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Abstract

In this thesis, the chaotic behavior in new Ge<Ku-van der Pol system is studied
by phase portraits, time history, Poincaré 'maps, Lyapunov exponent and bifurcation
diagrams. A new kind of chaotic generalized synchronization, different translation
pragmatical generalized synchronization, is obtained by pragmatical asymptotical
stability theorem and partial region stability theory. Second new type for chaotic
synchronization, double and multiple symplectic synchronization, are obtained by
active control. A new method, using new fuzzy model, is studied for fuzzy modeling
and synchronization of Sprott 22 systems. Moreover, the new fuzzy logic constant
controller is studied for projective synchronization and chaotic system with
uncertainty. Numerical analyses, such as phase portraits and time histories can be

provided to verify the effectiveness in all above studies.
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Chapter 1

Introduction

Since Pecora and Carroll proposed the concept of chaotic synchronization [1] in
1990, chaos synchronization has become a hot subject in the field of nonlinear science
due to its wide-spread potential application in various disciplines. The various types
of synchronization, such as generalized synchronization [2-4], phase synchronization
[5-7], lag synchronization [8-10], inverse synchronization [11-12], partially
synchronization [13-14], Q-S synchronization [15-17], LMI-based synchronization
[18], extended backstepping sliding mode controlling technique [19] and , projective
synchronization [20-23] are investigated extensively in the past years.

In Chapter 2, we give the dynamic equations.of a new Ge-Ku-van der Pol (GKv)
[24] system and its chaotic behaviors-are studied.

In Chapter 3, the symplectic synchronization [25]is expressed as y = F(x,y,t),
where x, y are the state vectors of the “master” and of the “slave”, respectively. The
final desired state y of the “slave” 'system not only depends upon the “master”
system state x but also depends upon the “slave” system state y itself. Therefore the
“slave” system 1s not a traditional pure “slave” obeying the “master” system
completely but plays a role to determine the final desired state of the “slave” system.
Since the “slave” y plays an interwined role, this type of synchronization is called
symplectic synchronization, and call the “master” system Partner A, the slave system
Partner B. We propose a new type of double symplectic synchronization, G(x,y,t) =
F(x,y,t). This idea is an extension of symplectic synchronization, y = F(x,y,t).
Due to the complexity of the form of the double symplectic synchronization, it may
be applied to increase the security of secret communication. The Gkv system is used

as an example system for double symplectic scheme, while the synchronization is
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derived based on Barbalat’s lemma [26] and active control.

Chaos generalized synchronization is a very important methodology, which has
been studied to date extensively on chaotic dynamical systems described by real
variables [27-29]. However, there also are many interesting cases involving complex
variables which are scarcely explored. In Chapter 4 design different complex
conjugate form to couple with Ge-Ku real variable nonlinear system [30-31], different
chaotic behaviors appear. Chaos generalized synchronization is accomplished by
applying pragmatical active control.

In current scheme of adaptive control of chaotic motion [32-37], the Babalat’s
lemma [26] is used to prove the error vector approaches zero, as time approaches
infinity. But the question, why the estimated,parameters also approach to the uncertain
parameters, remains no answer.

In Chapter 5, a new chaas' generalized synchronization strategy by different shift
pragmatical synchronization [38-40].and-stability theory of partial region [41-43] is
proposed. By using the different Shift-pragmatical Synchronization and stability theory
of partial region, the Lyapunov function is a simple linear homogeneous function of
error states and the controllers are more simple and have less simulation error because
they are in lower degree than that of traditional controllers, for which the Lyapunov
function is a quadratic form of error states, and the question of that why the estimated
parameters also approach uncertain parameters can be answered strictly.

In Chapter 6, we propose a new strategy [44] to design simplest constant number
controllers which achieve projective synchronization of uncertainty chaotic systems.
Furthermore, in chaos synchronization, most publications often assume that the
synchronization system is without external disturbances. However, in practical
applications, it is hard to avoid external disturbances due to uncontrollable

environmental conditions. The implementation of control inputs of practical systems
2



is frequently subject to uncertainties as a result of physical limitations. Thus, the
derivation of a robust synchronization controller to resist the disturbance is an
important problem.

In recent years, some chaos synchronizations based on fuzzy systems have been
proposed since the fuzzy set theory was initiated by Zadeh [45]. The fuzzy logic
control (FLC) scheme has been widely developed and successfully applied to many
applications [44]. Yau and Shieh [46] proposed an amazing new idea in designing
fuzzy logic controllers. The constructed fuzzy rules subject to a common Lyapunov
function such that the master-slave chaos systems satisfy stability in the Lyapunov
sense. In [46], there are two main controllers in their slave system. One is used in
elimination of nonlinear terms and the another is built by fuzzy rules subjected to a
common Lyapunov function. Therefore the resulting-controllers are in nonlinear form.
In [46], the regular form is necessary. In order to carry out the new method, the
original system must to be transformed into. their.regular form.

In this Chapter, a simplestfuzzy logic_constant controller (FLCC) which is
derived via fuzzy logic design and Lyapunov direct method is presented for projective
synchronization of non-autonomous chaotic systems with uncertain and stochastic
disturbances. The constant numbers in controllers are decided by the upper bound and
the lower bound of the error derivatives. Use this fuzzy logic constant controller
(FLCC) approach, a simplest controller, i.e. constant controller, can be obtained and
the difficulty in realization of complicated controllers in chaos synchronization by
Lyapunov direct method can be also coped. Different form conventional approaches,
the resulting control law has less maximum magnitude of the instantaneous control
command and it can reduce the actuator saturation phenomenon in real physical
system.

In Chapter 7, a newfangled fuzzy model is used to simulate and synchronize
3



GKv system, extended GKv system and Ge-Ku-Mathieu (GKM) system. In recent
years, fuzzy logic proposed by L. A. Zadeh [45] has received much attention as a
powerful tool for the nonlinear control. Among various kinds of fuzzy methods,
Takagi-Sugeno fuzzy (T-S fuzzy) system is widely accepted as a useful tool for design
and analysis of fuzzy control system [47-51]. Currently, some chaos control and
synchronization based on T-S fuzzy systems have been proposed, such as fuzzy
sliding mode controlling technique [52-54], LMI-based synchronization [55-57] and
robust control [58]. These researches all focus on two identical nonlinear systems.
Furthermore, two different nonlinear systems may have different numbers of
nonlinear terms. It causes different numbers of linear subsystems. For synchronization
of two different nonlinear systems, the traditional method using the idea of PDC to
design the fuzzy control law for stabilization.of theserror dynamics can not be used
here, since the number of subsystems becomes‘very-large.

In this Chapter, the newfangled fuzzy. model is proposed. In traditional
Takagi-Sugeno fuzzy model (T-S+fuzzy model)-[47], the process of fuzzy modeling
focus on the whole system. Therefore, there will be linear subsystems (according to
fuzzy rules) and equations in the T-S fuzzy system, where N is the number of
nonlinear terms and m is the order of the system. If N is large, the number of linear
subsystems in T-S fuzzy system is huge. It becomes more inefficient and complicated.

In Ge-Li fuzzy model (G-L fuzzy model) [59], we focus on each equation of the
system. The numbers of fuzzy rules can be reduced from2Nto2xN. The fuzzy
equations become much simpler. However, the limitation of G-L fuzzy model is that
there should be one nonlinear terms in each equation. Consequently, the newfangled
fuzzy model is proposed to solve this defect—all nonlinear terms in each equation
will be treated as one nonlinear term. It can be used to model various kinds of

complex nonlinear systems, even if the nonlinear terms are copious and complicated.
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Ge-Ku-van der Pol (GKv) systems and Ge-Ku-Mathieu (GKM) system are illustrated
in numerical simulations to show the effectiveness and feasibility of new model. And

in Chapter 8, conclusions are drawn.



Chapter 2

Chaos of a New Ge-Ku-van der Pol System

2.1 Preliminary

In this Chapter, the chaotic behaviors of a new Ge-Ku-van der Pol (GKV) system
is studied numerically by phase portraits, time histories, Poincaré maps, Lyapunov
exponents, and bifurcation diagrams.

2.2 Description of New GKv System
Ge and Ku [24] gave a chaotic system formed by simple pendulum with its pivot

rotating about an axis as Fig 2.1. This chaotic system is

X =X 2.1)
X, =—a,X, —sin x (b, (¢, + cos¥)+d; sinat) '

X

where a;,b;,c,,d, are parameters. After simplification sin(x)=x, cos(x)=1-=

addition of coupling terms, combiningwith.van-der-Pol equation
X, = X
C : . (22)
Xy =—0;% —h (1-Xx;)x, —; sin(Qt)

where g,, h;, 1, are parameters and sin(Qt) is substuted by x,, we get the Gkv system

X =X,
X, =—aX, — X, (b(c—x’) +dx,) (2.3)

X, = —gX, +h(L—X2)X, + 1%,
where a,b,c,d,g,h,l are parameters.
2.3 Computational Analysis of a New GKv System

For numerical analysis of computation, this system exhibits chaos when the

parameters of system are a=0.08,b=-0.35,¢c=100.56,d =-1000.02,9g =0.61,h =
0.08,1 =0.01 and the initial states of system are X,(0) =0.01, x,(0) =0.01, x,(0) =0.01,

The bifurcation diagram by changing damping parameter a is shown in Fig. 2.2. Its

6



corresponding Lyapunov exponents are shown in Fig. 2.3. The phase portraits, time
histories, and Poincaré maps of the systems are showed in Fig. 2.4~Fig. 2.8.When
a=0.206572, period 1 phenomena are shown in Fig. 2.4. When a=0.216232, period 2
phenomena are shown in Fig. 2.5. When a=0.218164, period 4 phenomena are shown
in Fig. 2.6. When a=0.21913, period 8 phenomena are shown in Fig. 2.7.When

a=0.08, the chaotic behaviors and time histories are given in Fig. 2.8 and Fig. 2.9.



Fig 2.1. The‘pendulum-on rotating arm.

v ®
» .udd.. - ;.Qt

L SO

A %0“

+ R 2 3
. f,:...s....... ha..». YUY é :
2

., * 2o+ wie &J r.w;.'l. »ﬁ!u-a.o :
AR X Q.V&. 0:&.“.
RISV A QT & 25 R T |
:Un Trerledl. ..»..\ «« e, c:u?i.fv.v.ou
. re N
+ + * o !o
.c..:w...w.:.d\. ST Rt ¢
. + . 0“0 AN ‘ w* 0"‘ *,
MACL AR/ ol't.wﬁv. .t"”-&w »ewa goVWoVos
v
I I ! I I *
o sl o) [*y) ] w
— — o [ Q,J o

hts

06

05

0.4

03

02

01

Fig. 2.2 The bifurcation diagram for new GKv system.
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Chapter 3
Double Symplectic Synchronization for Ge-Ku-van-der-Pol

system
3.1 Preliminary
In this Chapter, a new double symplectic synchronization of chaotic system is

studied. The chaotic system studied is a new GKv system. Double symplectic
synchronization is an extension of symplectic synchronization, y=F(x,y,t). Since
the symplectic functions are presented at both sides of the equality, it is called double
symplectic  synchronization G(X,y,t)=F(x,y,t) . The double symplectic
synchronization is accomplished basedyon,Barbalat’s lemma and active control.
Numerical simulations are given‘to show-that the proposed scheme is applied
successfully to both autonomaus and non-autonomous chaotic systems.

3.2 Double Symplectic Synchronization-Scheme
Consider two different nonlinear_chaotic-systems, Partner A and Partner B,

described by
x=f( %, (3.1)

y=Cty+gyt Hu, 3.2)
where X =[x,X,,...,x,]' €R"and y=[y,,V¥,,....¥,]' €R" are the state vectors of

Partner A and Partner B, C< R™" is a give matrix, f andgare continuous nonlinear

vector functions, and u is the controller. Our goal is to design the controller u such
that G(x,y,t) asymptotically approaches F(x,y,t), where G(x,y,t) and F(X,y,t)
are two given functions. For simplicity we take G(x,y,t)=x+y and F is a

continuous nonlinear vector function.

13



Property [24]: An mxn matrix A of real elements defines a linear mapping
y=Ax from R" into R™, and the induced p-norm of A for p=1 2, and oo
IS given by

[

A, = max ;‘aij ‘ 1A, = [Amax(ATA) Al = max ;‘aij ‘ (3.3)

The useful property of induced matrix norms for real matrix A is as follow:

[l < yIALIAL (34)

Theorem 1 : For chaotic systems of Partner A (3.1) and of Partner B (3.2), if the
controller u is designed as

u=(l-D F [P Ftx) ,DEE)YtEY)» DR Fx

(3.5)
+Ct) & Fr Kx sy-H],

where D,F , DJF , Dg “are the~Jacobian matrices of F(x,y,t) ,
K =diag(k,,k,,...,k,), and satisfies

mink )

fewp &0
then the double symplectic synchronization will be achieved.
Proof: Define the error vectors as
e=x+ y- F xty, (3.7)

then the following error dynamics can be obtained by introducing the designed

controller

%:e:xw—Dxe—DyFy—DtF

dt
=f(xt }¥Ctyrgy ( sDFf xt £DF Ctylat —BF (38
+(1-D,F)u
= (C(t) —K)e

14



Choose a positive definite Lyapunov function of the form
1
V(t)zze e (3.9)

Taking the time derivative of V (t) along the trajectory of Eg. (3.8), we have
V(t)=e'e
—e'C(t)e—e'Ke
<le)]-fef" —min(k) el
= (Jc®)] - min()e]|

(3.10)

Since M = min(k,) —|C(t)| >0, thenV (t) <—M || =—2MV (). Therefore, it
can be obtained that

V(t)<V (0¥ (3.11)

and tIimj;tl\/(g)|d§ is bounded. Besides, V/(t) “is‘uniformly continuous. According

to Barbalat’s lemma [26], the conclusion can be ‘drawn that limV(t)=0, i.e.

t—oo

tIim||e(t)||:0. Thus, the double ;symplectie”synchronization can be achieved

asymptotically.
3.3 Synchronization of Two Different New Chaotic Systems
Case 1.

Consider a new Ge-Ku-Duffing(GKD) system as Partner A described by

X, =—ax, —x|b c—x’ +dx3] (3.12)
X, = —X, — X — X, + 9,
where a=0.1b=1c=40,d =54,f =6,9 =30 and the initial conditions are

x,(0) =2, x,(0) =2.4 x,(0) =5. Eq. (3.12) can be rewritten in the form of Eq. (3.1),

15



X2
where f(x,t)=|—ax, —x |b c—x° +dx,||.
X X33 o fX2 + 0%
The chaotic attractor of the new GKD system is shown in Fig. 3.1.

The controlled GKv system is considered as Partner B described by

Y1: Y, +U;

Y, =—my, —Yy;n V_y12 + Py;|+U, (3-13)

Yo =—0Qyy+1 1—=y,* Y, +5y, +U,
where  m=0.08,n=—0.35,v =100.56, p = —1000.02,q = 0.61,r = 0.08,s = 0.01 ,

u:ul,uz,ugT is the controller, and the initial conditions are y,(0)=5.2,

y,(0) =50, y,(0)=4.5. The chaotic attractor of uncontrolled new GKv system is

shown in Fig. 3.2. The Eq. (3.13) can be rewritten in the form of Eq. (3.2), where

0 1 0 0
Ct)=|0 —m —nv| and g{y,t) =Ny, ¥s= yx; |
s r - =1Y,Y5

By applying Property 1, it is derived that?||C(t)|, =—nv—q, |C(t)|_ =-m—nv,

and |[C(1)], g\/ —nv—q (—m—nv) =1214.52 . Then ||C(t)| =34 is estimated.

X, siny,
Define F(X,y,t)=|X,siny,|, and our goal is to achieve the double symplectic
X3 SiN 'y,
synchronization x4y =F(x,y,t) . According to Theorem, the inequality

min(k;)
[col
k 0 0] |35 0 O

K=|0 k, 0|=|0 36 0] anddesign the controller as
0 0 k| [0 0 37

>1 must be satisfied. It can be obtained that min(k;) > 34 . Thus we choose
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u1:)(25in Y +XY,C08Yy, —X, =Y, ‘|’X15in Yi—=X%—%

u, = —axz—xl[b c—x’ +dx3} (siny, —1) + x, cos(y,)

—my, =Yy [N V=7 4 py;| = —my, = yy[n vy + py,]
+X,8Iny, — X, — Y, (3.14)
Uy = (=X, — X,° — X, 4+ g%, )(sin y, —1) + X, cos(Yy,)
|—ays = r(@=Y5)Y, +5Ys | = |=ays — 1@ Y)Y, +sy,]
+ X SINY; — X, — Y,

The theorem is satisfied and the double symplectic synchronization is achieved.
The chaotic attractor of the controlled GKv system is shown in Fig. 3.3, the time
histories of double symplectic synchronization and the time histories of the state
errors are shown in Fig. 3.4 and Fig. 3.5 respectively.
Case 2.
Consider a new Double Ge-Ku(BGK) systemias Partner A described by
X =X
X, = —axX, — X, [b c—x’° +dx3] (3.15)
X, :—ax3—x3[b C— X, +ex1}
where a=-0.5b=-14,c=1.9,d =—4.5e=6.2 and the initial conditions are
x,(0) =0.01, x,(0) =0.01, x,(0) =0.01. Eq. (3.15) can be rewritten in the form of

X,

Eq. (3.1), where f(x,t)= —axz—xl[b c—x° +dx,||. The chaotic attractor of the

[E—

—ax, — X, [b C—X; +ex1]

new DGK system is shown in Fig. 3.6.

The controlled GKv system is considered as Partner B described by

17



Y1: Y, +U;

Y, =—my, —Yy;n V_y12 + PY;|+U, (3-16)

Yo =—0Qyy+1 1—=y,* Y, +5y, +U,
where  m=0.08,n = —0.35,v = 100.56, p = —1000.02,q = 0.61,r = 0.08,s = 0.01 ,

u= u,u,,u, T is the controller, and the initial conditions are y,(0)=10, y,(0)=7,

y,(0)=10 . Eq. (3.16) can be rewritten in the form of Eg. (3.2), where

01 0 0
Ct)=|0 —m —nv| and g(y,t)=|ny’y, — yx;?|.
s r —q —1y,Y,’

By applying Property 1, it can be derived that |C(t)|,=-—nv—q,

ICt)|.=—m—nv , and |C(t)], g\/ Lmv— g (—m—nv) =+121452 . Then

IC(t)| =34 is estimated.

X, Siny,

Define F(X,y,t) =|X,siny,}, ‘and our-goal is'to achieve the double symplectic
X;Siny,

synchronization Xx-+Yy=F(x,y,t) . According to Theorem, the inequality

min(k;)

[cw]

k 0 O |35 0 O
K=[0 k, 0|=|0 36 0/ and design the controlleras
0 0 kit |0 0 37

>1 must be satisfied. It can be obtained that min(k;) > 34 . Thus we choose
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(U, = X, Sin Y, +X,Y,C08y; =X, — Y, +X,8iny, —x —V,

u, = —axz—xl[b C— X’ +dx3} (siny, —1) 4 x, cos(y,)

—MY, — Yo [N V=Y pYs| = =My, —Yo[n V=Y + py,|
+X,8iNYy, =X, — VY, (3.17)
U, = —ax3—x3[b C— X, +ex1} (siny, —1) + %, cos(y,)

[—ays = r(@—Y5")Y, +5Y; | = [—ays — 10— Y)Y, +sy,]
+ X, SINY, — X, — Y,

The theorem is satisfied and the double symplectic synchronization is achieved.
The chaotic attractor of the controlled GKv system is shown in Fig. 3.7, the time
histories of double symplectic synchronization and the time histories of the state
errors are shown in Fig. 3.8 and Fig. 3.9, respectively.
Case 3.

Consider a new Ge-Ku-Mathieu(GKM):system as-Partner A described by

X =%
X, =—ax, — % |b c—x’ +dx2x3] (3.18)
X; =— g+hx X +IX, +ex%

where a=-0.6,b=5,c=11,d =0.3,g=8h=10,1=05e=0.2 and the initial

condition is x,(0) =0.01, x,(0) =0.01, x,(0) =0.01. Eq. (18) can be rewritten in the
XZ

form of Eq. (3.1), where f(xt)=|—ax,— xl[b c—x° +dx2x3] . The chaotic
— g+hx, X +1Ix, +exx,

attractor of the new GKM system is shown in Fig. 3.10.

The controlled GKv system is considered as Partner B described by

Y1: Y, +U;

Y, =—my,—Y;|n v— y12 + PY;|+U, (3-19)
Ya=—Qys+1 1=y," Y, +8y, +U,
where  m=0.08,n=—-0.35,v=100.56, p=—1000.02,q =0.61,r =0.08,s =0.01 |,
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u= ul,uz,ugT is the controller, and the initial conditions are y,(0)=-1.5,

y,(0) =20, y,(0)=15.2. Eq. (3.19) can be rewritten in the form of Eq. (3.2), where

0 1 0 0
Ct)=|0 —m —nv| and g(y,t)=|ny,’y, —yX,|.
s r g —TY,Y,’

By applying Property 1, it is derived that ||C(t)|, =—no—q, |C(t)| =-m—nv,

and |[C(1)], g\/ —nv—q (—m—nv) =1214.52 . Then ||C(t)| =34 is estimated.

X, siny;
Define F(x,y,t)=|X,siny,|, and our goal is to achieve the double symplectic

X5 SiN'y,
synchronization X—+y=F(X,y,t)«% ~According to Theorem, the inequality
min(k;)
[l

k 0 0] (35 0 =0
K=|0 k, 0|=|0 36 0}\anddesignthecontrolleras

0 0 k| [0 0 37

>1 must be satisfied.-lt can-be obtained that -min(k;) > 34 . Thus we choose

u1:)(25in Y +XY,C08Yy, —X, =Y, ‘|’X15in Yi—=X%—%

u,= —ax, —xl[b c—x’ +dx2x3] (siny, —1) +x, cos(y,)

_myz - ys[n V— y12 + py3} - _myz _ys[n V_y12 + pys}
+ X8Iy, =X, —Y, (3.20)
Uy = — g+hx, X;+Ix,+exx, (siny,—1)+x,cos(y,)

=Y, = r (L= Y5") Y, + 8, | = [—ays —r@—y;))Y, +5v,]

+X3Sin Ys—=X—Y;

The theorem is satisfied and the double symplectic synchronization is achieved.
The chaotic attractor of the controlled GKv system is shown in Fig. 3.11, the time
histories of double symplectic synchronization and the time histories of the state

errors are shown in Fig. 3.12 and Fig. 3.13, respectively.
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Chapter 4
Complex State Chaotic System with Pragmatical Adaptive

Synchronization

4.1 Preliminary

In this Chapter, the main objective of this work is to investigate the chaotic
behavior and chaos generalized synchronization of two identical three creative
complex state dynamic systems. This three complex state system consists of a
second-order Ge-Ku complex system and one of three different single complex
systems respectively. We reduce the three complex state systems to five real state
systems by pragmatical stability theory; Chaos is found for them and generalized
synchronizations are accomplished for sthese five real state systems. Since three
complex dynamic systems arg creative, the security is highly increased if they are
used for secret communication., Numerical. simulations are given to show that the
proposed scheme is applied successfully.
4.2 The Scheme of Pragmatical Generalized Synchronization by

Adaptive Control

There are two identical nonlinear dynamical systems, and the master system
controls the slave system. The master system is given by

X =Ax+ f(x,B), (4.1)

where X =[x,X,,...X,]' €R  denotes a state vector, A is an nxn uncertain

constant coefficient matrix, f is a nonlinear vector function, and B is a vector of
uncertain constant coefficientsin f .

The slave system is given by

y=Ay+f(y,B)+u(), (4.2)
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A

where y=[y,,V,,....Y,]' €R, denotes a state vector, A is an n x n estimated

A

coefficient matrix, B is a vector of estimated coefficients in f , and u(t) =[u,(t),

u,(t),...u ()] € R" is a control input vector.
Our goal is to design a controller u(t) so that the state vector of the slave
system Eq. (4.2) asymptotically approaches the state vector of the master system Eq.

(4.1) plus a given chaotic vector function F(t)=[F,(t),F,(t),....F (t)]". This is a

special kind of generalized synchronization. y is a given function of x :
y=G(xX)=x+F(t). (4.3)

The synchronization can be accomplished when t-—oo, the limit of the error

vectore(t) =[e,(t),e,(t),....e, (t)]" approaches zera:

line=, (4.4)

t—o

where
e=x-y+F(t). (4.5)
From Eg. (4.5) we have
e=x-y+F(t), (4.6)
e=Ax—Ay+ f(x,B)— f(y,B)+F(t)-u(t). 4.7
A Lyapunov function V (e, A,B) is chosen as a positive definite function
V(e,A,é):%eTe+%AAT+%I§I§T, (4.8)

whereA=A—-A, B=B-B, A and B are two column matrices whose elements

are all the elements of matrix A and of matrix B respectively.

Its derivative along any solution of the differential equation system consisting of

Eq. (4.7) and update parameter differential equations for AandB is
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V(e,A,B)=e"[Ax—Ay + f (x,B) - f(y,B) + F(t)—u(t)]

L. (4.9)
+AA+BB

where u(t), A and B are chosen so that V =e'Ce, C is a diagonal negative

definite matrix, and V is a negative semi-definite function of e and parameter
differences A and B. In the current scheme of adaptive synchronization [32-34],
the traditional Lyapunov stability theorem and Babalat’s lemma [26] are used to prove
that the error vector approaches zero, as time approaches infinity. But the question of
why the estimated parameters also approach uncertain parameters remains
unanswered. By the pragmatical asymptotical stability theorem, the question can be
answered strictly as shown in Appendix B.
4.3 Chaotic Behaviors and Pragmatical Generalized Synchronization
of Three Complex State Ge-Ku Systems
Ge and Ku [24] gave a-chaotic system-formed by a simple pendulum with its
pivct rotating about an axis as Fig. 2.1. The eguation of motion can be written as

X+ ax +sin(x)(b(c + cos(x)) + dsin(at))=0, (4.13)

where a,b,c,d are parameters. After simplification sin(X)=x, cos(x)=1-x>,

sin(wt) = x and addition of gx?. After simplification we get the new Ge-Ku system
X, = X
{Xi i ) ,, (4.14)
X, ==X, =X (b(C—x7) +dx) +9x
where a,b,c,d, g are parameters.

Case 1.
A new complex state system consists of Ge-Ku system coupling with a

particularly designed complex conjugate system
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X =X,
X, = —ax, — X, (b(c —x7) +dx;) + gx; | (4.15)
X, =3 (XX, +%X,) —hsin(x;)

where x, =u,, +iu,, X, =Uy +iu,and X, =U,.
Equating real and imaginary parts of both sides of Eq. (4.15), we can get
dynamic equations of real u,,. The complex system Eq. (4.15) can thus be written in

the form of five real first order ODEs:

Uy = Uy

[

21 = Uy
u31 =-auy — USl(b(C - un2 + Ule) + du51) +J (un2 - U212) ’ (4-16)
Uyy = =8l +2U;,U, (bug, +1)

u51 = UpyUg; — Uy Uy — hSIn(u51)

After exhaustive search, we.find that whenssystem parameters a=1.15 b=
—0.76, ¢=1.76, d =1.95, g =7.67, h=0.91 are .\system parameters and initial
conditions u,(0)=0.01 , =,(0)=0.01", u,(0)=001 , wu,(0)=0.01 and
us,(0) =0.01, chaos of the system arefound and illustrated by phase portraits Fig. 4.1.
The bifurcation diagram and the Lyapunov ‘exponents are shown in Fig. 4.2 and Fig.
4.3 respectively.

The slave system is described by

Yi=Y,
Y, =8y, — V5 (b(€ - y2) +dy,) + Gy?, (4.17)
Yo =L (V,Y, + V1¥,) —hsin(ys)

where y, =u, +iu,,, Yy, =U,, +iu,, and Yy, =uU,,.

Equating real and imaginary parts of both sides of Eq. (4.17) and leading
(Up,,Uyp,Usy,Uyy,Usy)  t0 (U, + F(1), U, +Fo (1), uy +F(1), u, +F, (1), u, +FK () ,
we add real and complex control functions v,+iv,, v,+iv, and v, to each
equation respectively, we can get dynamic equation of all real variables u;, and v;.
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The complex system Eq. (4.17) can thus be written in the form of five real first order

ODEs:
Uy, =Ugp +V,
uzz =Uy, +V,
Uy, =—aUy, —Ug, (b(C - u122 + u222) +dug,) + g(u122 - u222) +V;, (4.18)

u,, =—au,, +2u,,u,, (bu,, +1) +v,

Us, = U;,U,, —U,,U,, —hsin(ug,) +V
when initial states be u,(0)=10, u,(0)=10, u,(0)=10, u,(0)=10 and
U, (0) =10.

In order to obtain the active control signals, we define the errors between the
drive and the response states as e, =u,—u,+F(t) where F(t)=z=(z,2,,1,
z,,2;), Where z,,z,,z, are the states_of Lorenz chaotic system and z,,z; are the

states of Duffing chaotic systemsrespectively:

2,=1(z,-17)

2,=7(k-25)-1,

2, =122, Iz, , (4.19)
Z,= Zg

2, =—rz, —sz, — 2, +ocos(qt)

where f=10,k=28, I=2%, r=025,5s=-1,0=0.3,q=1 and initial states are
z,(0)=0.01, z,(0)=0.01,2,(0)=0.01,2,(0)=2,2(0)=2.
We obtain the errors as

€y i€, =X =Y, +(z,+iz,) = (U — Uy, +2,) +i(Uy — Uy, +2,)
€us i€y =X, = Y, +(Z+12,) = (U —Ugy + 23) +1(Uyy — Uy +2,), (4.20)

€is =X~ Ys— g :(u51_u52 +Zs)

and our aimislime =0, i.e.

t—w
!imeui =!imui1—ui2 +2,=0,1=1,2,3,4,5. (4.21)
However,
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€, +1€, =X -V, +(Z, +1z,) = (Uy —Up, + Z,) +i(Uy —Uy +Z,)
€, +16,, =X, — Y, +(Z;+i2,) = (Uy —Ug, + Z,) +i(U,, —U,, +2,), (4.22)
éu5 =X5—y5—25 =(l]51—U52+Z'5)

Eq. (4.22) describes a dynamical system where the e, evolve in time and its ODEs.

When equating real and imaginary parts of both sides of Eq. (4.22), we get
éul = l']11 _ulZ +2=Uy —Uy —V, + 7
éu2 = u21 _uzz +2,=Uy —Up—V, +7,
. . . . 2 2 2 2
€i3 = Uz —Us, +Z3 =—aU;, — U, (b(C —U;, +Uy ) + du51) +J (U11 —Uuy )
A A 2 2 Q A 2 2
+ au32 +Us, (b(C —U, +Uy ) + dusz) - g(ulz —Uy, )
—V, + 1, , (4.23)
éu4 = u'41 - l']42 + Z.4 =-au, + 2u11u21(bu51 +1) + éu42 - 2u12u22 (busz +1)
-V, +1,
eu5 = uSl - usz + Z'5 = u11u31 —UyU,, — h Sin(u51) - U12u32 +UU,, + h Sin(usz)
=V + 7

~ ~ ~ A A

wherea=a—a, b=b-b, ¢2¢c-6-d=d-d} g=g-¢§, h=h-h and 4, b,

~ A

¢, d, g, h are estimates.of uncertain parameters a, b, ¢, d, g and h

respectively.

Choose a Lyapunov function in the form of a positive definite function:

V(€,,,€,,,€,3:€,4.8,5.4,0,6,d,§,h) (4.24)
=1(el+e, 46, +e, 2 +e +a +b?+C2+d>+§°+h%)>0 .
Choose parameter dynamics as
A=-4=-4(e,+e,)
b=-b=-b(e,+e,)
C=—C=—C(e,;+e€,,)
o (4.25)

Time derivative of V along any solution of Eq. (4.24) and parameter dynamics
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V= (Ug —Ugp =V +2,) + €, (Uy — Uy =V, +2,) + 65
(_au31 —Us, (b(c- ull2 + u212) + du51) +9 (unz - U212)
+ éu32 +Us, (6(6 - u122 + u222) + (jusz) - g(ulzz - u222)
-V, +2,) +e,,(-au,, +2u,u,, (bu,, +1)+48u,, —2u,, . (4.26)
U,, (6u52 +1) -V, t Z'4) + eus(ullu31 —UyUy — h Sin(U51)
Ul +UyUy, +hSin(U.,) v, + 2,) + &(—4) +B(-b)

+6(=6)+d(~d)+ §(~§) + A(-h)
Choose

Vp = Uy —Ug, +7, +€
Vy =Uy —Uy, +2, +€,,
Vs =—al; — u51(b(c - u112 + L’|212) + du51) +9 (u112 - u212)
+ éusz +Ug, (6(6 - u122 T u222) + du'sz) -, Q(ulzz - uzzz)
+2,— (&% +b? + &% A7 g2 Fepn . (4.27)
V, = —aUy, + 2U,;U,, (DU, = 1)+ @ty = 2t 1,5 (Bugy + 1) + 2,
— (B2 +b2+E% +d*H §°) +e

Vs = UpUgy —UyUy, — h Sin(U51) = Uy, Ug, +UoU,, + h Sin(usz)

+2,—h’+e,
Substituting Egs. (4.25) and (4.27) into Eq. (4.26), we obtain

V=—(e,”+e, +6,, +6,°+6,°)<0, (4.28)

which is a negative semi-definite function of e,, €,, €,, €., €;s, &, b, ¢, d,

G, h. The Lyapunov asymptotical stability theorem is not satisfied. We can not

obtain that common origin of error dynamics Eq. (4.23) and parameter dynamics Eq.

(4.25) are asymptotically stable. However, By pragmatical asymptotically stability

theorem, Dis a n-manifold, n=11 and the number of error state variables p =5.

When e, =e,=6e,=¢,=€,=0 and &, b, &, d, §, h take arbitrary

u2 u3 =€

ud

values, V <0, so X is 5-manifold, m=n—p=11-5=6. m+1<n is satisfied.
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By pragmatical asymptotical stability theorem, error vector e approaches zero and the
estimated parameters also approach the uncertain parameters. The pragmatical
generalized synchronization is obtained. Under the assumption of equal probability, it
is actually asymptotically stable. The simulation results are shown in Figs. 4.4-4.6.
Case 2.

A new system, i.e. one of the three complex state Ge-Ku systems, studied in this
part consists of Ge-Ku system coupling with a particularly designed complex

conjugate system

X =X,
X, = —ax, — X, (b(c - X7) +dx;) + gx; | (4.29)
X, =3 (XX, + %X,) —hsin(x;)

where X, =u,; +iu,,, X, =Uy +iuyand X, = Uz,

Equating real and imaginary parts ‘of both,sides of Eq. (4.29), we can get
dynamic equations of all real u;;. The complex systemEq. (4.29) can thus be written
in the form of five real first order ODES:

Uy = Uy

[

21 = Uy

u31 =—auy — USl(b(C - uu2 + u212) + du51) +9 (un2 - u212) ’ (4-30)
Uy, =—auy, + 2u;,U, (bug, +1)

Us; = UyyUs; +UyyU,, —hsin(ug,)

After exhaustive search, we find that when system parameters a=1.21, b=
—0.87, c=1.75,d =22, g=9.3, h=1.01 and initial conditions u;(0)=0.01 ,
u,,(0)=0.01, u,(0)=0.01, u,(0)=0.01 and u,(0)=0.01, chaos of the system
are found and illustrated by phase portraits Fig. 4.7.

The slave system is described by
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Yi=Y,
Y, =8y, — Y5 (b(€ — y2) +dy,) + Gy?, (4.31)
Vs =2 (TY, + YiY,) —hsin(y,)

where 'y, =u, +iu,,, Yy, =U, +iu,, and y, =u,,.
Equating real and imaginary parts of both sides of Eq. (4.31) and leading
(u127u22’u32’u42’u52) tO (u11+ Fl(t)’ u21+ Fz(t)1 u31+ FS(t)’ l"|41+ F4(t)7 u51 + FS(t)) ’

we add real and complex control functions v,+iv,, v,+iv, and v, to each

equation respectively, we can get dynamic equation of all real variables u;, and v;.

The complex system Eq. (4.31) can thus be written in the form of five real first order

ODEs:
Uy, =Ugp +V,
uzz =Uy, +V,
Uy, =—aUy, —Ug, (b(C - u122 + uzzz) +dug;) + g(ulzz - u222) +V;, (4.32)

Uy, =—8Uy, + 2U3,Uy, (DUs, + 1)+

Us, = U;,Uy, —U,,U,, —hsin(ug, )4V
when initial states be u,(0)=203.u,,(0)=-20, u,(0)=20, u,(0)=-20 and
Us, (0) = 20 .

In order to obtain the active control signals, we define the errors between the
master and the slave states as e, =u,, —u, + F(t) where F(t)=z=(z,2,,2,, 2,,%;),
where z,,z,,z, are the states of Lorenz chaotic system and z,,z. are the states of

Duffing chaotic system respectively:

2,=1(z,-17)

2,=7(k-2)-1z,

2,=227,-lz, , (4.33)
Z,= Zg

2, =—rz, —sz, — 2, +0cos(qt)

where f=10,k=28, I=2%, r=025,5=-1,0=0.3,9=1 and initial states are
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2,(0)=0.01, z,(0)=0.01,2,(0)=0.01,2,(0)=2,2(0)=2.

We obtain the errors as
i€, =X =Y, +(z, +iz,) = (U — Uy, +2)) +i(Uy — Uy, +2,)
€3 i€y =X, = Y, +(Z+12,) = (U —Ugy + 23) +1(Uyy — Uy, +2,), (4.34)

€is = X5 — Y5~ Z5 =(u51_u52 +Zs)

and our aimis lime=0,i.e.

t—>o0
!imeui :!imuil—ui2 +2,=0,1=1,2,3,4,5. (4.35)

However,

€ T1€, =% =Y, +(Z, +12,)) = (U, — Uy, +2,) +i(Uy — Uy, +2,)
éus + iéu4 = Xz - yz + (23 + i24) = (l]31 _usz + Z.3) + i(l]41 —U42 + 24) ) (4-36)
€is =X~ Ys— 15 = (u51 —Ug, + Z.5)

Eq. (4.36) describes a dynamical system which:the‘e evolve in time and its ODEs.

When equating real and imaginary parts of both-sides of Eq. (4.36), we get
€1 = Uy —Up +Z, =Uy =g, —Vy 7
€2 =Uy — Uy +7, =Uy —Up V5 +7,
8,5 = Uz, —Us, + 2, = —aly, —Ug (B(C=t #0,, %) + dug, ) + g (Uy,* —u,,?)

+aU, +Us, (6(6 - U122 + uzzz) + CIUSZ) - g(ulZZ - u222)

-V, + 17, , (4.37)
€4 =Uy —Uy, +2, =—au,, +2u;,U, (bug, +1) +4u,, —2u,,U,, (6u52 +1)

-V, +1,
€5 = Us; —Usy + Zg = Uy Ug; + Uyl —hsin(Uy, ) —U,Uz, —Uy,U,, + ﬁSin(u52)

=V + 7,

where d=a-4, b=b-b, ¢=c—-¢, d=d—-d, §=g-g, h=h—h and &, b

¢, d, §, h are estimates of uncertain parameters a, b, ¢, d, g and h
respectively.

Choose a Lyapunov function in the form of a positive definite function:
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V(eul'euZ’eu3’eu4’eu5’5’6’6167g’ﬁ) (4 38)
=1(el+e, 46 +e, +e +a +b?+C2+d>+§°+h%)>0 '
Choose parameter dynamics as
A=-a=-4(e,+e,)
b=-b=-b(e,+e,)
E=—C=—C(e,,+€,,)
P (4.39)

Time derivative along any solution of Eq. (3.38) and parameter dynamics is

V= €Uz —Ugy =V +2,) + €, (Uy — Uy =V, +2,) +€,
(_aual —Ug (b(C - U112 + u212) \ § du51) +9 (ull2 - u212)
+aU;, +Us, (B(C —U," +Up) + dusz) =G(U5=u,")
-V, +2,) +e,,(-au, +2u,,u(bug +1) +au,, =2u,, . (4.40)
Uz (6u52 +1) =V, + 2, )46, (Ul + U, —hsin(us, )
Uy, —UyU,, + RSINE) SV R 2 Al 4) 4b(-b)
+6(-6) +d(~d)+ §(~§) ¥ hih)

Choose

V= Uy —Up, + 2, +8,
Vy =Uy Uy, +72, +8€,,
V3 =—aUy — Uy, (b(C - u112 + u212) + du51) +9 (u112 - u212)
+8Uy, +Ug, (6(é - U122 + Uzzz) + dAusz) - @(Ulzz - u222)
+2,—(8°+b*+6%2+d*+§%) +e,, : (4.41)
v, =-au,, + 2u,,u,, (bug, +1) + au,, —2u,,u,, (Bu52 +1)+12,
— (@ +b*+E*+d’+§*) +e,,

Vs = Uy;Ug; + U, U,y — NsSin(Ug, ) —Uy,Ug, —Uy,U,, +hsin(ug,)

+2,—h*+e,
Substituting Egs. (4.39) and (4.41) into Eq. (4.40), we obtain

V=—(,+e, +e, +e,’ +e,)<0, (4.42)
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which is a negative semi-definite function of e, e,,, €., €., €., a4, b, &, d,

g, h. The Lyapunov asymptotical stability theorem is not satisfied. We can not

obtain that common origin of error dynamics Eq. (4.37) and parameter dynamics Eq.
(4.39) are asymptotically stable. However, By pragmatical asymptotically stability

theorem, D isan-manifold, n = 11 and the number of error state variables p=5.

When e, =e,=¢e.,=¢,=€,=0 and a, b, ¢, d, §, h take arbitrary

values, V <0, so X is 5-manifold, m=n—p=11-5=6. m+1<n is satisfied.

By pragmatical asymptotical stability theorem, error vector e approaches zero and the
estimated parameters also approach the uncertain parameters. The pragmatical
generalized synchronization is obtained. Under.the assumption of equal probability, it
is actually asymptotically stablesThe-simulation results are shown in Figs. 4.8-4.10.
Case 3.

A new system, i.e. one of'the three complex state'Ge-Ku systems, studied in this

part consists of Ge-Ku system couples with-aparticularly designed complex conjugate

system
Xl =X
X, =—ax, — X, (b(c—x’) +dx,) + gx’ , (4.43)
Xs = %(Xlxl + szz) - hSin(Xa)

where x, =u,, +iu,, X, =Uy +iu, and X, =Ug,.
Equating real and imaginary parts of both sides of Eq. (4.43), we can get
dynamic equations of all real u,,. The complex system Eq. (4.43) can thus be written

in the form of five real first order ODEs:
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U =—au, — USl(b(C - un2 + Ule) + du51) +J (un2 - U212) ’ (4-44)
Uyy = =8l +2U;,U, (bug, +1)

Uy, =U,” +U,° +u,’® +u,’ —hsin(u,,)

After exhaustive search, we find that when system parameters a=2.48, b=
—-1.51, ¢=1.79, d =30.95, g =-1.67, h=115and initial conditions areu,,(0) =0.01,
u,,(0)=0.01, u,(0)=0.01, u,(0)=0.01 and u,(0)=0.01, chaos of the system
are found and illustrated by phase portraits Fig. 4.11.

The slave system is described by

Yi=1Y,
V= =8y, = Yo (B - y7) + dy;) + Gy; (4.45)
V2 =3 (Y + ¥2¥2) —hsin(ya)
where y, =u, +iU,,, Y, =Us+iu,,—and: ¥, = Us;.
Equating real and imaginary parts_of both sides of Eq. (4.45) and leading
(ulZ ! u22 ! u32 ' u42 ' u52) tO (ull + F1 (t)’ u21 + FZ (t)1 u31 + F3 (t)’ l"141 + I:4 (t)7 u51 + l:5 (t)) '

we add real and complex control ‘functions v, +iv,, v,+iv, and v, to each

equation respectively, we can get dynamic equation of all real variables u;, and v;.

The complex system Eq. (4.45) can thus be written in the form of five real first order

ODEs:
Uy, = Uy, +V;
uzz =Uy, +V,
. A Zra 2 2 1 A 2 2
Us, =—alg, —Ug, (b(C_Ulz +Uy, )+du52) + g(ulz —Uy, )+V3 ) (4-46)

Uyp ==y, + 25Uy, (bUg, +1) +V,

2 2 2 2 H
Us, =Up," + Uy, +Uy," +U,," —hsin(ug,) +V;

when initial states be u,(0)=10, u,(0)=10, u,(0)=10, u,L(0)=10 and
Us,(0) =10.

In order to obtain the active control signals, we define the errors between the
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drive and the response states as e, =u,—u,+F(t) where F(t)=z=(z,2,,1,
z,,25), Where z,z,,z, are the states of Lorenz chaotic system and z,,z; are the

states of Duffing chaotic system respectively:

2, = f (Zz - Zl)

2,=27(k-25)-1,

Z,=122,-lz, : (4.47)
Z,=1

2, =—Iz, —sz, — 2, +0cos(qt)
where f=10,k=28, I=%, r=025,s=-1,0=0.3,q=1 and initial states are
2,(0)=0.01, z,(0)=0.01,2,(0)=0.01,2,(0)=2,2,(0) = 2.

We obtain the errors as

i€, =X — Y, +(z, +iz,) = (Ut U s 2,) +1(Uyy — Uy, +2,)
€3 i€y =X, = Y, + (25 +12) = (Uyy — Ugy £ 23)41(Uy — Uy, +2,), (4.48)
€us = X5 — Y5 — Zs = (Us; —Ugy + Z5)

and our aimis lime=0,i.e.

t—>o0
!imeui :!imuil—ui2 +2,=0,1=1,2,3,4/5: (4.49)

However,
€ T1€, =% =Y, + (2, +12,)) = (U, — Uy, +2,) +i(Uy — Uy, +2,)
éus + iéu4 = Xz - yz + (23 + i24) = (U31 _usz + 23) + i(l]41 —U42 + 24) ) (4-50)
€is =X —Ys— 15 = (u51 —Ug, + Z.5)
Eq. (4.50) describes a dynamical system which the e, evolve in time and its ODEs.

When equating real and imaginary parts of both sides of Eq. (4.50), we get
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€=Ul hZ =l - V37 1
€=U, U /7 =4 —Y, -V, 32, 2
€s=U,rU 2 =;au —y, (b(Gru *+u,)+dy,)+g(us,>u )4
+ éusz + u52(6(é - ulz2 + U222) + dusz) - g(ulzz —U222)
-V, +1, , (4.51)
€4 =Uy — Uy, +2, =—au, +2u,U, (bu51 +1) +au,, —2u,U,, (6u52 +1)
-V, +1,

. . . . 2 2 2 2 : 2 2 2
€5 = Us; —Usy + 25 =gy +Up" +Usy” + Uy~ —hsin(Us;) —Uy," — U™ —Ug

—u,,% +hsin(ug,) v + 2,

~ ~ ~ A

where a=a-4a, b=b-b, ¢=c-¢, d=d-d, d=9g-¢, h=h-h and 4, b,

~

¢, d, g, h are estimates of uncertain parameters a, b, ¢, d, g and h

respectively.

Choose a Lyapunov function inithe form of a positive definite function:

V(eul’eUZ’eu37eu4’eu5’5161616’ G! ﬁ)

L ) , , 7\, , - . (4.52)
=2(e, +e€, +e, +8, +e +A 4D+ +d°+§°+h°)>0
Choose parameter dynamics as
a=-a=-da(e,;+e,,)
b=—b=-b(e,+e,)
C=-C=-C(e,+e,) | (4.53)

Time derivative of V along any solution of Eq. (4.52) and parameter dynamics
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V= €ua(Us —Ugpy Vi +2,) +€,,(Uy —Up =V, +2,) + €4
(=8, — g, (b(C—uy,” +U,,*) +dug,) + g (uy,” —Uyy*)
+ é-usz +Us, (6(6 - u122 + u222) + dAusz) - gA(ulz2 - u222)
-V, +2;) +e,,(-au,, +2u,,u, (bu, +1)+au,, —2u, . (4.54)
Uy, (Busz +1) -V, +2,) + € (unz + u212 + u312 + u412
2 2

. 2 2 A
—hsin(ug,) —u,,” —U,,* —Uu,,”* —U,,* +hsin(ug,) -V,

1 2.)+a(-4) +B(=b) + 6(=6) + d(=d) + G(~§) + A(-h)
Choose

Vp =Uy —Ug, +7, +€,
Vy =Uy —Ugy +2, + €,
Vy =—auy — u51(b(c _u112 + u212) + du51) + g(un2 - u212)
+ éusz +Us, (6(6 - u122 + u222) + dusz) - @(ulzz - u222)
+2,— (8 +b*+E* +d% +§7) e . (4.55)
V, = —al,, + 2U,,U,, (bu,, +3)#au,, —2U,,u,, (B, +1)+ 2,
— (8% +b? + &% +d*4 %) +e,,

2 2 2 2 . 2 2 2 2
Vs =Uj; +Uy +Ug Uy, _h5|n(U51)_U12 —Uy = Uy, —Uy,

+hsin(ug,) + 2, —h%+e .
Substituting Egs. (3.53) and (3.55) into-Eq."(3.54), we obtain

V=—(,+e, +e, +e,’ +e,)<0, (4.56)
which is a negative semi-definite function of e, e,,, €., €., €., a4, b, &, d,

g, h. The Lyapunov asymptotical stability theorem is not satisfied. We can’t obtain

that common origin of error dynamics Eq. (4.51) and parameter dynamics Eq. (4.53)
are asymptotically stable. However, By pragmatical asymptotically stability theorem,

D is a n-manifold, n=11 and the number of error state variables p=5.

When e, =e,,=e,=¢,=€,=0 and 4, b, ¢, d, §, h take arbitrary

values, V <0, so X is 5-manifold, m=n—-p=11-5=6. m+1<n is satisfied.

By pragmatical asymptotical stability theorem, error vector e approaches zero and the
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estimated parameters also approach the uncertain parameters. The pragmatical
generalized synchronization is obtained. Under the assumption of equal probability, it

is actually asymptotically stable. The simulation results are shown in Figs. 4.12-4.14.

Fig. 4.1 The chaotic attractor of complex state Ge-Ku system Case 1.
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Fig

. 4.7 The chaotic attractor of complex state Ge-Ku system Case 2.
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Fig. 4.7 Time histories-of -x; -+ F(t) . y; for Case 2.
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Fig. 4.13 Time histories of errors for Case 3.
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Chapter 5
Use Partial Region Stability Theory for Different

Translation Synchronization

5.1 Preliminary

In this Chapter, a new strategy by using pragmatical synchronization theorem
and GYC partial region stability theory are proposed to achieve chaos generalized
synchronization. Using the pragmatical theorem of asymptotical stability and an
adaptive control law, it can be proved strictly that the common zero solution of error
dynamics and of parameter dynamics is asymptotically stable. In addition, using the
GYC partial region stability theorem,_the,new Lyapunov function used is a simple
linear homogeneous function of«error states-and. the lower order controllers are much
more simple. Numerical simulations of a new GKv system is given to show the
effectiveness of the proposed secheme.
5.2 The Scheme of Using Partial Regien Pragmatic Stability Theory

for Different Translation Synchronization Scheme

There are two identical nonlinear dynamical systems, and the master system
synchronizes the slave system. The master system is given by

x=Ax+f(x,B) (5.1)

The master system after the origin of x-coordinate system is translated to
[k, k- k] is

X' =AX'+f(X',B) (5.1)
where X' =[x/, %}, X.]' =x-K, =[x —k, X%, Kk, X, —k]eR" denotes a state
vector, where K, is a constant vector with positive component k; as shown in Fig.

5.1. A is an nxn uncertain constant coefficients matrix, f is a nonlinear vector
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function, and B is a vector of uncertain constant coefficients in .

The slave system is given by

y =Ay+f(y,B)+u(t) (5.2)

The slave system after the origin of y-coordinate system is translated to
[kz-kz""v kz] is

y' =AYy +f(y',B)+u(t) (5.2")
where y' =[y.,ys,-- Y. =y -K, =[y,—k,, Yy, —k,,---, y, —k,]€ R" denotes a state
vector, where K, is a constant vector with positive component K, as shown in Fig.

52. A is an nxn estimated coefficient matrix, B is a vector of estimated

coefficients in f,and u(t) = [u, (t); U ), =~ u ()} . R" is a control input vector.
Our goal is to design a controller=u(t):so that the state vector of the translated

slave system Eq. (5.2") asymptotically approaches the state vector of the translated

master system Eq. (5.1) plus a given chaotic vector function F(t) =[F,(t), F,(t), -,

F (1)]". This is a special kind of generalized synchronization, y is a given function of

y'=G(X,y',t)=xX"+F(X,y',1) (5.3)
The synchronization can be accomplished when t—o0, the limit of the error

vector e(t) =[e,e,,---,e ] approaches zero:

lime=0 (5.4)

to>c0
where

e=X'—-y' +F(t) (5.5
from Eq. (5.5), we have

e=x -y +F(t) (5.6)
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é=Ax —-Ay +f(X,B)—f(y,B)+F(t)-u(t) (5.7)
where k; and Kk, are chosen to guarantee that the error dynamics always occurs in
the first guardant of e coordinate system.

A Lyapunov function V (e, A,B)is chosen as a positive definite function in first

guardant of e coordinate system by stability theory in partial region as shown in

Appendix A:
V(e,AB)=e+A+B (5.8)

where A=A-A, B=B-B, A and B are two column matrices whose
elements are all the elements of matrix A and of matrix B, respectively.

Its derivative along any solution‘of the differential equation system consisting of

Eqg. (5.7) and update parameter-differential equationsfor A and B is

V(e A B) = Ax— Ay +f (X, B) — F(Y4B)+ F (1) _ut) + A+ B (5.9)

where u(t), A and B are chosen so that V'=Ce, C is a diagonal negative

definite matrix, and V is a negative semi-definite function of e and parameter

differences A and B . By pragmatical asymptotically stability theorem in Appendix
B.

In this Chapter, a new GKv system is used as an example. The Lyapunov
function used is a simple linear homogeneous function of states and the controllers are
simpler than tradition. Because they in lower order than the that of traditional
controllers. In many paper [32-35], traditional Lyapunov stability theorem and
Babalat’s lemma [26] are used to prove the error vector approaches zero, as time
approaches infinity. But the question, why the estimated parameters also approach to
the uncertain parameters, remains no answer. By pragmatical asymptotical stability

theorem, the question can be answered strictly.
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5.3 Different Translation Pragmatical Generalized Synchronization
of New Ge-Ku-van der Pol Chaotic System
Case 1.

The following chaotic systems are two translated GKv of which the old origin is
translated to  (x,,%,,%)=(k,,k,;,k,) , (Y, Y., ¥s) = (K,,k,,k,) to guarantee the
uncontrolled error dynamics always happen in the first quadrant of e coordinate
system when k ,=150,k ,=30.

% = (%, —k,)
X, =-a(x, —k,)—(x, —k,)(b(c—(x —k,)*)+d(x, —k,)) (5.10)
X, =—g(X —Kk,)+hl— (X, —k,)?)(%, —k,)+1(x, —k,)

yl :(YZ_kz)"‘Ul
Y, =—a(y, —K,) — (¥, —k,)(BE=6y, =k ) + d(y, —k,)) + U, (5.12)
Y, ==0(y, —k,) +h@- (¥~ kD, k) ¢y, —k ,) +u,

Let initial states be (x,,%;, X,)=(k,+0.04, k,+0.0% k,+0.01), (Y,,Y,,Ys)=(k,+

0.01,k,+0.01,k ,+0.01) and system  parameters a=0.08,b=-0.35,¢c=100.56,d =
—1000.02,g =0.61,h =0.08,1 =0.01.

The state error is e=x' -y +F({t)=x—y +e*" where F(t)=e™ is a
non-chaotic given function of time. We find that the uncontrolled error dynamics

always exist in first quadrant as shown in Fig. 5.3.

lime, =lim(x; -y, +e") =0, i=12,3 (5.12)

t—ow

Our aimis lime=0. We obtain the error dynamics:

t—owo

—sint

& =X —Y,—cost-e
é, =X, —Yy,—cost-e"" (5.13)

—sint

6, =X, — Y, —cost-e

where d=a-4a, b=b-b, ¢=c—¢, d=d-d, §=g—-§, h=h-h, T=1-T,
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A

and a, b, ¢, d, g, h, 1 are estimates of uncertain parameters a, b, ¢, d,

g, h and | respectively.
Using different translation pragmatical synchronization by stability theory of
partial region, we can choose a Lyapunov function in the form of a positive definite

function in first quadrant:
V=g +e,+e,+a+b+c+d+g+h+l (5.14)
Its time derivative is

V=646 16 +4+b+é+drg+hel
=((x, —k)—(y, +k,)—u, —cost-e™*")
+(—a(x, — k) = (% —k)(b(c— (%, —k;)*) + d(x; —k,))
+a(y, —K,)+ (Y, — k,)(0(C— (y2k3)?) +.d (y, —k,)) —u, —cost-e ") (5.15)
+ (=9 (% — k) + (L= (x5 k)" X k) (%~ k)
+9(Ys —Kp) - (y57k, ) 2K,) =iy, k,) —u, —cost &™)

L ErbrérdrGahal

Choose

d=—4=-ae,

b =—b = be,

¢ =—¢=—Ce,

d=—d=—de, (5.16)
g=-g=-0e,

h = —h =—fie,

[ =i = e,
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u, = (x, —k,)—(y, —k,) —cost-e " +e,
U, =—a(x, —k,) — (X, =k )(b(c—(x, —k)?) +d(x, —k,))

+ a(Yz - kz) + (ys - kz)(B(a - (yl - kz)z) + d(ys - kz))

—cost-e”" +(1-a—b—c—d)e, (5.17)
U; = _g(xs - kl) + h(l—(X3 - kl)z)(XZ - kl) +|(X1 - k1)

+ g/(-y\s - kz) - h,(I_(ys - kz)z)(yz - kz) _i(yl - kz)

—cost-e”™™ +(1-g-h-1)e,

We obtain
V=-e-6-6<0 (5.18)

which is a negative semi-definite function of e, e,, e,, &, b, &, d, §, h, |

in the first quadrant. The Lyapunov asymptotical stability theorem is not satisfied. We
can’t obtain that common origin of error dynamics.Eg. (5.13) and parameter dynamics
Eq. (5.16) are asymptotically stable. However, by pragmatical asymptotically stability

theorem, D is a 10-manifold, n=10 and the number of error state variables p=3.

When e =e,=e,=0 and &y b, ¢, ds @, h, I take arbitrary values,
V =0, so X is of 3 dimensions, m=n-p=10-3=7, m+1<n is satisfied. According to the
pragmatical asymptotically stability theorem, error vector e approaches zero and the
estimated parameters also approach the uncertain parameters. The equilibrium point is
pragmatically asymptotically stable. Under the assumption of equal probability, it is

actually asymptotically stable. The simulation results are shown in Figs. 5.4-5.7.

Case 2.

The following chaotic systems are two translated GKv of which the old origin is
translated to  (x,,%,, %) =(k,,k,,k;) , (Y, Yo, ¥s) = (K,,k,,k,) to guarantee the
uncontrolled error dynamics always happen in the first quadrant of e coordinate

system when k ,=200,k ,=30.
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¥ = (X, —k,)
X, = —a(x2 - kl)_(XS _kl)(b(c_(xl - kl)z) +d(X3 _kl)) (5-19)
X, =—g(X, —Kk,)+hl— (X, —k,)?)(%, —k,)+1(x,—k,)

Y1 :(yz _k2)+u1
= _a(yz —k 2) _(ya -k 2)(6(6_ (yl -k 2)2) +d(y3 -k 2)) +U, (5-20)
Y; = _g(Y3 -k 2) + h(l_(ys -k 2)2)(y2 -k 2) +i(y1 -k 2) +U;

Let initial states be (x,Xx,,x,) = (k,+0.01,k,+0.01,k,+0.01), (Y,,Y,,Ys)=(K,+
0.04,k,+0.01,k ,+0.01) and system parameters a=0.08,b=-0.35,¢=100.56,d =

—1000.02,9 =0.61,h=0.08,1 =0.01.

The state error is e=x—y+F(t) where F(t)=z=(z,z,,z,)is the state vector
of Chen-Lee (CL) chaotic system:

1, =-1,1,+ 0,
1, =172,+0,1, (5.21)
2,=(/3)z,2, + 5,1,

where ¢, =5,6, =-10,5, =-3.8 and initial states are- z, =0.01,z, =0.01,z, = 0.01.

And we find that the uncontrolled jerror dynamics/always exist in first quadrant as

shown in Fig. 5.8.

Our aimis lime=0.We obtain the error dynamics.

t—w

!lme _!lm(x—y,+z) 0, 1=12,3 (5.22)
&=X-Y,+7%
€, =X,-Y,+12, (5.23)
€, =X —Y;+17,

and a, b, ¢, d, g, h, | are estimates of uncertain parameters a, b, ¢, d,
g, h and | respectively.

Using different translation pragmatic synchronization by stability theory of
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partial region, we can choose a Lyapunov function in the form of a positive definite

function in first quadrant:
\Y :e1+e2+e3+a+5+6+d +g+h+I
Its time derivative is

\Y; =é1+é2+é3+é+6+5+5+§+ﬁ+f
= ((Xz - k1) - (yz + kz) _ul - Z223 + 5121) + (_a(xz o kl)
- (Xs - k1)(b(c - (X1 - kl)z) +d (Xs - kl)) + a(yz - kz)
+ (Y3 - kz)(B(a _(yl - kz)z) + d(Ys - kz)) —U, + 2,7, +§222)
+(=9(x; —k,) +h(@—(x, - kl)z)(xz —k) +1(x —k,)
+ g/(ys - kz) - h,(I_(ys - kz)z)(Y2 - kz) _i(yl - kz) — U

+(U3)22,+8,2,) +A+b+Erd+Grhl

Choose
d=—4=—4ae,
b=—b=be,
E=—C=—Ce,
d=—d =—de,
G =-§=—0e,
h=—h =—Fe,
[ =i = e,

u = (Xz _kl)_(yZ _kz) — L, +5121 +€

u, = —a(X2 - kl) - (Xs - kl)(b(c - (X1 - kl)z) +d (Xa - kl))
a(y, —kp) + (¥~ )OC — (%, —k;)*) +d (¥, —k,)
+2,2,+6,2,+(1-a—-b—-c—d)e,

Uy = =g (% — k) +h(@L— (0 —k;)*) (%, —k;) +1(x, —k,;)
+ ER\Y:; - kz) - h/(I_(ys - kz)z)(yz - kz) _i(yl - kz)
+@1/3)z,2,+ 0,2, +(1—-g—h—l)e,

We obtain

V=-¢-6-6<0
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which is a negative semi-definite function of e, e,, e,, &, b, ¢, d, g, h, I

in the first quadrant. The Lyapunov asymptotical stability theorem is not satisfied. We
can’t obtain that common origin of error dynamics Eq. (5.23) and parameter dynamics
Eq. (5.26) are asymptotically stable. However, by pragmatical asymptotically stability

theorem, D is a 10-manifold, n=10 and the number of error state variables p=3.

When e =e,=e,=0 and &, b, ¢, d, §, h, | take arbitrary values,

V =0, so X is of 3 dimensions, m=n-p=10-3=7, m+1<n is satisfied. According to the
pragmatical asymptotically stability theorem, error vector e approaches zero and the
estimated parameters also approach the uncertain parameters. The equilibrium point is
pragmatically asymptotically stable. Under the assumption of equal probability, it is
actually asymptotically stable. The,simulation results are shown in Figs. 5.9-5.12.
Case 3.

The following chaotic systems are two translated GKv of which the old origin is
translated to (X, X,, %) = (K, sk k) (Y, Y., ¥9)'= (k,,k,,k,) to guarantee the
uncontrolled error dynamics always happen in the first quadrant of e coordinate
system when k ,=300,k ,=30.

% = (X, —ky)
Xz = _a(Xz - kl) - (Xa - kl)(b(c - (Xl - kl)z) +d (X3 - kl)) (5'29)

X, =—0g (% —K,) +h@— (% —Kk)*)(%, —k,) +1(x, —k,)

A :(yz_k2)+u1
yz = _a(yz —k 2) _(ya -k 2)(6(6_ (yl -k 2)2) +d(y3 -k 2)) +U, (5-30)
ya = _g(Y3 -k 2) + h(l_(ys -k 2)2)(y2 -k 2) +i(y1 -k 2) +U;

Let initial states be (x,X,,X;) =(k,+0.01,k,+0.01,k,+0.01), (v,,Y,,Ys)=(K,+

0.014,k,+0.01,k,+0.01) and system parameters a=0.08b=-0.35,c=100.56,d =

—-1000.02,g =0.61,h=0.08,1 =0.01.
The state error is e=x"—y'+F(t) where F(t)=z=(z,2,,2,) IS the state
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vector of Ge-Ku-Duffing (GKD) chaotic system:

2, =62, - 1,(5,(6, —2,") + 5,2,) (5.31)
2,=-2,-2" - 8,2, + 5,1,

where ¢, =0.16, =11,6,=40,6, =54,5, =6,5, =30and initial states are z, =0.01,
z,=0.01,z, =0.01, the GKD is chaotic Fig. 5.14. And we find that the uncontrolled
error dynamics always exist in first quadrant as shown in Fig. 5.13.

Our aimis lime =0. We obtain the error dynamics.

toow

!lme _Ilm(x y.+2z)=0, i=123 (5.32)
& =X-Y+%
€& =X-Y,+12, (5.33)
€ =X —Y;+17,

and a, b, ¢, d, g, h, | “are estimates of-uncertain parameters a, b, ¢, d,
g, h and | respectively.

Using different translation pragmatic synchronization by stability theory of
partial region, we can choose a Lyapunov function in the form of a positive definite

function in first quadrant:
V=e+e,+e,+a+b+c+d+g+h+i (5.34)

Its time derivative is
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% :é1+é2+é3+é+5+é+5+d+ﬁ+f
=((x, = k)= (y,+k,)-u, +2,)
+(=a(x, —ky) = (%, =k )(b(c - (% —k)*) +d (X, —k,))
+a(y, —k,) + (¥, —k,)(B(C - (¥, —k,)?) +d (¥, —k,))

) (5.35)
—U, — 0,2, —2,(0,(0;, —2,°) + 0,25))
+(=g(% — k) +h@— (%, —k)*)(%, k) +1(x —k,)
+9(¥s — k) =N (Y5 — k)Y, ko)~ (v, k)
U227 8.2, +8,2)+E+b+é+dgrhel
Choose
d=—4=-3e,
b =—b = —be,
¢=-C=—Ce,
d=—d =—de, (5.36)
g=-g=-Ge,
h=—h=fe,
[ =1 = e,

U, :(XZ_kl)_(yZ_k2)+ZZ+el
U, = —a(x, — k) — (X, — k) (BC= =)+ d (x, —k,))
+a(y, —k,) + (¥ —k)(BEC— (¥, —k;)?) +d (y, —k,))
~8,2,-2,(6,(8,-2,°) + 8,2,) + 1—a—b—c—d)e, (5.37)
Uy =—g (X, —k,) +h@— (% —k)?)(X, — k) +1(x — k)
+ 9/(73 - kz) - h/(-I_(ya - kz)z)(yz - kz) _i(yl - kz)
~-2,-2°-68,2,+ 8,2, +(1—g—h-I)e,

We obtain

V=-e-6¢-6<0 (5.38)

which is a negative semi-definite function of e, e,, e,, &, b, ¢, d, g, h, I

in the first quadrant. The Lyapunov asymptotical stability theorem is not satisfied. We
can’t obtain that common origin of error dynamics Eq. (5.33) and parameter dynamics

Eq. (5.36) are asymptotically stable. However, By pragmatical asymptotically stability
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theorem, D is a 10-manifold, n=10 and the number of error state variables p=3.

When e =e,=e,=0 and &, b, ¢, d, §, h, I take arbitrary values,
V =0, so X is of 3 dimensions, m=n-p=10-3=7, m+1<n is satisfied. According to the
pragmatical asymptotically stability theorem, error vector e approaches zero and the
estimated parameters also approach the uncertain parameters. The equilibrium point is
pragmatically asymptotically stable. Under the assumption of equal probability, it is

actually asymptotically stable. The simulation results are shown in Figs. 5.15-5.18.
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Fig. 5.1 Coordinate translation of x-states.
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Fig. 5.2 Coordinate translation of y-states.
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Fig. 5.3 Phase portrait-of the error.dynamic for Case 1.
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Fig. 5.4 Time histories of x,, y, for Case 1.
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Chapter 6

Robust Projective Synchronization of Uncertain Stochastic

Chaotic Systems by Fuzzy Logic Constant Controller

6.1 Preliminary

In this Chapter, a simplest fuzzy logic constant controller (FLCC) which is
derived via fuzzy logic design and Lyapunov direct method is presented for projective
synchronization of non-autonomous chaotic systems with uncertain and stochastic
disturbances. Controllers in traditional Lyapunov direct method are always nonlinear
and complicated. However, FLCC proposed are such simple controllers which are
constant numbers, decided via the values; of the upper and lower bounds of the error
derivatives. This new method. 1S usedsin<projective synchronization of non-
autonomous chaotic systems with:stochastic disturbance to show the robustness and
effectiveness of FLCC. There-are two’cases.illustrated in simulation results to show
the feasibility of the FLCC, two cases are Sprott system and Ge-Ku-van der Pol
system. Comparison at the efficiency, accuracy and complexity of the FLCC with that
of traditional nonlinear controllers is also given in tables and figures.
6.2 Projective Chaos Synchronization by FLCC Scheme

Consider the following master chaotic system

X=(A+A)x+f(X)+E (6.1)
where X=[x,X,,---Xx.]" €R" denotes a state vector, A is an nxn constant

coefficient matrix , fis a nonlinear vector function, A is non-autonomous term and

€ is stochastic disturbance.
The slave system which can be either identical or different from the master is
y=By+g(y)+u (6.2)
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where y=[y,,¥,,~-y,]' €R" denotes a state vector, B is an nxn constant

coefficient matrix, g is a nonlinear vector function and u=[u,,u,,---u,]" € R"is the

fuzzy logic controller needed to be designed.
For projective synchronization, in order to make the state y and projective
number A approaching the goal state Ax, projective number A is a constant, define

e=AX-Yy as the state error. The chaos projective synchronization is accomplished in

the sense that [20-23]:

!ime:!im(ﬂx—y)zo (6.3)
where
e=[e,e] =ax-y (6.4)

From Eq. (6-4) we have the following error dynamies:
e=AX+y=A A+A X+f X(+E+1ByF-g vy H{u) (6.5)
According to Lyapunov direct-method, we have the following Lyapunov function to

derive the fuzzy logic controllerfor:projective synchronization:
V="~f(e, e, e ):%(ef +..+62+..62)>0 (6.6)

The derivative of the Lyapunov function in Eq. (6.6) is:

V=e€+..+€,€, +..+€6 (6.7)

If the vector controller in Eq. (6.5) can be suitably designed to achieve V <0,
then the zero solution e=0of Eqg. (6.5) are asymptotically stable i.e. the projective
synchronization is accomplished. Next, the design process of FLCC is introduced.

The design process of FLCC is introduced in the following section.

m

We use the error derivatives é(t) =[é1,é2,~-~,é o€, ]T, as the antecedent part

of the proposed FLCC to design the control input u which is used in the consequent

part of the proposed FLCC:
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U=[uy,Uy, Uy, | (6.8)

where u is a constant column vector and accomplishes the objective to stabilize the
error dynamics in Eq. (6.5).
The strategy of the FLCC designed is proposed as follow and the configuration

of the strategy is shown in Fig. 6.1.

Assume the upper bound and lower bound of €, are Z, and —Z,, then the

FLCC can be design step by step:

(1) If e, is detected as positive (€, >0), we have to design a controller for

6, <0 forthe purpose V =e,é, <0. Therefore we have the following i-th (i=1,2,3)

if-then fuzzy rule as:

Rule 1: IF €,is My THEN Um=Zn (6.9)
Rule 2 : IF€, is M, THENUm=Zn, (6.10)
Rule 3:IF€, is M, THEN-Uns=€ (6.11)

(2) If e, is detected as negative (€, <0), we have to design a controller for

é,, >0, for the purpose V =e,&, <0. Therefore we have the following m-th if-then

fuzzy rule as:

Rulel:IF €,is M, THEN Up = -Zn (6.12)
Rule 2 : IF €,is M, THEN up,= -Zn (6.13)
Rule3:IF é,is M, THEN ups=6, (6.14)

(3) If e, approaches to zero, then the synchronization is nearly achieved.
Therefore we have the following m-th if-then fuzzy rule as:

75



Rule1:IF €é,is M, THEN un=¢, =0 (6.15)

Rule 2 : IF €,is M, THEN un,=¢, =0 (6.16)
Rule 3: IF é,is M, THEN ump=¢, =0 (6.17)

é é Z —é 6 —Z
whereM1=|Z—”‘|, M2:|Z—m|and M3:sgn(%)+sgn(%), M,,M,and M,

refer to the membership functions of positive (P), negative (N) and zero (Z) separately
which are presented in Fig. 6.2. For each case,U,;, i= 1~3 is the i-th output of€,,,

which is a constant controller. The centriod defuzzifier evaluates the output of all

rules as follows:
u, ==L — (6.18)

The fuzzy rule base is listed in Table1, in which the input variables in the

antecedent part of the rules are~ €}, “and the-output variable in the consequent part is

mi -

Table 1 Rule-table of FLCC

Rule Antecedent Consequent Part
€n Upi
1 Negative (N) Uy
2 Positive (P) U,
3 Zero (2) Ups

With appropriate fuzzy logic constant controllers in Eq. (6.7), a negative definite
of derivatives Lyapunov function V can be obtained and the asymptotically stability
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of Lyapunov theorem can be achieved.

Consequently, the processes of FLCC designed to control a system following the
trajectory of a goal system are getting the upper bound and lower bound of the error
derivatives of the master and control systems without any controller, i.e.
-Z,<é,<Z,. Through the fuzzy logic system which follows the rules of Eq.
(6.9-6.17), a negative definite derivatives of Lyapunov function V can be obtained

and the asymptotically stability of Lyapunov theorem can be achieved.

6.3. Simulation Results

There are two examples in this Section. Each example is divided into two parts,
projective synchronization by FLCC and that by traditional method. In the end of each
example, we give the simulation results of two controllers and list the tables and
figures to show the effectiveness and robustness-of.our method.

6.3.1 Case 1 Projective synchronization: of identical master and slave Sprott 22
systems [60] by new FLCC

The Sprott 22 system is:

X=y

y=1 (6.19)
I=—az—-y-sinx

The initial condition (X,, ¥,,Z,) = (0.01,1,0.01) . The parameter « =0.25, chaos of the

Sprott 22 system appears. The chaotic behavior of Eq. (6.19) is shown in Fig 6.3.
6.3.1.1 Robust projective synchronization of non-autonomous Sprott 22 system by
FLCC

The master non-autonomous Sprott 22 system is:

X =X
X, = X, (6.20)
X, = —(a+A)X; — X, —sin X,
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When initial condition (X, X, X55) =(0.01,1,0.01) , A = ysin(«t) is a non-autonomous

term with » =0.07, @ =10. The parameter is the same as that of Eq. (6.19). Chaos
of the non-autonomous Sprott 22 system appears. The chaotic behavior of Eg. (6.20)
is shown in Fig. 6.4.

The slave system is:

Y1: Y, +U,

Y, =Y;+U, (6-21)
Ys=—ay;—Y, —sin Y, tU;

The initial condition (Y, Y,0, ¥s,) = (10,10,10) . The parameter is the same as that of

Eq. (6.19), chaos of the slave system appears as well. u,, U,and u;are FLCC to

synchronize projectively the slavessystem to masterone, i.e.,

lime =0 (6.22)

t—w

where the error vector

el Xl yl
e=le, |=4|% |—| Y, (6.23)
eS X3 y3

where A = 4. We have the following error dynamics:

& =AX — Y, =A% —(y,+u,)
éz = 2')‘(2 -Y,= j“)(3 _(Y3 +U2) (6-24)
€ = ﬂxa —Y;= ﬂ’(_(a—i_Al)XB —X; —sin Xl)_(_ayS -Y, —sin Y1 +U3)

Choosing Lyapunov function as:
V:%(ef +e2+el)>0 (6.25)

Its time derivative is:
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V =e6 +ee, +e6,
=&, (A%, = (Y, +U,)) (6.26)
+62(2.X3 _(ys +U2))
+&(A(—(a +A)X; — X, =sin X)) = (—ay; — Y, —sin y, +U,))

In order to design FLCC, we divide Eq. (6.26) into three parts as follows:

1. 1. 1.

whereV, =—e;,V, =—e5andV, = —e;.

1 2 1 2 2 2 3 2 3
Part1: V,=eé =e,(1x, —(y, +u,))
Part2: V, =e,6, =e,(Ax, — (Y, +U,))

Part 3: V, =e,6, =&, (A(~(a+A)X, — X, —Sin X)) — (~ay, — Y, —Sin y, +U,))

FLCC in Part 1, 2 and 3 can be obtained viasthe fuzzy rules in Table 1. The
maximum value and minimum value without-any controller can be observed in time
histories of error derivatives shown inFig6.5..Z, =20, Z,=20, Z,=20.

The synchronization scheme is. proposed<n Part 1, 2 and 3 and makes
V, =e,6, <0V, =e,6, <0andV; =e;é, <0. Hence we haveV =V, +V, +V; <0.
It is clear that all of the rules in FLCC can lead that the Lyapunov function satisfies
the asymptotical stability theorem. The simulation results are shown in Fig. 6.6 and
Fig. 6.7.
6.3.1.2 Robust projective synchronization of stochastic Sprott 22 system by FLCC

The master non-autonomous Sprott 22 system with robust of stochastic

disturbances is:
Xi =X+ é/

X, =X+ & (6.27)
X; = —(a +A)X; — X, —sin X,

79



When initial condition (X, Xy, X5) =(0.01,1,0.01) , ¢ = band-limited white noise

(PSD=0.01) and parameter is the same as that of Eq. (6.19). The stochastic
disturbance ¢ is shown in Fig 6.8. Chaos of the non-autonomous stochastic Sprott 22
system appears. The chaotic behavior of Eq. (6.27) is shown in Fig 6.9.
The slave system is the same as Eg. (6.21) and Lyapunov function derived
through the Eq. (6.22-6.26).
Let A =4, we have the following error dynamics:
& =A% Y = A0 +4) — (Y, +u)

€, =A% =Y, =A% +{) = (Y;+U,) (6.28)
€y =A% — Yy = A—(a +A)X; =X, —sinx ) — (—ay, — Y, =siny, +U;)

And time derivative of Lyapunov function is:

V =e€ +6,6, +68,
=&, (A% +4) = (Y, +u1))
+8,(A(X; + &) = (y; +l,))
+&5(A(—(a +A)X; — Xz=8INX ) = (Fa Yy = Y, 78in y, +U;))

(6.29)

The maximum values and mimmum-values without any controller can be

observed in time histories of error derivatives shown in Fig. 6.10: Z, =25, Z, =30,
Z, =15. The synchronization scheme makes V =ef +e,6,+e6, <0. It is clear that

all of the rules in FLCC can lead that the Lyapunov function satisfies the asymptotical
stability theorem. The simulation results are shown in Fig. 6.11-13.
6.3.1.3 Robust projective synchronization of stochastic Sprott 22 system by traditional
method

According to Eg. (6.29), we design complicated controllers to synchronize
chaotic system with uncertainty by traditional method.

We choose controllers are
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U =A0%+5)-Y,+&
U, =A% +¢) -y, +6 (6.30)
Uy = A[—(a +A)X, =X, —sinX ]+ ay, + Y, +siny, +&,

and obtain

V=-¢¢-¢g-"g & (6.31)

The derivative of Lyapunov function is negative definite and the error dynamics
in Eq. (6.28) are going to achieve asymptotically stable. The simulation results are
shown in Fig. 6.14 and Fig. 6.15.
6.3.1.4 Robust projective synchronization of stochastic Sprott 22 system by new FLCC
compared to using traditional method

In this subsection, the controllers and;aumerical simulation results in subsection
6.3.1.2 and subsection 6.3.1.3 are listed insTFables 2 and 3 for comparison. Comparing
two kinds of controller in Table 2+and two kinds of errors in Table 3, it is clear to find
out that (1) The controllers in FLCC designing.are much simpler than traditional ones;
(2) The performance of the error convergence.of states by FLCC is much better than
that by traditional method.

Consequently, even the system contains noise and parameter uncertainty, the
FLCC can still remain the high performance to synchronize the two chaotic systems

with uncertainty and stochastic disturbances exactly and efficiently.

Table 2 The controllers of FLCC and of traditional method.

Controller FLCC Traditional method
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u, Z,=25 A, +8) -y, +e
6, | z,-30 A +0) -y +e,
A—(a—A)X, —x, —sinx, ]+ +
" 7,215 [~(or =A% =%, —sinx ]+ ay,
y, +siny, +e,
Table 3 Errors data after the action of controllers.
Time after FLCC Traditional
the action of
el el
controllers
32.00s 0.0000000000048992 -3.5187301833233740
32.01s 0.0000000000048512 -3.4837182330074956
32.02s -0.0000000000032614 -3.4490546574179977
32.03s -0.0000000000082419 -3.4147359901684879
32.04s 0.0000000000006413 -3.3807587993636190
eZ eZ
31.46s 0.000000000001907 1.8995112214353798
31.47s -0.000000000007070 1.8806107689867746
31.48s -0.000000000007022 1.8618983791822554
31.49s -0.000000000006962 1.8433721807672345
3150s 0.000000000002132 1.8250303211064454
e3 e3
30.44s -0.0000000000029234 3.1426420748209738
30.45s -0.0000000000029008 3.1113722637096530
30.46 s -0.0000000000028781 3.0804135924175107
30.47 s -0.0000000000028564 3.0497629650516407
30.48 s -0.0000000000028346 3.0194173165237430
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6.3.2 Case 2 Projective synchronization of identical master and slave Ge-Ku-van der
Pol systems by new FLCC
The GKv system is:
x=y
y==BY-2B, (B~ x*) + B,2) (6.32)
2=-B2+p,(L-2°)y+ B,

The initial condition (X,, Y,,Z,) =(0.01,0.01,0.01) . The parameters are B, =

0.08, 3, =—0.35, B, =100.56, 3, =—1000.02, f, =0.61, 3, =0.08, B, =0.01, chaos

of the GKv system appears. The chaotic behavior of Eq. (6.32) is shown in Fig 6.16.
6.3.2.1 Robust projective synchronization of non-autonomous GKv system by FLCC
The master non-autonomous GKV: system is:

X =X,
X, ==X, = % (B, (B = X12) +B.Xs) (6.33)
X = _(:35 +A)X3 + 5 (1= X32)X2 + X%

When initial condition (X, %osX40)=(0:050.01,0.01) , A=pysin(wt) is a

non-autonomous term with » =0.5, @ =10. The parameters are the same as that of
Eq. (6.32). Chaos of the non-autonomous GKv system appears. The chaotic behavior
of Eqg. (6.33) is shown in Fig 6.17.

The slave system is:

Y=Y,y
yz :_ﬂlyZ_y3(ﬂ2(/63_y12)+,84y3)+uz (6.34)
ys = _ﬂsys +ﬂ6 (1_ yzz)yz +ﬂ7y1 +U;

The initial condition (Y, Yy, Y5) = (10,10,10) . The parameters are the same as that of

Eq. (6.32), chaos of the slave system appears as well. u,, U,and Usare FLCC to

synchronize projectively the slave system to master one, i.e.,
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lime=0

t—ow

where the error vector

& X Yi
e=|g |=4|% Y>
& X3 Ys

where 4 = 2. We have the following error dynamics:

€ =AX — Yy, =A% = (¥, +u;)

éz = /1).(2 Y, = ﬂ(_ﬁlXZ — X3 (132 (ﬂ3 - X12) +:B4X3))
—(=8Y, — Y:(Bo (B — ylz) +,Y5) +Uy)

6, = A%, — Y, = A(=(B, + A)X, + B (1—X")X, + B.%)
~(=BsYs + By A= Y3" )Y, + By ¥y +s)

Choosing Lyapunov function as:
_ 1 2 2 2
\Y _E(el +e; +e;3)

Its time derivative is:

V =¢eg€ +e,6, +e,8,
=€, (A%, —(y, +u))+
&, (A(=5% = %5 (B, (B = X°) + BiXs))
~(=BY, = Y5(Bo (B = Vi*) + B.Y5) +U,)) +
& (A(—(S; + A) X + B (1= X)X, + ;%)
~(=BsYs+ B Q= Y5 )Y, + BrY, +Uy))

In order to design FLCC, we divide Eq. (6.39) into three parts as follows:

(6.35)

(6.36)

(6.37)

(6.38)

(6.39)

AssumeV = E(el2 +e5 +e3) =V, +V, +V;, thenV =6, +€,6, + €56, =V, +V, +V;,

whereV, = %ef v, = %ezz andV, = %eg :

Part1: V,=egé =e (1x, —(y,+u,))

Part 2:
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vz =68, =86, (//i’(_ﬂl)(Z — X3 (ﬁz (ﬁs - X12) + 8% )
- (_ﬂlyz —Y; (ﬁz (183 - y12) + :B4y3) + uz))



Part 3: Vs =66, =6 (ﬂ(_(ﬁs +A1))(3 + 186 (1- X32)X2 +ﬂ7xl)

_(_ﬂ5y3+ﬂe(l_ ysz)y2+ﬂ7y1+u3))
FLCC in Part 1, 2 and 3 can be obtained via the fuzzy rules in Table 1. The

maximum value and minimum value without any controller can be observed in time

histories of error derivatives shown in Fig 6.18. Z, =250, Z, =1600, Z,=15.

The synchronization scheme is proposed in Part 1, 2 and 3 and makes
V, =€, <0, V, =e,6, <0andV, = e;é, <0. Hence we haveV =V, +V, +V, <0.
It is clear that all of the rules in FLCC can lead that the Lyapunov function satisfies
the asymptotical stability theorem. The simulation results are shown in Fig. 6.19 and
Fig. 6.20.

6.3.2.2 Robust projective synchronization-of stochastic GKv system by FLCC

The master non-autonomaus GKv:system with robust of stochastic disturbances

X =X+
X, ==X, =% (B (Bs - X12) + BiXa)£65 (6.40)
X, = _(:Bs +A)X3 +136(1_ X32)X2 + 6%

When initial condition (X, X5, X3) = (0.01,0.01,0.01) , £, = band-limited white noise
(PSD=1). The parameters are the same as that of Eq. (6.32). Here £, =[(@, + »,e™')-
(band-limited white noise)] (PSD=0.5) with @ =1, @,=5, @®,=0.01 . The

stochastic disturbances ¢;and ¢,signal are shown in Fig. 6.21 and Fig. 6.22. Chaos

of the non-autonomous stochastic GKv system appears. The chaotic behavior of Eq.
(6.40) is shown in Fig 6.23.
The slave system is the same as Eqg. (6.34) and Lyapunov function derived

through the Eq. (6.35-6.39).
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where 4 = 2. We have the following error dynamics:

€& =A% =Y, =A% + &) = (Y, +U;)
€, = A% — Y, = M=%, = X (B, (B — X" ) + BX) + £,)

—(=BY, = Ys(Bo( By = Y. + BiYs) +U,) (6.41)
& = A% — Vg = A~(f5 + A)Xs + B (L= %)%, + ;%)

—(=BsYs + B L= Y5 )Y, + B Y, +Us)

And time derivative of Lyapunov function is:

V =¢eg +6,6, +e6,
=&, (A(X, +41) — (Y, +uy)) +
&, (A(=B% = %5 (By (B = X) + i) + £,)
— (=Y, = Ya(B, (B = ¥i*) + BYs) +Uy)) +
& (A(=(f; + A) % + By (1= %)%, + ;%)
~(=BsYs + B (L= Y5) Y, + B Y, +Us))

(6.42)

The maximum values and sminimum values, without any controller can be

observed in time histories of ‘error—derivatives, shown in Fig. 6.24: Z, =300,

Z,=3500 , Z,=40 . +The projective. synchronization scheme makes

V =¢eg +6,6, +e,6, <0. It is clearsthat all of the'rules in FLCC can lead that the

Lyapunov function satisfies the asymptotical stability theorem. The simulation results
are shown in Fig. 6.25 and Fig. 6.26.
6.3.2.3 Robust projective synchronization of stochastic GKv system by traditional
method

According to Eq. (6.42), we design complicated controllers to synchronize
chaotic system with stochastic disturbance by traditional method.

We choose controllers are

u = /I(Xz +§1)_ Y, +€
U, = A[=BX%, =% (B, (B — X12) + B,%) + &,

+5.Y, +y3(132(:33_y12)+ﬂ4y3)+e2 (6.43)
U; = i[‘(ﬂs +A)X3 +136 - X32)X2 + :B7X1]

+:85y3 _136(1_ Y32)y2 _ﬁ7y1 +€
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and obtain

V=-¢¢-¢g-"g & (6.44)

The derivative of Lyapunov function is negative definite and the error dynamics
in Eq. (6.41) achieve asymptotical stability. The simulation results are shown in Fig.
6.27 and Fig. 6.28.
6.3.2.4 Robust projective synchronization of stochastic GKv system by new FLCC
compared to using traditional method

In this case, the controllers and numerical simulation results of subsection 6.3.2.2
and subsection 6.3.2.3 are listed in Table 4 and Table 5 for comparison. The mater and
slave systems are more complex than Case 1, but the good-robustness and high
performance can be still achieved through-FLCC:_ The two main superiorities are still
existed: (1) The controllers in ELCC designing are much simpler than traditional ones;
(2) The performance of the convergence of error statessby FLCC is much better than

by traditional method.

Table 4 The controller of FLCC and of traditional method.

Controller FLCC Traditional
u, Z,=300 A%, +8)—Y, +6
uz Zz =3500 /1[_:31)(2 _Xs(ﬂz(ﬁs —)(12)+ﬁ4X3)+§2]

+ﬁ1yz + ys(ﬁz (ﬁs - y12) +ﬂ4y3) +€,

Ug Z,=40 A~(Bs + A) X + Bs (1= X2) X, + ;%]
+185y3 _ﬂs(l_ y32)y2 _ﬂ7y1 +€;

Table 5 Errors data after the action of controllers.

Time after FLCC Traditional
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the action of

1

&

controllers
30.50 s 0.0000000000000853 18.895920723453898
30.51s 0.0000000000000853 18.707903170792974
30.52's 0.0000000000000853 18.521756424039154
30.53 s 0.0000000000000711 18.337461868362539
30.54 s 0.0000000000000711 18.155001074154072
eZ ez
31.64 s 0.0000000000039790 10.117976168390220
31.65s 0.0000000000039506 10.017300623392766
31.66 s 0.0000000000038938 9.9176268168054662
31.67 s 0.0000000000038654 9.8189447811645270
31.68's 0.0000000000038369 9.7212446481842232
e3 e3
30.06 s 0.0000000000000066 -1.1818139746755154
30.07 s 0.0000000000000066 -1.1700547291499359
30.08 s 0.0000000000000064 -1.1584124900723243
30.09s 0.0000000000000063 -1.1468860932090630
30.10 s 0.0000000000000060 -1.1354743859108640
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FLCC

T
=) >

&, =0
Rude I :1é, 05 My then s = Zn

Rude 2 3 is My then uw = Zn

B
Integrator Master System ()
%, (1) 5, (1)

k.

L Integrator

Slave System 4{9

V() Vo )

Flowchart— Base on MATLAB

Rule 3 :ifé is M then ums =e,,

&, <0

Rude I :3pé s My then gy} = -Zn
Rude 2 :1jé,, 15 M2 then iy = -Zs,

Rudde 3 216,15 M3 then uns =e,

e, €0

FRude 1 :ijéis My thensimy =e_ 20
Rude 2 :1fé s My then g =¢, w0

Rude 3 :iféis My then ting =e,, =0

Fig.6.1 The configuration of fuzzy:logic controller.
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Fig. 6.2 Membership function.
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Fig. 6.3 The phase paertrait-of chaoetic Sprott 22 system.

Fig. 6.4 The phase portrait of chaotic non-autonomous Sprott 22 system which has

parameters uncertainty.
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Fig. 6.5 Time histories of error derivatives for.identical master and slave chaotic

non-autonomous Sprott 22 system without controllers.
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Fig. 6.6 Time histories of errors for projective synchronization of non-autonomous
Sprott 22 system by FLCC, the FLCC is coming into after 30s.
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Fig. 6.7 Time histories of states for, projective synchronization of non-autonomous
Sprott 22 system by FELCC, the FlzCC is.coming into after 30s.
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Fig. 6.8 The stochastic disturbance of ¢ = band-limited white noise (PSD=0.01).
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Fig. 6.10 Time histories of error derivatives for identical master and slave chaotic

stochastic Sprott 22 system without controllers.
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Fig. 6.11 Time histories of errors foriprojective synchronization of stochastic Sprott
22 system by FLCC| the ELCCqs.coming into after 30s.
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Fig. 6.12 There are irregular ripplies in the detailed time histories of errors which are

caused by white noise.
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Fig. 6.13 Time histories of states forprojective 'synchronization of stochastic Sprott 22
system by FLCC, the FL.CCris'coming into after 30s.
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Fig. 6.14 Time histories of states for projective synchronization of stochastic Sprott 22
system by traditional method, the traditional controller is coming into after 30s
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Fig. 6.15 Time histories of states for projective synchronization of stochastic Sprott 22

system by traditional methad, the-traditional controller is coming into after 30s.
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Fig. 6.16 The phase portrait of chaotic GKv system.
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Fig. 6.17 The phase portrait of chaotic non-autonomous GKv system which has

parameters uncertainty:
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Fig. 6.18 Time histories of error derivatives for identical master and slave chaotic

non-autonomous GKv system without controllers.
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Fig. 6.20 Time histories of states for projective synchronization of non-autonomous
GKv system by FLCC, the FLCC is coming into after 30s.
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Chapter 7
Fuzzy Modeling and Synchronization of Chaotic Systems by

a Newfangled Fuzzy Model

7.1 Preliminary

In this Chapter, a newfangled fuzzy model is used to simulate and synchronize
two complex nonlinear systems, Ge-Ku-van der Pol system and extended Ge-Ku-van
der Pol system. Through the fuzzy model mention above, only two linear subsystems
are needed to generate the complicated chaotic behavior of original nonlinear system.
In traditional Takagi-Sugeno fuzzy model (T-S fuzzy model) [47], the process of
fuzzy modeling focus on the whole ;system. Therefore, there will be 2" linear
subsystems (according to 2" fuzzy rules)rand. mx2" equations in the T-S fuzzy
system, where N is the number ofinonlinear terms and m is the order of the system. If
N is large, the number of linear subsystems.in.T-S fuzzy system is huge. It becomes
more inefficient and complicated.

In Ge-Li fuzzy model (G-L fuzzy model) [59], we focus on each equation of the
system. The numbers of fuzzy rules can be reduced from2Nto2xN. The fuzzy
equations become much simpler. However, the limitation of G-L fuzzy model is that
there should be one nonlinear terms in each equation. Consequently, the newfangled
fuzzy model is proposed to solve this defect—all nonlinear terms in each equation
will be treated as one nonlinear term. It can be used to model various kinds of
complex nonlinear systems, even if the nonlinear terms are copious and complicated.
Ge-Ku-van der Pol (GKv) systems and Ge-Ku-Mathieu (GKM) system are illustrated
in numerical simulations to show the effectiveness and feasibility of new model.

7.2 Newfangled Fuzzy Model Theory

In system analysis and design, it is important to select an appropriate model
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representing a real system. As an expression model of a real plant, the fuzzy
implications and the fuzzy reasoning method suggested by Takagi and Sugeno are
traditionally used. The new fuzzy model is also described by fuzzy IF-THEN rules.
The core of the newfangled fuzzy model is that we express each nonlinear equation
into two linear sub-equations by fuzzy IF-THEN rules and take all the first linear
sub-equations to form one linear subsystem and all the second linear sub-equations to
form another linear subsystem. And all nonlinear terms in each state equation will be
treated as one nonlinear term. The overall fuzzy model of the system is achieved by
fuzzy blending of this two linear subsystem models. Consider a continuous-time

nonlinear dynamic system as follows:

Equation i:
rule 1:

IF Z; (t) is Mil

THEN X (t) = A x(t) + Bju(t), (7.1)
rule 2:

IF Zi(t) is Mi2

THEN Xl(t)=A|2X(t)+B|2U(t), (72)
where

X(t) =[x, (1), %, (t),... X, (O, (7.3)

u(t) = [u, (), u, (1), u, O, (7.4)

i=12..n, where n is the number of nonlinear terms. Mj;, M;,are fuzzy sets,
A;,Bjare column vectors and X;(t) = A;x(t) + Bjju(t), j=1,2, is the output from
the first and the second IF-THEN rules. Given a pair of (x(t),u(t)) and take all the
first linear sub-equations to form one linear subsystem and all the second linear
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sub-equations to form another linear subsystem, the final output of the fuzzy system is

inferred as follows:

A X(t)+B pft) A x(t)+B u(t),
A, X(t)+B yft) A x{(t)+B u(t),

X(t) =M, s 2| (7.5)
A x(t)+B,u(t) ALX(t)+B,,u(t)
where M; and M , are diagonal matrices as following:
dia(M)=[M,; M, .. M.].dia(M,)=[M,, M,, .. M,]
Note that for each equation i:
2
EMU (zi () =1, (7.6)

M”(Zl(t)) >0, i= 1,2,...,n and j:1,2.

Via the newfangled fuzzy-maodel, the final"form-of the fuzzy model becomes very
simple. The new model provides a much-more.convenient approach for fuzzy model
research and fuzzy application.< The_simulation» results of chaotic systems are
discussed in next Section.

7.3 Newfangled Fuzzy Model of Chaotic Systems

In this Section, the newfangled fuzzy models of three different chaotic systems,
GKYv [24] master system and extended GKv master system are shown for Model 1 and
Model 2. GKM [24] slave system is shown for Model 3.

Model 1: Newfangled fuzzy model of GKv system

The GKv system is:

X =X,
X, ==X, — Xy (@, (@5 — X12) +a,X;) (7.7)

%o = =0l X + s (1= X3) %, + a7
with initial states (0.01, 0.01, 0.01). The parameters are o, =0.08,a, =-0.35, o, =
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100.56, «, =—-1000.02, o, =0.61, o, =0.08, o, =0.01. The chaotic attractor of the

GKv system is shown in Fig. 7.1.

If T-S fuzzy model is used for representing local linear models of GKv system, 8

fuzzy rules and 8 linear subsystems are need. The process of modeling is shown as

follows:

T-S fuzzy model:

Assume that:

(1) x*e[-Z,,Z,] and Z,>0

(2) x,€[-Z,,Z,] and Z,>0

(3) x;e[-Z,Z,] and Z,>0

Then we have the following T-S fuzzyrules:

Rule 1: IF

Rule 2: IF

Rule 3: IF

Rule 4: IF

Rule 5: IF

Rule 6: IF

Rule 7: IF

Rule 8: IF

X;

is M,

X3

X3

IS M, —and

is'M,, and

is M,,“and

is M,, and

is M, and

is M, and

is M,, and

is M,, and

is

Then the final output of the GKv system

My ~THEN X =AX,
M4, THEN X =AX,
M, THEN X =AX,
M,, THEN X =AX,
M, THEN X =AX,
M,, THEN X =AX,
M, THEN X =AX,

M,, THEN X =AX,

can be composed by fuzzy linear

subsystems mentioned above. It is obviously an inefficient and complicated work.

Newfangled fuzzy model:
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By using the newfangled fuzzy model, the nonlinear terms in GKv system can be

linearized as simple linear terms.

X =X,
X, = =0 X, — Q0% + XA (7.8)
Xy = —Q Xy + O X, + 0 X — O XA,
where A, =a,x’—a,x, and A, =x.. The steps of fuzzy modeling are shown as
follows:

Steps of fuzzy modeling:

Step 1:

Since no nonlinear term in first equation of Eg. (7.8), we choose Mn:%,

MuZ%' M,, and M, are fuzzy sets of the first equation of Eg. (7.8) and
M, +M,, =1.
Step 2:

Assume that A, e[-Z,,Z5]and Z, > 0, then the second equation of Eq. (8) can be

exactly represented by newfangled.fuzzy model-as following:

Rule 1: IFAisM,,, THEN X, ==X, = @,0,%, + X, 2, (7.9)
Rule 2: IFA,isM,,, THEN X, = - X, —a,a;%; — %X, Z, (7.10)
where

M., =%(1+§—2), M., :%(1_%)’
andZ, =3000 from Fig. 7.2. M, and M, are fuzzy sets of the second equation of
Eq.(7.8)and M, +M,, =1.
Step 3:

Assume thatA, e[-Z,,Z,]and Z, > 0, then the third equation of Eq. (7.8) can be
exactly represented by newfangled fuzzy model as following:

Rule 1: IFx,iSM,;, THEN X, =—a X, + X, + ;X — o X, 2, (7.11)

Rule 2: IFx,isM,,, THEN X; =—a X, + agX, + o, X + o X,Z, (7.12)
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where

My =5 @03, My = 5059,
andZ, =18 from Fig. 7.2. M, andM ,are fuzzy sets of the third equation of Eq.
(7.8)and M, +M,, =1.

Here, we call Egs. (7.9) and (7.11) the first linear subsystem under the fuzzy
rules, and Egs. (7.10) and (7.12) the second linear subsystem under the fuzzy rules.

The first linear subsystem is

X1 =X,
X, = =0 X, — 0,0 %, + %32, (7.13)
Xy = =0l Xy + O Xy + 0, X — A Xy 2y

The second linear subsystem is

X =X,
X, = =0y X, — Q0 Xy — XLy, (7.14)
Xy = =0l Xy + O X, + 0 X 0 X, Zg
Via newfangled fuzzy model,the number of fuzzy rules can be greatly reduced.
Just two linear subsystems are enough to express such complex chaotic behaviors.

The simulation results are similar the original chaotic behavior of the GKv system as

shown in Fig. 7.3.

Now we have:
Xl Mll O 0 X2
= 0 M, 0 ||-oX,—a,0%+X7Z,
X 0 0 M —O Xy + O X, + O X — O XL
3 31 573 672 7X1 6723 (715)
M, O 0 || X%
+ 0 M, 0 ||-aoX —a,0.%—X%X2Z,
0 0 My, || —o Xy + X, + X +agX,Z,
Eq. (7.15) can be rewritten as a simple mathematical expression:
2 ~
X(t) = Z‘I’i (AX(t)+b,) (7.16)

i=1
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where \¥; are diagonal matrices as follows:

dia(Tl):[Mll M21 M31]’ dia(Tz):[Mlz Mzz Msz]

[0 1 0 | 0]
A=lo 0 —a,a3Z |, b,=|0
o, afZ;) -as | 10
[0 1 (. 0]
A=l 0 —a,asZ |, b,=|0
o, af{lZ ;) -—ag | 10|

where A,, A,, b,, b,are provided for the next Section to fuzzy synchronize.

Model 2: Newfangled fuzzy model of extended GKv system

The extended GKv system is:

X =X
X, =—a X — X5 (a, (g —Xf)+a4x3—a8x33) (7.17)

X, = —ag X, + g (L— X2 )Xot o, %,
with initial states (0.01, 0.01, 0.01)., The parameters are the same as that Eq. (7.7) but

—a,xS, where o, =50. The chaotic attractor-of the extended GKv system is shown in

Fig. 7.4.

If T-S fuzzy model is used for representing local linear models of extended GKv
system, 16 fuzzy rules and 16 linear subsystems are needed. This T-S fuzzy system
becomes too complex treat.

Newfangled fuzzy model:
By using the newfangled fuzzy model, extended GKv system can be linearized as

simple linear equations.

X=X
X, = =0 X, — Q0% + XA, (7.18)
Xy = =0 Xy + 0 X, + 0 X — 0 XA,

where A, =a, x> —a, X, +o x> and A, =x2. The steps of fuzzy modeling are similar
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to Model 1. Z, =4000, Z,=12 from Fig. 7.5. And the simulation results are similar

the original chaotic behavior of the extended GKv system as shown in Fig. 7.6.

Model 3: New fuzzy model of slave GKM system

The slave GKM system is:

Yi=Y,
Y, :_ﬂlyZ —yl(ﬂz(ﬁ3_y12)+ﬂ4y2y3) (7.19)
Ys = _(,Bs +ﬂ6y1)y3 +:B7 Y, +ﬁ8y12

The initial conditions are chosen as (0.05, 0.05, 0.05). The parameters are
p,=-06,4,=5 £, =11 3,=03, =8, 5, =10, §,=05, 4, =0.2 and the GKM

system model exhibits chaotic motion which is shown in Fig. 7.7.

If T-S fuzzy model is used for representing local linear models of extended GKv
system, 16 fuzzy rules and 16 linear-subsystems are need. This T-S fuzzy system
becomes too complex treat.

By using the newfangled fuzzy model; GKM system can be linearized as simple

linear equations.

Yi=Y;
Yo ==BY, = By + iy (7.20)
Y3 = _ﬂsys +ﬂ7 Y, + ylAZ

where A, = B,x2 — B,X,%, and A, =—BX, + BX,.
New fuzzy model:
Assume that:
1) A el-Z,,Z,]andZ, >0,
(2 A, e[-Z;,Z,]and Z, >0,
then we have the following new fuzzy rules:
The first equation of Eq. (7.20) is without nonlinear term, we choose N, :%,

1
Ny, ==,
12 2
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and

Rule 1: IFAisN,,,THEN Yy, =-8Y, - £,5;Y, + ,Z,, (7.21)

Rule 2: IFAisN,, , THEN Y, ==8Y, = 5,5:Y. —Y.Z,, (7.22)
where

1. A 1. A
N, ==(H= N, ==(1-=2).
21 2( Zz ’ 22 2( Zz)

and

Rule 1: IFA,isN;, , THEN Yy, =-£Y,+/5Y,+V,Z,, (7.23)

Rule 2: IFA,isN,, , THEN Yy, ==Y, +5Y,-V.Z,, (7.24)
where

1,. A 1, A
N, ==(H%=%, N, ==0-=%)puun Egs. (7.21-24), Z, =60 and Z, = 300
2 Z 2 AN

3

from Fig. 7.8. N;, N, , N,5N,,+N; and N,,.are fuzzy sets of Eq. (7.20) and
Nj, +Nj, =1,N,; +N,, =1 and N, +Ng =1

Here we call Eq. (7.21) and Eg.(7.23) thefirst linear subsystem under the fuzzy
rules and Eqg. (7.22) and Eqg. (7.24) the second linear subsystem under the fuzzy rules.

The first linear subsystem is

Yi=Y,
Y2 = _ﬁ1Y2 _ﬁ2ﬁ3y1 + ylzZ (7-25)
Y?, = _ﬂs Y; + ﬂ7 Y, + Y1Z3

The second linear subsystem is

Y1=Y,
)72 = _ﬂlyZ _ﬂ2ﬁ3y1 - ylzz (7-26)
Y3 = _ﬂs Y; t+ ﬂ7 Y, — ylz3

The final output of the fuzzy GKM system is inferred as follows and the chaotic

behavior of fuzzy system is shown in Fig. 7.9.
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T

S’1 N11 0 0 Y

YZ =| 0 N21 0 _ﬂ1Y2 _ﬂzﬂ3y1 + ylZZ

A 0 0 N i —BsYs + 7Yz + YiZs (7.27)

N12 0 0 Y
+ 0 N, 0 _ﬁlyZ - ﬂzﬁs V1= Y14,
0 0 N, —PsYs+ PrY, — YiZs

Eq. (7-27) can be rewritten as a simple mathematical expression:

i 2
Y1) =Y T(CY(1)+8) (7.28)

i=1

where

dia(l) =[N, N, Ny, dia(C,)=[N, N, N]

0 1 0 0
Ci=|-B.+Z ,— .0 |,,€=]0
Zs :87 _ﬂ 0
0 1 0 0
C,=|-B.rZ ,— p10 |, 6=|0
_Zs ﬂ7 =P 0

where C,, C,, C,, C,are provided for the'next Section to Fuzzy synchronize.
7.4 Fuzzy Synchronization Scheme

In this Section, we derive the newfangled fuzzy synchronization scheme based
on our new fuzzy model to synchronize two different fuzzy chaotic systems. The
following fuzzy systems as the master and slave systems are given:

master system:

X(t) = i‘l’i (AX(t)+b)) (7.29)
slave system:
Y(t) =ZZ:Fi(CiY(t)+(:i)+BU(t) (7.30)

Eq. (7.29) and Eq. (7.30) represent the two different chaotic systems, and in Eq. (7.30)
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there is control input U(t). Define the error signal ase(t) = X(t) — Y(t) , we have:

6(t) = X - V(1) =3 ¥ (AXM) +5)- S T(C Y1) +6)-BU®Y)  (7.31)

i=1 i=1

The fuzzy controllers are designed as follows:
U(t) =u,(t)+u,(t) (7.32)
where

WO =S ¥FEXO- Y TRYE,

uz(t) = ZZ:‘PiBi _Zzlriéi

i=1

such that|e(t)| > Oast —oco. Our design is to determine the feedback gains F; and P;.

By substituting U(t) into Eq.(7.31), we obtain:

2

e0) = ¥, (A, ~BR)XOQIS T {(C, ~BRY ()} (7.3

i=1

Theorem 1: The error systemrin Eg. (7.33) is asymptotically stable and the slave
system in Eq. (7.30) can synchronize the-master.system in Eq. (7.29) under the fuzzy
controller in Eq. (32) if the following:-conditions-below can be satisfied:

G=(A,-BF)=(A —BF)=(C,—BP) <0, i=1~2, (7.34)

Proof:
The errors in Eq. (7.33) can be exactly linearized via the fuzzy controllers in Eq.

(7.32) if there exist the feedback gains F; such that

(A,-BF)=(A,-BF,)=(C,-BP,)=(C,-BP,) <0. (7.35)
Then the overall control system is linearized as

é(t) = Ge(t), (7.36)
where G =(A,-BF,)=(A,-BF,)=(C,-BP,)=(C,-BP,)<0.

As a consequence, the zero solution of the error system Eq. (7.36) linearized via

the fuzzy controller Eq. (7.32) is asymptotically stable.
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7.5 Simulation Results

There are two examples in this Section to investigate the effectiveness and
feasibility of our new fuzzy model.
Example 1: Synchronization of Identical Master and Slave GKv systems

The fuzzy GKv system in Eq. (7.16) is chosen as the master system and the

fuzzy slave GKv system, with fuzzy controllers is as follows:

Y(t) = iri(civ(t) +6,)+BU(t) (7.37)

i=1

whereI'; are diagonal matrices

dia(l) =[N, N, Ny, dia(C,)=[N, N, N]

and
0 1 0 0
C,=|a, 0 — @05 Z | nC:= 0
o, af{l7,) =+ a; 0
0 1 0 0
C,=|a, 0 —a,a5 L6 = 0.
o, a{WZ,) - a; 0

Therefore, the error and error dynamics are:

€ X =Y

e, =% -y, |, (7.38)
L€ | X3 = Y3
_él— X =Y 2 2

& |=[ %Y, :Z‘Pi(Aix(t)+6i)_zri(CiY(t)+6i)_BU(t) (7.39)
_éa_ Xs - Y3 - .

B is chosen as an identity matrix and the fuzzy controllers in Eq. (7.32) are used:
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& X, X
€, :Tl[Al_BFl]Q,x X, +‘P2[A2_BF2]3><3 X2

3

€ X3 X3
Y1 Yi
_rl [C1 - BP1]3X3 Yo |~ rz [Cz - BPz ]3X3 Y, (7-40)
Y3 Ys

According to Eq. (7.34), we have G=[A —-BF]=[A,-BF,]=[C,—BP,]

=[C,—BP,]<0. G is chosen as:

-1 0 0
G=[0 -1 0 (7.41)
0 0 -

Thus, the feedback gains Fi, Fg, P1 and P;can’be determined by the following

equation:
1 1 0
F = B [A1 —G] =|-0.08 1 3035.196 (7.42)
0.01 <136 0.39
1 1 0
F, = B [A2 —G] =-0.08 1 —-2964.804 (7.43)
0.01 152 0.39
1 1 0
P, = B [C1 —G] =|-0.08 1 3035.196 (7.44)
0.01 -1.36 0.39
1 1 0
P, = B*l[C2 —G] =-0.08 1 —-2964.804 (7.45)

0.01 1.52 0.39

The synchronization errors are shown in Fig. 7.10.

Example 2: Synchronization of extended GKv system and GKM system.
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The fuzzy extended GKv system in Eq. (7.16) is chosen as the master system and

the fuzzy slave GKM system in Eq. (7.28), with fuzzy controllers is as follows:
. 2
Y(t) =D T (CY(t)+E)+BU() (7.46)
i=1
where T, are diagonal matrices

dia(rl):[Nll N21 N31]v dia(rz):[le sz st]

Therefore, the error and error dynamics are:

€ X =Y
e, |=|%,-Y, | (7.47)
L€ ] X3 = Y3
_él | X =Y 2 . 2
& |=[ %Y, :Z‘Pi(Aix(t)+bi)_zri(CiY(t)+6i)_BU(t) (7.48)
. . . i=1 i=1
L& 3= Ys

B is chosen as an identity matrix and the fuzzy‘controllers in Eq. (7.32) are used:

& Xy %
&, |=¥,[A,-BF ]| x, [+¥,[A,-BF,]4X%,
é3 X3 X3
Y1 Y1

-T',[C,-BR],,| ¥, |-T,[C,-BP,].,| ¥, (7.49)
Ys Y

According to Eq. (7.34), we have G=[A —BF]=[A,-BF,]|=[C,-BP]

=[C, -BP,]<0. G is chosen as:

1 0 0
G=[0 -1 0 (7.50)
0 0 -

Thus, the feedback gains Fi, F,, P; and P, can be determined by the following

equation:
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1 1 0
F=B" [AL —G] =|-0.08 1 4035.196
0.01 -0.88 0.39

1 1 0
F,= B’l[A2 —G] =|-008 1 -3964.804
0.01 1.04 0.39

1 1 0
PR=B'[C,-G]=| 5 16 0
300 0.5 -0.8
1 1 0
P,=B*[C,~G]=|-115 16 0
300 05 -0.8

The synchronization errors are shown-in Fig. 7:11;
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Fig. 7.3 Chaotic behavior-of newfangled fuzzy GKv system.

Fig. 7.4 Chaotic behavior of extended GKv system.
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Fig. 7.6 Chaotic behavior of newfangled fuzzy extended GKv system system.
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Fig. 7.9 Chaotic behavior-of newfangled fuzzy GKM system.
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Fig. 7.11 Time histortes of errors for Example 2.
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Chapter 8

Conclusions

In this thesis, the chaotic behavior in new Ge-Ku-van der Pol system is studied
by phase portraits, time history, Poincaré maps, Lyapunov exponent and bifurcation
diagrams.

In Chapter 3, a new double symplectic synchronization of a GKv system is
studied. The double symplectic synchronization is obtained by applying active control.
The generalized synchronization and symplectic synchronization are special cases for
the double symplectic synchronization. Two different chaotic dynamical systems, of
which one is a new GKv system are in double symplectic synchronization for three
cases. The Partner A are a new GKD-nonlinear-system, a new DGK nonlinear system
and a new GKM nonlinear system respectively. The simulation results show that the
proposed scheme is effective @and feasible for all chaotic systems. Double symplectic
synchronization of chaotic systems €an be used/to-increase the security of secret
communication.

Synchronization of real systems (expressed in real variables) has been widely
explored in several problems involving physical chemical and ecological systems,
human heartbeat regulation and secure communications. Yet synchronization of
complex state system is firstly studied. In Chapter 4, we converted a real variable
system to a complex variable system. A second-order of Ge-Ku real variable system
coupled with different first-order complex state equation of complex conjugate form,
and the results obtained present distinct chaotic behaviors.

Finally, synchronizations of three different chaotic systems are studied by
pragmatical adaptive control method. The pragmatical asymptotical stability theorem

fills the vacancy between the actual asymptotical stability and mathematical
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asymptotical stability. For traditional adaptive control of chaotic motion, the Babalat’s
lemma is used to prove the error vector approaches zero, as time approaches infinity.
But the question, why the estimated parameters also approach to the uncertain
parameters, remains no answer. By the pragmatical theorem of asymptotical stability
can be proved strictly that the common zero solution of error dynamics and of
parameter dynamics is asymptotically stable. The conditions of the Lyapunov
function for pragmatical asymptotical stability are lower than that for traditional
asymptotical stability.

Our studies indicate that generalized synchronization by applying pragmatical
active control is efficient and of wide applicability to synchronize chaotic system.

In Chapter 5, the different translation ,generalized synchronization chaotic of
systems is studied by pragmatical synchronization-and partial region stability theorem
method. Using GYC partial-region stability theorem, the Lyapunov function of
pragmatical synchronization used is.a“simple_linear, homogeneous function of states
and the lower order controllers are'much more simple.

It is important to note that different translation k;, k, are not arbitrary, two
proper values must chosen to make that the error dynamics always in first quadrant,
so give two more insurances are given for secret communication than other
synchronization methods. This method enlarges the effective scope of chaos
synchronization.

In Chapter 6, a simplest fuzzy controller (FLCC) is introduced to projective
synchronization of non-autonomous chaotic systems with stochastic disturbance.
Three main contributions can be concluded: (1) High performance of the convergence
of error states in synchronization; (2) Good-robustness in projective synchronization
of the chaotic systems with stochastic disturbance; (3) Simple constant controllers are

used, which can be easily obtained.
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Furthermore, due to the characters of FLCC, the mathematical models of studied
systems can be even entirely unknown, all we have to do is to capture the output
signals. Through the fuzzy logic rules, the strength of controllers can be adjusted via
the corresponding membership functions, the well robustness and high performance in
synchronization of these simplest controllers (FLCC) can be applied to various
systems with various perturbations, such as neuroscience, un-model bio-systems,
complicated brain network and so on.

In Chapter 7, a newfangled fuzzy model is proposed. A complicated nonlinear
system can be linearized to a simple form. Most importantly, it can break the
limitation of G-L fuzzy model.

Through the newfangled fuzzy model, there are two main contributions can be
included: (1) all the complex nonlinear chaoticSystems can be generated as two linear
subsystems with their corresponding membership functions; (2) only two gain matrix
are needed to synchronize the-two totally different chaotic systems. The numbers of
linear subsystems and gain matrix-are-hugely reduced and the simulation results show

the great effectiveness and feasibility of our new model.
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Appendix A
GYC Partial Region Stability Theory

A.1 Definition of the Stability on Partial Region
Consider the differential equations of disturbed motion of a nonautonomous

system in the normal form

dx,
dt

:XS('[,X11...,X”), (S:]_’...,n) (A.l)
where the function X, is defined on the intersection of the partial region Q
(shown in Fig. A1) and

> x2<H (A2)

and t>t,, where t, and H are certain positive,constants. X, which vanishes when
the variables x, are all zero, is a realwalued function of t, x,---,x,. It is assumed
that X, is smooth enough to-ensure the existence; uniqueness of the solution of the
initial value problem. WhenZ. X, does not <contain t explicitly, the system is
autonomous.

Obviously, x,=0 (s=1,---n) is a solution of Eq. (A.1). We are interested to
the asymptotical stability of this zero solution on partial region Q (including the
boundary) of the neighborhood of the origin which in general may consist of several
subregions (Fig. Al).

Definition 1:

For any given number & >0, if there exists a ¢ >0, such that on the closed

given partial region Q when

D X <6, (s=1---,n) (A.3)

forall t>t,, the inequality

127



Y xt<e, (s=1--n) (A.4)

is satisfied for the solutions of Eqg.(A.1) on €, then the disturbed motion

X, =0 (s=1,---n) isstable on the partial region Q.
Definition 2:
If the undisturbed motion is stable on the partial region , and there exists a

& >0, so that on the given partial region ©Q when

D x5 <8, (s=1--,n) (A5)

The equality
!Lrg(zs:xszo (A.6)

is satisfied for the solutions of Eg.(A.d),0on Q, then the undisturbed motion
X, =0 (s=1,---n) isasymptotically stable.onthe partial region Q.

The intersection of Q and+region defined by Eg.(A.5) is called the region of
attraction.
Definition of Functions V (t, x,,* =)

Let us consider the functions V(t,x,---,x,) given on the intersection Q, of

the partial region Q and the region

Y xt<h, (s=1---,n) (A7)

for t>t, >0, where t, and h are positive constants. We suppose that the functions
are single-valued and have continuous partial derivatives and become zero when
X =-=X,=0.
Definition 3:

If there exists t, >0 and a sufficiently small h>0, so that on partial region
Q, and t>t,, V>0 (or <0), then V is a positive (or negative) semidefinite, in

general semidefinite, function onthe Q, and t>t,.
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Definition 4:

If there exists a positive (negative) definitive function W(x,...x,) on Q,, so
that on the partial region Q, and t>t,

V -W >0 (or -V -W >0), (A.8)
then V(t,x,...,x,) is a positive definite function on the partial region Q, and
t>t,.

Definition 5:

If V(t x,...,X,) is neither definite nor semidefinite on Q, and t>t,, then
V(t,%,...,X,) is an indefinite function on partial region Q, and t>t,. That is, for
any small h>0 and any large t, >0, V(t x,...,X,) can take either positive or
negative value on the partial region Q, .and ,t>t,.

Definition 6: Bounded functiond/

If there exist t, >0, h>0,so thaton the'partial region Q,, we have

V(X X< L
where L is a positive constant, then'Vis-said-to be-bounded on Q, .

Definition 7:  Function with infinitesimal upper bound

If V is bounded, and for any A >0, there exists x>0, so that on Q, when

> x¢<u,and txt,, we have
S

V({t,X,...%)| <A
then V admits an infinitesimal upper bound on Q, .

A.2 GYC Theorem of Stability and of Asymptotical Stability on Partial Region

Theorem 1

If there can be found a definite function V(t,x,...,x,) on the partial region for

Eqg. (A.1), and the derivative with respect to time based on these equations are:
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dV av Z—Vs A9)
= ox,

Then, it is a semidefinite function on the paritial region whose sense is opposite to
that of V, or if it becomes zero identically, then the undisturbed motion is stable on the
partial region.

Proof:

Let us assume for the sake of definiteness that V is a positive definite function.
Consequently, there exists a sufficiently large number t, and a sufficiently small

number h < H, such that on the intersection Q, of partial region Q and
Y xt<h, (s=1...,n)

and t>t,, the following inequality isiSatisfied
V(t, Xy X2 WG - X)),
where W is a certain positive-definite function which-does not depend on t. Besides
that, Eq. (A.9) may assume only negative or zero value'in this region.
Let ¢ be an arbitrarily small positive-number. We shall suppose that in any case

e<h. Let us consider the aggregation of all possible values of the quantities

X.,---, X, , Which are on the intersection @, of Q, and

[RAT]

Y xt=g, (A.10)

and let us designate by |>0 the precise lower limit of the function W under this
condition. By virtue of Eq. (A.8), we shall have

V(t,x,...,x,) =1 for (x,...,x,) on w,. (A.11)

We shall now consider the quantities x, as functions of time which satisfy the

differential equations of disturbed motion. We shall assume that the initial values x,

of these functions for t=t, lie on the intersection Q,of Q,and the region
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Y xt<s, (A.12)

where ¢ is so small that
V (), Xy, X o) <1 (A.13)
By virtue of the fact that V(t,,0,...,0) =0, such a selection of the number s is
obviously possible. We shall suppose that in any case the number & is smaller than
¢ .Then the inequality

3 xt<e, (A.14)

being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently

small t—t,, since the functions x,(t) very continuously with time. We shall show
that these inequalities will be satisfied for all values t>t,. Indeed, if these
inequalities were not satisfied at sometime, there'would have to exist such an instant
t=T for which this inequality ‘would-become an.equality. In other words, we would

have
D xM=¢
and consequently, on the basis of Eq. (A.11)

VT (T, (T) 21 (A.15)

On the other hand, since & < h, the inequality (Eq.(A.7)) is satisfied in the entire
interval of time [to, T], and consequently, in this entire time interval (jj—\t/so. This

yields
VT, % (T),.... %, (T)) SV (t;, X, X0)s
which contradicts Eqg. (A.14) on the basis of Eq. (A.13). Thus, the inequality

(Eg.(A.4)) must be satisfied for all values of t >t,, hence follows that the motion is
stable.

Finally, we must point out that from the view-point of mathenatics, the stability
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on partial region in general does not be related logically to the stability on whole
region. If an undisturbed solution is stable on a partial region, it may be either stable
or unstable on the whole region and vice versa. In specific practical problems, we do

not study the solution starting within Q, and running out of Q.

Theorem 2

If in satisfying the conditions of Theorem 1, the derivative Cj:i_\t/ is a definite

function on the partial region with opposite sign to that of V and the function V itself
permits an infinitesimal upper limit, then the undisturbed motion is asymptotically
stable on the partial region.

Proof:

Let us suppose that V is a positive, definite function on the partial region and that
consequently, (ll_\t/ Is negative-definite: Thus on the intersection Q, of Q and the

region defined by Eq. (A.7) and t>t, there will be satisfied not only the inequality

(Eqg.(A.8)), but the following inequality as well:

Z—\:S—Wl(xl,...xn), (A.16)

where W, is a positive definite function on the partial region independent of t.

Let us consider the quantities x, as functions of time which satisfy the
differential equations of disturbed motion assuming that the initial values x_, = x.(t,)
of these quantities satisfy the inequalities Eq. (A.12). Since the undisturbed motion is

stable in any case, the magnitude 6 may be selected so small that for all values of

t>t, the quantities x, remain within Q,. Then, on the basis of Eq. (A.16) the
derivative of function V(t,x(t),...,x,(t)) will be negative at all times and,
consequently, this function will approach a certain limit, as t increases without limit,

remaining larger than this limit at all times. We shall show that this limit is equal to

some positive quantity different from zero. Then for all values of t>t, the following
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inequality will be satisfied:
V(t, % (1),....,x, (1) > (A.17)
where o >0.
Since V permits an infinitesimal upper limit, it follows from this inequality that

DY xEt) =4, (s=1...,n), (A.18)

where A is a certain sufficiently small positive number. Indeed, if such a number A

did not exist, that is , if the quantity sz (t) were smaller than any preassigned

number no matter how small, then the magnitude V (t,x(t),...,x,(t)), as follows

from the definition of an infinitesimal upper limit, would also be arbitrarily small,
which contradicts Eq. (A.17).

If for all values of t>t, the'inequality Eg.((A.18) is satisfied, then Eq. (A.16)

shows that the following inequality will be satisfied at all times:

where |, is positive number different from zere“which constitutes the precise lower
limit of the function W,(t, x,(t),..., x,(t)) under condition Eq. (A.18). Consequently,

for all values of t>t, we shall have:
tdV
V(t, x (t),..., X, (1)) :V(to,xm,...,xno)+jtoadt <V (g, Xygs -+ Xo0) —h (T —1,),

which is, obviously, in contradiction with Eq.(A.17). The contradiction thus obtained

shows that the function V (t,x(t),...,x,(t)) approached zero as t increase without
limit. Consequently, the same will be true for the function W (x,(t),..., x,(t)) as well,
from which it follows directly that

!Lrgxs(t) =0, (s=1...,n),

which proves the theorem.

133



T

subreglio;\ 2I
Q

N~ subregion 3 '

Fig. A.1. Partial regions Q and Q,

134



Appendix B
Pragmatical Asymptotical Stability Theory

The stability for many problems in real dynamical systems is actual
asymptotical stability, although may not be mathematical asymptotical stability. The
mathematical asymptotical stability demands that trajectories from all initial states in
the neighborhood of zero solution must approach the origin as t—oo. If there are
only a small part or even a few of the initial states from which the trajectories do not
approach the origin as t—oo, the zero solution is not mathematically
asymptotically stable. However, when the probability of occurrence of an event is
zero, it means the event does not occur actually. If the probability of occurrence of
the event that the trajectries from the initial StateSdare that they do not approach zero
when t—o0, is zero, the stability of zero solution is. actual asymptotical stability
though it is not mathematical asymptotical stability. In order to analyze the
asymptotical stability of the eguiltbrium“point of‘such systems, the pragmatical

asymptotical stability theorem is used.

Let X and Y be two manifolds of dimensions m and n (m<n), respectively, and

@ be a differentiable map from X to Y, then @(X) is subset of Lebesque measure

0 of Y [61]. For an autonomous system

dx

E_f(xi,...,xn) (B'l)

where x=[x,--, x,] isa state vector, the function f =[f,,---, f,] is defined on

DcR" and |x|<H>0. Let x=0 be an equilibrium point for the system (B-1).
Then
£(0)=0 (B-2)

For a nonautonomous systems,
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X= (X, X ) (B-3)

where  x=[x,...,X,,,]' , the function f=[f,.,f1] is define on

DcR"xR, here t=x,, <R, .The equilibrium point is

nil
f(0X,, 3 - (B-4)
Definition The equilibrium point for the system (B-1) is pragmatically
asymptotically stable provided that with initial points on C which is a subset of
Lebesque measure 0 of D, the behaviors of the corresponding trajectories cannot be
determined, while with initial points on D —C, the corresponding trajectories behave

as that agree with traditional asymptotical stability [38,39].

Theorem Let V =[x, -+, X,]' : D—R, be positive definite and analytic on D,
where x;,x,,...,x, are all space coordinates.such that the derivative of V through
Eq. (A-1)or(A-3), V , is negative semi-definite of [x;%,,---, x,1" .

For autonomous system, “Let X be the m-manifold consisted of point set for
which vx=0, V(x)=0 and D is‘a f=manifold. If m+1<n, then the equilibrium
point of the system is pragmatically asymptotically stable.

For nonautonomous system, let X be the m+1-manifold consisting of point
set of which Vx#0,V (X, X,,..,Xx,)=0and Dis n+1-manifold. If m+1+l<n+1,

i.e.m+1< nthen the equilibrium point of the system is pragmatically asymptotically
stable. Therefore, for both autonomous and nonautonomous system the formula
m+1<nis universal. So the following proof is only for autonomous system. The
proof for nonautonomous system is similar.

Proof Since every point of X can be passed by a trajectory of Eqg. (B-1), which
is one- dimensional, the collection of these trajectories, A, is a (m+1)-manifold [38,

39].
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If m+1<n, then the collection C is a subset of Lebesque measure 0 of D. By
the above definition, the equilibrium point of the system is pragmatically
asymptotically stable.

If an initial point is ergodicly chosen in D, the probability of that the initial
point falls on the collection C is zero. Here, equal probability is assumed for every
point chosen as an initial point in the neighborhood of the equilibrium point. Hence,
the event that the initial point is chosen from collection C does not occur actually.
Therefore, under the equal probability assumption, pragmatical asymptotical stability
becomes actual asymptotical stability. When the initial point falls on D-C,
V(x) <0, the corresponding trajectories behave as that agree with traditional
asymptotical stability because by the existence and uniqueness of the solution of
initial-value problem, these trajectories never-meet.C:

In Eq. (B-2-7) V is a positive definite function of.n variables, i.e. p error state
variables and n-p=m differences between unknown and estimated parameters, while
V =e'Ce is a negative semi-definite-function-6f.n variables. Since the number of
error state variables is always more than one, p>1, m+1<n is always satisfied, by
pragmatical asymptotical stability theorem we have

lime=0 (B-5)

toa
and the estimated parameters approach the uncertain parameters. The pragmatical
adaptive control theorem is obtained. Therefore, the equilibrium point of the system is
pragmatically asymptotically stable. Under the equal probability assumption, it is

actually asymptotically stable for both error state variables and parameter variables.
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