,+a2,, (5.5)
%ZQ+A%_Q%!

where a =0.15 b =0.2, ¢, =10 and the initial condition is
2,(0)=2,2,(0)=2.4,z,(0)=5. The chaotic attractor of the Rdssler system is
shown in Fig. 5.10.

The controlled Ge-Ku-Duffing(GKD) system is described by
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Yi =Y, +U,

yz:_kyz_yl[m(r_ylz)+sy3]+u2’ (5.6)
ya :—y3—y33—ny2 + Wy, + U,

where k=0.L,m=11r=40,5=54,n=6,w=30, u=[u,u,,u,]" is the controller,

and the initial conditionis y,(0)=2, v,(0)=2.4,y,(0)=5. The chaotic attractor of

uncontrolled Ge-Ku-Duffing system is shown in Fig. 5.3. The Lyapunov exponents

and the bifurcation diagram of uncontrolled GKD system are shown in Fig. 5.4 and

Fig. 5.5.
X+y+z X1y1212 +X2y2212 +X3y3212
Define G(X,Y,z,t)=| X, +Y,+2, | , F(XY,2,t) =| X Y,22 +X,Y,27 + XY, |,
X, + Yy +2Z, XV, 25+ X,Y,25 + X, Y,28

and our goal is to achieve the multiple’symplectic:synchronization
G(x,y,2,t) =F(x,y,2,).

Define e=G(x,Y,z,t)—F(x, y;Z,t). Thus-we design the-controller as

U =—{X, + Y, — 2, — 2, = X, YiZd “XYols — 2%V, (£Z5- 7,)
—(—ax2 —X, [b(c— X )+ dxzxg]) Vo2 = (ky, = Yy ((r = y7) +5y,) ) %20
= 2%,Y,2,(=2, = 25) = (— (9 + hx, ) X + 1%, + PX,X;) Y,2; ,
— (=Y — Y — kY, +WY)XeZ = 2X;YaZ, (=2, — Z3) + X + Yy + 2, — X Y, 2L
=X Y2 —XYsZ}
U, = (=%, =%, b(c =X )+ dx,x, )+ (=ky, = y,(m(r = y7) +5y,))
(@ a2) - X2, XY, — 2% Y12, (2, +az,)
—(—ax2 — X, [b(c - X )+ dxsz) Y,2;
(K, = Yo (M(r = y7) +5Y5) ) %,25 = 2%,Y,2,(2, +8,2,)
= (=(9+1% ) %, +1X + PX,X)YsZ; = (=Y = Vs —KY, +Wyy)%,2;

2 2 2
—2X,;Y,2, (21 +a122)+ X, + Yy + 2, =X Y125 =X Y,2 — X525 }
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Uy =—{(=(g +hx )X, +IX, + PX,X3) + (=Y, — Y5 — Ky, + wy;)
+ (0, + 2,2, - C.2,) — X%, Y175 — X Y,2Z5 — 2%, Y2, (b, + 2,2, -2,
—(—ax2 —X, [b(c -X} )+ dx2x3}) V.25 —(—Ky, = Yo ((r = y7) +sy,) ) %,22
—2%,Y,25(0, + 2,2, —€,2,) — (= (9 + X ) X; +1X, + PX,X;) Y425
—(=Ys— Y5 —KY, +WY,)XZ5 — 2% Y32 (B + 2,2, — €2 )+ X + V3 + 2, — X, Y, 25
= XY, 25 — XY}

When the multiple symplectic synchronization is achieved, the phase portrait of
the controlled Ge-Ku-Duffing system and the time histories of the state errors and the
time histories of G(x,y,z,t) and F(x,y,zt) are shown in Fig. 5.11 and Fig. 5.12
and Fig. 5.13, respectively.

Case 3.

Consider a new Double Ge-Ku system:is-déescribed by

% =X,
%, =—a%, — % | b(c—x¢ )+, (.7)
X, = —ax, —xs[b(c—x§)+ex1]
where a=-05b=-14,c=19d=54,e=6.2-and the initial conditions are
X,(0) =0.01, x,(0) =0.01 ,x,(0) =0.01. The chaotic attractor of the new Double
Ge-Ku system is shown in Fig. 5.14.
The LU system is described by
—aZ, — a7y,

Z, =
1, =-72,2,+C1Z,, (5.8)
2, =12, -bz,,

where & =36, b =3, ¢, =20 and the initial condition IS
2,(0)=0.2,2,(0) =0.35,z,(0) =0.2. The chaotic attractor of the LU system is
shown in Fig. 5.15.

The controlled Ge-Ku-Duffing(GKD) system is described by
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Yi =Y, +U,

yz:_kyz_yl[m(r_ylz)+sy3]+u2’ (5.9)
ya :—y3—y33—ny2 + Wy, + U,

where k=0.L,m=11r=40,5=54,n=6,w=30, u=[u,u,,u,]" is the controller,

and the initial conditionis y,(0)=2, v,(0)=2.4,y,(0)=5. The chaotic attractor of

uncontrolled Ge-Ku-Duffing system is shown in Fig. 5.3. The Lyapunov exponents

and the bifurcation diagram of uncontrolled GKD system are shown in Fig. 5.4 and

Fig. 5.5.
XY+, X2+ Yo7+ X Yty
Define G(X,Y,z,t)=| X, +Y,+2, | , F(X,Y,2,t)=| X'Y,Z, + X2Y,Z, + X2 Y52, |,
X, + Yy +2Z, XY, 2, + X5 Y, 25 + X2 Y,Z,

and our goal is to achieve the multiple’symplectic:synchronization
G(x,y,2,t) =F(x,y,2,).

Define e=G(x,Y,z,t)—F(x, y;Z,t). Thus-we design the-controller as

U =X + Y, — a7, ~a2 ~ 260G <X Y,z — XY (Faz, —az)
—2x2y221(—ax2 —xl[b(c—xf)erxs])—(—ky2 — Y, (M(r = y7) +5sy3) ) Xi2,
— X2y, (-8,2, —a,2,) — 2X,Y,Z, (—ax, — X, [b (c-x)+ exl}) ,
—(=Ys = Ys — Ky, + W)Xz =X Ys (-AZ, — Az )+ X+ Y + 4 - XY
=X Yol = X3 Ys2.}

U, =—{(~a%, =% | b(c—x¢ )+ dx [+ (~ky, =y, (m(r - y7) +5y5))
+(=2,2, +C,2,) = 2X X, ,2, = X ¥,Z, = X Y, (—2,2, +C,Z, )
-2X,Y,2, (—ax2 -X [b(c — xf)+ dxa})—(—ky2 —y,(m(r—y})+ sy3)) X22,
—X3Y,(~2,25 +€,2,) — 2X, Y42, (—aX, — X, [b (c=x3)+ exl})
—(=Ys— Y5 —KY, +WY,)XsZ, = X3 Y5 (=22, +C.Z, ) + X, + Y, + 2, — X Y, Z,

2 2
=X ¥,Z, =X y322}
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U, = —{(-ax; — X, [b(c— X;)+ exl]) + (=Y, — Y2 —ky, + wy,)
+(2,2, —0,2,) = 2%, Y12, — X Y, 2, — XY, (2,2, — 1y 2,)
—2X,Y,Z, (—ax2 - X, [b(c - xf)+ dxa])—(—ky2 —y,(m(r—y>)+ sy3)) X22,
—X2Y,(2,2, ~1,2,) = 2%, Y2, (—ax, — X, [b(c -X3)+ exl])
= (=¥ Ya —KY, + WYX 23 = X V5 (22, =BiZy )+ X+ Y + 25 = X V2
= X;Y2Z; = %3 YaZo}
When the multiple symplectic synchronization is achieved, the phase portrait of

the controlled Ge-Ku-Duffing system and the time histories of the state errors and the

time histories of G(x,y,z,t) and F(x,y,zt) are shown in Fig. 5.16 and Fig. 5.17

and Fig. 5.18, respectively.
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Fig. 5.1 The chaotic attractor of a new Ge-Ku-van der Pol system.
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Fig. 5.3 The chaotic attractor of a uncontrolled new Ge-Ku-Duffing system.
56



20 T T T T T T T

d _—-\//"_ e BT
o0k i
A0k A
=l 4
O A —— \ -

e 16 48 5 52 54 _ 58_ ----- 56 _ B
f

Fig. 5.5 The bifurcation diagram of a uncontrolled new Ge-Ku-Duffing system.
57



% 10° phase portraits
2 1 I I 1 I I

o
[ay}
T

=
[y}
T

2 15 q 05 0 0.5 1 15
y1 w 10°

%10
2 T T T T T T T l a2
| ®1y1z1+x2y221+x3y3z1
1+ -
0
il El
2 1 1 1 1 | 1 1 1 |
u] 10 20 30 40 50 60 70 80 90 100
10’
2 T T T T T T T x2+y2+22
| ¥1y122+:2y222+x3y322

5 T T T T T T

! x3+y3+23
x1y123+2y223+x3y323
U '
5 1 1 | 1 | 1 | | |
0 10 20 30 40 50 60 70 80 90 100

Fig. 5.7 Time histories of G(x,y,z,t) and F(x,y,z,t) for Case 1.

58



o 10 20 30 40 50 60 70 80 90 100

Fig. 5.8 Time historie e state errors for Case 1.

59



phase portraits

1 5 T T T T T T T

_20 1 1 1 1 1 1

-15 -10 -5 0 o) 10 15
z1

Fig. 5.10 The chaotic attractor of the Rdssler system.

60

20



% 10° phase portraits

y2
o

-4 -3 -2 -1 0 1 2 3 4 5

y1 w 10°

Fig. 5.11 Phase portrait of the:controlled Ge-Ku-Duffing system for Case 2.

x10°

x1+y1+21
x1y1z1 +><2y2z12+x3y3z12

: w@wwwwww

x10°

100

¥2+y2+22
1yl 222'(>)<2y2222+x3y3222

| ww«wwwww

4 1
0 1 50 70 an a0 100
] x 10
! ! ! ! y ! ! K3+y3+23
054 11232 432y223% 43y 3237
. \ A M J
f ! ' T
051 g
A1 L L Il L | Il | 1 |
0 10 0 a0 40 50 60 70 &0 a0 100

Fig. 5.12 Time histories of G(x,y,z,t) and F(xy,z,t) for Case 2.

61



el

e2

e3

X2

200 Il | 1 Il 1 1 | | |
t
Fig. 5.13 Time histories,of; the state errors for Case 2.
phase portraits

15 T T T T T

10+ B

oL _

[ el

5 =4
-0 =
1% [

Fig. 5.14 The chaotic attractor of a new Double Ge-Ku system.

62



phase portraits
30 T T T T T T T T T

20

10

-10

-20

230 1 1 ] ]
25 20 15 -10 -5 0 5 10 15 20 25

Fig. 5.15 The chaotic attractor of .the “Ll system.

% 10 phase portraits

Fig. 5.16 Phase portrait of the controlled Ge-Ku-Duffing system for Case 3.
63



w10

T x1+y1+z1
><12y1 z1 +x22y2z1 +x32y321

%10

X2+y2+22

o

11 2y1 z2+x22y222+x32y322

x10

¥3+y3+23

o

n
T

x12y1 23+x22y223+x32y323

for Case 3.

Fig. 5.18 Time histories of the state errors for Case 3.

64



Chapter 6
Fuzzy Modeling and Synchronization of Chaotic Systems via

New Fuzzy Model

6.1 Preliminary

In this Chapter, a new fuzzy model [51] is used to simulate and synchronize two
different chaotic systems. Via the new fuzzy model, a complicated nonlinear system is
linearized to a simple form — linear coupling of only two linear subsystems and the
numbers of fuzzy rules can be reduced from2Nto2xN (where N is the number of

nonlinear terms). The fuzzy equations become much simpler.

6.2 New Fuzzy Model Theory

In system analysis and design, it iS important to select an appropriate model
representing a real system. As, an.expression,model of a real plant, the fuzzy
implications and the fuzzy reasoning.method.suggested by Takagi and Sugeno are
traditionally used. The new fuzzy model is also described by fuzzy IF-THEN rules.
The core of the new fuzzy model is that we express each nonlinear equation into two
linear sub-equations by fuzzy IF-THEN rules and take all the first linear sub-equations
to form one linear subsystem and all the second linear sub-equations to form another
linear subsystem. The overall fuzzy model of the system is achieved by fuzzy
blending of this two linear subsystem models. Consider a continuous-time nonlinear
dynamic system as follows:
Equation i:
rule 1:

IF z;(t) is My

THEN X; (t) = Agx(t) + Byu(t),
65



rule 2:

IF z;(t) is M;,
THEN Xl(t)=A|2X(t)+B|2U(t), (61)
where

X(t) =[Xq (£), X2 (1),... X, (D],

u(t) =[uy (), (1),...u, O,
i=12..n, where n is the number of nonlinear terms. z;(t) is the nonlinear term of
xt) , Mj,M;, are fuzzy sets, A;,B; are column vectors and
Xi () = Ajjx(t) + Bjju(t) , j=12 is the output from the first and the second IF-THEN
rules. Given a pair of (x(t),u(t)) and take.all the first linear sub-equations to form
one linear subsystem and all the second-linear.sub-equations to form another linear

subsystem, the final output of the fuzzy systemyis inferred as follows:

AX(t) + Byyuft) ApXx(t) + Byau(t)
%(t) = M, :A‘le(t) +Byu(t) M, :A\zzx(t) +B,u(t) (6.2)
Aux(t) +Byu(t) Aix(t) + By u(t)

where M; and M , are diagonal matrices as following:
dia(My) =[My; My o Myl dia(M,) =My, My, . My,]

Note that for each equation i:
2
2 Mij(zi (1) =1,
j=1

M”(Zl(t)) >0, i= 1,2,...,n and j=1,2.

Via the new fuzzy model, the final form of the fuzzy model becomes very
simple. The new model provides a much more convenient approach for fuzzy model

research and fuzzy application. The simulation results of chaotic systems are
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discussed in next Section.

6.3 New Fuzzy Model of Chaotic Systems

In this Section, the new fuzzy models of two different chaotic systems, Sprott C
[52] and system Sprott E [52] system, are shown for Model 1 and Model 2.

Model system:

Sprott gave three dimensional ODE’s with at most quadratic nonlinearities and
found 19 distinct examples of chaotic flows with either five terms and two
nonlinearities or six terms and one nonlinearity. Two of these 19 systems are used
here.

Model 1: New fuzzy model of Sprott C_system with uncertainty

The Sprott C system with uncertaintysis:
X, =X — X, +A; (6.3)

with initial states (0.8, 1, 0.01), and uncertainty-A; " is 0.1sin(t) . The chaotic attractor
of the Sprott C system is shown in Fig. 6.1.

If T-S fuzzy model is used for representing local linear models of Sprott C system,
8 fuzzy rules and 8 linear subsystems are need. The process of modeling is shown as
follows:
T-S fuzzy model:
Assume that:
(1) x,e[-Z,,Z,] and Z,>0
(2) A e[-2,,Z,] and Z,>0
(3) % e€[-Z;,Z,] and Z,>0

Then we have the following T-S fuzzy rules:
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Rule 1: IF x, is M,, , A, is M, and x, is M, THEN X =AX,

Rule2:IF x, is My , A, is M,, and x, is M, THEN X =AX,

Rule3:IF x, is M, , A, is M,, and x, is M, THEN X =AX,

Rule4:IF x, is M, , A, is M, and x, is M,, THEN X =AX,

Rule5:IF x, is M, , A, is M, and x, is M, THEN X =AX,

Rule6: IF x, is M, , A, is M,, and x, is M, THEN X =AX,

Rule 7:IF x, is M, , A, is M,, and x, is M,, THEN X =AX,

Rule 8:IF x, is M, , A, is M,, and x, is M,, THEN X =AX,

1

Then the final output of the«Sprott C systemecan be composed by fuzzy linear
subsystems mentioned above. it Is obviously:an inefficient and complicated work.
New fuzzy model:

By using the new fuzzy model,.Sprott C system:can be linearized as simple linear
equations. The steps of fuzzy modeling are'shown as follows:
Steps of fuzzy modeling:
Step 1:
Assume thatx, e[-Z,,Z,]andZ, >0, then the first equation of (6.3) can be

exactly represented by new fuzzy model as following:

Rule 1: IFx,isM,;, THEN X =x,Z,, (6.4)
Rule 2: IFx,isM,,, THEN X =-X,Z, (6.5)
where
1 X 1 X
M,==01+=%), M,==(1-22),
11 2( Zl 12 2( Zl

andZ, =8 from Fig. 6.2. M, and M, are fuzzy sets of the first equation of (6.3) and

M, +M,, =1.
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Step 2:

Assume thatA, e[-Z,,Z,]and Z, >0, then the second equation of (6.3) can be

exactly represented by new fuzzy model as following:

Rule 1: IFAisM,,, THEN X,=x-X,+Z2,, (6.6)
Rule 2: IFAisM,,, THEN x,=x-x,-2, (6.7)
where

1 A 1 A
M, ==(1+=L), M, ==(1-=2),
21 2( 7 ) 22 2( 7 )
andZ, =2 from Fig. 6.2. M,,and M, are fuzzy sets of the second equation of (6.3)
and M, +M,, =1.

Step 3:
Assume that x, e [-Z,,Z,]and 23>0 then ,the third equation of (6.3) can be

exactly represented by new fuzzy model as following:

Rule 1: IFxisM, ,“THEN X =1<xZ,, (6.8)
Rule 2: IF x;isM,,, THENT X; =1+X 7, (6.9)
where
1 1
M31=E(l+zi), Mg, = 2(1_i)

andZ, =8 from Fig. 6.2. M, andM,, are fuzzy sets of the third equation of (6.3)
and M, +M,, =1.

Here, we call Egs.(6.4), (6.6) and (6.8) the first linear subsystem under the fuzzy
rules, and Egs.(6.5), (6.7) and (6.9) the second linear subsystem under the fuzzy rules.

The first linear subsystem is

X, = X2
X, x1 (6.10)
X, =1- xlz

The second linear subsystem is
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X, xl— Xs= Z (6.11)

The final output of the fuzzy Sprott C system is inferred as follows and the

chaotic behavior of fuzzy system is shown in Fig. 6.3. Now we have:

| My 0 0 IxZ
0

X =] 0 M, X, =X, +2Z,
X 0 0 M, ||1-xZ
3 31 X 43 (6.12)
M, O —XZ,
+ 0 M, -X,+2Z,
0 0 M, 1+ xlz
Eq. (6.12) can be rewritten as a simple mathematical expression:
. 2 ~
X(t) = _Zl\Pi (AX(t) + by) (6.13)
1=

where P, are diagonal matrices-as follows:

dla(‘{Il) = [Mll M21 MSl]’ dia(\IIZ) = [MIZ M 22 MSZ]

0 0 Z 0
A=l1 -1 0/, b=|Z,
-z, 0 1
0 0 -Z 0
A=l1 -1 0/, b=[-Z
Z, 0 0 1

Via new fuzzy model, the number of fuzzy rules can be greatly reduced. Just two
linear subsystems are enough to express such complex chaotic behaviors. The
simulation results are similar the original chaotic behavior of the Sprott C system as

shown in Fig. 6.3.

Model 2: New fuzzy model of stochastic Sprott E system
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The stochastic Sprott E system is:

Y1:y2y 3
V=YY »
y3=1—4y1+A :

(6.14)

where A, is Rayleigh noise and initial conditions are chosen as (0.2, 0.063, 0.01),

the stochastic Sprott E model exhibits chaotic motion which is shown in Fig. 6.4.

New fuzzy model:
Assume that:

1 y,el-2,,Z,]JandZ, >0,

(2) A,e[-Z:,Z]andZ, >0,

3) v,e[-Z4,2Z4] andZ, >0,

then we have the following newfuzzy rules:
Rule 1: IFy,isN,,, THEN: ¥, =V,Z,4
Rule 2: IFy,isN,,, THEN ¢y/==Vy,Z,,

where

1 y 1 y
N,==(1+3%), N,==(1-=%
11 2( Z4 12 2( 24)

and
Rule 1: IFy,isN,,,THEN y,=Zy,-Y,,
Rule 2: IFy,isN,,,THEN y,=-Z.y,-Y,,

where

1.y 1.y
N, ==(k2L , N,==-(@1-2).
21 2( ZS 22 2( ZS)

and
Rule 1: IFA,isN, , THEN vy,=1-4y +Z,,
Rule 2: IFA,isN,, , THEN vy,=1-4y,-Z,,
where
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1, A 1, A
N, ,==(H=2, N,==(1-22).
31 2( 26 32 2( ZG)

in Egs. (3-13)~(3-18),Z,=8,Z, =6 andZ,=5 from Fig. 6.5. N,;,N,,,N,,;,N,,,
N,, and N,, are fuzzy sets of Eq.(6.14) and N, +N, =1, N,,+N,, =1 and
Na, + Ny, =1

Here, we call (6.15), (6.17) and (6.19) the first liner subsystem under the fuzzy
rules and (6.16), (6.18) and (6.20) the second linear subsystem under the fuzzy rules.

The first linear subsystem is
Y1 =2,Ys
yZzzsy1_y2 (6.21)
Vs =1-4y,+Z;

The second linear subsystem is

Y1:_24y 3
Yo=—2Zy 7Y (6.22)
Y3:1_4Y1_Z |

The final output of the fuzzy Sprott E system is inferred as follows and the

chaotic behavior of fuzzy system is shown in Fig. 6.6.

T

Y, N, O 0 Z,Y,
Yo|=| 0 N, 0 2y, - Y,
y 0 O N 1-4y, +Z
Y3 31 i Y1+ 46 (6.23)
N, O 0 —-Z,Y,
+ 0 sz 0 _ZSY1 -,
0 0 N | |1-4y,-Z,
Eq. (6.23) can be rewritten as a simple mathematical expression:
. 2
Y(t) =D T (CY({t)+C) (6.24)
i=1

where

dia(r1):[N11 N N31]’ dia(rz):[le N, st]

72



4 0 0 1+ 7,
0 0 -z 0

C,=|-z, -1 0 |, &=| 0
4 0 0 1-2,

Via new fuzzy model, two linear subsystems are enough to express such complex
chaotic behaviors. The simulation results are similar to the original chaotic behavior

of the Sprott E system.

6.4 Fuzzy Synchronization Scheme

In this Section, we derive the new fuzzy Synchronization scheme based on our
new fuzzy model to synchronize two-different fuzzy chaotic systems. The following
fuzzy systems as the master and slave systems are given:

master system:

X(t) = iilwi (A X(t) +b;) (6.25)
slave system:

Y(t) = éﬂ (C.Y(t)+E)+BU(Y) (6.26)
Eq. (6.25) and Eq. (6.26) represent the two different chaotic systems, and in Eq. (6.26)
there is control input U(t). Define the error signal ase(t) = X(t) — Y(t) , we have:

&(t) = X(t) = Y (t) = il\}f (AX(t) +b,) - éﬂ C.Y(H)+E)-BU®)  (6.27)
The fuzzy controllers are designed as follows:

U(t) = uy () + U, (1) (6.28)
where

Uy () = zw FX(t) - ilri PY (1),
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2~ 2
up(t) =X ¥b; - X I¢
i=1 i=1
such that|je(t)| — Oast —oo. Our design is to determine the feedback gains F; and P;.

By substituting U(t) into Eq.(6.27), we obtain:

2 2
&() = 2 ¥ {(A - BR)X())- 2T {(C; - BP)Y (D) (6.29)

=1

Theorem 1: The error system in Eq. (6.29) is asymptotically stable and the slave
system in Eq. (6.26) can synchronize the master system in Eq. (6.25) under the fuzzy
controller in Eq. (6.28) if the following conditions below can be satisfied:

G=(A-BF)=(C,—BP)<0, i=1~2. (6.30)
Proof:

The errors in Eq. (6.29) can be exactly linearized via the fuzzy controllers in Eq.
(4-4) if there exist the feedback gains F; such.that

(A, —BF) = (A, —BF,)=(€; =BP;) =(C; =BP;) <0. (6.31)
Then the overall control system is linearized.as

e(t) = Ge(t), (6.32)
where G = (A, — BF,) = (A, —BF,) = (C, - BP,) = (C, - BP,) < 0.

As a consequence, the zero solution of the error system (6.32) linearized via the

fuzzy controller (6.28) is asymptotically stable.

6.5 Simulation Results

There are two examples in this Section to investigate the effectiveness and
feasibility of our new fuzzy model.
Example 1: Synchronization of identical master and slave Sprott C system

The fuzzy Sprott C system in Eq. (6.13) is chosen as the master system and the

fuzzy slave Sprott C system, with fuzzy controllers is as follows:
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Y(t) = iri (C.Y (t)+E)+BU(t) (6.33)

i=1

where T’ are diagonal matrices

dia(r1):[N11 N N31]’ dia(rz):[le N, st]

and
0 2, 0
C=1 -1 0}],¢=4
-Z, 0 O 1
0 0 -2 0
C,=|1 -1 0|, G=|Z
; 0 0 1

Therefore, the error and error dynamics are:

€ _Xl_yl

€ 1= X2 = Y2 |

_e3_ _X3_y3

6] [%-u] WL

€ |=| %~ Y, :Z\Pi(AX(t)+bi)_zri(CiY(t)+Ci)_BU(t) (6.34)
_é3_ I % — Y, i=1 i

B is chosen as an identity matrix and the fuzzy controllers in Eq. (6.28) are used:

€ X, X,
€ |= \Pl[Al -BR ]3><3 X, |+, [Az -BF, ]3><3 X
€3 Xq X4
Y1 Y1
_Fl [Cl - BP1]3X3 Y, _rz [Cz - BPz ]3X3 Y, (6-35)
g Ys

According to Eq.(6.30) , we have G=[A-BFR]=[A —BF,]|=[C,—BR]

:[C2 - BP2] <0. G is chosen as:
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1 0 0
G=|0 -1 0 (6.36)
0 0 -1

Thus, the feedback gains Fi, F,, P and P, can be determined by the following

equation:
1 0 8
F=B*[A-G]=|1 0 0
-8 0 1
1 0 -8
F,=B7[A,-G]=[1 0 0 (6.37)
8 0 1
1 0 8
R=B"[C,-G]=|1 0 0O
-8 0+ 1
1 0--8
P,=B7[C,-G]=|1 0~0
8 0 I

The synchronization errors are shown in Fig. 6.7.

Example 2: Synchronization of Sprott C system and Sprott E system.
The fuzzy Sprott C system in Eq. (6.13) is chosen as the master system and the

fuzzy slave Sprott E system, with fuzzy controllers is as follows:

Y(t) = iri (CY(t)+C)+BU(t) (6.38)

i=1

where I';are diagonal matrices
dia(l}) = [Nn Ny, N31]1 dia(I,) = [le N, st]

and
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0 0 2z 0

C,=|z. -1 0], &= 0
4 0 0 1+ 7,
0 0 -z, 0

C,=|-z, -1 0| &= 0
4 0 0 1-7,

Therefore, the error and error dynamics are:

€ X, =Y,

=X~ Y2 |y

€, X3 = Y3

€ X =Y 2 _ 2

& |=| %~ ¥, |= 2 ¥i(AX()+B)- > T (CY (1) +¢)-BU (1) (6.39)
63 ).(3 _ )73 i=1 =1

B is chosen as an identity matrix and-the fuzzy controllers in Eq. (6.28) are used:

€ X{ Xy
éz = LPl[Ai - BF1]3><3 Xt le [Az - BFz ]3><3 X3
€3 Xq X4
yl yl
_Fl [Cl - BP1]3X3 Y, _Fz [Cz - BPz ]3X3 Y, (6-40)
Ys Ys

According to Eq.(6.30) , we have G=[A—-BF]=[A —BF,]=[C,—BR]

— [02 — BPZ] <0. G is chosen as:

-1 0 0
G=[0 -1 0 (6.41)
0 0 -1

Thus, the feedback gains Fi, F,, P1 and P, can be determined by the following

equation:
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1 0 8
F=B'[A-G]=|1 0 0
-8 0 1
1 0 -8
F,=B"[A,-G]=|1 0 0 (6.42)
8 0 1

1 0 -8

-4 0 1
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Fig. 6.2. Time historiesof z,,Z, and Z, for Sprott C system.
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Fig. 6.3. Chaotic behavior of new fuzzy Sprott C system with uncertainty.

Fig. 6.4. Chaotic behavior of stochastic Sprott E system.
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Fig. 6.5. Time histories of Z,.Z, and Z, for Sprott E system.

Fig. 6.6. Chaotic behavior of new fuzzy stochastic Sprott E system.
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Fig. 6.8. Time histories of errors for Example 2.
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Chapter 7
Projective Synchronization by Fuzzy Logic Constant
Controller and Its Application to Different Chaotic Systems

with Deterministic and Stochastic Uncertainties

7.1 Preliminary

In this Chapter, a simplest controller, the fuzzy logic constant controller
(FLCC) ,which are derived via fuzzy logic design and Lyapunov direct method, are
presented for projective synchronization of non-autonomous chaotic systems with

deterministic and stochastic uncertainties.

7.2 Projective Chaos Synchronization by FLCC Scheme

Consider the following master chaotic system
X=Ax+ f(X)+A (7.1)
where X =[x,X,,~--X,]" € R" denotes a state vector, A is an nxn constant

coefficient matrix , f is a nonlinear vector function and A is a stochastic
disturbance.

The slave system which can be either identical or different from the master
system, is

y=By+g(y)+u (7.2)

where y=[y,¥,,---y,]' €R" denotes a state vector, B is an nxn constant

coefficient matrix, g is a nonlinear vector function., and u :[ul,uz,-u,un]T eR"is

the fuzzy logic controller vector needed to be designed.

In order to make the chaos state y approaching the projective master state ax ,
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define e=ax—y as the state error. The chaos control is accomplished in the sense

that :
!ime=!im(ax—y)=0 (7.3)
where
e=ax-y=[e,...¢e,] (7.4)

From Eq. (7.1)~(7.3) we have the following error dynamics:
e=aXx-y=a[Ax+ fk YA 4 B+ v &) (7.5)
According to Lyapunov direct method, we have the following Lyapunov function

to derive the fuzzy logic controller for projective synchronization:

V=f(el,..em,..en):%(ef+...+e§1+..e§)>0 (7.6)

The derivative of the Lyapunoyv:function-is:

V =¢fé +..+e.8, +..e,8, (7.7)
If the controllers included iné,..6«.€,can be suitably designed to achieve

V <0, then the zero solution”e=0 is asymptotically stable and the projective
synchronization is accomplished. The" design process of FLCC is introduced as

follows.
We use one vector signal, error derivatives é(t):[él,éz---ém,---én]T as the

antecedent part of the proposed FLCC to design the control input u which will be

used in the consequent part of the proposed FLCC :

u=[u,uy--uy,--u, I (7.8)
where u is a constant column vector and the FLCC accomplishes the objective to
stabilize the error dynamics (7.5).

The strategy of the FLCC designing is proposed as follow and the configuration

of the strategy is shown in Fig. 7.1.
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Assume the upper bound and lower bound of €&, are Z, and —Zn, then the

FLCC can be design step by step as follows:

(1) If e, is detected as positive (e, >0), we have to design a controller for
é, <0, thenV =e_ €&, <0can be achieved. Therefore we have the following i-th

if—then fuzzy rule as:

Rule 1 : IFé,is My THEN um = Zn, (7.9)
Rule 2 : IF€, is M, THEN Uy = Zn (7.10)
Rule 3 : IFé,is M3THEN uns =€, (7.11)

(2) If e, is detected as negative (e, <0), we have to design a controller for
é, >0, thenV =e €&, <0can be achieved. Therefore we have the following i-th

if—then fuzzy rule as:

Rule 1 : IFé, is M; THEN tim =-Zp, (7.12)
Rule 2 : IFé, is M3THEN Upy=+Zp, (7.13)
Rule 3 : IFé, is M3 THEN U3 =€, (7.14)

(3) If e, approaches to zero, then'the" projective synchronization is nearly

achieved. Therefore we have the following i-th if-then fuzzy rule as:

Rule 1 : IFé,is M THEN un =€, ~0 (7.15)

Rule 2 : IFé, is M, THEN upz=e, ~0 (7.16)

Rule 3 : IF€,is M3 THEN unps=¢e, =0 (7.17)
€|

&, ] zZ, —é e, —Z
where M, = M, =—and M3=sgn(%)+sgn(M), M;,M,and M,

z,' 7t g, . z,

refer to the membership functions of positive (P), negative (N) and zero (Z) separately
which are presented in Fig. 7.2. For each case,u,,;, i= 1~3 is the i-th output ofé
which is a constant controller. The centriod defuzzifier which evaluates the output of
all rules, is
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u =il (7.18)

The fuzzy rule base is listed in Table 1, in which the input variables in the
antecedent part of the rules are €, and the output variable in the consequent part is
u

mi*

Table 7.1 Rule-table of FLCC

Rule Antecedent Consequent Part
€ Upi
1 Negative (N) U1
2 Positive (P) Un2
3 Zero (Z) Uns

After designing appropriate “fuzzy -logic constant controllers and being
substituted into Eq. (7.7), a négative definite of.derivatives of Lyapunov function V
can be obtained and the asymptotically stability.’of Lyapunov theorem can be
achieved.

Consequently, the processes of FLCC designing to control the error system
following the trajectory of error dynamics is by getting the upper bounds and lower
bounds of the error derivatives without any controller, i.e. —Z_ <é. <Z_.Through
the fuzzy logic system which follows the rules of Egs. (7.9) ~ (7.17), a negative
definite of derivatives of Lyapunov function V can be obtained and the

asymptotically stability of Lyapunov theorem can be achieved.
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7.3 Simulation Results

There are two case in this Section to show the effectiveness of our new method.

7.3.1 Projective Synchronization of Sprott C and Sprott E system by new FLCC

The master Sprott C system [52]with disturbance is:

dx, (t) _

2 =X (0% 0+ 4,
dx, (1) _ ey
=X %0+ 4,
dx, ()

it =1-X(t) + A,

(7.19)

when initial condition (X;o,X50,X30) = (0.8, 1, 0.01) and disturbance A, is

0.01cos(5t) , A, is0.05cos(5t) and A, is 0.1cos(5t). The chaotic attractor of the

Sprott C system is shown in Fig. 7.3.

The slave Sprott E system[52]is:

dy, (t)

ot =Y,(t)y,(t) +u,
dy, (t)

m = yZ(t) -y, (t) + U;
dy,(t)

m =Yy, (t) -4y, (t) +u,

(7.20)

when initial condition (Y, Y50, Y30) = (0.2, 0.063, 0.01), the Sprott E system exhibits

chaotic motion which is shown in Fig. 7.4. u,,u, and u; are FLCC to synchronize

projectively the slave system to master one, i.e.,

ime=0

t—o

The projective synchronization error vector is

e (t) x@® | %®
e=|&(t) |=a| %) |- y.()
& (1) (1) | [ Ya(t)

where the projective constantis a =4.

From Eq. (7.22), we have the following error dynamics:
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& =a(X, X+ A) Hy,ys+ U,
&, =a(Xx— X+ A) ‘(ZY1 -y, H (7.23)
é3=0‘(1_)61 +4) v, 4, H

Choosing Lyapunov function as:
V= %(ef re? +e) (7.24)
Its time derivative is:

V=¢¢e+ ¢+ g8
=e (o (X, X+ A) =(y,y 4+ u))
+e(a (%= X%+ 4A) {y, -y, w
+te(a (% +A)-Y, -4, 4,

(7.25)

In order to design FLCC, we divide Eq. (7.25) into three parts as follows:
1, 1, 1,
whereV, = =e; ,V, ==—e5andV, = —e:.
1 2 1 2 2 2 3 2 3
Part 1: V, =eg, = e (a(X+ A =(ysy5+1;))
Part 2: V2 =€,6, = ez(a(x1 —X, +A2) _(Yf =Y, +u2))

Part3: V, =e6, =e,(a(l- X’ +A,)—(y, -4y, +U,))

FLCC in Part 1, 2 and 3 can be obtained via the fuzzy rules in Table 7.1 as

follows and the maxima value and minima value of €, €,, é; (without any controller)
can be observed in time history of error derivatives drawn in Fig 7.5.

The projective synchronization scheme is proposed according to Part 1,2 and 3
as V,=e6 <0 , V,=e,6,<0 and V,=e,6;<0 . Hence, we have
V =V, +V, +V; <0. It is clear that all of the rules in our FLCC can lead the

Lyapunov theorem for asymptotical stability is satisfied and the simulation results are

shown in Fig. 7.6 and 7.7.
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7.3.2 Projective Synchronization of Ge-Ku-Duffing and Double Ge-Ku system by
new FLCC

Consider the master Ge-Ku-Duffing system[43] with uncertainty is described by

di(t)

O 0+a,
P a0~ 5 06 - 0) + 81, (0) + A, (7.26)
20— 0-x0- t0+ 910+,

Let initial states be x(0)=2,x,(0)=24,%x,(0)=5 and system parameters
a=01b=11c=40, d=54,f =6,0=30 and uncertainty A, =0.1cos(3t) ,
A, = Rayleigh noise shown in Fig. 7.8 and A, = 0.1sin(2t) . The chaotic attractor of
the Ge-Ku-Duffing system is shown in Figs 7.9.

The slave Double Ge-Ku system[43]uis:

dy, (1) _

—a——y40+w

D)y, -y OMO-Y(0) & PO, (7.27)
9%§2=—W40—waxmm—yﬁﬂhwma»+%

when initial condition y,(0)=0.1,y,(0) =0.1,y,(0)=0.1, and system parameters
| =-05m=-14,n=1.9, p=54,r =6.2 .The Double Ge-Ku system exhibits chaotic
motion which is shown in Fig. 7.10. u,,u, and u; are FLCC to synchronize
projectively the slave system to master one, i.e.,

lime=0 (7.28)

t—ow
The projective synchronization error vector is
e (t) x () | [ %)

e=|e,(t) |=a| X, () |-| y,() (7.29)
& (1) X3(t) ] | ys(t)

where the projective constantis « = 2.
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From Eq. (7.29), we have the following error dynamics:

él O!(X2 (t) + Al) - (yz (t) + u1)
&, = a(=ax, (1) =%, (O)(b(c X (1) + dxy () + A,) = (=1y, () - Y, (m(n - y; () + Py, (D) +u;)  (7.30)
&= (=% (0) = %5 (1) = P () + 91, (1) + Ag) = (Hly (1) - ya(t)(m(n = y3 (0) +1y, (1)) +us)

Choosing Lyapunov function as:
% =%(e12 +e5 +el) (7.31)
Its time derivative is:
V=g¢'¢+ 66+ gg
=e(a(x ty A ¥ (Hy ))
+&(ar (max (- x (1) (b€, x (§),dx ¢4
~(Hy )y OO 6,y ®),py &)

+ey(ar (% ()% (t)y £x (B, gx(H4 )
—(Hy (D y () (m @y (B)DME,))

In order to design FLCC, we divide Eq.:(7.32) into three parts as follows:

(7.32)

AssumeV = %(el2 +el +e5) =V, +V, ¥Vq, thenV = ¢, +e,6, +e,6; =V, +V, +V,,

1.

whereV, = %ef V, = P andV, = %egf.

Part 1:

Vi=ege =¢ (a(x2 )+ Al) - (yz )+ ul))
Part 2:

V, = 8,8, = &, (a(=ax, (t) — %, (t)(b(c — X7 (1)) + dx; (1)) + A,)
= (=ly, (®) =y, ()(m(n = y7 (1) + Py, (1)) +U,))

Part 3:

vs =68, =8 (Ol(—X3 ®- Xg - sz O+ X (t)+ As)
= (=ly; (1) = Y5 O(M(n = y5 (©) + ry, (1)) +u,))

FLCC in Part 1, 2 and 3 can be obtained via the fuzzy rules in Table 7.1 as

follows and the maximum value and minimum values of €, €,, €; (without any
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controller) can be observed in time history of error derivatives drawn in Fig. 7.11.

The synchronization scheme is proposed in Part 1, 2 and 3 and as V, =e;é, <0,
V, =e,&, <0andV; = e,é; <0. Hence, we haveV =V, +V, +V; <0. It is clear that

all of the rules in our FLCC can lead the Lyapunov theorem of asymptotical stability
is satisfied and the simulation results are shown in Fig. 7.12 and 7.13.

If the traditional method is used in this case. We choose a positive definite

Lyapunov function for e, e,, e;:
V= %(ef +e5 +el) (7.33)

Its time derivative is

V =eg +e,.6, +6e,6,
=, (a (%, () +A) — (¥, () +uy))
+ &, (a(=ax, (t) —x, (1) (b(c — x7 (D) =dx(1))+A,)
= ((=1y, (®) = Y, ()(M(n = y5 (£)+pYs (6) #1,))
+e (@ (=X, (1) = xS (1) — fx, (1) + gx, (1) +Ay)
— (=ly5 () = ys (D)(m(n — y5 () £y (D) +u5)

Choose

(7.34)

Uy = (%, (t) + A) = Y, (t) + o, (£) - v, (t)
U, = a(—ax, (t) — X, (t) (b(c — X7 (1)) + dx, (1)) + A,)

= (Y, () = y, (O)(m(n = y7 (£) + pys (1) +ax, - ¥, (7.35)
Uy = (=%, (t) X5 (1) — fx, () + g%, (1) + A,)

—(-ly; (1) = Y OM(N = Y5 (©) + 1y, () + ax, - ¥,

We obtain
V=-¢-e-e<0 (7.36)

Comparing with FLCC in Table 7.2, we see that traditional controllers are more

complex than that of FLCC. The manipulation is the same as that in Subsection 7.3.1.

Table 7.2. The controllers of FLCC and of traditional method.
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Subsection 7.3.1:

Traditional FLCC
ui=a(x2x3+A1)—(y2y3+u1)+ax1—y1 Z1 =20, € -0
u'2:a(><1—x2+A2)—(yf—y2+u2)+ax2—y2 Z,=20, e,—>0
U, = a(l-X +A,)— (Y, =4y, +U,) +aX, — Y, Z,=20, e,—>0

Subsection 7.3.2:
Traditional FLCC
ull = Ot(XZ (t) + Al) =Y, (t) + ax1(t) - yl(t)
U, = ar(—ax, (t) - (t)(b(c — X (t)) + dx, (1)) +4,) Z, =200, e —>0
—((-1y,(®) - y, ()M = Y7 (1) + py, (L) + ax, - ¥, Z,=3000, e, >0
Uy = (=X (t) = XS (t) = X, (t) + gx, () + A,) Z,=500, e, >0
= (=1y; (8) -y, ()M - y3 (©) + 1y, () + 2%, - ¥,

7.4 Comparison of Simulations-of New Strategy and of Traditional
Method
The FLCC are simpler than that of-traditional controllers and will give less
simulation errors. This conclusion:canbe proved-bythe following simulation results.
In Fig. 7.7 and 7.14, it is presented clearlythat the FLCC is faster than traditional
controller to achieve projective synchronization. In Fig. 7.13 and 7.15, the results are
similar.
Furthermore, in Table 7.3, comparison between error data is given. All data are
picked from 35.01 to 35.05s with sampling time 0.01s. From these data, the

superiority of new strategy is obvious.

Table 7.3. Error data at 35.01, 35.02, 35.03, 35.04,35.05s after the action of
controllers

Error for new strategy Error for traditional method
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Subsection 7.3.1: g

0.000000000000721
0.000000000000714
0.000000000000707
0.000000000000700
0.000000000000693

Subsection 7.3.1: &,

-0.000000000000032
-0.000000000000032
-0.000000000000032
-0.000000000000031
-0.000000000000031

Subsection 7.3.1: &,

0.000000000000044
0.000000000000044
0.000000000000043
0.000000000000043
0.000000000000042

Subsection 7.3.2: g

-0.000000000000055
-0.000000000000054
-0.000000000000053
-0.000000000000053
-0.000000000000052

Subsection 7.3.2: ¢,

0.000000000025608
0.000000000025437
0.000000000025381
0.000000000025409
0.000000000025452

Subsection 7.3.2: &,

0.000000000022935

0.026467294618436
0.026203940636773
0.02594320707101

0.025685067847574
0.025429497152326

0.029170713652016
0.028880460201524
0.028593094821119
0.028308588774023
0.028026913609395

-0.009388571342601
-0.009295153496884
-0:009202665174263
-0:009111097125828
-0.009020440194699

-0.024478766106521
-0.024235198314146
-0.023994054061798
-0.023755309234852
-0.023518939958626

0.313445617992862
0.310326781983228
0.307238978910405
0.304181899991505
0.301155239516092

-0.094135747156624
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0.000000000023133
0.000000000023270
0.000000000023322
0.000000000023274

-0.09319908082227

-0.092271734473663
-0.091353615375398
-0.090444631714798
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e, (1)

N

Integrator Master System -

X, @) X, (@)

A

Integrator Slave System —»@-)

V) V@)

Flowchart— Base on MATLAB

| FLcC

ey >0
Rude 1:ifé, is My then tins = Zn
Rude 2:1fé, s M2 then tm = Zn

Ride 3 ;36,18 M3 then uns =e,,

e, <0

Rule 1 :3fé,,is My then ten = -Z
Rude 2 :ifé,is My then timy = -Zn

Rule 3 :ife, is M3 then umg =e,,
2,0
Rde 1 :ipé is My then tmy =¢,, 0

Rde 2 :iféis My thenumy=e, 50

Rde 3 :ifé is M3 thentmg=e, 50

Fig. 7.1. The block diagram sketch of fuzzy logic controller.

Negative Zero

Positive

-1.0 ém

Fig. 7.2. Membership functions.
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phase portraits

Fig. 7.3. Phase portrait'of Master.system-for Subsection 7.3.1.

phase portraits

Fig. 7.4. Phase portrait of Slave system for Subsection 7.3.1.
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Fig. 7.6. Time histories of states for Subsection 7.3.1 where the FLCC is added after

30s.
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Fig. 7.7. Time histories of errors+for Subsection 7.3:1 where the FLCC is added after

30s.
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Fig. 7.8. The stochastic signal of A, = Rayleigh noise
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phase portraits

phase portraits

Fig. 7.9. Phase portrait of Master.system-for Subsection 7.3.2.

phase portraits
T

phase portraits
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Fig. 7.10. Phase portrait of Slave system for Subsection 7.3.2.
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Fig. 7.11. Time histories of error.derivatives-for.Subsection 7.3.2 without controllers.
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Fig. 7.12. Time histories of states for Subsection 7.3.2 where the FLCC is added after

30s.
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time histories
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Fig. 7.13. Time histories of errors for Subsection 7.3.2 where the FLCC is added after

30s.
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Fig. 7.14. Time histories of errors of using traditional controller design method for
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Subsection 7.3.1.

time histories
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Fig. 7.15. Time histories of errors of using traditional-controller design method for

Subsection.7.3.2.
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Chapter 8

Conclusions

In this thesis, chaos and various chaos synchronizations of Ge-Ku-Duffing
system and Sprott C, E system are studied. In Chapter 2, the chaotic behavior in new
Ge-Ku-Duffing system is studied by phase portraits, time history, Poincaré maps,
Lyapunov exponent and bifurcation diagrams.

In Chapter 3, a new strategy to achieve chaos synchronization by the different
translation pragmatical synchronization using partial region stability theory is
proposed. By using the partial region stability theory , the Lyapunov function of
error states becomes a simple linear homogeneous function , the controllers are more
simple since they are in lower degree-than thatof traditional controllers. Furthermore,
according to the pragmatical, ‘asymptotically . stability theorem, error vector e
approaches zero and the estimated parameters also approach the uncertain parameters.
The equilibrium point is pragmatically asymptotically stable. It is important to note
that k;,k, are not arbitrary , two proper value must chosen to make that the error
dynamics always in first quadrant, so give two more insurances for secret
communication than other synchronization methods.

In Chapter 4, a new type of synchronization, double symplectic synchronization,
is studied in this Chapter. It is an extension of symplectic synchronization. By
applying active control, the double symplectic synchronization is achieved. The
simulation results show that the proposed scheme is effective and feasible.
Furthermore, the double symplectic synchronization of chaotic systems can be used to
increase the security of secret communication.

In Chapter 5, a new type of synchronization, multiple symplectic

synchronization, is studied in this Chapter. It is an extension of double symplectic
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synchronization. By applying active control, the multiple symplectic synchronization
is achieved. The simulation results show that the proposed scheme is effective and
feasible. Furthermore, the multiple symplectic synchronization of chaotic systems can
be used to increase the security of secret communication.

In Chapter 6, a new strategy to achieve chaos synchronization via the new fuzzy
model is proposed. By using the new fuzzy model, a complicated nonlinear system
can be linearized to a simple form, linear coupling of only two linear subsystems and
the numbers of fuzzy rules can be reduced from2Nto2x N. The simulation results
show that the proposed scheme is effective and feasible.

In Chapter 7, we propose a new fuzzy logic constant controller (FLCC),
which constructs fuzzy rules subject to.Lyapunov direct method. Error derivatives are
used according to the upper and lowergbounds.“The fuzzy rules and the simplest
corresponding constant controllers are obtained -while complicated and nonlinear
controllers would no longer appear¢.Simulation.results in synchronization show that
FLCC has high performance of the convergence of error states and good robustness

for the chaotic systems with deterministic and stochastic uncertainties.
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Appendix A

GYC Partial Region Stability Theory [53-55]

A.1 Definition of the Stability on Partial Region
Consider the differential equations of disturbed motion of a nonautonomous

system in the normal form

dx,
dt

where the function X, is defined on the intersection of the partial region Q

:Xs(t’xi""vxn)’ (S:lv""n) (Al)

(shown in Fig. Al) and

> xt<H (A.2)

and t>t,, where t, and H are certain positive,constants. X, which vanishes when
the variables x, are all zero,-is a real valued function.of t, x,---,x,. It is assumed
that X, is smooth enough to ensure the existence, uniqueness of the solution of the
initial value problem. When X{does—not-contain t explicitly, the system is
autonomous.

Obviously, x,=0 (s=1.---n) is a solution of Eq.(A.1). We are interested to
the asymptotical stability of this zero solution on partial region Q (including the
boundary) of the neighborhood of the origin which in general may consist of several
subregions (Fig. Al).

Definition 1:

For any given number & >0, if there exists a ¢ >0, such that on the closed

given partial region QQ when

ZXSZO Sé‘v (521,"',n) (A3)
forall t>t,, the inequality
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Y xt<e, (s=1--,n) (A.4)

is satisfied for the solutions of Eg.(A.1) on Q, then the disturbed motion
X, =0 (s=1---n) isstable on the partial region Q.
Definition 2:

If the undisturbed motion is stable on the partial region Q, and there exists a
& >0, so that on the given partial region Q when

Y x4 <8, (s=1--.n) (A.5)

The equality

t—w

Iim(fojzo (A.6)

is satisfied for the solutions of. Eq.(A.1) on. ‘€., then the undisturbed motion
X, =0 (s=1---n) isasymptotically-stable on the partial region Q.

The intersection of Q and region-defined by Eg.(A.5) is called the region of
attraction.
Definition of Functions V (t, x,,---, X,)*

Let us consider the functions V (t,x;,---,x,) given on the intersection Q, of
the partial region Q and the region

> xt<h, (s=1--,n) (A7)

for t>t, >0, where t, and h are positive constants. We suppose that the functions
are single-valued and have continuous partial derivatives and become zero when
X ==X =0.
Definition 3:

If there exists t, >0 and a sufficiently small h>0, so that on partial region
Q, and t>t,, V>0 (or <0), then V is a positive (or negative) semidefinite, in

general semidefinite, function onthe Q, and t>t,.
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Definition 4:

If there exists a positive (negative) definitive function W(x,...x,) on €,, so
that on the partial region Q, and t>t,

V -W >0 (or -V —-W >0), (A.8)
then V(t,x,...,X,) is a positive definite function on the partial region Q, and
t>t,.

Definition 5:

If V(t,x,...,x,) is neither definite nor semidefinite on Q, and t>t,, then
V(t,x,...,X,) is an indefinite function on partial region Q, and t>t,. That is, for
any small h>0 and any large t,>0, V(t,x,...,x,) can take either positive or
negative value on the partial region Q, _and .t>t,.

Definition 6: Bounded function/.

If there exist t, >0, h>0,so thaton the partial region <, , we have

V(t,X,....Xx)h< L
where L is a positive constant, then"Vs-said-to be-bounded on Q, .

Definition 7:  Function with infinitesimal upper bound

If V is bounded, and for any A>0, there exists x>0, so that on Q, when

> xt<u,and t>t,, we have

V(t,X,....x)| <A
then V admits an infinitesimal upper bound on Q, .

A.2 GYC Theorem of Stability and of Asymptotical Stability on Partial Region

Theorem 1

If there can be found a definite function V (t,x,...,x,) on the partial region for

Eq. (A.1), and the derivative with respect to time based on these equations are:
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— = —X (A.9)
dt ot T ox

av oV +Z”: oV
Then, it is a semidefinite function on the paritial region whose sense is opposite to
that of V, or if it becomes zero identically, then the undisturbed motion is stable on the
partial region.
Proof:
Let us assume for the sake of definiteness that V is a positive definite function.

Consequently, there exists a sufficiently large number t, and a sufficiently small

number h < H, such that on the intersection €, of partial region Q and
> xt<h, (s=1...n)

and t>t,, the following inequality is satisfied
V(L X, -0 X)) 2WEK ..., X)),
where W is a certain positive «definite-function which-does not depend on t. Besides
that, Eq. (A.9) may assume only negativeor zero value:in this region.
Let ¢ be an arbitrarily small:positive number.:We shall suppose that in any case

g<h. Let us consider the aggregation”of all possible values of the quantities

X.,-.., X,, Which are on the intersection @, of Q, and

LA ]

> X =g, (A.10)

and let us designate by 1>0 the precise lower limit of the function W under this
condition. By virtue of Eq. (A.8), we shall have
V(t, X,...,x,) =1 for (x,...,x,) on @,. (A.11)
We shall now consider the quantities x, as functions of time which satisfy the
differential equations of disturbed motion. We shall assume that the initial values x,
of these functions for t=t; lie on the intersection Q,of Q,and the region

X <o, (A12)
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where & isso small that
V (ty, Xygs-- -y Xno) < (A.13)
By virtue of the fact that V(t,,0,...,0) =0, such a selection of the number s is
obviously possible. We shall suppose that in any case the number & is smaller than
¢ .Then the inequality

Y xt<e, (A.14)

being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently

small t—t,, since the functions x,(t) very continuously with time. We shall show
that these inequalities will be satisfied for all values t>t,. Indeed, if these
inequalities were not satisfied at some time, there would have to exist such an instant
t=T for which this inequality would ‘become-an-equality. In other words, we would

have
D X(T) =%,

and consequently, on the basis of Eq. (A.11)
V(T (T, %, (T (A.15)

On the other hand, since & < h, the inequality (Eq.(A.7)) is satisfied in the entire

interval of time [to, T], and consequently, in this entire time interval d—\t/go. This

yields
VT, % (M), X, (T)) SV (ty, Xigs- -+ Xog)s
which contradicts Eq. (A.14) on the basis of Eq. (A.13). Thus, the inequality
(Eg.(A.4)) must be satisfied for all values of t>t,, hence follows that the motion is
stable.
Finally, we must point out that from the view-point of mathenatics, the stability
on partial region in general does not be related logically to the stability on whole

region. If an undisturbed solution is stable on a partial region, it may be either stable
109



or unstable on the whole region and vice versa. In specific practical problems, we do

not study the solution starting within Q, and running out of Q.

Theorem 2

If in satisfying the conditions of Theorem 1, the derivative C:j—\t/ is a definite

function on the partial region with opposite sign to that of V and the function V itself
permits an infinitesimal upper limit, then the undisturbed motion is asymptotically
stable on the partial region.

Proof:

Let us suppose that V is a positive definite function on the partial region and that
consequently, Oli_\t/ is negative definite. Thus on the intersection Q, of Q and the

region defined by Eq. (A.7) and .t>1," there will be satisfied not only the inequality

(Eq.(A.8)), but the following inequality-as-well:

<G, (A16)

where W, is a positive definite function on the partial region independent of t.

Let us consider the quantities x, as functions of time which satisfy the
differential equations of disturbed motion assuming that the initial values x_, = x,(t,)
of these quantities satisfy the inequalities (Eq. (A.12)). Since the undisturbed motion
is stable in any case, the magnitude 6 may be selected so small that for all values of
t>t, the quantities x, remain within Q,. Then, on the basis of Eq. (A.16) the
derivative of function V(t,x(t),...,x,(t)) will be negative at all times and,
consequently, this function will approach a certain limit, as t increases without limit,
remaining larger than this limit at all times. We shall show that this limit is equal to
some positive quantity different from zero. Then for all values of t>t, the following
inequality will be satisfied:

V(t, %, (0),..., X () > o (A.17)
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where a>0.
Since V permits an infinitesimal upper limit, it follows from this inequality that

D xEt) =4, (s=1...,n), (A.18)

where A is a certain sufficiently small positive number. Indeed, if such a number A

did not exist, that is , if the quantity ZXS (t) were smaller than any preassigned

number no matter how small, then the magnitude V (t,x(t),...,x (t)), as follows

from the definition of an infinitesimal upper limit, would also be arbitrarily small,
which contradicts Eq. (A.17).

If for all values of t>t, the inequality (Eg. (A.18)) is satisfied, then Eq. (A.16)

shows that the following inequality will be satisfied at all times:

dv
— <,

dt

where |, is positive number different from zero which constitutes the precise lower
limit of the function W, (t, x, (£)s.. ., x,(t))~under condition (Eg. (A.18)). Consequently,

for all values of t>t, we shall have:

V(t, X, (t),..., X, (1) :V(to,xm,...,xno)+_|.t:%—\t/dt <V (g, Xygs -+ Xp0) =l (T 1),

which is, obviously, in contradiction with Eqg.(A.17). The contradiction thus obtained
shows that the function V(t, x(t),..., x,(t)) approached zero as t increase without
limit. Consequently, the same will be true for the function W (x,(t),..., x,(t)) as well,

from which it follows directly that

!Lrgxs(t) =0, (s=1...,n),

which proves the theorem.
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subregion 2

Fig. A.1. Partial regions Q and Q,
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Appendix B
Pragmatical Asymptotical Stability Theory

The stability for many problems in real dynamical systems is actual
asymptotical stability, although may not be mathematical asymptotical stability. The
mathematical asymptotical stability demands that trajectories from all initial states in
the neighborhood of zero solution must approach the origin as t —oo. If there are
only a small part or even a few of the initial states from which the trajectories do not
approach the origin as t—oo , the zero solution is not mathematically
asymptotically stable. However, when the probability of occurrence of an event is
zero, it means the event does not occur-actuallys If the probability of occurrence of
the event that the trajectries from the-initial states.are that they do not approach zero
when t—o0, is zero, the stability of zero“solution s actual asymptotical stability
though it is not mathematical ‘asymptotical stability. In order to analyze the
asymptotical stability of the equilibrium-paint of such systems, the pragmatical

asymptotical stability theorem is used.

Let X and Y be two manifolds of dimensions m and n (m<n), respectively, and
¢ be a differentiable map from X to Y, then ¢(X) is subset of Lebesque measure

0 of Y [56]. For an autonomous system

dx

E_ f(xl’“"xn) (B-l)

where x =[x, -, xn]T is a state vector, the function f =[f, .-, fn]T is defined on

D<R" and |x|<H>0. Let x=0 be an equilibrium point for the system (B-1).

Then

f(0)=0 (B-2)
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For a nonautonomous systems,
X=f (X, X g) (B-3)

where  x=[x,..,X,,]" , the function f=[f,.,f] is define on

DcR"xR, here t=Xx,,, R, .The equilibrium point is

ni
F(0X. 3 - (B-4)
Definition The equilibrium point for the system (B-1) is pragmatically
asymptotically stable provided that with initial points on C which is a subset of
Lebesque measure 0 of D, the behaviors of the corresponding trajectories cannot be
determined, while with initial points on D —C, the corresponding trajectories behave

as that agree with traditional asymptotical stability [57,58].
Theorem Let V =[x, ---, xa]" ' D—R; be positive definite and analytic on D,

where x,X,,...,x, are all space coordinates such.that the derivative of V through

T

Eq. (A-1)or(A-3), Vs negative semi-definite of [X5%,,---, X,] .

For autonomous system, Let X’be-the-m=manifold consisted of point set for
which wx=0, V(x)=0 and D is a n-manifold. If m+1<n, then the equilibrium
point of the system is pragmatically asymptotically stable.

For nonautonomous system, let X be the m+1-manifold consisting of point

set of which Wx#0,V(X,%,,...x,)=0and Dis n+1-manifold. If m+1+1<n+1,

i.e.m+1< nthen the equilibrium point of the system is pragmatically asymptotically
stable. Therefore, for both autonomous and nonautonomous system the formula
m+1<nis universal. So the following proof is only for autonomous system. The
proof for nonautonomous system is similar.

Proof Since every point of X can be passed by a trajectory of Eq. (B-1), which

is one- dimensional, the collection of these trajectories, A, is a (m+1)-manifold [59,
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60].

If m+1<n, then the collection C is a subset of Lebesque measure 0 of D. By
the above definition, the equilibrium point of the system is pragmatically
asymptotically stable.

If an initial point is ergodicly chosen in D, the probability of that the initial
point falls on the collection C is zero. Here, equal probability is assumed for every
point chosen as an initial point in the neighborhood of the equilibrium point. Hence,
the event that the initial point is chosen from collection C does not occur actually.
Therefore, under the equal probability assumption, pragmatical asymptotical stability
becomes actual asymptotical stability. When the initial point falls on D-C,
V(x) <0, the corresponding trajectaries, behave as that agree with traditional
asymptotical stability because by the existence and- uniqueness of the solution of
initial-value problem, these trajectories never meet C.

In Eq. (3.8) V is a positive definite_function of-n variables, i.e. p error state
variables and n-p=m differences between unknewn-and estimated parameters, while
V =e'Ce is a negative semi-definite function of n variables. Since the number of
error state variables is always more than one, p>1, m+1<n is always satisfied, by
pragmatical asymptotical stability theorem we have

lime=0 (B-5)

to
and the estimated parameters approach the uncertain parameters. The pragmatical
adaptive control theorem is obtained. Therefore, the equilibrium point of the system is
pragmatically asymptotically stable. Under the equal probability assumption, it is

actually asymptotically stable for both error state variables and parameter variables.
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