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Ge-Ku-Duffing 系統及 Sprott C, E 系統的渾沌與渾沌同步 

 

 

學生：李泳厚                                          指導教授：戈正銘 

 

國 立 交 通 大 學 

機 械 工 程 學 系 

 

摘要 

本篇論文以相圖、龐卡萊映射圖、李亞普洛夫指數以及分歧圖等數值方法研

究新 Ge-Ku-Duffing 系統的渾沌現象。對此系統應用部分區域穩定性理論和實用

漸進穩定理論來達成廣義同步；應用主動控制獲得雙重及多重渾沌交織同步。更

進一步使用新模糊模型來研究 Sprott C, E 系統的模糊模型和渾沌同步。此外，將

探討新模糊邏輯常數控制器應用在投影同步及含有不確定度的渾沌系統。在以上

研究中，皆可由相圖和時間歷程圖得到驗證。 

 

 

 

 

 

 

 

 

 



 

ii 

 

Chaos and Chaos Synchronization of Ge-Ku-Duffing System 

and Sprott C, E Systems 
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Department of Mechanical Engineering  

National Chiao Tung University 

 

Abstract 

In this thesis, the chaotic behavior of new Ge-Ku-Duffing system is studied by 

phase portraits, time histories, Poincaré maps, Lyapunov exponent and bifurcation 

diagrams. A new kind of chaotic generalized synchronization, different translation 

pragmatical generalized synchronization, is obtained by pragmatical asymptotical 

stability theorem and partial region stability theory. New type for chaotic 

synchronization, double and multiple symplectic synchronization, are obtained by 

active control. A new method, using new fuzzy model, is studied for fuzzy modeling 

and synchronization of Sprott C, E systems. Moreover, the new fuzzy logic constant 

controller is studied for projective synchronization and chaotic system with 

uncertainty. Numerical analyses, such as phase portraits and time histories can be 

provided to verify the effectiveness of all above studies. 
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Chapter 1 

Introduction 

Synchronization of chaotic systems has become an important topic since the 

pioneering work of Pecora and Carroll in 1990 [1]. Furthermore, chaos 

synchronization has been applied in biological systems [2,3], secure communication 

[4,5], and many other disciplines. Many methods of synchronization have been 

proposed, such as linear and nonlinear feedback control[6-16], complete 

synchronization[17],phase synchronization[18], lag synchronization[19], active 

control[20-21], generalized synchronization[22-27] and fuzzy control[28-35] and are 

investigated extensively in the past years. 

In this thesis, a new generalized different translation synchronization strategy by  

partial region stability theory by which the Lyapunov function of error states becomes 

a simple linear homogeneous function is proposed. The controllers are more simple 

since they are in lower degree than that of traditional controllers. By pragmatical 

asymptotical stability theorem, an adaptive control law is derived so that it can be 

proved strictly that the common null solution of error dynamics and of parameter 

dynamics is actually asymptotically stable. 

Traditional generalized synchronization and symplectic synchronization are 

special cases of the double symplectic synchronization. Since the symplectic 

functions are presented on both the right hand side and the left hand side of the 

equality, it is called “double symplectic synchronization”. When the double 

symplectic functions is extended to a more general form, 

( , , ,..., , ) ( , , ,..., , )t tG x y z w F x y z w , it is called “multiple symplectic 

synchronization”. ( , , ,..., , )tG x y z w and ( , , ,..., , )tF x y z w are given vector functions 

of , , ,...,x y z w  and time. Due to the complexity of the form of the multiple 
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symplectic synchronization, it may be applied to increase the security of secret 

communication. 

In recent years, fuzzy logic proposed by L. A. Zadeh [36] has received much 

attention as a powerful tool for the nonlinear control. Among various kinds of fuzzy 

methods, Takagi-Sugeno fuzzy (T-S fuzzy) system is widely accepted as a useful tool 

for design and analysis of fuzzy control system [37-42]. 

In traditional Takagi-Sugeno fuzzy (T-S fuzzy) model, we focus on the whole 

system. The number of the linear subsystem is decided on how many nonlinear terms 

should we linearize in original system. As a result, there will be N2 linear subsystems 

(according to N2 fuzzy rules) and N2m equations in the T-S fuzzy system, where N is 

the number of minimum nonlinear terms and m is the order of the system. If N is large, 

the number of linear subsystems in T-S fuzzy system is huge. It becomes more 

inefficient and complicated. Via the new fuzzy model, a complicated nonlinear system 

is linearized to a simple form – linear coupling of only two linear subsystems and the 

numbers of fuzzy rules can be reduced from N2 to N2  (where N is the number of 

nonlinear terms). The fuzzy equations become much simpler. 

In this thesis, a simplest controller, the fuzzy logic constant controller 

(FLCC) ,which are derived via fuzzy logic design and Lyapunov direct method, are 

presented for projective synchronization of non-autonomous chaotic systems with 

deterministic and stochastic uncertainties. Controllers in traditional method by 

Lyapunov direct method are always nonlinear and complicated. Unlike traditional 

method, the simplest controllers are proposed via fuzzy logic design and Lyapunov 

direct method. We propose a new idea to design constant numbers as controllers, 

while the constant numbers are decided by the upper and lower bounds of the error 

derivatives. The strength of controllers in our new approach can be adjusted according 

to the error derivatives. This powerful tool is used for projective synchronization of 
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chaotic systems with uncertainty and stochastic disturbance to show the robustness 

and effectiveness of FLCC. 

This thesis is organized as follows. Chapter 2 gives the dynamic equations of 

new Ge-Ku-Duffing system and its chaotic behaviors are studied. In Chapter 3, a new 

generalized different translation synchronization strategy by partial region stability 

theory and pragmatical asymptotical stability theorem are presented. In Chapter 4 and 

Chapter 5, double and multiple symplectic synchronization for Ge-Ku-Duffing system 

are presented. In Chapter 6, a new fuzzy model is used to simulate and synchronize 

two  different chaotic systems are presented. In Chapter 7, a simplest controller, the 

fuzzy logic constant controller (FLCC) ,which are derived via fuzzy logic design and 

Lyapunov direct method, are presented for projective synchronization of 

non-autonomous chaotic systems with deterministic and stochastic uncertainties. In 

Chapter 8, conclusions are drawn. 
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Chapter 2 

Chaos of a New Ge-Ku-Duffing System 

2.1 Preliminary 

In this Chapter, the chaotic behaviors of a new Ge-ku-Duffing system is studied 

numerically by phase portraits, time histories, Poincaré maps, Lyapunov exponents, 

and bifurcation diagrams. 

2.2 Description of New Ge-Ke-Duffing System 

Ge and Ku[43] gave a chaotic system formed by simple pendulum with its pivot 

rotating about an axis as Fig 2.1. This chaotic system is  

 

1 2

2 2 1 1 1 1

,

sin cos sin ,

x x

x ax x b c x d t



      
                             (2.1) 

where 1 1, , ,a b c d  are parameters. Combining the Ge-Ku system with Duffing 

equation 

3 4

3

4 3 3 4

,

cos ,

x x

x x x fx g t



     
                                         (2.2) 

after simplification 
2

1
1 1 1sin ,cos 1 ,

2

x
x x x    and substitution 3 1sin ,cost x t x     

and addition of coupling terms, we get the Ge-Ku-Duffing system 

 
1 2

2

2 2 1 1 3

3

3 3 3 2 1

,

,

,

x x

x ax x b c x dx

x x x fx gx



     
 

    
    

                                   (2.3) 

where , , , , ,a b c d f g  are parameters. 

2.3 Computational Analysis of a New Ge-Ku-Duffing System 

For numerical analysis of computation, this system exhibits chaos when the 

parameters of system are 0.1, 11, 40, 54, 6, 30a b c d f g       and the initial 
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states of system are 1 2 3(0) 2, (0) 2.4, (0) 5x x x   . The bifurcation diagram by 

changing damping parameter f is shown in Fig. 2.2. Its corresponding Lyapunov 

exponents are shown in Fig. 2.3. The phase portraits, time histories, and Poincaré 

maps of the systems are showed in Fig. 2.4~Fig. 2.8.When f=4.4, period 1 phenomena 

are shown in Fig. 2.4. When f=5, period 2 phenomena are shown in Fig. 2.5. When 

f=5.3, period 4 phenomena are shown in Fig. 2.6. When f=5.33, period 8 phenomena 

are shown in Fig. 2.7.When f=6, the chaotic behaviors are given in Fig. 2.8. 

 

 

 

 

Fig 2.1. The pendulum on rotating arm 
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Fig. 2.2 The bifurcation diagram for new Ge-Ku-Duffing system. 

 

Fig. 2.3 The Lyapunov exponents for new Ge-Ku-Duffing system 
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Fig. 2.4 Phase portrait, Poincaré maps, and time histories for new Ge-Ku-Duffing 

system with f =4.4 (period 1). 
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Fig. 2.5 Phase portrait, Poincaré maps, and time histories for new Ge-Ku-Duffing 

system with f =5 (period 2). 
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 Fig. 2.6 Phase portrait, Poincaré maps, and time histories for new Ge-Ku-Duffing 

system with f =5.3 (period 4). 
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 Fig. 2.7 Phase portrait, Poincaré maps, and time histories for new Ge-Ku-Duffing 

system with f =5.33 (period 8). 
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 Fig. 2.8 Phase portrait, Poincaré maps, and time histories for new Ge-Ku-Duffing 

system with f =6 (chaos). 
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Chapter 3 

Using Partial Region Stability Theory for Different 

Translation Pragmatical Generalized Synchronization 

3.1 Preliminary 

In this Chapter, a new generalized different translation synchronization strategy 

by partial region stability theory  is proposed. By using partial regional stability 

theory, the Lyapunov function becomes a simple linear homogeneous function of error 

states and the controllers are more simple since they are in lower degree than that of 

traditional controllers while  the tranditional Lyapunov function is a quadratic form 

of error states. 

 

3.2 The Scheme of Different Translation Pragmatical Generalized 

Synchronization by Partial Region Theory 

 There are two identical nonlinear dynamical systems, and the master system 

synchronizes the slave system. The master system is given by 

( , )x Ax f x B                                                     (3.1) 

The master system after the origin of x-coordinate system is translated to ( 1 1 1, ,...,k k k ) 

is 

' ' ( ', )x Ax f x B                                                   (3 1. ') 

where 1 2 1 1 1 2 1 1' [ ' , ' , ' ] [ , ,..., ]       T T n

n nx x x x x k x k x k x k R  denotes a state 

vector, where 1 1 1 1[ , ,..., ]k k k k  is a constant vector with positive component 1k  as 

shown in Fig 3.1. A is an n n  uncertain constant coefficient matrix, f is a nonlinear 

vector function, and B is a vector of uncertain  constant  coefficients in  f.  The  

slave  system  is  given  by 
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ˆ ˆ( , ) ( )y Ay f y B u t                                                 (3.2) 

The slave system after the origin of y-coordinate system is translated to 

2 2 2( , ,..., )k k k  is   

ˆ ˆ' ' ( ', ) ( )y Ay f y B u t                                              (3 2. ') 

where 1 2 2 1 2 2 2 2' [ ' , ' , ' ] [ , ,......, ]T T n

n ny y y y y k y k y k y k R         denotes 

a state vector, where 2k  is a constant vector with constant component 2k  as 

shown in Fig 3.2. Â  is an n n    estimated coefficient matrix, B̂  is a vector 

of estimated  coefficients  in  f, and 1 2( ) [ ( ), ( ),...... ( )]T n

nu t u t u t u t R   is a 

control input vector. 

Our goal is to design a controller u(t) so that the state vector of the translated 

slave system ( 3 2. ' ) asymptotically approaches the state  vector  of  the  

translated master system ( 3 1. ') plus a given nonchaotic or chaotic vector function

1 2( ) [ ( ), ( ), , ( )] T

nF t F t F t F t :  

' ( ') ' ( )y G x x F t   .                                                (3.3) 

The synchronization can be accomplished when t → ∞ , the limit of the error vector 

1, 2( ) [ , ]T

ne t e e e  approaches zero: 

lim 0
t

e


                                                           (3.4) 

where 

' ' ( )e x y F t                                                        (3.5) 

From Eq. (3.5) we have 

' ' ( )e x y F t                                                        (3.6) 

ˆ ˆ' ' ( ', ) ( ', ) ( ) ( )e Ax Ay f x B f y B F t u t      .                              (3.7) 

where  1k  and  2k  are chosen to guarantee that the error dynamics always occurs 
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in first quadrant of e coordinate system. 

A  Lyapnuov  function ( , , )c cV e A B  is chosen as a positive definite function in 

first quadrant of e  coordinate system by stability theory in partial region as shown 

in Appendix A: 

( , , )c c c cV e A B e A B                                                 (3.8) 

where ˆ
cA A A   , ˆ

cB B B  , 
cA and cB  are two column matrices whose elements 

are all the elements of matrix 
cA  and of column matrix cB   , respectively. Its 

derivative along any solution of the differential equation system consisting of  Eq. 

(3.7) and updated parameter differential equations for 
cA  and cB   is 

ˆ ˆ( , , ) ' ' ( ', ) ( ', ) ( ) ( )c c c cV e A B Ax Ay f x B f y B F t u t A B                        

(3.9) 

where u(t), 
cA , and 

cB  are chosen so that V Ce , C is a diagonal negative definite 

matrix, and V  is a negative semi-definite function of e and parameter differences 
cA  

and cB .  

In this Chapter, a new Ge-ku-Duffing system is used as an example. By 

pragmatical asymptotically stability theorem in Appendix B, the Lyapunov function 

used is a simple linear homogeneous function of states and the controllers are simpler 

because they in lower order than the that of traditional controllers. In many 

papers[44-48], traditional Lyapunov stability theorem and Babalat lemma are used to 

prove the error vector approaches zero, as time approaches infinity. But the question, 

why the estimated parameters also approach to the uncertain parameters, remains no 

answer. By pragmatical asymptotical stability theorem, the question can be answered 

strictly. 
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3.3 Different Translation Pragmatical Synchronization of New 

Ge-Ku-Duffing Chaotic System 

Case 1. 

The following chaotic system are two translated Ge-Ku-Duffings system of which 

the origins are translated to ( 1 2 3, ,x x x ) = (250, 250, 250) , ( 1 2 3, ,y y y ) = (50, 50, 50) to 

guarantee the error dynamics always happens in the first quadrant of e  coordinate 

system. The translated master system and slave system are: 

1
2

22
2 1 1 3

33
3 3 2 1

( 250)

( 250) ( 250)[ ( ( 250) ) ( 250)]

( 250) ( 250) ( 250) ( 250)

dx
x

dt

dx
a x x b c x d x

dt

dx
x x f x g x

dt


 




        



        


            (3.10) 

1
2 1

22
2 1 1 3 2

33
3 3 2 1 3

( 50)

ˆ ˆˆ ˆ( 50) ( 50)[ ( ( 50) ) ( 50)]

ˆ ˆ( 50) ( 50) ( 50) ( 50)

dy
y u

dt

dy
a y y b c y d y u

dt

dy
y y f y g y u

dt


  




         



         


            (3.11) 

Let initial states be 1 2 3(0) 2, (0) 2.4, (0) 5x x x   , 1 2 3(0) 2, (0) 2.4, (0) 5y y y    

and system parameters 0.1, 11, 40,a b c    54, 6, 30d f g   . The generalized 

synchronization error vector is 

( ) cos( )e x y F t x y t                                             (3.12) 

We find that the error dynamic without controllers always exists in first quadrant as 

shown in Fig. 3.3. 

Our goal is lim 0i
t

e


 .We obtain the error dynamics : 

1 2 2 1

2

2 2 1 1 3

2

2 1 1 3 2

3

3 3 3 2 1 3

3

3 2

( 250) ( 50) sin( )

( 250) ( 250)[ ( ( 250) ) ( 250)]

ˆ ˆˆ ˆ( 50) ( 50)[ ( ( 50) ) ( 50)] sin( )

( 250) ( 250) ( 250) ( 250) ( 50)

ˆ( 50) (

e x y t u

e a x x b c x d x

a y y b c y d y t u

e x x f x g x y

y f y

     

        

         

          

   1 3
ˆ50) ( 50) sin( )g y t u








     

       

(3.13) 
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where ˆa a a  , ˆb b b  , ˆc c c  , ˆd d d  , ˆf f f  and ˆg g g   are 

estimates of uncertain parameters a, b, c, d, f and g respectively. 

Using different translation pragmatical synchronization by partial region stability 

theory, we can choose a Lyapunov function in the form of a positive definite function 

in first quadrant:

 

1 2 3V e e e a b c d f g                                           (3.14) 

The  time  derivative  of  V  is  

1 2 3

2 2 1

2

2 1 1 3

2

2 1 1 3 2

3

3 3 2 1

( 250) ( 50) sin( )

( 250) ( 250)[ ( ( 250) ) ( 250)]

ˆ ˆˆ ˆ( 50) ( 50)[ ( ( 50) ) ( 50)] sin( )

( 250) ( 250) ( 250) (

V e e e a b c d f g

x y t u

a x x b c x d x

a y y b c y d y t u

x x f x g x

        

     

       

         

        3

3

3 2 1 3

250) ( 50)

ˆ ˆ( 50) ( 50) ( 50) sin( )

y

y f y g y t u

a b c d f g

 

       

     

         (3.15)
 

Choose 

1 2 2 1 1 1

2

2 2 1 1 3 2

2

1 1 3 2 2 2

3

3 3 3 2 1 3

( 250) ( 50) sin( )

ˆ( 250) ( 250)[ ( ( 250) ) ( 250)] ( 50)

ˆ ˆˆ( 50)[ ( ( 50) ) ( 50)] sin( )

( 250) ( 250) ( 250) ( 250) ( 5

u x y t ae be e

u a x x b c x d x a y

y b c y d y t ce de e

u x x f x g x y

       

          

         

          

3

3 2 1 3 3 3

0)

ˆ ˆ( 50) ( 50) ( 50) sin( )y f y g y t fe ge e








          

  

 (3.16) 

1

1

2

2

3

3

a ae

b be

c ce

d de

f fe

g ge

  

  


 


 


 


 

                                                       (3.17) 

We  obtain 

1 2 3 0V e e e    
                                            

(3.18)
 

which is negative semi-definite function of 1 2 3, ,e e e , , , , ,a b c d f and g . The Lyapunov 
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asymptotical stability theorem is not satisfied. We cannot obtain that common origin 

of error dynamics (3.13) and parameter dynamics (3.17) is asymptotically stable. By 

pragmatical asymptotically stability theorem , D is a 9-manifold, 9n  and the 

number of error state variables 3p  . When 0eee 321  and , , , , ,a b c d f g  take 

arbitrary values, 0V  ,so X is of 6 dimensions, 9 3 6m n p     , n1m   is 

satisfied. According to the pragmatical asymptotically stability theorem, error vector e 

approaches zero and the estimated parameters also approach the uncertain parameters. 

The equilibrium point is pragmatically asymptotically stable. Under the assumption of 

equal probability, it is actually asymptotically stable. The simulation results are shown 

in Figs. 3.4~3.6. 

Case 2. 

The following chaotic system are two translated Ge-Ku-Duffings system of which 

the origin is translated to ( 1 2 3, ,x x x ) = (250, 250, 250) , ( 1 2 3, ,y y y ) = (50, 50, 50) to 

guarantee the error dynamics always happens in the first quadrant of e coordinate 

system. The translated master system and slave system are: 

1
2

22
2 1 1 3

33
3 3 2 1

( 250)

( 250) ( 250)[ ( ( 250) ) ( 250)]

( 250) ( 250) ( 250) ( 250)

dx
x

dt

dx
a x x b c x d x

dt

dx
x x f x g x

dt


 




        



        


            (3.19) 

1
2 1

22
2 1 1 3 2

33
3 3 2 1 3

( 50)

ˆ ˆˆ ˆ( 50) ( 50)[ ( ( 50) ) ( 50)]

ˆ ˆ( 50) ( 50) ( 50) ( 50)

dy
y u

dt

dy
a y y b c y d y u

dt

dy
y y f y g y u

dt


  




         



         


            (3.20) 

Let initial states be 1 2 3(0) 2, (0) 2.4, (0) 5x x x   , 1 2 3(0) 2, (0) 2.4, (0) 5y y y    

and system parameters 0.1, 11, 40,a b c    54, 6, 30d f g   . The generalized 

synchronization error vector is 

 ( )e x y F t  
                                                 (3.21)
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where 1 2 3( ) [ , , ]TF t z z z  is the state vector of Ge-Ku Mathieu system: 

 

 

1
2

22
2 1 1 2 3

3
1 3 2 1 3

dz
z

dt

dz
kz z m r z sz z

dt

dz
n hz z lz pz z

dt





        



    


                                 (3.22) 

We find that the error dynamic without controllers always exists in first quadrant as 

shown in Fig. 3.7. 

This system exhibits chaos when the parameters of system are k = -0.6 , m = 5,

r = 11 , 0.3, 8, 10, 0.5, 0.2s n h l p      and the initial states of system are

1(0) 0.01z  , 2 (0) 0.01z  , 3(0) 0.01z  , its phase portrait as shown in Fig. 3.8. Our 

goal is lim 0i
t

e


 .We obtain the error dynamics becomes: 

 

1 2 2 2 1

2

2 2 1 1 3

2

2 1 1 3 2

2

1 1 2 3 2

3

3 3 3 2 1 3

( 250) ( 50)

( 250) ( 250)[ ( ( 250) ) ( 250)]

ˆ ˆˆ ˆ( 50) ( 50)[ ( ( 50) ) ( 50)]

( 250) ( 250) ( 250) ( 250) ( 50)

(

e x y z u

e a x x b c x d x

a y y b c y d y kz

z m r z sz z u

e x x f x g x y

y

     

        

        

    
 

          

  3

3 2 1 1 3 2 1 3 3
ˆ ˆ50) ( 50) ( 50)f y g y n hz z lz pz z u










          

     

(3.23) 

where ˆa a a  , ˆb b b  , ˆc c c  , ˆd d d  , ˆf f f  and ˆg g g   are 

estimates of uncertain parameters a, b, c, d, f and g respectively. 

Using different translation pragmatical synchronization by partial region stability 

theory, we can choose a Lyapunov function in the form of a positive definite function 

in first quadrant:

 

1 2 3V e e e a b c d f g                                           (3.24) 

The  time  derivative  of  V  is  
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1 2 3

2 2 2 1

2

2 1 1 3

2

2 1 1 3 2

2

1 1 2 3 2

3

3 3

( 250) ( 50)

( 250) ( 250)[ ( ( 250) ) ( 250)]

ˆ ˆˆ ˆ( 50) ( 50)[ ( ( 50) ) ( 50)]

( 250) ( 250) (

V e e e a b c d f g

x y z u

a x x b c x d x

a y y b c y d y kz

z m r z sz z u

x x f x

        

     

       

        

    
 

    

 

2 1 3

3

3 2 1 1 3 2 1 3 3

250) ( 250) ( 50)

ˆ ˆ( 50) ( 50) ( 50)

g x y

y f y g y n hz z lz pz z u

a b c d f g

    

          

     

       (3.25)
 

Choose 

 

1 2 2 2 1 1 1

2

2 2 1 1 3

2

2 1 1 3 2

2

1 1 2 3 2 2 2

3

3 3 3 2

( 250) ( 50)

( 250) ( 250)[ ( ( 250) ) ( 250)]

ˆ ˆˆ ˆ( 50) ( 50)[ ( ( 50) ) ( 50)]

( 250) ( 250) ( 250) (

u x y z ae be e

u a x x b c x d x

a y y b c y d y kz

z m r z sz z ce de e

u x x f x g x

       

        

        

      
 

       

 

1 3

3

3 2 1 1 3 2 1 3

3 3 3

250) ( 50)

ˆ ˆ( 50) ( 50) ( 50)

y

y f y g y n hz z lz pz z

fe ge e










  


         


     

       (3.26) 

1

1

2

2

3

3

a ae

b be

c ce

d de

f fe

g ge

  

  


 


 


 


 

                                                       (3.27) 

We obtain 

1 2 3 0V e e e    
                                            

(3.28)
 

which is negative semi-definite function of 1 2 3, ,e e e , , , , ,a b c d f and g . The Lyapunov 

asymptotical stability theorem is not satisfied. We cannot obtain that common origin 

of error dynamics (3.23) and parameter dynamics (3.27)  is asymptotically stable. By 

pragmatical asymptotically stability theorem , D is a 9-manifold, 9n  and the 
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number of error state variables 3p  . When 0eee 321  and , , , , ,a b c d f g  take 

arbitrary values, 0V  ,so X is of 6 dimensions, 9 3 6m n p     , n1m   is 

satisfied. According to the pragmatical asymptotically stability theorem, error vector e 

approaches zero and the estimated parameters also approach the uncertain parameters. 

The equilibrium point is pragmatically asymptotically stable. Under the assumption of 

equal probability, it is actually asymptotically stable. The simulation results are shown 

in Figs. 3.9~3.11. 

 

Case 3. 

The following chaotic system are two translated Ge-Ku-Duffings system of which 

the origin is translated to ( 1 2 3, ,x x x ) = (250, 250, 250) , ( 1 2 3, ,y y y ) = (50, 50, 50) to 

guarantee the error dynamics always happens in the first quadrant of e coordinate 

system. The translated master system and slave system are: 

1
2

22
2 1 1 3

33
3 3 2 1

( 250)

( 250) ( 250)[ ( ( 250) ) ( 250)]

( 250) ( 250) ( 250) ( 250)

dx
x

dt

dx
a x x b c x d x

dt

dx
x x f x g x

dt


 




        



        


            (3.29) 

1
2 1

22
2 1 1 3 2

33
3 3 2 1 3

( 50)

ˆ ˆˆ ˆ( 50) ( 50)[ ( ( 50) ) ( 50)]

ˆ ˆ( 50) ( 50) ( 50) ( 50)

dy
y u

dt

dy
a y y b c y d y u

dt

dy
y y f y g y u

dt


  




         



         


            (3.30) 

Let initial states be 1 2 3(0) 2, (0) 2.4, (0) 5x x x   , 1 2 3(0) 2, (0) 2.4, (0) 5y y y    

and system parameters 0.1, 11, 40,a b c    54, 6, 30d f g   . 

The generalized synchronization error vector is 

 ( )e x y F t  
                                                  (3.31)

 

where 1 2 3( ) [ , , ]TF t z z z  is the state vector of Rossler system: 
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1
2 3

2
1 2

3
1 3 3

( )
dz

z z
dt

dz
z kz

dt

dz
m z z rz

dt


  




 



  


                                             (3.32) 

We find that the error dynamic without controllers always exists in first quadrant as 

shown in Fig. 3.12. 

This system exhibits chaos when the parameters of system are k = 0.15 ,

m = 0.2 , r = 10  and the initial states of system are 1(0) 2z  , 2 (0) 2.4z  , 3(0) 5z  , 

its phase portraits and time histories as shown in Fig. 3.13.Our goal is lim 0i
t

e


 .We 

obtain the error dynamics : 

1 2 2 2 3 1

2

2 2 1 1 3

2

2 1 1 3 1

2 2

3

3 3 3 2 1 3

3

3

( 250) ( 50) ( )

( 250) ( 250)[ ( ( 250) ) ( 250)]

ˆ ˆˆ ˆ( 50) ( 50)[ ( ( 50) ) ( 50)]

( 250) ( 250) ( 250) ( 250) ( 50)

ˆ( 50) (

e x y z z u

e a x x b c x d x

a y y b c y d y z

kz u

e x x f x g x y

y f y

      

        

        

 

          

   2 1 1 3 3 3
ˆ50) ( 50)g y m z z rz u










       

        

(3.33) 

where ˆa a a  , ˆb b b  , ˆc c c  , ˆd d d  , ˆf f f  and ˆg g g   are 

estimates of uncertain parameters a, b, c, d, f and g respectively. 

Using different translation pragmatical synchronization by partial region stability 

theory, we can choose a Lyapunov function in the form of a positive definite function 

in first quadrant:

 

1 2 3V e e e a b c d f g                                           (3.34) 

The  time  derivative  of  V  is  

1 2 3

2 2 2 3 1

2

2 1 1 3

2

2 1 1 3 1

2 2

3

3 3 2 1

( 250) ( 50) ( )

( 250) ( 250)[ ( ( 250) ) ( 250)]

ˆ ˆˆ ˆ( 50) ( 50)[ ( ( 50) ) ( 50)]

( 250) ( 250) ( 250) (

V e e e a b c d f g

x y z z u

a x x b c x d x

a y y b c y d y z

kz u

x x f x g x

        

      

       

        

 

       3

3

3 2 1 1 3 3 3

250) ( 50)

ˆ ˆ( 50) ( 50) ( 50)

y

y f y g y m z z rz u

a b c d f g

  

         

     

         (3.35)
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Choose 

1 2 2 2 1 1 1

2

2 2 1 1 3

2

2 1 1 3 1

2 2 2 2

3

3 3 3 2 1 3

( 250) ( 50)

( 250) ( 250)[ ( ( 250) ) ( 250)]

ˆ ˆˆ ˆ( 50) ( 50)[ ( ( 50) ) ( 50)]

( 250) ( 250) ( 250) ( 250) ( 50)

(

u x y z ae be e

u a x x b c x d x

a y y b c y d y z

kz ce de e

u x x f x g x y

       

        

        

   

          

 3

3 2 1 1 3 3 3 3 3
ˆ ˆ50) ( 50) ( 50)y f y g y m z z rz fe ge e










           

  

   (3.36) 

1

1

2

2

3

3

a ae

b be

c ce

d de

f fe

g ge

  

  


 


 


 


 

                                                       (3.37) 

We obtain 

1 2 3 0V e e e    
                                            

(3.38)
 

which is negative semi-definite function of 1 2 3, ,e e e , , , , ,a b c d f and g . The Lyapunov 

asymptotical stability theorem is not satisfied. We cannot obtain that common origin 

of error dynamics (3.33) and parameter dynamics (3.37) is asymptotically stable. By 

pragmatical asymptotically stability theorem , D is a 9-manifold, 9n  and the 

number of error state variables 3p  . When 0eee 321  and , , , , ,a b c d f g  take 

arbitrary values, 0V  ,so X is of 6 dimensions, 9 3 6m n p     , n1m   is 

satisfied. According to the pragmatical asymptotically stability theorem, error vector e 

approaches zero and the estimated parameters also approach the uncertain parameters. 

The equilibrium point is pragmatically asymptotically stable. Under the assumption of 

equal probability, it is actually asymptotically stable. The simulation results are shown 

in Figs. 3.14~3.16. 
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2x           2'x  

       1k  

                                   'o          1'x  

                                        1k  

                       o                         1x  

Fig. 3.1 Coordinate translation 

 

 

2y           2'y  

       2k  

                                   'o          1'y  

                                        2k  

                       o                         1y  

Fig. 3.2 Coordinate translation 



 

24 

 

 

Fig. 3.3 Phase portrait of the error dynamics for Case 1.  

 

 

Fig. 3.4 Time histories of ix , iy  for Case 1. 
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Fig. 3.5 Time histories of errors for Case 1. 

 

 

Fig. 3.6 Time histories of the parameter errors for Case 1.    
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Fig. 3.7 Phase portrait of the error dynamics for Case 2.    

 

Fig. 3.8 The chaotic attractor of the Ge-Ku-Mathieu system. 
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Fig. 3.9 Time histories of ix , iy  for Case 2. 

 

Fig. 3.10 Time histories of errors for Case 2. 
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Fig. 3.11 Time histories of the parameter errors for Case 2. 

 

Fig. 3.12 Phase portrait of the error dynamic for Case 3. 



 

29 

 

 

Fig. 3.13 The chaotic attractor of the Rossler  system. 

 

 

 

Fig. 3.14 Time histories of ix , iy  for Case 3. 
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Fig. 3.15 Time histories of errors for Case 3. 

 

 

Fig. 3.16 Time histories of the parameter errors for Case 3. 
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Chapter 4 

Double Symplectic Synchronization  

for Ge-Ku-Duffing System 

4.1 Preliminary 

In this Chapter, a new double symplectic synchronization ( , , ) ( , , )x y t x y tG F  

is studied, where ,x y  are state vectors of  Partner A and Partner B , respectively, 

( , , )x y tG and ( , , )x y tF are given vector functions of ,x y  and time. Since the 

symplectic functions are presented on both the right hand side and the left hand side 

of the equality, it is called “double symplectic synchronization”. When 

( , , )x y t yG  , the double symplectic synchronization is reduced to the symplectic 

synchronization.Due to the complexity of the form of the double symplectic 

synchronization, it may be applied to increase the security of secret communication.  

 

4.2 Double Symplectic Synchronization Scheme  

Consider two different nonlinear chaotic systems, Partner A and Partner B,  

described by 

( , )x x t f ,                                                       (4.1) 

( ) ( , )y t y y t C + g u ,                                              (4.2) 

where T

1 2[ , , , ] n

nx x x x R  and T

1 2[ , , , ] n

ny y y y R   are the state vectors of
 

Partner A and Partner B, 
n nR C  is a given matrix, f  and g  are continuous 

nonlinear vector functions, and u  is the controller vector. Our goal is to design the 

controller u  such that ( , , )x y tG asymptotically approaches ( , , )x y tF . For 

simplicity let ( , , )x y t x y G  and F  is a continuous nonlinear vector function. 
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Property 1 [49]: An m n  matrix A  of real elements defines a linear mapping 

y Ax  from nR  into mR , and the induced p-norm of A  for 1, 2, andp    is 

given by 

1 2
T

max1 2
1 1

max , ( ) , max .
m n

ij ij
j i

i j

A a A A A A a


 

                   (4.3) 

The useful property of induced matrix norms for real matrix A  is as follow: 

2 1
A A A


 .                                                 (4.4) 

    Theorem  : For chaotic systems Partner A (4.1) and Partner B (4.2), if the 

controller u  is designed as 

1( ) [ ( , ) ( ( ) ( , )) ( , ) ( , )

( )( ) ( )],

y x y tx t t y y t x t y t

t x x y

      

    

u I D F D Ff D F C g D F f g

C F K F
       (4.5) 

where xD F , yD F , tD F  are the Jacobian matrices of ( , , )x y tF , 

1 2diag( , , , )mk k kK , and satisfies 

min( )
1

( )

ik

t


C
,                                                      (4.6) 

then the double symplectic synchronization will be achieved. 

Proof: Define the error vectors as 

( , , )x y x y t  e F ,                                                (4.7) 

then the following error dynamics can be obtained by introducing the designed 

controller 

( , ) ( ) ( , ) ( , ) ( ( ) ( , ))

( )

( ( ) ) .

x y t

x y t

y

d
x y x y

dt

x t t y y t x t t y y t

t

     

      

 

 

e
e D F D F D F

f C g D Ff D F C g D F

I D F u

C K e

      (4.8) 
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Choose a positive definite Lyapunov function of the form 

T1
( )

2
V t  e e .                                                      (4.9) 

Taking the time derivative of ( )V t  along the trajectory of Eq. (4.8), we have 

T

T T

2 2

2

( )

( )

( ) min( )

( ( ) min( )) .

i

i

V t

t

t k

t k



 

  

 

e e

e C e e Ke

C e e

C e

                                      (4.10) 

Let min( ) ( ) 0iM k t  C , then 
2

( ) 2 ( )V t M MV t   e . Therefore, it can be 

obtained that 

2( ) (0)e MtV t V                                                    (4.11) 

and 
0

lim ( )
t

t
V d 

   is bounded. Besides, ( )V t  is uniformly continuous. According 

to Barbalat’s lemma [27], the conclusion can be drawn that lim ( ) 0
t

V t


 , i.e. 

lim ( ) 0
t

t


e . Thus, the double symplectic synchronization can be achieved 

asymptotically. 

 

4.3 Synchronization of Two Different New Chaotic Systems 

 Case 1. 

Consider a new Ge-Ku Mathieu(GKM) system[43] as Partner A described by    

 

 

1 2

2

2 2 1 1 2 3

3 1 3 2 1 3

,

,

,

x x

x ax x b c x dx x

x g hx x lx px x



     
 

    

                                    (4.12) 

where 0.6, 5, 11, 0.3, 8, 10, 0.5, 0.2a b c d g h l p         , and the initial 

conditions are 1(0) 0.01x  , 2 (0) 0.01x  , 3(0) 0.01x  . Eq. (4.12) can be rewritten 
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in the form of Eq. (2.1), where

 

 

 

2

2

2 1 1 2 3

1 3 2 1 3

( , )

x

x t ax x b c x dx x

g hx x lx px x

 
 

       
 
     

f . The chaotic 

attractor of the new Ge-Ku-Mathieu system is shown in Fig. 4.1. 

The controlled a new Ge-Ku-Duffing(GKD) system[43] is considered as Partner B 

described by 

 
1 2 1

2

2 2 1 1 3 2

3

3 3 3 2 1 3

,

,

,

y y u

y ky y m r y sy u

y y y ny wy u

 

      
 

     

                                  (4.13) 

where 0.1, 11, 40, 54, 6, 30k m r s n w      ,  
T

1 2 3, ,u u uu  is the controller, 

and the initial conditions are 1(0) 2y  , 2 (0) 2.4y  , 3(0) 5y  . The chaotic attractor 

of the uncontrolled new GKD system is shown in Fig. 4.2. The Lyapunov exponents 

and the bifurcation diagram of the uncontrolled new GKD system are shown in Fig. 

4.3 and Fig. 4.4. Eq. (4.13) can be rewritten in the form of Eq. (4.2), where 

0 1 0

( ) 0

1

t mr k

w n

 
 

  
 
   

C  and 3

1 1 3

3

3

0

( , )y t my sy y

y

 
 

 
 
  

g . By applying Property 1, it can 

be derived that 
1

( )t mr w C , ( )t mr k

 C , and 

2
( ) ( )( ) 180441t mr w mr k   C . Then ( ) 424t C  is estimated. 

Define 

2

1 1

2

2 2

2

3 3

( , , )

x y

x y t x y

x y

 
 

  
 
 

F , and our goal is to achieve the double symplectic 

synchronization ( , , )x y x y t F . According to the Theorem , the inequality 

min( )
1

( )

ik

t


C
 must be satisfied. It can be obtained that min( ) 424ik  . Thus we 
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choose 

1

2

3

0 0 425 0 0

0 0 0 426 0

0 0 0 0 427

k

k

k

   
   

 
   
      

K  and design the controller as 

2 2

1 2 2 2 1 1 1 2 1 1 1 1( 2 ),u x y x y x y y x y x y         

2 2

2 2 1 1 2 3 2 1 1 3

2 2 2

2 1 1 2 3 2 2 2 2 1 1 3

2

2 2 2 2

{( ( ( ) ) ( ( ( ) ))

( ( ( ) ) 2 ( ( ( ) ))

}

u ax x b c x dx x ky y m r y sy

ax x b c x dx x y x y ky y m r y sy

x y x y

          

         

  

  

3

3 1 3 2 1 3 3 3 2 1

2 3

1 3 2 1 3 3 3 3 3 3 2

2

1 3 3 3 3

{ ( ) ( )

( ( ) ) 2 (

) }

u g hx x lx px x y y ny wy

g hx x lx px x y x y y y ny

wy x y x y

          

        

   

 

When the double symplectic synchronization is achieved, the phase portrait of the 

controlled new GKD system and the time histories of the state errors and the time 

histories of i ix y  and 
2

i ix y  are shown in Fig. 4.5 and Fig. 4.6 and Fig. 4.7, 

respectively. 

 

Case 2. 

Consider a new Ge-Ku-van der Pol(GKv)system[43] as Partner A described by 

 

 

1 2

2

2 2 3 1 3

2

3 3 3 2 1

,

,

1 ,

x x

x ax x b c x dx

x gx h x x lx



     
 

    

                                     (4.14) 

where 0.08, 0.35, 100.56, 1000.02, 0.61, 0.08, 0.01a b c d g h l          and 

the initial condition is 1 2 3 (0) 0.01, (0) 0.01 , (0) 0.01x x x   . Eq. (3.14) can be 

rewritten in the form of Eq. (4.1), where  

 

2

2

2 3 1 3

2

3 3 2 1

( , )

1

x

x t ax x b c x dx

gx h x x lx

 
 
      

  
    
 

f . The 

chaotic attractor of the new Ge-Ku-van der Pol system is shown in Fig. 4.8.  
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The controlled Ge-Ku-Duffing(GKD) system is considered as Partner B 

described by 

 
1 2 1

2

2 2 1 1 3 2

3

3 3 3 2 1 3

,

,

,

y y u

y ky y m r y sy u

y y y ny wy u

 

      
 

     

                                 (4.15) 

where 0.1, 11, 40, 54, 6, 30k m r s n w      ,  
T

1 2 3, ,u u uu  is the controller, 

and the initial condition is 1(0) 2y  , 2 (0) 2.4y  , 3(0) 5y  . Eq.(4.15) can be 

rewritten in the form of Eq. (4.2), where 

0 1 0

( ) 0

1

t mr k

w n

 
 

  
 
   

C  and 

3

1 1 3

3

3

0

( , )y t my sy y

y

 
 

 
 
  

g . By applying Property 1, it is derived that 
1

( )t mr w C , 

( )t mr k

 C , and 

2
( ) ( )( ) 180441t mr w mr k   C . Then ( ) 424t C  

is estimated. 

Define 

2

1 1

2

2 2

2

3 3

( , , )

x y

t x y

x y

 
 

  
 
 

F x y , and our goal is to achieve the double symplectic 

synchronization ( , , )x y x y t F .  According to the Theorem , the inequality 

min( )
1

( )

ik

t


C
 has to be satisfied. It can be obtained that min( ) 424ik  . Thus we 

choose 

1

2

3

0 0 425 0 0

0 0 0 426 0

0 0 0 0 427

k

k

k

   
   

 
   
      

K  and design the controller as 

2 2

1 2 2 2 1 1 1 2 1 1 1 12u x y x y x y y x y x z       , 
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2 2

2 2 3 1 3 2 1 1 3

2 2 2

2 3 1 3 2 2 2 2 1 1 3

2

2 2 2 2

{ ( ( ) ) ( ( ( ) ))

( ( ( ) ) 2 ( ( ( ) ))

u ax x b c x dx ky y m r y sy

ax x b c x dx y x y ky y m r y sy

x y x y

          

         

  

 

2 3

3 3 3 2 1 3 3 2 1

2 2 3

3 3 2 2 3 3 3 3 3 2 1

2

3 3 3 3

{ (1 )

( (1 ) ) 2 ( )

}

u gx h x x lx y y ky wy

gx h x x lx y x y y y ky wy

x y x y

         

         

  

 

When the double symplectic synchronization is achieved, the phase portrait of the 

controlled Ge-Ku-Duffing system and the time histories of the state errors and the 

time histories of i ix y  and 
2

i ix y  are shown in Fig. 4.9 and Fig. 4.10 and Fig. 4.11, 

respectively. 

Case 3. 

Consider a new Double Ge-Ku system as Partner A described by 

 

 

1 2

2

2 2 1 1 3

2

3 3 3 3 1

,

,

,

x x

x ax x b c x dx

x ax x b c x ex



     
 

     
 

                                      (4.16) 

where 0.5, 1.4, 1.9, 54, 6.2a b c d e        and the initial conditions are 

1 2 3 (0) 0.01, (0) 0.01 , (0) 0.01x x x   . Eq. (3.16) can be rewritten in the form of 

Eq.(3.1), where  

 

2

2

2 1 1 3

2

3 3 3 1

( , )

x

x t ax x b c x dx

ax x b c x ex

 
 
      

  
        

f . The chaotic attractor of the 

new Double Ge-Ku system is shown in Fig. 4.12. 

The controlled Ge-Ku-Duffing system is considered as Partner B described by 

 
1 2 1

2

2 2 1 1 3 2

3

3 3 3 2 1 3

,

,

,

y y u

y ky y m r y sy u

y y y ny wy u

 

      
 

     

                                  (4.17) 

where 0.1, 11, 40, 54, 6, 30k m r s n w      ,  
T

1 2 3, ,u u uu  is the controller, 
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and the initial conditions are 1(0) 2y  , 2 (0) 2.4y  , 3(0) 5y  . Eq. (4.17) can be 

rewritten in the form of Eq. (4.2), where 

0 1 0

( ) 0

1

t mr k

w n

 
 

  
 
   

C  and 

3

1 1 3

3

3

0

( , )y t my sy y

y

 
 

 
 
  

g . By applying Property 1, it is derived that 
1

( )t mr w C , 

( )t mr k

 C , and 

2
( ) ( )( ) 180441t mr w mr k   C . Then ( ) 424t C  is 

estimated. 

Define 

2

1 1

2

2 2

2

3 3

( , , )

x y

x y t x y

x y

 
 

  
 
 

F , and our goal is to achieve the double symplectic 

synchronization ( , , )x y x y t F .  According to the Theorem , the inequality 

min( )
1

( )

ik

t


C
 has to be satisfied. It can be obtained that min( ) 424ik  . Thus we 

choose 

1

2

3

0 0 425 0 0

0 0 0 426 0

0 0 0 0 427

k

k

k

   
   

 
   
      

K  and design the controller as 

2 2

1 2 2 2 1 1 1 2 1 1 1 1{ 2 }u x y x y x y y x y x y        , 

2 2

2 2 1 1 3 2 1 1 3

2 2 2

2 1 1 3 2 2 2 2 1 1 3

2

2 2 2 2

{ ( ( ) ) ( ( ) )

( ( ( ) )) 2 ( ( ( ) ))

}

u ax x b c x dx ky y m r y sy

ax x b c x dx y x y ky y m r y sy

x y x y

         

         

  

 

2 3

3 3 3 3 1 3 3 2 1

2 2 3

3 3 3 1 3 3 3 3 3 2 1

2

3 3 3 3

{ ( ( ) )

( ( ( ) ) 2 ( )

}

u ax x b c x ex y y ny wy

ax x b c x ex y x y y y ny wy

x y x y

         

         

  

 

When the double symplectic synchronization is achieved, the phase portrait of the 

controlled Ge-Ku-Duffing system and the time histories of the state errors and the 
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time histories of i ix y  and 
2

i ix y  are shown in Fig. 4.13 and Fig. 4.14 and Fig. 4.15, 

respectively. 
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Fig. 4.1 The chaotic attractor of a new Ge-Ku-Mathieu system. 

 

 

Fig. 4.2 The chaotic attractor of a uncontrolled new Ge-Ku-Duffing system. 
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Fig. 4.3 The Lyapunov exponents of a uncontrolled new Ge-Ku-Duffing system. 

 

Fig. 4.4 The bifurcation diagram of a uncontrolled new Ge-Ku-Duffing system. 
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Fig. 4.5 Phase portrait of a controlled new Ge-Ku-Duffing system for Case 1. 

 

 

 

Fig. 4.6 Time histories of i ix y  and 
2

i ix y  for Case 1. 
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Fig. 4.7 Time histories of the state errors for Case 1. 

 

 

 

Fig. 4.8 The chaotic attractor of a new Ge-Ku-van der Pol system. 
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Fig. 4.9 Phase portrait of the controlled Ge-Ku-Duffing system for Case 2. 

 

 

Fig. 4.10 Time histories of i ix y  and 
2

i ix y  for Case 2.  
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Fig. 4.11 Time histories of the state errors for Case 2. 

 

 

Fig. 4.12 The chaotic attractor of a new Double Ge-Ku system. 
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Fig. 4.13 Phase portrait of the controlled Ge-Ku-Duffing system for Case 3. 

 

 

Fig. 4.14 Time histories of i ix y  and 
2

i ix y  for Case 3 
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Fig. 4.15 Time histories of the state errors for Case 3. 
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Chapter 5 

Multiple Symplectic Synchronization for  

Ge-Ku-Duffing System 

5.1 Preliminary 

In this Chapter, a new type of synchronization, multiple symplectic 

synchronization is studied. Symplectic synchronization and double symplectic 

synchronization are special cases of the multiple symplectic synchronization. When 

the double symplectic functions is extended to a more general form, 

( , , ,..., , ) ( , , ,..., , )x y z w t x y z w tG F , it is called “multiple symplectic 

synchronization”. The multiple symplectic synchronization may be applied to increase 

the security of secret communication due to the complexity of its synchronization 

form. 

 

5.2 Multiple Symplectic Synchronization Scheme 

Generalized synchronization refers to a functional relation between the state 

vectors of master and of slave, i.e. ( , )y x t F , where x  and y  are the state vectors 

of master and slave. Recently[50], generalized synchronization is extended to a more 

general form, ( , , )y x y t F . This means that the final desired state y  of the “slave” 

system not only depends upon the “master” system state x  but also depends upon 

the state y  itself. Therefore the “slave” system is not traditional pure slave obeying 

the master system completely but plays a role to determine the final desired state of 

the “slave” system. This kind of synchronization, is called “symplectic 

synchronization”, and the “master” system is called Partner A, the “slave” system is 

called Partner B. 

Since the symplectic functions are presented at both the right hand side and the 
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left hand side of the equality, it is called double symplectic synchronization, 

( , , ) ( , , )x y t x y tG F , where x , y  are state vectors of  Partner A and Partner B , 

respectively, ( , , )x y tG and ( , , )x y tF are given vector functions of x,y and time. 

When the double symplectic functions is extended to a more general form, 

( , , ,..., , ) ( , , ,..., , )x y z w t x y z w tG F , it is called “multiple symplectic 

synchronization”, where , , ,...,x y z w are state vectors of studied systems. 

( , , ,..., , )x y z w tG and ( , , ,..., , )x y z w tF are given vector functions of , , ,...,x y z w and 

time. 

 

5.3 Synchronization of Three Different Chaotic Systems 

Case 1. 

Consider a new Ge-Ku-van der Pol(GKv)system is described by 

 

 

1 2

2

2 2 3 1 3

2

3 3 3 2 1

,

,

1 ,

x x

x ax x b c x dx

x gx h x x lx



     
 

    

                                      (5.1) 

where 0.08, 0.35, 100.56, 1000.02, 0.61, 0.08, 0.01a b c d g h l          and 

the initial condition is 1 2 3 (0) 0.01, (0) 0.01 , (0) 0.01x x x   . The chaotic attractor 

of the new Ge-Ku-van der Pol system is shown in Fig. 5.1.  

The Chen system is described by 

 
1 1 2 1 1

2 1 1 1 1 3 1 2

3 1 2 1 3

,

,

,

z a z a z

z c a z z z c z

z z z b z

 

   

 

                                        (5.2) 

where 1 1 135, 3, 28a b c   and the initial condition is 

1 2 3 z (0) 0.5, z (0) 0.26 ,z (0) 0.35   . The chaotic attractor of the Chen system is 

shown in Fig. 5.2. 

The controlled Ge-Ku-Duffing(GKD) system is described by 
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1 2 1

2

2 2 1 1 3 2

3

3 3 3 2 1 3

,

,

,

y y u

y ky y m r y sy u

y y y ny wy u

 

      
 

     

                                   (5.3) 

where 0.1, 11, 40, 54, 6, 30k m r s n w      ,  
T

1 2 3, ,u u uu  is the controller, 

and the initial condition is 1(0) 2y  , 2 (0) 2.4y  , 3(0) 5y  . The chaotic attractor of 

uncontrolled Ge-Ku-Duffing system is shown in Fig. 5.3. The Lyapunov exponents 

and the bifurcation diagram of uncontrolled GKD system are shown in Fig. 5.4 and 

Fig. 5.5. 

Define 

1 1 1

2 2 2

3 3 3

( , , , )

x y z

x y z t x y z

x y z

  
 

  
 
   

G

 

, 

1 1 1 2 2 1 3 3 1

1 1 2 2 2 2 3 3 2

1 1 3 2 2 3 3 3 3

( , , , )

x y z x y z x y z

x y z t x y z x y z x y z

x y z x y z x y z

  
 

  
 
   

F , 

and our goal is to achieve the multiple symplectic synchronization 

( , , , ) ( , , , )x y z t x y z tG F . 

Define ( , , , ) ( , , , )x y z t x y z t e G F . Thus we design the controller as 

 

   

 

1 2 2 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1 1

2 2

2 3 1 3 2 1 2 1 1 3 2 1

2

1 2 1 1 2 2 3 3 2 2 3 1

3

3 3 2 1 3 1 1 2 1 1 3 3 1 1 1 1 1 1

2 2

{

( ( ) ) ( ( ) )

( ) ( (1 ) )

( )

u x y a z a z x y z x y z x y a z a z

ax x b c x dx y z ky y m r y sy x z

a z a z x y gx h x x lx y z

y y ky wy x z a z a z x y x y z x y z

x y z

        

         

      

          

 1 3 3 1}x y z

, 

    

   

 

2 2

2 2 3 1 3 2 1 1 3

1 1 1 1 3 1 2 2 1 2 1 2 2 1 1 1 1 1 1 3 1 2

2 2

2 3 1 3 2 2 2 1 1 3 2 2

2

1 1 1 1 3 1 2 2 2 3 3 2

{ ( ( ) ) ( ( ( ) ))

( )

( ( ) ) ( ( ) )

( ) ( (1 )

u ax x b c x dx ky y m r y sy

c a z z z c z x y z x y z x y c a z z z c z

ax x b c x dx y z ky y m r y sy x z

c a z z z c z x y gx h x x

          

         

         

        

  
2 3 2

3

3 3 2 1 3 2 1 1 1 1 3 1 2 3 3 2 2 2

1 1 2 2 2 2 3 3 2

)

( )

}

lx y z

y y ky wy x z c a z z z c z x y x y z

x y z x y z x y z

           

  

 



 

51 

 

 

   

2 3

3 3 3 2 1 3 3 2 1

1 2 1 3 2 1 3 1 2 3 1 1 1 2 1 3

2 2

2 3 1 3 2 3 2 1 1 3 2 3

2

1 2 1 3 2 2 3 3 2 2 3 3

3

3 3 2 1 3 3

{( (1 ) ) ( )

( )

( ( ) ) ( ( ) )

( ) ( (1 ) )

( )

u gx h x x lx y y ky wy

z z b z x y z x y z x y z z b z

ax x b c x dx y z ky y m r y sy x z

z z b z x y gx h x x lx y z

y y ky wy x z

          

     

         

      

      1 2 1 3 3 3 3 3 3 1 1 3

2 2 3 3 3 3}

z z b z x y x y z x y z

x y z x y z

     

 

 

When the multiple symplectic synchronization is achieved, the phase portrait of 

the controlled Ge-Ku-Duffing system and the time histories of the state errors and the 

time histories of ( , , , )x y z tG  and ( , , , )x y z tF  are shown in Fig. 5.6 and Fig. 5.7 and 

Fig. 5.8, respectively. 

Case 2. 

Consider a new Ge-Ku-Mathieu(GKM) system is described by    

 

 

1 2

2

2 2 1 1 2 3

3 1 3 2 1 3

,

,

,

x x

x ax x b c x dx x

x g hx x lx px x



     
 

    

                                     (5.4) 

where 0.6, 5, 11, 0.3, 8, 10, 0.5, 0.2a b c d g h l p         , and the initial 

conditions are 1(0) 0.01x  , 2 (0) 0.01x  , 3(0) 0.01x  . The chaotic attractor of the 

new Ge-Ku Mathieu system is shown in Fig. 5.9.  

The Rossler  system is described by 

1 2 3

2 1 1 2

3 1 1 3 1 3

,

,

,

z z z

z z a z

z b z z c z

  

 

  

                                               (5.5) 

where 1 1 10.15, 0.2, 10a b c    and the initial condition is 

1 2 3 z (0) 2, z (0) 2.4 ,z (0) 5   . The chaotic attractor of the Rossler  system is 

shown in Fig. 5.10. 

The controlled Ge-Ku-Duffing(GKD) system is described by 
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1 2 1

2

2 2 1 1 3 2

3

3 3 3 2 1 3

,

,

,

y y u

y ky y m r y sy u

y y y ny wy u

 

      
 

     

                                   (5.6) 

where 0.1, 11, 40, 54, 6, 30k m r s n w      ,  
T

1 2 3, ,u u uu  is the controller, 

and the initial condition is 1(0) 2y  , 2 (0) 2.4y  , 3(0) 5y  . The chaotic attractor of 

uncontrolled Ge-Ku-Duffing system is shown in Fig. 5.3. The Lyapunov exponents 

and the bifurcation diagram of uncontrolled GKD system are shown in Fig. 5.4 and 

Fig. 5.5.  

Define 

1 1 1

2 2 2

3 3 3

( , , , )

x y z

x y z t x y z

x y z

  
 

  
 
   

G

 

, 

2 2 2

1 1 1 2 2 1 3 3 1

2 2 2

1 1 2 2 2 2 3 3 2

2 2 2

1 1 3 2 2 3 3 3 3

( , , , )

x y z x y z x y z

x y z t x y z x y z x y z

x y z x y z x y z

  
 

   
   

F , 

and our goal is to achieve the multiple symplectic synchronization 

( , , , ) ( , , , )x y z t x y z tG F . 

Define ( , , , ) ( , , , )x y z t x y z t e G F . Thus we design the controller as 

 

    

 

 

2 2

1 2 2 2 3 2 1 1 1 2 1 1 1 1 2 3

2 2 2 2

2 1 1 2 3 2 1 2 1 1 3 2 1

2

2 2 1 2 3 1 3 2 1 3 3 1

3 2 2

3 3 2 1 3 1 3 3 1 2 3 1 1 1 1 1 1

{ 2

( ( ) )

2 ( ) ( )

( ) 2

u x y z z x y z x y z x y z z z

ax x b c x dx x y z ky y m r y sy x z

x y z z z g hx x lx px x y z

y y ky wy x z x y z z z x y z x y z

x

         

          
 

       

           

 2 2

2 2 1 3 3 1 }y z x y z

, 

 

 

  
 

 

2 2

2 2 1 1 2 3 2 1 1 3

2 2

1 1 2 2 1 2 1 2 2 1 1 2 1 1 2

2 2

2 1 1 2 3 2 2

2 2

2 1 1 3 2 2 2 2 2 1 1 2

2

1 3 2 1 3 3 2 3

{( ) ( ( ( ) ))

( ) 2

( ( ) ) 2 ( )

( ) (

u ax x b c x dx x ky y m r y sy

z a z x y z x y z x y z z a z

ax x b c x dx x y z

ky y m r y sy x z x y z z a z

g hx x lx px x y z y

           
 

     

     
 

      

       

 

3 2

3 2 1 3 2

2 2 2

3 3 2 1 1 2 2 2 2 1 1 2 2 2 2 3 3 2

)

2 }

y ky wy x z

x y z z a z x y z x y z x y z x y z
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3

3 1 3 2 1 3 3 3 2 1

2 2

1 1 3 1 3 2 1 3 1 2 3 1 1 3 1 1 3 1 3

2 2 2 2

2 1 1 2 3 2 3 2 1 1 3 2 3

2

2 2 3 1 1 3 1 3 1 3 2 1 3 3 3

{( ) ( )

( ) 2

( ( ) )

2 ( ) ( )

(

u g hx x lx px x y y ky wy

b z z c z x y z x y z x y z b z z c z

ax x b c x dx x y z ky y m r y sy x z

x y z b z z c z g hx x lx px x y z

          

       

          
 

       

  3 2 2

3 3 2 1 3 3 3 3 3 1 1 3 1 3 3 3 3 1 1 3

2 2

2 2 3 3 3 3

) 2

}

y y ky wy x z x y z b z z c z x y z x y z

x y z x y z

          

 

 

When the multiple symplectic synchronization is achieved, the phase portrait of 

the controlled Ge-Ku-Duffing system and the time histories of the state errors and the 

time histories of ( , , , )x y z tG  and ( , , , )x y z tF  are shown in Fig. 5.11 and Fig. 5.12 

and Fig. 5.13, respectively. 

Case 3. 

Consider a new Double Ge-Ku system is described by 

 

 

1 2

2

2 2 1 1 3

2

3 3 3 3 1

,

,

,

x x

x ax x b c x dx

x ax x b c x ex



     
 

     
 

                                       (5.7) 

where 0.5, 1.4, 1.9, 54, 6.2a b c d e        and the initial conditions are 

1 2 3 (0) 0.01, (0) 0.01 , (0) 0.01x x x   . The chaotic attractor of the new Double 

Ge-Ku system is shown in Fig. 5.14.  

The Lu  system is described by 

1 1 2 1 1

2 1 3 1 2

3 1 2 1 3

,

,

,

z a z a z

z z z c z

z z z b z

  

  

 

                                                 (5.8) 

where 1 1 136, 3, 20a b c    and the initial condition is 

1 2 3 z (0) 0.2, z (0) 0.35 ,z (0) 0.2   . The chaotic attractor of the Lu  system is 

shown in Fig. 5.15. 

The controlled Ge-Ku-Duffing(GKD) system is described by 
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1 2 1

2

2 2 1 1 3 2

3

3 3 3 2 1 3

,

,

,

y y u

y ky y m r y sy u

y y y ny wy u

 

      
 

     

                                   (5.9) 

where 0.1, 11, 40, 54, 6, 30k m r s n w      ,  
T

1 2 3, ,u u uu  is the controller, 

and the initial condition is 1(0) 2y  , 2 (0) 2.4y  , 3(0) 5y  . The chaotic attractor of 

uncontrolled Ge-Ku-Duffing system is shown in Fig. 5.3. The Lyapunov exponents 

and the bifurcation diagram of uncontrolled GKD system are shown in Fig. 5.4 and 

Fig. 5.5.  

Define 

1 1 1

2 2 2

3 3 3

( , , , )

x y z

x y z t x y z

x y z

  
 

  
 
   

G

 

, 

2 2 2

1 1 1 2 2 1 3 3 1

2 2 2

1 1 2 2 2 2 3 3 2

2 2 2

1 1 3 2 2 3 3 3 3

( , , , )

x y z x y z x y z

x y z t x y z x y z x y z

x y z x y z x y z

  
 

   
   

F , 

and our goal is to achieve the multiple symplectic synchronization 

( , , , ) ( , , , )x y z t x y z tG F . 

Define ( , , , ) ( , , , )x y z t x y z t e G F . Thus we design the controller as 
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When the multiple symplectic synchronization is achieved, the phase portrait of 

the controlled Ge-Ku-Duffing system and the time histories of the state errors and the 

time histories of ( , , , )x y z tG  and ( , , , )x y z tF  are shown in Fig. 5.16 and Fig. 5.17 

and Fig. 5.18, respectively. 

 

 

 

 

Fig. 5.1 The chaotic attractor of a new Ge-Ku-van der Pol system. 
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Fig. 5.2 The chaotic attractor of the Chen system. 

 

 

 

Fig. 5.3 The chaotic attractor of a uncontrolled new Ge-Ku-Duffing system. 
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Fig. 5.4 The Lyapunov exponents of a uncontrolled new Ge-Ku-Duffing system. 

Fig. 5.5 The bifurcation diagram of a uncontrolled new Ge-Ku-Duffing system. 
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Fig. 5.6 Phase portrait of a controlled new Ge-Ku-Duffing system for Case 1. 

 

Fig. 5.7 Time histories of ( , )tG x,y,z  and ( , )tF x,y,z  for Case 1. 
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Fig. 5.8 Time histories of the state errors for Case 1. 
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Fig. 5.9 The chaotic attractor of a new Ge-Ku-Mathieu system. 

 

Fig. 5.10 The chaotic attractor of the Rossler  system. 
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Fig. 5.11 Phase portrait of the controlled Ge-Ku-Duffing system for Case 2. 

 

 

Fig. 5.12 Time histories of ( , )tG x,y,z  and ( , )tF x,y,z  for Case 2.  
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Fig. 5.13 Time histories of the state errors for Case 2. 

 

Fig. 5.14 The chaotic attractor of a new Double Ge-Ku system. 
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Fig. 5.15 The chaotic attractor of the Lu  system. 

 

Fig. 5.16 Phase portrait of the controlled Ge-Ku-Duffing system for Case 3. 
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Fig. 5.17 Time histories of ( )tG x,y,z,  and ( , )tF x,y,z  for Case 3. 

 

Fig. 5.18 Time histories of the state errors for Case 3. 
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Chapter 6 

Fuzzy Modeling and Synchronization of Chaotic Systems via 

New Fuzzy Model 

6.1 Preliminary 

In this Chapter, a new fuzzy model [51] is used to simulate and synchronize two  

different chaotic systems. Via the new fuzzy model, a complicated nonlinear system is 

linearized to a simple form – linear coupling of only two linear subsystems and the 

numbers of fuzzy rules can be reduced from N2 to N2  (where N is the number of 

nonlinear terms). The fuzzy equations become much simpler. 

 

6.2 New Fuzzy Model Theory 

In system analysis and design, it is important to select an appropriate model 

representing a real system. As an expression model of a real plant, the fuzzy 

implications and the fuzzy reasoning method suggested by Takagi and Sugeno are 

traditionally used. The new fuzzy model is also described by fuzzy IF-THEN rules. 

The core of the new fuzzy model is that we express each nonlinear equation into two 

linear sub-equations by fuzzy IF-THEN rules and take all the first linear sub-equations 

to form one linear subsystem and all the second linear sub-equations to form another 

linear subsystem. The overall fuzzy model of the system is achieved by fuzzy 

blending of this two linear subsystem models. Consider a continuous-time nonlinear 

dynamic system as follows:  

Equation i:  

rule 1: 

IF )t(z i  is 1iM  

THEN )t(uB)t(xA)t(x 1i1ii  , 
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rule 2: 

IF )t(z i  is 2iM  

THEN )t(uB)t(xA)t(x 2i2ii  ,                                (6.1) 

where 

    T
n21 )]t(x),...,t(x),t(x[)t(x  , 

    T
n21 )]t(u),...,t(u),t(u[)t(u  , 

n...2,1i  , where n is the number of nonlinear terms. )t(z i  is the nonlinear term of

x( )t , 2i1i M,M are fuzzy sets, ii B,A are column vectors and 

)t(uB)t(xA)t(x ijiji  , 2,1j  is the output from the first and the second IF-THEN 

rules. Given a pair of ( ( ) ( ))t tx ,u  and take all the first linear sub-equations to form 

one linear subsystem and all the second linear sub-equations to form another linear 

subsystem, the final output of the fuzzy system is inferred as follows: 

    





















































)t(uB)t(xA

)t(uB)t(xA

)t(uB)t(xA

M

)t(uB)t(xA

)t(uB)t(xA

)t(uB)t(xA

M)t(x

2i2i

2222

1212

2

1i1i

2121

1111

1 
               (6.2) 

where 1M and 2M are diagonal matrices as following: 

dia  1i21111 M...MM)M(  , dia  2i22122 M...MM)M(   

Note that for each equation i: 

    



2

1j

iij 1))t(z(M , 

    0))t(z(M iij  , i = 1, 2,…, n and j=1,2. 

    Via the new fuzzy model, the final form of the fuzzy model becomes very 

simple. The new model provides a much more convenient approach for fuzzy model 

research and fuzzy application. The simulation results of chaotic systems are 
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discussed in next Section. 

 

6.3 New Fuzzy Model of Chaotic Systems 

In this Section, the new fuzzy models of two different chaotic systems, Sprott C 

[52] and system Sprott E [52] system, are shown for Model 1 and Model 2.  

Model system: 

Sprott gave three dimensional ODE’s with at most quadratic nonlinearities and 

found 19 distinct examples of chaotic flows with either five terms and two 

nonlinearities or six terms and one nonlinearity. Two of these 19 systems are used 

here. 

Model 1: New fuzzy model of Sprott C system with uncertainty 

The Sprott C system with uncertainty is: 

1 2 3

2 1 2 1

2

3 11

x x x

x x x

x x

 


   


 

                                     (6.3) 

with initial states (0.8, 1, 0.01), and uncertainty 1  is 0.1sin(t) . The chaotic attractor 

of the Sprott C system is shown in Fig. 6.1. 

   If T-S fuzzy model is used for representing local linear models of Sprott C system, 

8 fuzzy rules and 8 linear subsystems are need. The process of modeling is shown as 

follows: 

T-S fuzzy model: 

Assume that: 

(1) 
2 1 1[ , ]x Z Z   and 

1 0Z 
 

(2) 
1 2 2[ , ]Z Z    and 

2 0Z   

(3) 
1 3 3[ , ]x Z Z   and 

3 0Z   

Then we have the following T-S fuzzy rules: 



 

68 

 

Rule 1: IF 2x  is 11M  , 
1  is 21M  and 1x  is 

31M  THEN XAX 1 , 

Rule 2: IF  is  , 
1  is 21M  and  is 

32M  THEN 2X A X , 

Rule 3: IF 2x  is 11M  , 
1  is 22M  and 1x  is 

31M  THEN 3X A X , 

Rule 4: IF 2x  is 11M  , 
1  is 22M  and 1x  is 

32M  THEN 4X A X , 

Rule 5: IF 2x  is 12M  , 
1  is 21M  and 1x  is 

31M  THEN 5X A X , 

Rule 6: IF 2x  is 12M  , 
1  is 21M  and 1x  is 

32M  THEN 6X A X , 

Rule 7: IF 2x  is 12M  , 
1  is 22M  and 1x  is 

31M  THEN 7X A X , 

Rule 8: IF 2x  is 12M  , 
1  is 22M  and 1x  is 

32M  THEN 8X A X , 

Then the final output of the Sprott C system can be composed by fuzzy linear 

subsystems mentioned above. It is obviously an inefficient and complicated work. 

New fuzzy model: 

By using the new fuzzy model, Sprott C system can be linearized as simple linear 

equations. The steps of fuzzy modeling are shown as follows: 

Steps of fuzzy modeling:  

Step 1: 

Assume that ],[ 112 ZZx  and 0Z1  , then the first equation of (6.3) can be 

exactly represented by new fuzzy model as following: 

    Rule  1 :  IF 2x i s 11M ,  THEN 131 Zxx  ,                    (6 .4) 

    Rule  2 :  IF 2x i s 12M ,  THEN 131 Zxx                    (6 .5 ) 

where 

    )1(
2

1

1

2
11

Z

x
M  ,  )1(

2

1

1

2
12

Z

x
M  , 

and 1 8Z 
 
from Fig. 6.2 . 11M and 12M are fuzzy sets of the first equation of (6.3) and 

11211  MM . 

2x 11M
1x
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Step 2: 

Assume that
1 2 2[ , ]Z Z   and 0Z2  , then the second equation of (6.3) can be 

exactly represented by new fuzzy model as following: 

    Rule 1: IF
1 is 21M , THEN 2 1 2 2x x x Z   ,                  (6.6) 

    Rule 2: IF
1 is 22M , THEN 2 1 2 2x x x Z                     (6.7) 

where 

    1
21

2

1
(1 )

2
M

Z


  ,  1

22

2

1
(1 )

2
M

Z


  , 

and 2 2Z   from Fig. 6.2. 21M and 22M are fuzzy sets of the second equation of (6.3) 

and 21 22 1M M  . 

Step 3: 

Assume that
1 3 3[ , ]x Z Z  and 3 0Z  , then the third equation of (6.3) can be 

exactly represented by new fuzzy model as following: 

    Rule 1:  IF 1x i s 31M ,  THEN 3 1 31x x Z  ,                   (6 .8) 

    Rule 2:  IF 1x i s 32M ,  THEN 3 1 31x x Z                    (6 .9) 

where 

    1
31

3

1
(1 )

2

x
M

Z
  ,  1

32

3

1
(1 )

2

x
M

Z
  , 

and 3 8Z 
 
from Fig. 6.2. 31M and 32M are fuzzy sets of the third equation of (6.3) 

and 13231  MM . 

Here, we call Eqs.(6.4), (6.6) and (6.8) the first linear subsystem under the fuzzy 

rules, and Eqs.(6.5), (6.7) and (6.9) the second linear subsystem under the fuzzy rules. 

The first linear subsystem is 

1 3 1

2 1 2 2

3 1 31

x x Z

x x x Z

x x Z




  
  

                                             (6.10) 

The second linear subsystem is 
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1 3 1

2 1 2 2

3 1 31

x x Z

x x x Z

x x Z

 


  
  

                                         (6.11) 

The final output of the fuzzy Sprott C system is inferred as follows and the 

chaotic behavior of fuzzy system is shown in Fig. 6.3. Now we have: 

3 11 11

2 21 1 2 2

313 1 3

3 112

22 1 2 2

32 1 3

0 0

0 0

0 0 1

0 0

0 0

0 0 1

x Zx M

x M x x Z

Mx x Z

x ZM

M x x Z

M x Z

    
    

  
    
         

  
  

  
  
      

                         (6.12) 

Eq. (6.12) can be rewritten as a simple mathematical expression: 

)b
~

)t(XA()t(X i

2

1i
ii 



                                      (6.13) 

where i are diagonal matrices as follows: 

 3121111)( MMMdia  ,  3222122 )( MMMdia   

    

1

1

3

0 0

1 1 0

0 0

Z

A

Z

 
 

 
 
  

, 1 2

0

1

b Z

 
 


 
  

 

    

1

2

3

0 0

1 1 0

0 0

Z

A

Z

 
 

 
 
  

, 2 2

0

1

b Z

 
 

 
 
  

 

Via new fuzzy model, the number of fuzzy rules can be greatly reduced. Just two 

linear subsystems are enough to express such complex chaotic behaviors. The 

simulation results are similar the original chaotic behavior of the Sprott C system as 

shown in Fig. 6.3. 

 

 

Model 2: New fuzzy model of stochastic Sprott E system  
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The stochastic Sprott E system is: 

    

1 2 3

2

2 1 2

3 1 21 4

y y y

y y y

y y




 
   

                                          (6.14) 

where 2  is Rayleigh noise and initial conditions are chosen as (0.2, 0.063, 0.01), 

the stochastic Sprott E model exhibits chaotic motion which is shown in Fig. 6.4. 

New fuzzy model: 

Assume that: 

(1) 2 4 4[ , ]y Z Z  and 4 0Z  ,  

(2) 2 5 5[ , ]Z Z   and 5 0Z  , 

(3) 1 6 6[ , ]y Z Z   and 6 0Z  ,  

then we have the following new fuzzy rules: 

    Rule 1: IF 2y is 11N ,THEN 1 2 4y y Z ,                       (6.15) 

    Rule 2: IF 2y is 12N ,THEN 1 2 4y y Z  ,                      (6.16) 

where 

    2
11

4

1
(1 )

2

y
N

Z
  ,  2

12

4

1
(1 )

2

y
N

Z
    

and 

    Rule 1: IF 1y is 21N ,THEN 2 5 1 2y Z y y  ,                    (6.17) 

    Rule 2: IF 1y is 22N ,THEN 2 5 1 2y Z y y   ,                   (6.18) 

where 

    1
2 1

5

1
( 1 )

2

y
N

Z
  ,  1

22

5

1
(1 )

2

y
N

Z
  . 

and 

    Rule 1: IF 2 is 31N ,THEN 3 1 61 4y y Z   ,                   (6.19) 

    Rule 2: IF 2 is 32N ,THEN 3 1 61 4y y Z   ,                   (6.20) 

where 
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    2
3 1

6

1
( 1 )

2
N

Z


  ,  2

32

6

1
(1 )

2
N

Z


  . 

in Eqs. (3-13)~(3-18), 4 8Z  , 5 6Z   and 5 5Z   from Fig. 6.5.  11N , 12N , 21N , 22N ,

31N and 32N are fuzzy sets of Eq.(6.14) and 11211  NN , 12221  NN  and 

31 32 1N N    

Here, we call (6.15), (6.17) and (6.19) the first liner subsystem under the fuzzy 

rules and (6.16), (6.18) and (6.20) the second linear subsystem under the fuzzy rules. 

The first linear subsystem is 

1 4 3

2 5 1 2

3 1 61 4

y Z y

y Z y y

y y Z




 
   

                                           (6.21) 

The second linear subsystem is 

    

1 4 3

2 5 1 2

3 1 61 4

y Z y

y Z y y

y y Z

 


  
   

                                        (6.22) 

The final output of the fuzzy Sprott E system is inferred as follows and the 

chaotic behavior of fuzzy system is shown in Fig. 6.6. 

4 31 11

2 21 5 1 2

313 1 6

4 312

22 5 1 2

32 1 6

0 0

0 0

0 0 1 4

0 0

0 0

0 0 1 4

T

T

Z yy N

y N Z y y

Ny y Z

Z yN

N Z y y

N y Z

    
    

 
    
          

  
  

  
  
       

                         (6.23) 

Eq. (6.23) can be rewritten as a simple mathematical expression: 

)~)(()(
2

1

i

i

ii ctYCtY 


                                       (6.24) 

where  

 3121111)( NNNdia  ,  3222122 )( NNNdia   
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4

1 5

0 0

1 0

4 0 0

Z

C Z

 
 

 
 
  

, 1

6

0

0

1

c

Z

 
 


 
  

 

    

4

2 5

0 0

1 0

4 0 0

Z

C Z

 
 

  
 
  

, 2

6

0

0

1

c

Z

 
 


 
  

 

Via new fuzzy model, two linear subsystems are enough to express such complex 

chaotic behaviors. The simulation results are similar to the original chaotic behavior 

of the Sprott E system. 

 

6.4 Fuzzy Synchronization Scheme 

In this Section, we derive the new fuzzy synchronization scheme based on our 

new fuzzy model to synchronize two different fuzzy chaotic systems. The following 

fuzzy systems as the master and slave systems are given: 

master system: 

)b
~

)t(XA()t(X i

2

1i
ii 



                                       (6.25) 

slave system:  

)t(BU)c~)t(YC()t(Y i

2

1i
ii 



                                 (6.26) 

Eq. (6.25) and Eq. (6.26) represent the two different chaotic systems, and in Eq. (6.26) 

there is control input U(t). Define the error signal as )t(Y)t(X)t(e  , we have: 

)t(BU)c~)t(YC()b
~

)t(XA()t(Y)t(X)t(e i

2

1i
iii

2

1i
ii 



      (6.27) 

The fuzzy controllers are designed as follows: 

)t(u)t(u)t(U 21                                             (6.28) 

where  

    


2

1i
ii

2

1i
ii1 )t(YP)t(XF)t(u , 
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2

1i
ii

2

1i
ii2 c~b

~
)t(u  

such that 0)t(e  as t . Our design is to determine the feedback gains Fi and Pi. 

By substituting U(t) into Eq.(6.27), we obtain: 

     


2

1i
iii

2

1i
iii )t(Y)BPC()t(X)BFA()t(e                   (6.29) 

Theorem 1: The error system in Eq. (6.29) is asymptotically stable and the slave 

system in Eq. (6.26) can synchronize the master system in Eq. (6.25) under the fuzzy 

controller in Eq. (6.28) if the following conditions below can be satisfied: 

( ) ( ) 0i i i iG A BF C BP     ,  i = 1 ~ 2 .                 ( 6 . 3 0 ) 

Proof: 

The errors in Eq. (6.29) can be exactly linearized via the fuzzy controllers in Eq. 

(4-4) if there exist the feedback gains Fi such that 

0)BPC()BPC()BFA()BFA( 22112211  .              (6.31) 

Then the overall control system is linearized as 

)t(Ge)t(e  ,                                                 (6.32) 

where 0)BPC()BPC()BFA()BFA(G 22112211  . 

As a consequence, the zero solution of the error system (6.32) linearized via the 

fuzzy controller (6.28) is asymptotically stable. 

 

6.5 Simulation Results 

There are two examples in this Section to investigate the effectiveness and 

feasibility of our new fuzzy model.  

Example 1: Synchronization of identical master and slave Sprott C system  

The fuzzy Sprott C system in Eq. (6.13) is chosen as the master system and the 

fuzzy slave Sprott C system, with fuzzy controllers is as follows: 
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)()~)(()(
2

1

tBUctYCtY i

i

ii 


                                 (6.33) 

where i are diagonal matrices  

 3121111)( NNNdia  ,  3222122 )( NNNdia   
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Therefore, the error and error dynamics are: 
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1 1 1 2 2
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3
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i i

e x y

e x y A X t b C Y t c BU t

e x y
 

   
   

        
   
      

         (6.34) 

B is chosen as an identity matrix and the fuzzy controllers in Eq. (6.28) are used: 
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1 1

1 1 1 2 2 2 2 23 3 3 3

3 3

y y

C BP y C BP y

y y
 

   
   

   
   
      

                    (6.35)    

According to Eq.(6.30) , we have      1 1 2 2 1 1G A BF A BF C BP       

 2 2 0C BP   . G is chosen as: 
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100

010

001

G                                          (6.36) 

Thus, the feedback gains F1, F2, P1 and P2 can be determined by the following 

equation: 

     1

1 1

1 0 8

1 0 0

8 0 1

F B A G

 
 

  
 
  

 

     1

2 2

1 0 8

1 0 0

8 0 1

F B A G

 
 

  
 
  

                             (6.37) 

 1

1 1

1 0 8

1 0 0

8 0 1

P B C G

 
 

  
 
  

 

     1

2 2

1 0 8

1 0 0

8 0 1

P B C G

 
 

  
 
  

 

The synchronization errors are shown in Fig. 6.7.  

 

Example 2: Synchronization of Sprott C system and Sprott E system. 

The fuzzy Sprott C system in Eq. (6.13) is chosen as the master system and the 

fuzzy slave Sprott E system, with fuzzy controllers is as follows: 

)()~)(()(
2

1

tBUctYCtY i

i

ii 


                                 (6.38) 

where are diagonal matrices  

,  

and 

i

 3121111)( NNNdia   3222122 )( NNNdia 
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Therefore, the error and error dynamics are: 

,  

1 1 1 2 2

2 2 2

1 1

3 3

( ( ) ) ( ( ) ) ( )

3

i i i i i i

i i

e x y

e x y A X t b C Y t c BU t

e x y
 

   
   

        
   
      

         (6.39) 

B is chosen as an identity matrix and the fuzzy controllers in Eq. (6.28) are used: 

                                           

           
1 1

1 1 1 2 2 2 2 23 3 3 3

3 3

y y

C BP y C BP y

y y
 

   
   

   
   
      

                    (6.40)    

According to Eq.(6.30) , we have      1 1 2 2 1 1G A BF A BF C BP       

 2 2 0C BP   . G is chosen as: 

                                             (6.41) 

Thus, the feedback gains F1, F2, P1 and P2 can be determined by the following 

equation: 
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     1

1 1

1 0 8

1 0 0

8 0 1

F B A G

 
 

  
 
  

 

     1
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1 0 8

1 0 0

8 0 1

F B A G

 
 

  
 
  

                                 (6.42) 

 1

1 1

1 0 8
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4 0 1

P B C G
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2 2

1 0 8

6 0 0

4 0 1

P B C G

 
 

   
 
  

 

The synchronization errors are shown in Fig. 6.8. 
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Fig. 6.1. Chaotic behavior of Sprott C system with uncertainty. 

 

Fig. 6.2. Time histories of 
1 2,Z Z  and 

3Z  for Sprott C system. 
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Fig. 6.3. Chaotic behavior of new fuzzy Sprott C system with uncertainty. 

 

 

 

Fig. 6.4. Chaotic behavior of stochastic Sprott E system. 
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Fig. 6.5. Time histories of 
1 2,Z Z  and 

3Z  for Sprott E system. 

 

 

Fig. 6.6. Chaotic behavior of new fuzzy stochastic Sprott E system. 
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Fig. 6.7. Time histories of errors for Example 1. 

 

Fig. 6.8. Time histories of errors for Example 2. 
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Chapter 7 

Projective Synchronization by Fuzzy Logic Constant 

Controller and Its Application to Different Chaotic Systems 

with Deterministic and Stochastic Uncertainties 

7.1 Preliminary 

In this Chapter, a simplest controller, the fuzzy logic constant controller 

(FLCC) ,which are derived via fuzzy logic design and Lyapunov direct method, are 

presented for projective synchronization of non-autonomous chaotic systems with 

deterministic and stochastic uncertainties. 

 

7.2 Projective Chaos Synchronization by FLCC Scheme 

Consider the following master chaotic system 

( )f x  x Ax                                            (7.1) 

where 1 2[ , , ]T n

nx x x R x
 
denotes a state vector, A is an n n  constant 

coefficient matrix ,  f is a nonlinear vector function and   is a stochastic 

disturbance.  

The slave system which can be either identical or different from the master 

system, is 

( )B g y u  y y                                               (7.2) 

where 1 2[ , , ]T n

ny y y R y  denotes a state vector, B is an n n  constant 

coefficient matrix, g is a nonlinear vector function., and 
nT

n Ruuuu  ],,,[ 21  is 

the fuzzy logic controller vector needed to be designed. 

In order to make the chaos state y  approaching the projective master statex , 
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define  e x y  as the state error. The chaos control is accomplished in the sense 

that : 

lim lim( ) 0
t t


 

  e x y                                            (7.3) 

where 

1[ ]ne ee = αx - y , ...,                                           (7.4)                                              

From Eq. (7.1)~(7.3) we have the following error dynamics: 

    [ ( ) ] [ ( ) ]A f B g u       e x - y x x y y                        (7.5) 

According to Lyapunov direct method, we have the following Lyapunov function 

to derive the fuzzy logic controller for projective synchronization: 

0)......(
2

1
),...,...( 222

11  nmnm eeeeeefV                       (7.6) 

The derivative of the Lyapunov function is: 

    nnmm eeeeeeV  ......11                                       (7.7) 

If the controllers included in nm eee  ......1 can be suitably designed to achieve 

0V , then the zero solution 0e =  is asymptotically stable and the projective 

synchronization is accomplished. The design process of FLCC is introduced as 

follows. 

We use one vector signal, error derivatives  1 2( ) , ,
T

m nt e e e ee as the 

antecedent part of the proposed FLCC to design the control input u  which will be 

used in the consequent part of the proposed FLCC : 

     Tnm21 uuuuu  ,,                                         (7.8) 

where u is a constant column vector and the FLCC accomplishes the objective to 

stabilize the error dynamics (7.5).  

The strategy of the FLCC designing is proposed as follow and the configuration 

of the strategy is shown in Fig. 7.1. 
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Assume the upper bound and lower bound of me  are Zm and –Zm, then the 

FLCC can be design step by step as follows: 

(1) If me  is detected as positive ( 0me ), we have to design a controller for

0me , then 0 mmeeV  can be achieved. Therefore we have the following i-th 

if–then fuzzy rule as: 

        Rule 1 : IF me is M1 THEN um1 = Zm                           (7.9) 

        Rule 2 : IF me is M 2 THEN um2 = Zm                           (7.10) 

        Rule 3 : IF me is M 3 THEN um3 = me                            (7.11) 

(2) If me  is detected as negative ( 0me ), we have to design a controller for

0me , then 0 mmeeV  can be achieved. Therefore we have the following i-th 

if–then fuzzy rule as: 

        Rule 1 : IF me is M1 THEN um1 = -Zm                           (7.12) 

        Rule 2 : IF me is M 2 THEN um2 = -Zm                          (7.13) 

        Rule 3 : IF me is M 3 THEN um3 = me                            (7.14) 

(3) If me approaches to zero, then the projective synchronization is nearly 

achieved. Therefore we have the following i-th if–then fuzzy rule as: 

        Rule 1 : IF me is M1 THEN um1 = 0me                          (7.15) 

        Rule 2 : IF me is M 2 THEN um2 = 0me                         (7.16) 

        Rule 3 : IF me is M 3 THEN um3 = 0me                         (7.17) 

where 1

m

m

e
M

Z
 , 2

m

m

e
M

Z
 and 3 sgn( ) sgn( )m m m m

m m

Z e e Z
M

Z Z

 
  , 1M , 2M and 3M

refer to the membership functions of positive (P), negative (N) and zero (Z) separately 

which are presented in Fig. 7.2. For each case, miu , i= 1~3 is the i-th output of me

which is a constant controller. The centriod defuzzifier which evaluates the output of 

all rules, is 
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3

1

3

1

i
i

i
mii

m

M

uM

u                                              (7.18) 

    The fuzzy rule base is listed in Table 1, in which the input variables in the 

antecedent part of the rules are me  and the output variable in the consequent part is

miu .  

Table 7.1 Rule-table of FLCC 

Rule Antecedent Consequent Part 

 me  miu  

1 Negative (N) 1mu  

2 Positive (P) 2mu  

3 Zero (Z) 3mu  

After designing appropriate fuzzy logic constant controllers and being 

substituted into Eq. (7.7), a negative definite of derivatives of Lyapunov function V  

can be obtained and the asymptotically stability of Lyapunov theorem can be 

achieved.  

Consequently, the processes of FLCC designing to control the error system 

following the trajectory of error dynamics is by getting the upper bounds and lower 

bounds of the error derivatives without any controller, i.e. mmm ZeZ   . Through 

the fuzzy logic system which follows the rules of Eqs. (7.9) ~ (7.17), a negative 

definite of derivatives of Lyapunov function V  can be obtained and the 

asymptotically stability of Lyapunov theorem can be achieved. 
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7.3 Simulation Results 

There are two case in this Section to show the effectiveness of our new method. 

7.3.1 Projective Synchronization of  Sprott C and Sprott E system by new FLCC 

The master Sprott C system [52]with disturbance is: 

1
2 3 1

2
1 2 2

23
1 3

( )
( ) ( )

( )
( ) ( )

( )
1 ( )

dx t
x t x t

dt

dx t
x t x t

dt

dx t
x t

dt


  




   



   


                                (7.19)                              

when initial condition ),,( 302010 xxx = (0.8, 1, 0.01) and disturbance 1  
is 

0.01cos(5 )t  , 2  
is 0.05cos(5 )t  and 3  

is 0.1cos(5 )t . The chaotic attractor of the 

Sprott C system is shown in Fig. 7.3. 

The slave Sprott E system[52] is: 

1
2 3 1

22
1 2 2

3
1 1 3

( )
( ) ( )

( )
( ) ( )

( )
( ) 4 ( )

dy t
y t y t u

dt

dy t
y t y t u

dt

dy t
y t y t u

dt


 




  



  


                                   (7.20) 

when initial condition ),,( 302010 yyy = (0.2, 0.063, 0.01), the Sprott E system exhibits 

chaotic motion which is shown in Fig. 7.4. 1u , 2u  and 3u
 
are FLCC to synchronize 

projectively the slave system to master one, i.e., 

0lim 


e
t

                                                   (7.21) 

The projective synchronization error vector is 

1 1 1

2 2 2

3 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

e t x t y t

e t x t y t

e t x t y t



     
     

  
     
          

e                                   (7.22) 

where the projective constant is   = 4. 

From Eq. (7.22), we have the following error dynamics:                      
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1 2 3 1 2 3 1

2

2 1 2 2 1 2 2

2

3 1 3 1 1 3

( ) ( )

( ) ( )

( 1 ) ( 4 )

e x x y y u

e x x y y u

e x y y u







    


      


      

                              (7.23)  

Choosing Lyapunov function as: 

    )( 2
3

2
2

2
1 eee

2

1
V                                            (7.24) 

Its time derivative is: 

    

1 1 2 2 3 3

1 2 3 1 2 3 1

2

2 1 2 2 1 2 2

2

3 1 3 1 1 3

( ( ) ( ) )

( ( ) ( ) )

( ( 1 ) ( 4 ) )

V e e e e e e

e x x y y u

e x x y y u

e x y y u







  

    

      

      

                            (7.25) 

    In order to design FLCC, we divide Eq. (7.25) into three parts as follows: 

Assume 321
2
3

2
2

2
1 VVVeee

2

1
V  )( , then 321332211 VVVeeeeeeV   , 

where 2
11 e

2

1
V  , 2

22 e
2

1
V  and 2

33 e
2

1
V  . 

Part 1: 1 1 1 1 2 3 1 2 3 1( ( ) ( ))V e e e x x y y u       

Part 2: 2

2 2 2 2 1 2 2 1 2 2( ( ) ( ))V e e e x x y y u         

Part 3: 2

3 3 3 3 1 3 1 1 3( (1 ) ( 4 ))V e e e x y y u       
 

FLCC in Part 1, 2 and 3 can be obtained via the fuzzy rules in Table 7.1 as 

follows and the maxima value and minima value of 1,e 2 ,e 3e (without any controller) 

can be observed in time history of error derivatives drawn in Fig 7.5. 

 The projective synchronization scheme is proposed according to Part 1,2 and 3 

as 0eeV 111   , 0eeV 222   and 0eeV 333   . Hence, we have

0VVVV 321   . It is clear that all of the rules in our FLCC can lead the 

Lyapunov theorem for asymptotical stability is satisfied and the simulation results are 

shown in Fig. 7.6 and 7.7. 
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7.3.2 Projective Synchronization of Ge-Ku-Duffing and Double Ge-Ku system by 

new FLCC 

Consider the master Ge-Ku-Duffing system[43] with uncertainty is described by  

1
2 1

22
2 1 1 3 2

33
3 3 2 1 3

( )
( )

( )
( ) ( )( ( ( )) ( ))

( )
( ) ( ) ( ) ( )

dx t
x t

dt

dx t
ax t x t b c x t dx t

dt

dx t
x t x t fx t gx t

dt


  




      



      


                   (7.26)                              

Let initial states be 1 2 3(0) 2, (0) 2.4, (0) 5x x x    and system parameters 

0.1, 11, 40,a b c   54, 6, 30d f g    and uncertainty 1 0.1cos(3 )t   , 

2 Rayleigh noise   shown in Fig. 7.8 and 3 0.1sin(2 )t  . The chaotic attractor of 

the Ge-Ku-Duffing system is shown in Fig. 7.9. 

The slave Double Ge-Ku system[43] is: 

1
2 1

22
2 1 1 3 2

23
3 3 3 1 3

( )
( )

( )
( ) ( )( ( ( )) ( ))

( )
( ) ( )( ( ( )) ( ))

dy t
y t u

dt

dy t
ly t y t m n y t py t u

dt

dy t
ly t y t m n y t ry t u

dt


 




     



     


                       (7.27) 

when initial condition 1 2 3(0) 0.1, (0) 0.1, (0) 0.1y y y   , and system parameters 

0.5, 14, 1.9, 54, 6.2l m n p r        .The Double Ge-Ku system exhibits chaotic 

motion which is shown in Fig. 7.10. 1u , 2u  and 3u
 
are FLCC to synchronize  

projectively the slave system to master one, i.e., 

0lim 


e
t

                                                   (7.28) 

The projective synchronization error vector is 

1 1 1

2 2 2

3 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

e t x t y t

e t x t y t

e t x t y t



     
     

  
     
          

e                                  (7.29) 

where the projective constant is  = 2. 
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From Eq. (7.29), we have the following error dynamics: 

1 2 1 2 1

2 2

2 2 1 1 3 2 2 1 1 3 2

3 2

3 3 3 2 1 3 3 3 3 1 3

( ( ) ) ( ( ) )

( ( ) ( )( ( ( )) ( )) ) ( ( ) ( )( ( ( )) ( )) )

( ( ) ( ) ( ) ( ) ) ( ( ) ( )( ( ( )) ( )) )

e x t y t u

e ax t x t b c x t dx t ly t y t m n y t py t u

e x t x t fx t gx t ly t y t m n y t ry t u







    


            


                 

(7.30)  

Choosing Lyapunov function as: 

    )( 2
3

2
2

2
1 eee

2

1
V                                            (7.31) 

Its time derivative is: 

    

1 1 2 2 3 3

1 2 1 2 1

2

2 2 1 1 3 2

2

2 1 1 3 2

3

3 3 3 2 1 3

2

3 3 3 1

( ( ( ) ) ( ( ) ) )

( ( ( ) ( ) ( ( ( ) ) ( ) ) )

( ( ( ) ( ) ( ( ( ) ) ( ) ) ) )

( ( ( ) ( ) ( ) ( ) )

( ( ) ( ) ( ( ( ) ) (

V e e e e e e

e x t y t u

e a x t x t b c x t d x t

l y t y t m n y t p y t u

e x t x t f x t g x t

l y t y t m n y t r y







  

    

      

     

      

     3) ) ) )t u

                 (7.32) 

    In order to design FLCC, we divide Eq. (7.32) into three parts as follows: 

Assume 321
2
3

2
2

2
1 VVVeee

2

1
V  )( , then 321332211 VVVeeeeeeV   , 

where 2
11 e

2

1
V  , 2

22 e
2

1
V  and 2

33 e
2

1
V  . 

Part 1:  

1 1 1 1 2 1 2 1( ( ( ) ) ( ( ) ))V e e e x t y t u       

Part 2: 

 

2

2 2 2 2 2 1 1 3 2

2

2 1 1 3 2

( ( ( ) ( )( ( ( )) ( )) )

( ( ) ( )( ( ( )) ( )) ))

V e e e ax t x t b c x t dx t

ly t y t m n y t py t u

      

     
 

Part 3:  

3

3 3 3 3 3 3 2 1 3

2

3 3 3 1 3

( ( ( ) ( ) ( ) ( ) )

( ( ) ( )( ( ( )) ( )) ))

V e e e x t x t fx t gx t

ly t y t m n y t ry t u

      

     
 

FLCC in Part 1, 2 and 3 can be obtained via the fuzzy rules in Table 7.1 as 

follows and the maximum value and minimum values of 1,e 2 ,e 3e (without any 
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controller) can be observed in time history of error derivatives drawn in Fig. 7.11.     

The synchronization scheme is proposed in Part 1, 2 and 3 and as 0eeV 111   ,

0eeV 222   and 0eeV 333   . Hence, we have 0VVVV 321   . It is clear that 

all of the rules in our FLCC can lead the Lyapunov theorem of asymptotical stability 

is satisfied and the simulation results are shown in Fig. 7.12 and 7.13. 

    If the traditional method is used in this case. We choose a positive definite 

Lyapunov function for 1 2 3, , :e e e                    

)( 2
3

2
2

2
1 eee

2

1
V                                                (7.33) 

Its time derivative is  

1 1 2 2 3 3

'

1 2 1 2 1

2

2 2 1 1 3 2

2 '

2 1 1 3 2

3

3 3 3 2 1 3

2

3 3 3

( ( ( ) ) ( ( ) ))

( ( ( ) ( )( ( ( )) ( )) )

(( ( ) ( )( ( ( )) ( )) ))

( ( ( ) ( ) ( ) ( ) )

( ( ) ( )( ( ( ))

V e e e e e e

e x t y t u

e ax t x t b c x t dx t

ly t y t m n y t py t u

e x t x t fx t gx t

ly t y t m n y t ry







  

    

      

     

      

     '

1 3( )) ))t u

                     (7.34) 

Choose 

'

1 2 1 2 1 1

' 2

2 2 1 1 3 2

2

2 1 1 3 2 2

' 3

3 3 3 2 1 3

2

3 3 3 1 3

( ( ) ) ( ) ( ) ( )

( ( ) ( )( ( ( )) ( )) )

(( ( ) ( )( ( ( )) ( )))

( ( ) ( ) ( ) ( ) )

( ( ) ( )( ( ( )) ( )))

u x t y t x t y t

u ax t x t b c x t dx t

ly t y t m n y t py t x y

u x t x t fx t gx t

ly t y t m n y t ry t x y

 









    

      

      

      

       3

                 (7.35) 

We obtain 

2 2 2

1 2 3 0V e e e                                                   (7.36) 

Comparing with FLCC in Table 7.2, we see that traditional controllers are more 

complex than that of FLCC. The manipulation is the same as that in Subsection 7.3.1. 

 

Table 7.2. The controllers of FLCC and of traditional method. 
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Subsection 7.3.1:       

Traditional                               FLCC 

'

1 2 3 1 2 3 1 1 1

' 2

2 1 2 2 1 2 2 2 2

' 2

3 1 3 1 1 3 3 3

( ) ( )

( ) ( )

(1 ) ( 4 )

u x x y y u x y

u x x y y u x y

u x y y u x y

 

 

 

      


       


                   

1 1

2 2

3 3

20, 0

20, 0

20, 0

Z e

Z e

Z e

 


 
  

 

Subsection 7.3.2: 

Traditional                               FLCC 

'

1 2 1 2 1 1

' 2

2 2 1 1 3 2

2

2 1 1 3 2 2

' 3

3 3 3 2 1 3

2

3 3 3 1 3

( ( ) ) ( ) ( ) ( )

( ( ) ( )( ( ( )) ( )) )

(( ( ) ( )( ( ( )) ( )))

( ( ) ( ) ( ) ( ) )

( ( ) ( )( ( ( )) ( )))

u x t y t x t y t

u ax t x t b c x t dx t

ly t y t m n y t py t x y

u x t x t fx t gx t

ly t y t m n y t ry t x y

 









     

      

      

      

       3









      

1 1

2 2

3 3

200, 0

3000, 0

500, 0

Z e

Z e

Z e

 


 
  

 

 

7.4 Comparison of Simulations of New Strategy and of Traditional 

Method 

The FLCC are simpler than that of traditional controllers and will give less 

simulation errors. This conclusion can be proved by the following simulation results. 

In Fig. 7.7 and 7.14, it is presented clearly that the FLCC is faster than traditional 

controller to achieve projective synchronization. In Fig. 7.13 and 7.15, the results are 

similar. 

   Furthermore, in Table 7.3, comparison between error data is given. All data are 

picked from 35.01 to 35.05s with sampling time 0.01s. From these data, the 

superiority of new strategy is obvious. 

 

 

Table 7.3. Error data at 35.01, 35.02, 35.03, 35.04,35.05s after the action of 

controllers 

Error for new strategy                 Error for traditional method 
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Subsection 7.3.1: 1e  

0.000000000000721                    0.026467294618436 

0.000000000000714                    0.026203940636773 

0.000000000000707                    0.02594320707101 

0.000000000000700                    0.025685067847574 

0.000000000000693                    0.025429497152326 

Subsection 7.3.1: 2e  

-0.000000000000032                    0.029170713652016 

-0.000000000000032                    0.028880460201524 

-0.000000000000032                    0.028593094821119 

-0.000000000000031                    0.028308588774023 

-0.000000000000031                    0.028026913609395 

Subsection 7.3.1: 3e  

0.000000000000044                    -0.009388571342601 

0.000000000000044                    -0.009295153496884 

0.000000000000043                    -0.009202665174263 

0.000000000000043                    -0.009111097125828 

0.000000000000042                    -0.009020440194699 

Subsection 7.3.2: 1e  

-0.000000000000055                   -0.024478766106521 

-0.000000000000054                   -0.024235198314146 

-0.000000000000053                   -0.023994054061798 

-0.000000000000053                   -0.023755309234852 

-0.000000000000052                   -0.023518939958626 

Subsection 7.3.2: 2e  

0.000000000025608                    0.313445617992862 

0.000000000025437                    0.310326781983228 

0.000000000025381                    0.307238978910405 

0.000000000025409                    0.304181899991505 

0.000000000025452                    0.301155239516092 

Subsection 7.3.2: 3e  

0.000000000022935                    -0.094135747156624 
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0.000000000023133                    -0.09319908082227 

0.000000000023270                    -0.092271734473663 

0.000000000023322                    -0.091353615375398 

0.000000000023274                    -0.090444631714798 
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Fig. 7.1. The block diagram sketch of fuzzy logic controller. 

 

 
Fig. 7.2. Membership functions. 

M 
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Fig. 7.3. Phase portrait of Master system for Subsection 7.3.1. 

 

 

 

Fig. 7.4. Phase portrait of Slave system for Subsection 7.3.1. 
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Fig. 7.5. Time histories of error derivatives for Subsection 7.3.1 without controllers. 

 

 

Fig. 7.6. Time histories of states for Subsection 7.3.1 where the FLCC is added after 

30s. 



 

98 

 

 

 

 

Fig. 7.7. Time histories of errors for Subsection 7.3.1 where the FLCC is added after 

30s. 

 

 

Fig. 7.8. The stochastic signal of 2 Rayleigh noise   
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Fig. 7.9. Phase portrait of Master system for Subsection 7.3.2. 

 

 

 

Fig. 7.10. Phase portrait of Slave system for Subsection 7.3.2. 
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Fig. 7.11. Time histories of error derivatives for Subsection 7.3.2 without controllers. 

 

 

Fig. 7.12. Time histories of states for Subsection 7.3.2 where the FLCC is added after 

30s. 
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Fig. 7.13. Time histories of errors for Subsection 7.3.2 where the FLCC is added after 

30s. 

 

 

 

Fig. 7.14. Time histories of errors of using traditional controller design method for  
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Subsection 7.3.1. 

 

 

Fig. 7.15. Time histories of errors of using traditional controller design method for  

Subsection 7.3.2. 
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Chapter 8 

Conclusions 

In this thesis, chaos and various chaos synchronizations of Ge-Ku-Duffing 

system and Sprott C, E system are studied. In Chapter 2, the chaotic behavior in new 

Ge-Ku-Duffing system is studied by phase portraits, time history, Poincaré maps, 

Lyapunov exponent and bifurcation diagrams. 

In Chapter 3, a new strategy to achieve chaos synchronization by the different 

translation pragmatical synchronization using partial region stability theory is 

proposed. By using the  partial region stability theory , the Lyapunov function of 

error states becomes a simple linear homogeneous function , the controllers are more 

simple since they are in lower degree than that of traditional controllers. Furthermore, 

according to the pragmatical asymptotically stability theorem, error vector e   

approaches zero and the estimated parameters also approach the uncertain parameters. 

The equilibrium point is pragmatically asymptotically stable. It is important to note 

that 1 2,k k  are not arbitrary , two proper value must chosen to make that the error 

dynamics always in first quadrant, so give two more insurances for secret 

communication than other synchronization methods. 

In Chapter 4, a new type of synchronization, double symplectic synchronization, 

is studied in this Chapter. It is an extension of symplectic synchronization. By 

applying active control, the double symplectic synchronization is achieved. The 

simulation results show that the proposed scheme is effective and feasible. 

Furthermore, the double symplectic synchronization of chaotic systems can be used to 

increase the security of secret communication. 

In Chapter 5, a new type of synchronization, multiple symplectic 

synchronization, is studied in this Chapter. It is an extension of double symplectic 
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synchronization. By applying active control, the multiple symplectic synchronization 

is achieved. The simulation results show that the proposed scheme is effective and 

feasible. Furthermore, the multiple symplectic synchronization of chaotic systems can 

be used to increase the security of secret communication. 

In Chapter 6, a new strategy to achieve chaos synchronization via the new fuzzy 

model is proposed. By using the new fuzzy model, a complicated nonlinear system 

can be linearized to a simple form, linear coupling of only two linear subsystems and 

the numbers of fuzzy rules can be reduced from N2 to N2 . The simulation results 

show that the proposed scheme is effective and feasible. 

In Chapter 7, we propose a new fuzzy logic constant controller (FLCC), 

which constructs fuzzy rules subject to Lyapunov direct method. Error derivatives are 

used according to the upper and lower bounds. The fuzzy rules and the simplest 

corresponding constant controllers are obtained while complicated and nonlinear 

controllers would no longer appear. Simulation results in synchronization show that 

FLCC has high performance of the convergence of error states and good robustness 

for the chaotic systems with deterministic and stochastic uncertainties. 
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Appendix A 

GYC Partial Region Stability Theory [53-55] 

 

A.1 Definition of the Stability on Partial Region 

Consider the differential equations of disturbed motion of a nonautonomous 

system in the normal form 

1( , , , ), ( 1, , )s
s n

dx
X t x x s n

dt
   (A.1) 

where the function sX  is defined on the intersection of the partial region   

(shown in Fig. A1) and 

2

s

s

x H  (A.2) 

and 0t t , where 0t  and H are certain positive constants. sX which vanishes when 

the variables sx  are all zero, is a real valued function of t, 1, , nx x . It is assumed 

that sX  is smooth enough to ensure the existence, uniqueness of the solution of the 

initial value problem. When sX  does not contain t explicitly, the system is 

autonomous. 

Obviously, 0 ( 1, )sx s n   is a solution of Eq.(A.1). We are interested to 

the asymptotical stability of this zero solution on partial region   (including the 

boundary) of the neighborhood of the origin which in general may consist of several 

subregions (Fig. A1). 

Definition 1: 

For any given number 0  , if there exists a 0  , such that on the closed 

given partial region   when 

2

0 , ( 1, , )s

s

x s n   (A.3) 

for all 0t t , the inequality 
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2 , ( 1, , )s

s

x s n   (A.4) 

is satisfied for the solutions of Eq.(A.1) on  , then the disturbed motion 

0 ( 1, )sx s n   is stable on the partial region  . 

Definition 2: 

If the undisturbed motion is stable on the partial region  , and there exists a 

' 0  , so that on the given partial region   when 

2 '

0 , ( 1, , )s

s

x s n   (A.5) 

The equality 

2lim 0s
t

s

x


 
 

 
  (A.6) 

is satisfied for the solutions of Eq.(A.1) on  , then the undisturbed motion 

0 ( 1, )sx s n   is asymptotically stable on the partial region  . 

The intersection of   and region defined by Eq.(A.5) is called the region of 

attraction. 

Definition of Functions 1( , , , )nV t x x : 

Let us consider the functions 1( , , , )nV t x x  given on the intersection 1  of 

the partial region   and the region 

2 , ( 1, , )s

s

x h s n   (A.7) 

for 0 0t t  , where 0t  and h are positive constants. We suppose that the functions 

are single-valued and have continuous partial derivatives and become zero when 

1 0nx x   . 

Definition 3: 

If there exists 0 0t   and a sufficiently small 0h  , so that on partial region 

1  and 0t t , 0V   (or 0 ), then V is a positive (or negative) semidefinite, in 

general semidefinite, function on the 1  and 0t t . 
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Definition 4: 

If there exists a positive (negative) definitive function 1( )nW x x  on 1 , so 

that on the partial region 1  and 0t t  

0 ( 0),V W or V W      (A.8) 

then 1( , , , )nV t x x  is a positive definite function on the partial region 1  and 

0t t . 

Definition 5: 

If 1( , , , )nV t x x  is neither definite nor semidefinite on 1  and 0t t , then 

1( , , , )nV t x x  is an indefinite function on partial region 1  and 0t t . That is, for 

any small 0h   and any large 0 0t  , 1( , , , )nV t x x  can take either positive or 

negative value on the partial region 1  and 0t t . 

Definition 6: Bounded function V 

If there exist 0 0t  , 0h  , so that on the partial region 1 , we have 

1( , , , )nV t x x L  

where L is a positive constant, then V is said to be bounded on 1 . 

Definition 7:  Function with infinitesimal upper bound 

If V is bounded, and for any 0  , there exists 0  , so that on 1  when 

2

s

s

x  , and 0t t , we have 

1( , , , )nV t x x   

then V admits an infinitesimal upper bound on 1 . 

A.2 GYC Theorem of Stability and of Asymptotical Stability on Partial Region 

Theorem 1 

If there can be found a definite function 1( , , , )nV t x x  on the partial region for 

Eq. (A.1), and the derivative with respect to time based on these equations are: 
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1

n

s

s s

dV V V
X

dt t x

 
 
 

  (A.9) 

Then, it is a semidefinite function on the paritial region whose sense is opposite to 

that of V, or if it becomes zero identically, then the undisturbed motion is stable on the 

partial region. 

Proof: 

Let us assume for the sake of definiteness that V is a positive definite function. 

Consequently, there exists a sufficiently large number 0t  and a sufficiently small 

number h < H, such that on the intersection 1  of partial region   and 

2 , ( 1, , )s

s

x h s n   

and 0t t , the following inequality is satisfied 

1 1( , , , ) ( , , ),n nV t x x W x x  

where W is a certain positive definite function which does not depend on t. Besides 

that, Eq. (A.9) may assume only negative or zero value in this region. 

Let   be an arbitrarily small positive number. We shall suppose that in any case 

h  . Let us consider the aggregation of all possible values of the quantities 

1, , nx x , which are on the intersection 2  of 1  and 

2 ,s

s

x   (A.10) 

and let us designate by 0l   the precise lower limit of the function W under this 

condition. By virtue of Eq. (A.8), we shall have 

1( , , , )nV t x x l  for 1( , , )nx x  on 2 . (A.11) 

We shall now consider the quantities sx  as functions of time which satisfy the 

differential equations of disturbed motion. We shall assume that the initial values 0sx  

of these functions for 0t t  lie on the intersection 2 of 1 and the region 

2 ,s

s

x   (A.12) 
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where   is so small that 

0 10 0( , , , )nV t x x l   (A.13) 

By virtue of the fact that 0( ,0, ,0) 0V t  , such a selection of the number   is 

obviously possible. We shall suppose that in any case the number   is smaller than 

 .Then the inequality 

2 ,s

s

x   (A.14) 

being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently 

small 0t t , since the functions ( )sx t  very continuously with time. We shall show 

that these inequalities will be satisfied for all values 0t t . Indeed, if these 

inequalities were not satisfied at some time, there would have to exist such an instant 

t=T for which this inequality would become an equality. In other words, we would 

have 

2 ( ) ,s

s

x T   

and consequently, on the basis of Eq. (A.11) 

1( , ( ), , ( ))nV T x T x T l   (A.15) 

On the other hand, since h  , the inequality (Eq.(A.7)) is satisfied in the entire 

interval of time [t0, T], and consequently, in this entire time interval 0
dV

dt
 . This 

yields 

1 0 10 0( , ( ), , ( )) ( , , , ),n nV T x T x T V t x x   

which contradicts Eq. (A.14) on the basis of Eq. (A.13). Thus, the inequality 

(Eq.(A.4)) must be satisfied for all values of 0t t , hence follows that the motion is 

stable. 

Finally, we must point out that from the view-point of mathenatics, the stability 

on partial region in general does not be related logically to the stability on whole 

region. If an undisturbed solution is stable on a partial region, it may be either stable 
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or unstable on the whole region and vice versa. In specific practical problems, we do 

not study the solution starting within 2  and running out of  . 

Theorem 2 

If in satisfying the conditions of Theorem 1, the derivative 
dV

dt
 is a definite 

function on the partial region with opposite sign to that of V and the function V itself 

permits an infinitesimal upper limit, then the undisturbed motion is asymptotically 

stable on the partial region. 

Proof: 

Let us suppose that V is a positive definite function on the partial region and that 

consequently, 
dV

dt
 is negative definite. Thus on the intersection 1  of   and the 

region defined by Eq. (A.7) and 0t t  there will be satisfied not only the inequality 

(Eq.(A.8)), but the following inequality as well: 

1 1( , ),n

dV
W x x

dt
   (A.16) 

where 1W  is a positive definite function on the partial region independent of t. 

Let us consider the quantities sx  as functions of time which satisfy the 

differential equations of disturbed motion assuming that the initial values 0 0( )s sx x t  

of these quantities satisfy the inequalities (Eq. (A.12)). Since the undisturbed motion 

is stable in any case, the magnitude   may be selected so small that for all values of 

0t t  the quantities sx  remain within 1 . Then, on the basis of Eq. (A.16) the 

derivative of function 1( , ( ), , ( ))nV t x t x t  will be negative at all times and, 

consequently, this function will approach a certain limit, as t increases without limit, 

remaining larger than this limit at all times. We shall show that this limit is equal to 

some positive quantity different from zero. Then for all values of 0t t  the following 

inequality will be satisfied: 

1( , ( ), , ( ))nV t x t x t   (A.17) 
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where 0  . 

Since V permits an infinitesimal upper limit, it follows from this inequality that 

2 ( ) , ( 1, , ),s

s

x t s n   (A.18) 

where   is a certain sufficiently small positive number. Indeed, if such a number   

did not exist, that is , if the quantity ( )s

s

x t  were smaller than any preassigned 

number no matter how small, then the magnitude 1( , ( ), , ( ))nV t x t x t , as follows 

from the definition of an infinitesimal upper limit, would also be arbitrarily small, 

which contradicts Eq. (A.17). 

If for all values of 0t t  the inequality (Eq. (A.18)) is satisfied, then Eq. (A.16) 

shows that the following inequality will be satisfied at all times: 

1,
dV

l
dt

   

where 1l  is positive number different from zero which constitutes the precise lower 

limit of the function 1 1( , ( ), , ( ))nW t x t x t  under condition (Eq. (A.18)). Consequently, 

for all values of 0t t  we shall have: 

0
1 0 10 0 0 10 0 1 0( , ( ), , ( )) ( , , , ) ( , , , ) ( ),

t

n n n
t

dV
V t x t x t V t x x dt V t x x l t t

dt
    

 

which is, obviously, in contradiction with Eq.(A.17). The contradiction thus obtained 

shows that the function 1( , ( ), , ( ))nV t x t x t  approached zero as t increase without 

limit. Consequently, the same will be true for the function 1( ( ), , ( ))nW x t x t  as well, 

from which it follows directly that 

lim ( ) 0, ( 1, , ),s
t

x t s n


   

which proves the theorem. 
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Appendix B 

Pragmatical Asymptotical Stability Theory 

The stability for many problems in real dynamical systems is actual 

asymptotical stability, although may not be mathematical asymptotical stability. The 

mathematical asymptotical stability demands that trajectories from all initial states in 

the neighborhood of zero solution must approach the origin as t  . If there are 

only a small part or even a few of the initial states from which the trajectories do not 

approach the origin as t  , the zero solution is not mathematically 

asymptotically stable. However, when the probability of occurrence of an event is 

zero, it means the event does not occur actually. If the probability of occurrence of 

the event that the trajectries from the initial states are that they do not approach zero 

when t  , is zero, the stability of zero solution is actual asymptotical stability 

though it is not mathematical asymptotical stability. In order to analyze the 

asymptotical stability of the equilibrium point of such systems, the pragmatical 

asymptotical stability theorem is used. 

Let X and Y be two manifolds of dimensions m and n (m<n), respectively, and 

  be a differentiable map from X to Y, then ( )X  is subset of Lebesque measure 

0 of Y [56]. For an autonomous system 

1( , , )n

dx
f x x

dt
                                             (B-1) 

where  1, ,
T

nx x x  is a state vector, the function  1, ,
T

nf f f is defined on 

nD R  and 0x H  . Let x=0 be an equilibrium point for the system (B-1). 

Then 

(0) 0f                                                     (B-2) 
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For a nonautonomous systems, 

          1 1( ,..., )nx f x x                  (B-3) 

where 1 1[ ,..., ]T

nx x x  , the function  1[ ,..., ]T

nf f f  is define on 

nD R R  ,here 1nt x R   . The equilibrium point is  

   1( 0 , ) 0nf x   .               (B-4) 

Definition The equilibrium point for the system (B-1) is pragmatically 

asymptotically stable provided that with initial points on C which is a subset of 

Lebesque measure 0 of D, the behaviors of the corresponding trajectories cannot be 

determined, while with initial points on D－C, the corresponding trajectories behave 

as that agree with traditional asymptotical stability [57,58]. 

Theorem Let 1[ , , ]T

nV x x : D→R+ be positive definite and analytic on D, 

where 1 2, ,..., nx x x  are all space coordinates such that the derivative of V through 

Eq. (A-1)or(A-3), V , is negative semi-definite of 1 2[ , , , ]T

nx x x . 

    For autonomous system, Let X be the m-manifold consisted of point set for 

which 0x  , ( ) 0V x   and D is a n-manifold. If m+1<n, then the equilibrium 

point of the system is pragmatically asymptotically stable. 

    For nonautonomous system, let X  be the 1m -manifold consisting of point 

set of which 1 20, ( , ,..., ) 0nx V x x x   and D is 1n -manifold. If 1 1 1m n    , 

i.e. 1m n  then the equilibrium point of the system is pragmatically asymptotically 

stable. Therefore, for both autonomous and nonautonomous system the formula 

1m n  is universal. So the following proof is only for autonomous system. The 

proof for nonautonomous system is similar. 

Proof Since every point of X can be passed by a trajectory of Eq. (B-1), which 

is one- dimensional, the collection of these trajectories, A, is a (m+1)-manifold [59, 
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60]. 

If m+1＜n, then the collection C is a subset of Lebesque measure 0 of D. By 

the above definition, the equilibrium point of the system is pragmatically 

asymptotically stable.  

If an initial point is ergodicly chosen in D, the probability of that the initial 

point falls on the collection C is zero. Here, equal probability is assumed for every 

point chosen as an initial point in the neighborhood of the equilibrium point. Hence, 

the event that the initial point is chosen from collection C does not occur actually. 

Therefore, under the equal probability assumption, pragmatical asymptotical stability 

becomes actual asymptotical stability. When the initial point falls on D C , 

( ) 0V x  , the corresponding trajectories behave as that agree with traditional 

asymptotical stability because by the existence and uniqueness of the solution of 

initial-value problem, these trajectories never meet C.  

In Eq. (3.8) V is a positive definite function of n variables, i.e. p error state 

variables and n-p=m differences between unknown and estimated parameters, while 

TV e Ce  is a negative semi-definite function of n variables. Since the number of 

error state variables is always more than one, p>1, m+1<n is always satisfied, by 

pragmatical asymptotical stability theorem we have 

lim 0
t

e


                                                    (B-5) 

and the estimated parameters approach the uncertain parameters. The pragmatical 

adaptive control theorem is obtained. Therefore, the equilibrium point of the system is 

pragmatically asymptotically stable. Under the equal probability assumption, it is 

actually asymptotically stable for both error state variables and parameter variables. 
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