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摘要 

本篇論文以相圖、龐卡萊映射圖、李亞普洛夫指數以及分歧圖等數值方法研

究新 Ge-Ku-van der Pol 系統的渾沌現象。對此系統應用部分區域穩定性理論和

實用漸進穩定理論來達成廣義同步；應用主動控制獲得雙重及多重渾沌交織同

步。更進一步使用新模糊模型來研究 Sprott 22 系統的模糊模型化和渾沌同步。

此外，將探討新模糊邏輯常數控制器應用在投影同步及含有不確定度的渾沌系

統。在以上研究中，皆可由相圖和時間歷程圖得到驗證。 
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Abstract 

In this thesis, the chaotic behavior in new Ge-Ku-van der Pol system is studied 

by phase portraits, time history, Poincaré maps, Lyapunov exponent and bifurcation 

diagrams. A new kind of chaotic generalized synchronization, different translation 

pragmatical generalized synchronization, is obtained by pragmatical asymptotical 

stability theorem and partial region stability theory. Second new type for chaotic 

synchronization, double and multiple symplectic synchronization, are obtained by 

active control. A new method, using new fuzzy model, is studied for fuzzy modeling 

and synchronization of Sprott 22 systems. Moreover, the new fuzzy logic constant 

controller is studied for projective synchronization and chaotic system with 

uncertainty. Numerical analyses, such as phase portraits and time histories can be 

provided to verify the effectiveness in all above studies. 
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Chapter 1 

Introduction 

Since Pecora and Carroll proposed the concept of chaotic synchronization [1] in 

1990, chaos synchronization has become a hot subject in the field of nonlinear science 

due to its wide-spread potential application in various disciplines. The various types 

of synchronization, such as generalized synchronization [2-4], phase synchronization 

[5-7], lag synchronization [8-10], inverse synchronization [11-12], partially 

synchronization [13-14], Q-S synchronization [15-17], LMI-based synchronization 

[18], extended backstepping sliding mode controlling technique [19] and , projective 

synchronization [20-23] are investigated extensively in the past years. 

In Chapter 2, we give the dynamic equations of a new Ge-Ku-van der Pol (GKv) 

[24] system and its chaotic behaviors are studied. 

In Chapter 3, the symplectic synchronization [25] is expressed as 𝑦 = 𝐹 𝑥, 𝑦, 𝑡 , 

where 𝑥, 𝑦 are the state vectors of the “master” and of the “slave”, respectively. The 

final desired state 𝑦 of the “slave” system not only depends upon the “master” 

system state 𝑥 but also depends upon the “slave” system state 𝑦 itself. Therefore the 

“slave” system is not a traditional pure “slave” obeying the “master” system 

completely but plays a role to determine the final desired state of the “slave” system.  

Since the “slave” 𝑦 plays an interwined role, this type of synchronization is called 

symplectic synchronization, and call the “master” system Partner A, the slave system 

Partner B. We propose a new type of double symplectic synchronization, 𝐺 𝑥, 𝑦, 𝑡 =

𝐹 𝑥, 𝑦, 𝑡 . This idea is an extension of symplectic synchronization, 𝑦 = 𝐹 𝑥, 𝑦, 𝑡 . 

Due to the complexity of the form of the double symplectic synchronization, it may 

be applied to increase the security of secret communication. The Gkv system is used 

as an example system for double symplectic scheme, while the synchronization is 
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derived based on Barbalat’s lemma [26] and active control. 

  Chaos generalized synchronization is a very important methodology, which has 

been studied to date extensively on chaotic dynamical systems described by real 

variables [27-29]. However, there also are many interesting cases involving complex 

variables which are scarcely explored. In Chapter 4 design different complex 

conjugate form to couple with Ge-Ku real variable nonlinear system [30-31], different 

chaotic behaviors appear. Chaos generalized synchronization is accomplished by 

applying pragmatical active control. 

In current scheme of adaptive control of chaotic motion [32-37], the Babalat’s 

lemma [26] is used to prove the error vector approaches zero, as time approaches 

infinity. But the question, why the estimated parameters also approach to the uncertain 

parameters, remains no answer. 

In Chapter 5, a new chaos generalized synchronization strategy by different shift 

pragmatical synchronization [38-40] and stability theory of partial region [41-43] is 

proposed. By using the different shift pragmatical synchronization and stability theory 

of partial region, the Lyapunov function is a simple linear homogeneous function of 

error states and the controllers are more simple and have less simulation error because 

they are in lower degree than that of traditional controllers, for which the Lyapunov 

function is a quadratic form of error states, and the question of that why the estimated 

parameters also approach uncertain parameters can be answered strictly. 

In Chapter 6, we propose a new strategy [44] to design simplest constant number 

controllers which achieve projective synchronization of uncertainty chaotic systems. 

Furthermore, in chaos synchronization, most publications often assume that the 

synchronization system is without external disturbances. However, in practical 

applications, it is hard to avoid external disturbances due to uncontrollable 

environmental conditions. The implementation of control inputs of practical systems 
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is frequently subject to uncertainties as a result of physical limitations. Thus, the 

derivation of a robust synchronization controller to resist the disturbance is an 

important problem. 

In recent years, some chaos synchronizations based on fuzzy systems have been 

proposed since the fuzzy set theory was initiated by Zadeh [45]. The fuzzy logic 

control (FLC) scheme has been widely developed and successfully applied to many 

applications [44]. Yau and Shieh [46] proposed an amazing new idea in designing 

fuzzy logic controllers. The constructed fuzzy rules subject to a common Lyapunov 

function such that the master-slave chaos systems satisfy stability in the Lyapunov 

sense. In [46], there are two main controllers in their slave system. One is used in 

elimination of nonlinear terms and the another is built by fuzzy rules subjected to a 

common Lyapunov function. Therefore the resulting controllers are in nonlinear form. 

In [46], the regular form is necessary. In order to carry out the new method, the 

original system must to be transformed into their regular form.  

In this Chapter, a simplest fuzzy logic constant controller (FLCC) which is 

derived via fuzzy logic design and Lyapunov direct method is presented for projective 

synchronization of non-autonomous chaotic systems with uncertain and stochastic 

disturbances. The constant numbers in controllers are decided by the upper bound and 

the lower bound of the error derivatives. Use this fuzzy logic constant controller 

(FLCC) approach, a simplest controller, i.e. constant controller, can be obtained and 

the difficulty in realization of complicated controllers in chaos synchronization by 

Lyapunov direct method can be also coped. Different form conventional approaches, 

the resulting control law has less maximum magnitude of the instantaneous control 

command and it can reduce the actuator saturation phenomenon in real physical 

system. 

In Chapter 7, a newfangled fuzzy model is used to simulate and synchronize 
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GKv system, extended GKv system and Ge-Ku-Mathieu (GKM) system. In recent 

years, fuzzy logic proposed by L. A. Zadeh [45] has received much attention as a 

powerful tool for the nonlinear control. Among various kinds of fuzzy methods, 

Takagi-Sugeno fuzzy (T-S fuzzy) system is widely accepted as a useful tool for design 

and analysis of fuzzy control system [47-51]. Currently, some chaos control and 

synchronization based on T-S fuzzy systems have been proposed, such as fuzzy 

sliding mode controlling technique [52-54], LMI-based synchronization [55-57] and 

robust control [58]. These researches all focus on two identical nonlinear systems. 

Furthermore, two different nonlinear systems may have different numbers of 

nonlinear terms. It causes different numbers of linear subsystems. For synchronization 

of two different nonlinear systems, the traditional method using the idea of PDC to 

design the fuzzy control law for stabilization of the error dynamics can not be used 

here, since the number of subsystems becomes very large.  

In this Chapter, the newfangled fuzzy model is proposed. In traditional 

Takagi-Sugeno fuzzy model (T-S fuzzy model) [47], the process of fuzzy modeling 

focus on the whole system. Therefore, there will be linear subsystems (according to 

fuzzy rules) and equations in the T-S fuzzy system, where N is the number of 

nonlinear terms and m is the order of the system. If N is large, the number of linear 

subsystems in T-S fuzzy system is huge. It becomes more inefficient and complicated. 

In Ge-Li fuzzy model (G-L fuzzy model) [59], we focus on each equation of the 

system. The numbers of fuzzy rules can be reduced from N2 to N2 . The fuzzy 

equations become much simpler. However, the limitation of G-L fuzzy model is that 

there should be one nonlinear terms in each equation. Consequently, the newfangled 

fuzzy model is proposed to solve this defect－all nonlinear terms in each equation 

will be treated as one nonlinear term. It can be used to model various kinds of 

complex nonlinear systems, even if the nonlinear terms are copious and complicated. 
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Ge-Ku-van der Pol (GKv) systems and Ge-Ku-Mathieu (GKM) system are illustrated 

in numerical simulations to show the effectiveness and feasibility of new model. And 

in Chapter 8, conclusions are drawn.  
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Chapter 2 

Chaos of a New Ge-Ku-van der Pol System 

2.1 Preliminary 

In this Chapter, the chaotic behaviors of a new Ge-Ku-van der Pol (GKv) system 

is studied numerically by phase portraits, time histories, Poincaré maps, Lyapunov 

exponents, and bifurcation diagrams. 

2.2 Description of New GKv System 

Ge and Ku [24] gave a chaotic system formed by simple pendulum with its pivot 

rotating about an axis as Fig 2.1. This chaotic system is  

 
1 2

2 1 2 1 1 1 1 1sin ( cos sin )

x x

x a x x b c x d t




    
                         (2.1) 

where 1 1 1 1, , ,a b c d  are parameters. After simplification 
1 1sin( )x x , 

2
1

1 2
cos( ) 1

x
x    

addition of coupling terms, combining with van-der-Pol equation 

3 4

2

4 1 3 1 3 4 1(1 ) sin( )

x x

x g x h x x l t




     
                               (2.2) 

where 1 1 1, ,g h l are parameters and sin( )t  is substuted by 3x , we get the Gkv system 

1 2

2

2 2 3 1 3

2

3 3 3 2 1

( ( ) )

(1 )

x x

x ax x b c x dx

x gx h x x lx




    


    
    

                                (2.3) 

where , , , , , ,a b c d g h l  are parameters. 

2.3 Computational Analysis of a New GKv System 

For numerical analysis of computation, this system exhibits chaos when the 

parameters of system are 0.08, 0.35, 100.56, 1000.02, 0.61,a b c d g h         

0.08, 0.01l   and the initial states of system are 1 2 3(0) 0.01, (0) 0.01, (0) 0.01x x x   . 

The bifurcation diagram by changing damping parameter a  is shown in Fig. 2.2. Its 
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corresponding Lyapunov exponents are shown in Fig. 2.3. The phase portraits, time 

histories, and Poincaré maps of the systems are showed in Fig. 2.4~Fig. 2.8.When 

a=0.206572, period 1 phenomena are shown in Fig. 2.4. When a=0.216232, period 2 

phenomena are shown in Fig. 2.5. When a=0.218164, period 4 phenomena are shown 

in Fig. 2.6. When a=0.21913, period 8 phenomena are shown in Fig. 2.7.When 

a=0.08, the chaotic behaviors and time histories are given in Fig. 2.8 and Fig. 2.9. 
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Fig 2.1. The pendulum on rotating arm. 

 

 

Fig. 2.2 The bifurcation diagram for new GKv system. 
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Fig. 2.3 The Lyapunov exponents for new GKv system. 

 

 

Fig. 2.4 Phase portrait and Poincaré maps for new GKv system with a=0.206572 

(period 1). 
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Fig. 2.5 Phase portrait and Poincaré maps for new GKv system with a=0.216232 

(period 2). 

 Fig. 2.6 Phase portrait and Poincaré maps for new GKv system with a=0.218164 

(period 4). 
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 Fig. 2.7 Phase portrait and Poincaré maps for new GKv system with a=0.21913 

(period 8). 

 

 

Fig. 2.8 Phase portrait and Poincaré maps for new GKv system with a=0.08 (chaos). 
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Fig. 2.9 Time histories for new GKv system with a=0.08 (chaos). 
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Chapter 3 

Double Symplectic Synchronization for Ge-Ku-van-der-Pol 

system 

3.1 Preliminary 

In this Chapter, a new double symplectic synchronization of chaotic system is 

studied. The chaotic system studied is a new GKv system. Double symplectic 

synchronization is an extension of symplectic synchronization, ( , , )ty F x y . Since 

the symplectic functions are presented at both sides of the equality, it is called double 

symplectic synchronization ( , , ) ( , , )t tG x y F x y . The double symplectic 

synchronization is accomplished based on Barbalat’s lemma and active control. 

Numerical simulations are given to show that the proposed scheme is applied 

successfully to both autonomous and non-autonomous chaotic systems. 

3.2 Double Symplectic Synchronization Scheme  

Consider two different nonlinear chaotic systems, Partner A and Partner B, 

described by 

    ( , )tx f x ,                                                    (3.1) 

    ( ) ( , )t ty C y + g y u ,                                          (3.2) 

where 
T

1 2[ , , , ] n

nx x x Rx and 
T

1 2[ , , , ] n

ny y y Ry  are the state vectors of 

Partner A and Partner B, 
n nRC  is a give matrix, f andg are continuous nonlinear 

vector functions, and u  is the controller. Our goal is to design the controller u  such 

that ( , , )tG x y asymptotically approaches ( , , )tF x y , where ( , , )tG x y  and ( , , )tF x y  

are two given functions. For simplicity we take ( , , )tG x y x y  and F  is a 

continuous nonlinear vector function. 
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Property [24]: An m n  matrix A  of real elements defines a linear mapping 

y Ax  from nR  into mR , and the induced p-norm of A  for 1, 2, andp  

is given by 

    

1 2
T

max1 2
1 1

max , ( ) , max .
m n

ij ij
j i

i j

A a A A A A a         (3.3) 

The useful property of induced matrix norms for real matrix A  is as follow: 

    2 1
A A A                                               (3.4) 

    Theorem 1 : For chaotic systems of Partner A (3.1) and of Partner B (3.2), if the 

controller u  is designed as 

    

1( ) [ ( , ) ( ( ) ( , ) ) ( , ) ( , )

( ) ( ) ( ) ] ,

tt t t t t

t

y x yu I D F D F f x D F C y g y D F f x g y

C x F K x y F
  (3.5) 

where 
xD F , yD F , 

tD F  are the Jacobian matrices of ( , , )tF x y , 

1 2diag( , , , )mk k kK , and satisfies 

    

m i n ( )
1

( )

ik

tC
,                                                   (3.6) 

then the double symplectic synchronization will be achieved. 

Proof: Define the error vectors as 

    ( , , )te x y F x y,                                            (3.7) 

then the following error dynamics can be obtained by introducing the designed 

controller 

    

( , ) ( ) ( , ) ( , ) ( ( ) ( , ) )

( )

( ( ) )

t

t

d

dt

t t t t t t

t

x y

x y

y

e
e x y D Fx D Fy D F

f x C y g y D Ff x D F C y g y D F

I D F u

C K e

 (3.8) 
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Choose a positive definite Lyapunov function of the form 

    

T1
( )

2
V t e e                                              (3.9) 

Taking the time derivative of ( )V t  along the trajectory of Eq. (3.8), we have 

    

T

T T

2 2

2

( )

( )

( ) min( )

( ( ) min( ))

i

i

V t

t

t k

t k

e e

e C e e Ke

C e e

C e

                                  (3.10) 

Since min( ) ( ) 0iM k tC , then
2

( ) 2 ( )V t M MV te . Therefore, it 

can be obtained that 

    
2( ) ( 0 ) eMtV t V                                               (3.11) 

and 
0

lim ( )
t

t
V d  is bounded. Besides, ( )V t  is uniformly continuous. According 

to Barbalat’s lemma [26], the conclusion can be drawn that lim ( ) 0
t

V t , i.e. 

lim ( ) 0
t

te . Thus, the double symplectic synchronization can be achieved 

asymptotically. 

3.3 Synchronization of Two Different New Chaotic Systems 

Case 1. 

Consider a new Ge-Ku-Duffing(GKD) system as Partner A described by 

1 2

2

2 2 1 1 3

3

3 3 3 2 1

x x

x ax x b c x dx

x x x fx gx

                                  (3.12) 

where 0.1, 1, 40, 54, 6, 30a b c d f g and the initial conditions are 

1 2 3 x (0) 2, x (0) 2.4 ,x (0) 5 . Eq. (3.12) can be rewritten in the form of Eq. (3.1), 
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where 

2

2

2 1 1 3

3

3 3 2 1

( , )

x

x t ax x b c x dx

x x fx gx

f .  

The chaotic attractor of the new GKD system is shown in Fig. 3.1. 

The controlled GKv system is considered as Partner B described by 

1 2 1

2

2 2 3 1 3 2

2

3 3 3 2 1 31

y y u

y my y n v y py u

y qy r y y sy u

                             (3.13) 

where 0.08, 0.35, 100.56, 1000.02, 0.61, 0.08, 0.01m n v p q r s , 

T

1 2 3, ,u u uu  is the controller, and the initial conditions are 
1(0) 5.2y , 

2 (0) 50y , 
3(0) 4.5y . The chaotic attractor of uncontrolled new GKv system is 

shown in Fig. 3.2. The Eq. (3.13) can be rewritten in the form of Eq. (3.2), where 

0 1 0

( ) 0t m nv

s r q

C  and 2 2

1 3 3

2

2 3

0

( , )y t ny y yx

ry y

g .  

By applying Property 1, it is derived that 
1

( )t nv qC , ( )t m nvC , 

and 
2

( ) ( ) 1214.52t nv q m nvC . Then ( ) 34tC  is estimated. 

Define 

1 1

2 2

3 3

sin

( , , ) sin

sin

x y

t x y

x y

F x y , and our goal is to achieve the double symplectic 

synchronization ( , , )tx y F x y .  According to Theorem, the inequality 

min( )
1

( )

ik

tC
 must be satisfied. It can be obtained that min( ) 34ik . Thus we choose 

1

2

3

0 0 35 0 0

0 0 0 36 0

0 0 0 0 37

k

k

k

K  and design the controller as 
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1 2 1 1 2 1 2 2 1 1 1 1

2

2 2 1 1 3 2 2 2

2 2

2 3 1 3 2 3 1 3

2 2 2 2

3

3 3 3 2 1 3 3 3

sin cos sin

(sin 1) cos( )

       

       sin

( )(sin 1) cos( )

 

u x y x y y x y x y x y

u ax x b c x dx y x y

my y n v y py my y n v y py

x y x y

u x x fx gx y x y

2 2

3 3 2 1 3 3 2 1

3 3 3 3

      (1 ) (1 )

       sin

qy r y y sy qy r y y sy

x y x y

     (3.14) 

The theorem is satisfied and the double symplectic synchronization is achieved. 

The chaotic attractor of the controlled GKv system is shown in Fig. 3.3, the time 

histories of double symplectic synchronization and the time histories of the state 

errors are shown in Fig. 3.4 and Fig. 3.5 respectively. 

Case 2. 

Consider a new Double Ge-Ku(DGK) system as Partner A described by 

1 2

2

2 2 1 1 3

2

3 3 3 3 1

x x

x ax x b c x dx

x ax x b c x ex

                                  (3.15) 

where 0.5, 1.4, 1.9, 4.5, 6.2a b c d e  and the initial conditions are 

1 2 3 x (0) 0.01, x (0) 0.01, x (0) 0.01 . Eq. (3.15) can be rewritten in the form of 

Eq. (3.1), where 

2

2

2 1 1 3

2

3 3 3 1

( , )

x

x t ax x b c x dx

ax x b c x ex

f . The chaotic attractor of the 

new DGK system is shown in Fig. 3.6.  

The controlled GKv system is considered as Partner B described by 
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1 2 1

2

2 2 3 1 3 2

2

3 3 3 2 1 31

y y u

y my y n v y py u

y qy r y y sy u

                            (3.16) 

where 0.08, 0.35, 100.56, 1000.02, 0.61, 0.08, 0.01m n v p q r s ,

T

1 2 3, ,u u uu  is the controller, and the initial conditions are 
1(0) 10y , 

2 (0) 7y , 

3(0) 10y . Eq. (3.16) can be rewritten in the form of Eq. (3.2), where 

0 1 0

( ) 0t m nv

s r q

C  and 2 2

1 3 3

2

2 3

0

( , )y t ny y yx

ry y

g .  

By applying Property 1, it can be derived that 
1

( )t nv qC , 

( )t m nvC , and 
2

( ) ( ) 1214.52t nv q m nvC . Then 

( ) 34tC  is estimated. 

Define 

1 1

2 2

3 3

sin

( , , ) sin

sin

x y

t x y

x y

F x y , and our goal is to achieve the double symplectic 

synchronization ( , , )tx y F x y .  According to Theorem, the inequality 

min( )
1

( )

ik

tC
 must be satisfied. It can be obtained that min( ) 34ik . Thus we choose 

1

2

3

0 0 35 0 0

0 0 0 36 0

0 0 0 0 37

k

k

k

K  and design the controller as 
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1 2 1 1 2 1 2 2 1 1 1 1

2

2 2 1 1 3 2 2 2

2 2

2 3 1 3 2 3 1 3

2 2 2 2

2

3 3 3 3 1 3 3

sin cos sin

(sin 1) cos( )

       

       sin

(sin 1) co

u x y x y y x y x y x y

u ax x b c x dx y x y

my y n v y py my y n v y py

x y x y

u ax x b c x ex y x 3

2 2

3 3 2 1 3 3 2 1

3 3 3 3

s( )

       (1 ) (1 )

       sin

y

qy r y y sy qy r y y sy

x y x y

     (3.17) 

The theorem is satisfied and the double symplectic synchronization is achieved. 

The chaotic attractor of the controlled GKv system is shown in Fig. 3.7, the time 

histories of double symplectic synchronization and the time histories of the state 

errors are shown in Fig. 3.8 and Fig. 3.9, respectively. 

Case 3. 

Consider a new Ge-Ku-Mathieu(GKM) system as Partner A described by 

1 2

2

2 2 1 1 2 3

3 1 3 2 1 3

x x

x ax x b c x dx x

x g hx x lx ex x

                                (3.18) 

where 0.6, 5, 11, 0.3, 8, 10, 0.5, 0.2a b c d g h l e  and the initial 

condition is 1 2 3(0) 0.01, x (0) 0.01,  x (0) 0.01x . Eq. (18) can be rewritten in the 

form of Eq. (3.1), where 

2

2

2 1 1 2 3

1 3 2 1 3

 ( , )

x

x t ax x b c x dx x

g hx x lx ex x

f  . The chaotic 

attractor of the new GKM system is shown in Fig. 3.10. 

The controlled GKv system is considered as Partner B described by 

1 2 1

2

2 2 3 1 3 2

2

3 3 3 2 1 31

y y u

y my y n v y py u

y qy r y y sy u

                            (3.19) 

where 0.08, 0.35, 100.56, 1000.02, 0.61, 0.08, 0.01m n v p q r s , 
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T

1 2 3, ,u u uu  is the controller, and the initial conditions are 
1(0) 1.5y , 

2 (0) 20y , 
3(0) 15.2y . Eq. (3.19) can be rewritten in the form of Eq. (3.2), where 

0 1 0

( ) 0t m nv

s r q

C  and 2 2

1 3 3

2

2 3

0

( , )y t ny y yx

ry y

g . 

By applying Property 1, it is derived that 
1

( )t no qC , ( )t m nvC , 

and 
2

( ) ( ) 1214.52t nv q m nvC . Then ( ) 34tC  is estimated. 

Define 

1 1

2 2

3 3

sin

( , , ) sin

sin

x y

t x y

x y

F x y , and our goal is to achieve the double symplectic 

synchronization ( , , )tx y F x y . According to Theorem, the inequality 

min( )
1

( )

ik

tC
 must be satisfied. It can be obtained that min( ) 34ik . Thus we choose 

1

2

3

0 0 35 0 0

0 0 0 36 0

0 0 0 0 37

k

k

k

K  and design the controller as 

1 2 1 1 2 1 2 2 1 1 1 1

2

2 2 1 1 2 3 2 2 2

2 2

2 3 1 3 2 3 1 3

2 2 2 2

3 1 3 2 1 3 3 3

sin cos sin

(sin 1) cos( )

       

       sin

(sin 1) cos(

u x y x y y x y x y x y

u ax x b c x dx x y x y

my y n v y py my y n v y py

x y x y

u g hx x lx ex x y x y3

2 2

3 3 2 1 3 3 2 1

3 3 3 3

)

       (1 ) (1 )

       sin

qy r y y sy qy r y y sy

x y x y

     (3.20) 

The theorem is satisfied and the double symplectic synchronization is achieved. 

The chaotic attractor of the controlled GKv system is shown in Fig. 3.11, the time 

histories of double symplectic synchronization and the time histories of the state 

errors are shown in Fig. 3.12 and Fig. 3.13, respectively. 
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Fig. 3.1 The chaotic attractor of a new GKD system. 

 

 

Fig. 3.2 The chaotic attractor of uncontrolled new GKv system. 
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Fig. 3.3 The chaotic attractor of the controlled new GKv system for Case1. 

 

 

Fig. 3.4 Time histories of i ix y  and sini ix y  for Case 1. 
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Fig. 3.5 Time histories of the state errors for Case 1. 

 

 

Fig. 3.6 The chaotic attractor of a new DGK system. 
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Fig. 3.7 The chaotic attractor of the controlled new GKv system for Case 2. 

 

 

Fig. 3.8 Time histories of i ix y  and sini ix y  for Case 2. 
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Fig. 3.9 Time histories of the state errors for Case 2. 

 

 

Fig. 3.10 The chaotic attractor of a new GKM system. 
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Fig. 3.11 The chaotic attractor of the controlled new GKv system for Case3. 

 

 

Fig. 3.12 Time histories of i ix y  and sini ix y  for Case 3. 
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Fig. 3.13 Time histories of the state errors for Case 3. 
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Chapter 4 

Complex State Chaotic System with Pragmatical Adaptive 

Synchronization 

4.1 Preliminary 

In this Chapter, the main objective of this work is to investigate the chaotic 

behavior and chaos generalized synchronization of two identical three creative 

complex state dynamic systems. This three complex state system consists of a 

second-order Ge-Ku complex system and one of three different single complex 

systems respectively. We reduce the three complex state systems to five real state 

systems by pragmatical stability theory. Chaos is found for them and generalized 

synchronizations are accomplished for these five real state systems. Since three 

complex dynamic systems are creative, the security is highly increased if they are 

used for secret communication. Numerical simulations are given to show that the 

proposed scheme is applied successfully. 

4.2 The Scheme of Pragmatical Generalized Synchronization by   

Adaptive Control 

There are two identical nonlinear dynamical systems, and the master system 

controls the slave system. The master system is given by 

( , )f x Ax x B ,                                               (4.1) 

where 1 2[ , ,..., ]T

n nx x x R x  denotes a state vector, A  is an n n  uncertain 

constant coefficient matrix, f  is a nonlinear vector function, and B  is a vector of 

uncertain constant coefficients in f . 

The slave system is given by 

ˆ ˆ( , ) ( )f t  y Ay y B u ,                                         (4.2) 
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where 1 2[ , ,..., ]T

n ny y y R y  denotes a state vector, Â  is an 𝑛 × 𝑛  estimated 

coefficient matrix, B̂  is a vector of estimated coefficients in f  , and 1( ) [ ( ),t u tu   

2 ( ),..., ( )]T n

nu t u t R  is a control input vector. 

Our goal is to design a controller ( )tu  so that the state vector of the slave 

system Eq. (4.2) asymptotically approaches the state vector of the master system Eq. 

(4.1) plus a given chaotic vector function 1 2( ) [ ( ), ( ),..., ( )]T

nt F t F t F tF . This is a 

special kind of generalized synchronization. 𝑦 is a given function of 𝑥 : 

( ) ( )x t  y G x F .                                             (4.3) 

The synchronization can be accomplished when t  , the limit of the error 

vector 1 2( ) [ ( ), ( ),..., ( )]T

nt e t e t e te approaches zero: 

    l i m 0
t

e ,                                                     (4.4) 

where 

( )t  e x y F .                                                (4.5) 

From Eq. (4.5) we have 

( )t  e x y F ,                                                (4.6) 

ˆ ˆ( , ) ( , ) ( ) ( )f f t t     e Ax Ay x B y B F u .                         (4.7) 

A Lyapunov function ( , , )V e A B  is chosen as a positive definite function 

1 1 1
( , , )

2 2 2

T T TV e e  e A B AA BB ,                                (4.8) 

where ˆ A A A , ˆ B B B , A  and B  are two column matrices whose elements 

are all the elements of matrix A  and of matrix B  respectively. 

Its derivative along any solution of the differential equation system consisting of 

Eq. (4.7) and update parameter differential equations for A and B is 
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ˆ ˆ( , , ) [ ( , ) ( , ) ( ) ( )]

                      

TV f f t t     

 

e A B e Ax Ay x B y B F u

AA BB

,             (4.9) 

where ( )tu , A  and B  are chosen so that 
TV  e Ce , C  is a diagonal negative 

definite matrix, and V  is a negative semi-definite function of e and parameter 

differences A  and B . In the current scheme of adaptive synchronization [32-34], 

the traditional Lyapunov stability theorem and Babalat’s lemma [26] are used to prove 

that the error vector approaches zero, as time approaches infinity. But the question of 

why the estimated parameters also approach uncertain parameters remains 

unanswered. By the pragmatical asymptotical stability theorem, the question can be 

answered strictly as shown in Appendix B. 

4.3 Chaotic Behaviors and Pragmatical Generalized Synchronization 

of Three Complex State Ge-Ku Systems 

Ge and Ku [24] gave a chaotic system formed by a simple pendulum with its 

pivct rotating about an axis as Fig. 2.1. The equation of motion can be written as 

sin( )( ( cos( )) sin( )) 0x ax x b c x d t     ,                      (4.13) 

where , , ,a b c d  are parameters. After simplification sin( )x x , 2

1cos( ) 1x x  , 

sin( )t x   and addition of 2

1gx . After simplification we get the new Ge-Ku system 

1 2

2 2

2 2 1 1 1 1( ( ) )

x x

x ax x b c x dx gx




     
,                             (4.14) 

where 𝑎, 𝑏, 𝑐, 𝑑, 𝑔 are parameters. 

Case 1. 

A new complex state system consists of Ge-Ku system coupling with a 

particularly designed complex conjugate system 
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1 2

2 2

2 2 3 1 3 1

1
3 1 2 1 2 32

( ( ) )

( ) sin( )

x x

x ax x b c x dx gx

x x x x x h x




     
   

,                             (4.15) 

where 1 11 21x u iu  , 2 31 41x u iu  and 3 51x u . 

Equating real and imaginary parts of both sides of Eq. (4.15), we can get 

dynamic equations of real 1iu . The complex system Eq. (4.15) can thus be written in 

the form of five real first order ODEs: 

11 31

21 41

2 2 2 2

31 31 51 11 21 51 11 21

41 41 11 21 51

51 11 31 21 41 51

( ( ) ) ( )

2 ( 1)

sin( )

u u

u u

u au u b c u u du g u u

u au u u bu

u u u u u h u








       
    

   

,              (4.16) 

    After exhaustive search, we find that when system parameters 1.15,  a b   

0.76,  1.76,  1.95,  7.67,  0.91c d g h     are system parameters and initial 

conditions 11(0) 0.01u  , 21(0) 0.01u  , 31(0) 0.01u  , 41(0) 0.01u   and 

51(0) 0.01u  , chaos of the system are found and illustrated by phase portraits Fig. 4.1. 

The bifurcation diagram and the Lyapunov exponents are shown in Fig. 4.2 and Fig. 

4.3 respectively. 

The slave system is described by 

1 2

2 2

2 2 3 1 3 1

1
3 1 2 1 2 32

ˆ ˆˆ ˆ ˆ( ( ) )

ˆ( ) sin( )

y y

y ay y b c y dy gy

y y y y y h y




     


  

,                             (4.17) 

where 1 12 22y u iu  , 2 32 42y u iu   and 3 52y u . 

Equating real and imaginary parts of both sides of Eq. (4.17) and leading 

12 22 32 42 52( , , , , )u u u u u  to 11 1 21 2 31 3 41 4 51 5( ( ),  ( ),  ( ),  ( ),  ( ))u F t u F t u F t u F t u F t     , 

we add real and complex control functions 1 2v iv , 3 4v iv  and 5v  to each 

equation respectively, we can get dynamic equation of all real variables 2iu  and jv . 
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The complex system Eq. (4.17) can thus be written in the form of five real first order 

ODEs: 

12 32 1

22 42 2

2 2 2 2

32 32 52 12 22 52 12 22 3

42 42 12 22 52 4

52 12 32 22 42 52 5

ˆ ˆˆ ˆ ˆ( ( ) ) ( )

ˆˆ 2 ( 1)

sin( )

u u v

u u v

u au u b c u u du g u u v

u au u u bu v

u u u u u h u v

 


 



        


    
    

,          (4.18) 

when initial states be 12 (0) 10u  , 22 (0) 10u  , 32 (0) 10u  , 42 (0) 10u   and 

52 (0) 10u  . 

In order to obtain the active control signals, we define the errors between the 

drive and the response states as 1 2 ( )ui i ie u u F t    where 1 2 3( ) ( , , ,F t z z z z 

4 5, )z z , where 1 2 3, ,z z z  are the states of Lorenz chaotic system and 4 5,z z  are the 

states of Duffing chaotic system respectively: 

1 2 1

2 1 3 2

3 1 2 3

4 5

3

5 5 4 4

( )

( )

cos( )

z f z z

z z k z z

z z z lz

z z

z rz sz z o qt

  


  


 
 

     

,                                  (4.19) 

where 10f  , 28k  , 3
8

l  , 0.25r  , 1s   , 0.3o  , 1q   and initial states are 

1(0) 0.01z  , 2 (0) 0.01z  , 3(0) 0.01z  , 4 (0) 2z  , 5 (0) 2z  . 

We obtain the errors as 

1 2 1 1 1 2 11 12 1 21 22 2

3 4 2 2 3 4 31 32 3 41 42 4

5 5 5 5 51 52 5

( ) ( ) ( )

( ) ( ) ( )

( )

u u

u u

u

e ie x y z iz u u z i u u z

e ie x y z iz u u z i u u z

e x y z u u z

          


          
      

,        (4.20) 

and our aim is lim 0
t

e , i.e. 

1 2lim lim 0ui i i i
t t

e u u z
 

    , 𝑖 = 1, 2, 3, 4, 5.                        (4.21) 

However, 
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1 2 1 1 1 2 11 12 1 21 22 2

3 4 2 2 3 4 31 32 3 41 42 4

5 5 5 5 51 52 5

( ) ( ) ( )

( ) ( ) ( )

( )

u u

u u

u

e ie x y z iz u u z i u u z
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      

,        (4.22) 

Eq. (4.22) describes a dynamical system where the uie  evolve in time and its ODEs. 

When equating real and imaginary parts of both sides of Eq. (4.22), we get 

1 11 12 1 31 32 1 1

2 21 22 2 41 42 2 2

2 2 2 2
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









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
 


 

, (4.23) 

where ˆa a a  , ˆb b b  , ˆc c c  , ˆd d d  , ˆg g g  , ˆh h h   and â , b̂ , 

ĉ , d̂ , ĝ , ĥ  are estimates of uncertain parameters  a , b , c , d , g  and h  

respectively. 

Choose a Lyapunov function in the form of a positive definite function: 

1 2 3 4 5

2 2 2 2 2 2 2 2 2 2 21
1 2 3 4 52

( , , , , , , , , , , )

    ( ) 0

u u u u u

u u u u u

V e e e e e a b c d g h

e e e e e a b c d g h           
.     (4.24) 

Choose parameter dynamics as 
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ˆ ( )

ˆ ( )

ˆ ( )

ˆ ( )

ˆ
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u
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
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

   

,                                        (4.25) 

Time derivative of V along any solution of Eq. (4.24) and parameter dynamics 
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is 

1 31 32 1 1 2 41 42 2 2 3

2 2 2 2

31 51 11 21 51 11 21

2 2 2 2

32 52 12 22 52 12 22

3 3 4 41 11 21 51 42 12

( ) ( )

      ( ( ( ) ) ( )

ˆ ˆˆ ˆ ˆ     ( ( ) ) ( )

ˆ     ) ( 2 ( 1) 2
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uu bu v z e u u u u h u

u u u u h u v z a a b b

c c d d g g h h

     
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.              (4.26) 

    Choose 

1 31 32 1 1
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2 2 2 2
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2 2 2 2
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2
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ˆsin( ) sin( )

       

u

u

au u u bu z

a b c d g e

v u u u u h u u u u u h u

z h e












   
      

      

   

.            (4.27) 

Substituting Eqs. (4.25) and (4.27) into Eq. (4.26), we obtain 

2 2 2 2 2

1 2 3 4 5( ) 0u u u u uV e e e e e       ,                            (4.28) 

which is a negative semi-definite function of 1ue , 2ue , 3ue , 4ue , 5ue , a , b , c , d , 

g , h . The Lyapunov asymptotical stability theorem is not satisfied. We can not 

obtain that common origin of error dynamics Eq. (4.23) and parameter dynamics Eq. 

(4.25) are asymptotically stable. However, By pragmatical asymptotically stability 

theorem, D is a n-manifold, n=11 and the number of error state variables 5p  . 

When 1 2 3 4 5 0u u u u ue e e e e      and a , b , c , d , g , h  take arbitrary 

values, 0V  , so X  is 5-manifold, 11 5 6m n p     . 1m n   is satisfied. 
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By pragmatical asymptotical stability theorem, error vector e approaches zero and the 

estimated parameters also approach the uncertain parameters. The pragmatical 

generalized synchronization is obtained. Under the assumption of equal probability, it 

is actually asymptotically stable. The simulation results are shown in Figs. 4.4-4.6. 

Case 2. 

A new system, i.e. one of the three complex state Ge-Ku systems, studied in this 

part consists of Ge-Ku system coupling with a particularly designed complex 

conjugate system 

1 2

2 2

2 2 3 1 3 1

1
3 1 2 1 2 32

( ( ) )

( ) sin( )

x x

x ax x b c x dx gx

x x x x x h x




     
   

,                             (4.29) 

where 1 11 21x u iu  , 2 31 41x u iu  and 3 51x u . 

Equating real and imaginary parts of both sides of Eq. (4.29), we can get 

dynamic equations of all real 𝑢𝑖1. The complex system Eq. (4.29) can thus be written 

in the form of five real first order ODEs: 

11 31

21 41

2 2 2 2

31 31 51 11 21 51 11 21

41 41 11 21 51

51 11 31 21 41 51

( ( ) ) ( )

2 ( 1)

sin( )

u u

u u

u au u b c u u du g u u

u au u u bu

u u u u u h u








       
    

   

,              (4.30) 

    After exhaustive search, we find that when system parameters 1.21,  a b 

0.87,  1.75,  2.2,  9.3,  1.01c d g h     and initial conditions 11(0) 0.01u  , 

21(0) 0.01u  , 31(0) 0.01u  , 41(0) 0.01u   and 51(0) 0.01u  , chaos of the system 

are found and illustrated by phase portraits Fig. 4.7. 

The slave system is described by 
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1 2

2 2

2 2 3 1 3 1

1
3 1 2 1 2 32

ˆ ˆˆ ˆ ˆ( ( ) )

ˆ( ) sin( )

y y

y ay y b c y dy gy

y y y y y h y




     


  

,                             (4.31) 

where 1 12 22y u iu  , 2 32 42y u iu   and 3 52y u . 

Equating real and imaginary parts of both sides of Eq. (4.31) and leading 

12 22 32 42 52( , , , , )u u u u u  to 11 1 21 2 31 3 41 4 51 5( ( ),  ( ),  ( ),  ( ),  ( ))u F t u F t u F t u F t u F t     , 

we add real and complex control functions 1 2v iv , 3 4v iv  and 5v  to each 

equation respectively, we can get dynamic equation of all real variables 2iu  and jv . 

The complex system Eq. (4.31) can thus be written in the form of five real first order 

ODEs: 

12 32 1

22 42 2

2 2 2 2

32 32 52 12 22 52 12 22 3

42 42 12 22 52 4

52 12 32 22 42 52 5

ˆ ˆˆ ˆ ˆ( ( ) ) ( )

ˆˆ 2 ( 1)

sin( )

u u v

u u v

u au u b c u u du g u u v

u au u u bu v

u u u u u h u v

 


 



        


    
    

,          (4.32) 

when initial states be 12 (0) 20u  , 22 (0) 20u   , 32 (0) 20u  , 42 (0) 20u    and 

52 (0) 20u  . 

In order to obtain the active control signals, we define the errors between the 

master and the slave states as 1 2 ( )ui i ie u u F t    where 1 2 3( ) ( , , ,F t z z z z  4 5, )z z , 

where 1 2 3, ,z z z  are the states of Lorenz chaotic system and 4 5,z z  are the states of 

Duffing chaotic system respectively: 

1 2 1

2 1 3 2

3 1 2 3

4 5

3

5 5 4 4

( )

( )

cos( )

z f z z

z z k z z

z z z lz

z z

z rz sz z o qt

  


  


 
 

     

,                                  (4.33) 

where 10f  , 28k  , 3
8

l  , 0.25r  , 1s   , 0.3o  , 1q   and initial states are
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1(0) 0.01z  , 2 (0) 0.01z  , 3(0) 0.01z  , 4 (0) 2z  , 5 (0) 2z  . 

We obtain the errors as 

1 2 1 1 1 2 11 12 1 21 22 2

3 4 2 2 3 4 31 32 3 41 42 4

5 5 5 5 51 52 5

( ) ( ) ( )

( ) ( ) ( )

( )
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      

,        (4.34) 

and our aim is lim 0
t

e , i.e. 

1 2lim lim 0ui i i i
t t

e u u z
 

    , 𝑖 = 1, 2, 3, 4, 5.                        (4.35) 

However, 
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,        (4.36) 

Eq. (4.36) describes a dynamical system which the uie  evolve in time and its ODEs. 

When equating real and imaginary parts of both sides of Eq. (4.36), we get 
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, (4.37) 

where ˆa a a  , ˆb b b  , ˆc c c  , ˆd d d  , ˆg g g  , ˆh h h   and â , b̂ , 

ĉ , d̂ , ĝ , ĥ  are estimates of uncertain parameters a , b , c , d , g  and h  

respectively. 

Choose a Lyapunov function in the form of a positive definite function: 
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.     (4.38) 

Choose parameter dynamics as 
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,                                        (4.39) 

Time derivative along any solution of Eq. (3.38) and parameter dynamics is 
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.              (4.40) 

Choose 
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v au u b c u u du g u u

au u b c u u du g u u

z a b c d g e

v au u u bu

   

   

       

      

      

    42 12 22 52 4

2 2 2 2 2

4

5 11 31 21 41 51 12 32 22 42 52

2

5 5

ˆˆ 2 ( 1)

        ( )

ˆsin( ) sin( )

       

u

u

au u u bu z

a b c d g e

v u u u u h u u u u u h u

z h e












   
      

      

   

.            (4.41) 

Substituting Eqs. (4.39) and (4.41) into Eq. (4.40), we obtain 

2 2 2 2 2

1 2 3 4 5( ) 0u u u u uV e e e e e       ,                            (4.42) 
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which is a negative semi-definite function of 1ue , 2ue , 3ue , 4ue , 5ue , a , b , c , d , 

g , h . The Lyapunov asymptotical stability theorem is not satisfied. We can not 

obtain that common origin of error dynamics Eq. (4.37) and parameter dynamics Eq. 

(4.39) are asymptotically stable. However, By pragmatical asymptotically stability 

theorem, D  is a n-manifold, 𝑛 = 11 and the number of error state variables 5p  . 

When 1 2 3 4 5 0u u u u ue e e e e      and a , b , c , d , g , h  take arbitrary 

values, 0V  , so X  is 5-manifold, 11 5 6m n p     . 1m n   is satisfied. 

By pragmatical asymptotical stability theorem, error vector e approaches zero and the 

estimated parameters also approach the uncertain parameters. The pragmatical 

generalized synchronization is obtained. Under the assumption of equal probability, it 

is actually asymptotically stable. The simulation results are shown in Figs. 4.8-4.10. 

Case 3. 

A new system, i.e. one of the three complex state Ge-Ku systems, studied in this 

part consists of Ge-Ku system couples with a particularly designed complex conjugate 

system 

1 2

2 2

2 2 3 1 3 1

1
3 1 1 2 2 32

( ( ) )

( ) sin( )

x x

x ax x b c x dx gx

x x x x x h x




     
   

,                             (4.43) 

where 1 11 21x u iu  , 2 31 41x u iu  and 3 51x u . 

Equating real and imaginary parts of both sides of Eq. (4.43), we can get 

dynamic equations of all real 1iu . The complex system Eq. (4.43) can thus be written 

in the form of five real first order ODEs: 
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11 31

21 41

2 2 2 2

31 31 51 11 21 51 11 21

41 41 11 21 51

2 2 2 2

51 11 21 31 41 51

( ( ) ) ( )

2 ( 1)

sin( )

u u

u u

u au u b c u u du g u u

u au u u bu

u u u u u h u








       
    

     

,              (4.44) 

    After exhaustive search, we find that when system parameters 2.48,  a b   

1.51,  1.79,  30.95,  1.67,  115c d g h      and initial conditions are 11(0) 0.01u  , 

21(0) 0.01u  , 31(0) 0.01u  , 41(0) 0.01u   and 51(0) 0.01u  , chaos of the system 

are found and illustrated by phase portraits Fig. 4.11. 

The slave system is described by 

1 2

2 2

2 2 3 1 3 1

1
3 1 1 2 2 32

ˆ ˆˆ ˆ ˆ( ( ) )

ˆ( ) sin( )

y y

y ay y b c y dy gy

y y y y y h y




     


  

,                             (4.45) 

where 1 12 22y u iu  , 2 32 42y u iu   and 3 52y u . 

Equating real and imaginary parts of both sides of Eq. (4.45) and leading 

12 22 32 42 52( , , , , )u u u u u  to 11 1 21 2 31 3 41 4 51 5( ( ),  ( ),  ( ),  ( ),  ( ))u F t u F t u F t u F t u F t     , 

we add real and complex control functions 1 2v iv , 3 4v iv  and 5v  to each 

equation respectively, we can get dynamic equation of all real variables 2iu  and jv . 

The complex system Eq. (4.45) can thus be written in the form of five real first order 

ODEs: 

12 32 1

22 42 2

2 2 2 2

32 32 52 12 22 52 12 22 3

42 42 12 22 52 4

2 2 2 2

52 12 22 32 42 52 5

ˆ ˆˆ ˆ ˆ( ( ) ) ( )

ˆˆ 2 ( 1)

sin( )

u u v

u u v

u au u b c u u du g u u v

u au u u bu v

u u u u u h u v

  


 


        


    
      

,          (4.46) 

when initial states be 12 (0) 10u  , 22 (0) 10u  , 32 (0) 10u  , 42 (0) 10u   and 

52 (0) 10u  . 

In order to obtain the active control signals, we define the errors between the 
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drive and the response states as 1 2 ( )ui i ie u u F t    where 1 2 3( ) ( , , ,F t z z z z 

4 5, )z z , where 1 2 3, ,z z z  are the states of Lorenz chaotic system and 4 5,z z  are the 

states of Duffing chaotic system respectively: 

1 2 1

2 1 3 2

3 1 2 3

4 5

3

5 5 4 4

( )

( )

cos( )

z f z z

z z k z z

z z z lz

z z

z rz sz z o qt

  


  


 
 

     

,                                  (4.47) 

where 10f  , 28k  , 3
8

l  , 0.25r  , 1s   , 0.3o  , 1q   and initial states are 

1(0) 0.01z  , 2 (0) 0.01z  , 3(0) 0.01z  , 4 (0) 2z  , 5 (0) 2z  . 

We obtain the errors as 

1 2 1 1 1 2 11 12 1 21 22 2

3 4 2 2 3 4 31 32 3 41 42 4

5 5 5 5 51 52 5

( ) ( ) ( )

( ) ( ) ( )

( )

u u

u u

u

e ie x y z iz u u z i u u z

e ie x y z iz u u z i u u z

e x y z u u z

          


          
      

,        (4.48) 

and our aim is lim 0
t

e , i.e. 

1 2lim lim 0ui i i i
t t

e u u z
 

    , 𝑖 = 1, 2, 3, 4, 5.                        (4.49) 

However, 

1 2 1 1 1 2 11 12 1 21 22 2

3 4 2 2 3 4 31 32 3 41 42 4

5 5 5 5 51 52 5

( ) ( ) ( )

( ) ( ) ( )

( )

u u

u u

u

e ie x y z iz u u z i u u z

e ie x y z iz u u z i u u z

e x y z u u z

          


          
      

,        (4.50) 

Eq. (4.50) describes a dynamical system which the uie  evolve in time and its ODEs. 

When equating real and imaginary parts of both sides of Eq. (4.50), we get 
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1 1 1 1 2 1 3 1 3 2 1 1

2 2 1 2 2 2 4 1 4 2 2 2

2 2 2 2

3 3 1 3 2 3 3 1 5 1 1 1 2 1 5 1 1 1 2 1

2 2

32 52 12 22 52 12

( ( ) ) ( )

ˆ ˆˆ ˆ ˆ                               ( ( ) ) (

u

u

u

e u u z u u v z

e u u z u u v z

e u u z au u b c u u du g u u

au u b c u u du g u

      

      

          

      2 2

22

3 3

4 41 42 4 41 11 21 51 42 12 22 52

4 4

2 2 2 2 2

5 51 52 5 11 21 31 41 51 12

)

                               

ˆˆ2 ( 1) 2 ( 1)

                               

sin( )

u

u

u

v z

e u u z au u u bu au u u bu

v z

e u u z u u u u h u u



 

         

 

          2 2

22 32

2

42 52 5 5
ˆ                               sin( )

u u

u h u v z

















   

,  (4.51) 

where ˆa a a  , ˆb b b  , ˆc c c  , ˆd d d  , ˆg g g  , ˆh h h   and â , b̂ , 

ĉ , d̂ , ĝ , ĥ  are estimates of uncertain parameters a , b , c , d , g  and h  

respectively. 

Choose a Lyapunov function in the form of a positive definite function: 

1 2 3 4 5

2 2 2 2 2 2 2 2 2 2 21
1 2 3 4 52

( , , , , , , , , , , )

    ( ) 0

u u u u u

u u u u u

V e e e e e a b c d g h

e e e e e a b c d g h           
 .    (4.52) 

Choose parameter dynamics as 

3 4

3 4

3 4

3 4

3 4

5

ˆ ( )

ˆ ( )

ˆ ( )

ˆ ( )

ˆ ( )

ˆ

u u

u u

u u

u u

u u

u

a a a e e

b b b e e

c c c e e

d d d e e

g g g e e

h h he

     

     

     


    


    


   

,                                        (4.53) 

Time derivative of V  along any solution of Eq. (4.52) and parameter dynamics 

is 
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1 31 32 1 1 2 41 42 2 2 3

2 2 2 2

31 51 11 21 51 11 21

2 2 2 2

32 52 12 22 52 12 22

3 3 4 41 11 21 51 42 12

( ) ( )

      ( ( ( ) ) ( )
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ˆ     ) ( 2 ( 1) 2
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      

      

       

2 2 2 2

22 52 4 4 5 11 21 31 41

2 2 2 2

51 12 22 32 42 52 5

5
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ˆ     sin( ) sin( )

ˆ ˆ ˆˆ ˆ ˆ      ) ( ) ( ) ( ) ( ) ( ) ( )

uu bu v z e u u u u

h u u u u u h u v

z a a b b c c d d g g h h

      

      

            

.            (4.54) 

Choose 

1 31 32 1 1

2 41 42 2 2

2 2 2 2

3 31 51 11 21 51 11 21

2 2 2 2

32 52 12 22 52 12 22

2 2 2 2 2

3 4

4 41 11 21 51
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v au u b c u u du g u u

au u b c u u du g u u
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v au u u bu

   

   

       

      

      

    42 12 22 52 4

2 2 2 2 2
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5 11 21 31 41 51 12 22 32 42

2

52 5 5

ˆˆ 2 ( 1)

        ( )

sin( )

ˆ       sin( )

u

u

au u u bu z

a b c d g e

v u u u u h u u u u u

h u z h e












   
      

         

    

.         (4.55) 

Substituting Eqs. (3.53) and (3.55) into Eq. (3.54), we obtain 

2 2 2 2 2

1 2 3 4 5( ) 0u u u u uV e e e e e       ,                            (4.56) 

which is a negative semi-definite function of 1ue , 2ue , 3ue , 4ue , 5ue , a , b , c , d , 

g , h . The Lyapunov asymptotical stability theorem is not satisfied. We can’t obtain 

that common origin of error dynamics Eq. (4.51) and parameter dynamics Eq. (4.53) 

are asymptotically stable. However, By pragmatical asymptotically stability theorem, 

D  is a n-manifold, n=11 and the number of error state variables 5p  . 

When 1 2 3 4 5 0u u u u ue e e e e      and a , b , c , d , g , h  take arbitrary 

values, 0V  , so X  is 5-manifold, 11 5 6m n p     . 1m n   is satisfied. 

By pragmatical asymptotical stability theorem, error vector e approaches zero and the 
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estimated parameters also approach the uncertain parameters. The pragmatical 

generalized synchronization is obtained. Under the assumption of equal probability, it 

is actually asymptotically stable. The simulation results are shown in Figs. 4.12-4.14. 

 

 

 

 

 

Fig. 4.1 The chaotic attractor of complex state Ge-Ku system Case 1. 
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Fig. 4.2 The bifurcation diagram of complex state Ge-Ku system Case 1. 

 

Fig. 4.3 The Lyapunov exponents of complex state Ge-Ku system Case 1. 
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Fig. 4.4 Time histories of 𝑥𝑖 + 𝐹(𝑡) , 𝑦𝑖  for Case 1. 

 Fig. 4.5 Time histories of errors for Case 1. 
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Fig. 4.6 Time histories of parameter errors for Case 1. 

 

Fig. 4.7 The chaotic attractor of complex state Ge-Ku system Case 2. 
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Fig. 4.7 Time histories of 𝑥𝑖 + 𝐹(𝑡) , 𝑦𝑖  for Case 2. 

 

Fig. 4.9 Time histories of errors for Case 2. 
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Fig. 4.10 Time histories of parameter errors for Case 2. 

 

Fig. 4.11 The chaotic attractor of complex state Ge-Ku system Case 3. 
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Fig. 4.14 Time histories of 𝑥𝑖 + 𝐹(𝑡) , 𝑦𝑖  for Case 3. 

 

Fig. 4.13 Time histories of errors for Case 3. 
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Fig. 4.14 Time histories of parameter errors for Case 3. 
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Chapter 5 

Use Partial Region Stability Theory for Different 

Translation Synchronization 

5.1 Preliminary 

In this Chapter, a new strategy by using pragmatical synchronization theorem 

and GYC partial region stability theory are proposed to achieve chaos generalized 

synchronization. Using the pragmatical theorem of asymptotical stability and an 

adaptive control law, it can be proved strictly that the common zero solution of error 

dynamics and of parameter dynamics is asymptotically stable. In addition, using the 

GYC partial region stability theorem, the new Lyapunov function used is a simple 

linear homogeneous function of error states and the lower order controllers are much 

more simple. Numerical simulations of a new GKv system is given to show the 

effectiveness of the proposed scheme. 

5.2 The Scheme of Using Partial Region Pragmatic Stability Theory 

for Different Translation Synchronization Scheme 

There are two identical nonlinear dynamical systems, and the master system 

synchronizes the slave system. The master system is given by 

( , ) x Ax f x B                                                 (5.1) 

The master system after the origin of x-coordinate system is translated to 

1 1 1[ , , , ]k k k    is 

( , )   x Ax f x B                                               (5.1 ) 

where 1 2 1 1 2 1 1[ , , , ] [ , , , ]T n

n nx x x x k x k x k R            1x x K  denotes a state 

vector, where 1K  is a constant vector with positive component 1k  as shown in Fig. 

5.1. A  is an n n  uncertain constant coefficients matrix, f  is a nonlinear vector 
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function, and B  is a vector of uncertain constant coefficients in f . 

The slave system is given by  

( , ) ( )t  y Ay f y B u                                           (5.2) 

The slave system after the origin of y-coordinate system is translated to 

2 2 2[ , , , ]k k k  is 

( , ) ( )t    y Ay f y B u                                         (5. 2 ) 

where 1 2 2 1 2 2 2 2[ , , , ] [ , , , ]T n

n ny y y y k y k y k R            y y K  denotes a state 

vector, where 2K  is a constant vector with positive component 2k  as shown in Fig. 

5.2. A  is an n n  estimated coefficient matrix, B  is a vector of estimated 

coefficients in f , and 1 2( ) [ ( ), ( ), , ( )]T n

nt u t u t u t R  u  is a control input vector. 

Our goal is to design a controller ( )u t  so that the state vector of the translated 

slave system Eq. (5. 2 ) asymptotically approaches the state vector of the translated 

master system Eq. (5.1 ) plus a given chaotic vector function
1 2( ) [ ( ), ( ), ,t F t F t F

( )]T

nF t . This is a special kind of generalized synchronization, y is a given function of 

x  

( , , ) ( , , )t t       y G x y x F x y                                    (5.3) 

The synchronization can be accomplished when t  , the limit of the error 

vector 1 2( ) [ , , , ]T

nt e e e e approaches zero: 

lim 0
t

e                                                       (5.4) 

where 

( )t   e x y F                                                 (5.5) 

from Eq. (5.5), we have 

( )t   e x y F                                                 (5.6) 
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( , ) ( , ) ( ) ( )t t        e Ax Ay f x B f y B F u                         (5.7) 

where 1k  and 2k  are chosen to guarantee that the error dynamics always occurs in 

the first guardant of e  coordinate system. 

A Lyapunov function ( , , )V e A B is chosen as a positive definite function in first 

guardant of e  coordinate system by stability theory in partial region as shown in 

Appendix A: 

( , , )V   e A B e A B                                            (5.8) 

where  A A A ,  B B B , A  and B  are two column matrices whose 

elements are all the elements of matrix A  and of matrix B , respectively. 

Its derivative along any solution of the differential equation system consisting of 

Eq. (5.7) and update parameter differential equations for A  and B  is 

( , , ) ( , ) ( , ) ( ) ( )V t t        e A B Ax Ay f x B f y B F u A B             (5.9) 

where ( )tu , A  and B  are chosen so that V Ce , C  is a diagonal negative 

definite matrix, and V  is a negative semi-definite function of e  and parameter 

differences A  and B . By pragmatical asymptotically stability theorem in Appendix 

B. 

In this Chapter, a new GKv system is used as an example. The Lyapunov 

function used is a simple linear homogeneous function of states and the controllers are 

simpler than tradition. Because they in lower order than the that of traditional 

controllers. In many paper [32-35], traditional Lyapunov stability theorem and 

Babalat’s lemma [26] are used to prove the error vector approaches zero, as time 

approaches infinity. But the question, why the estimated parameters also approach to 

the uncertain parameters, remains no answer. By pragmatical asymptotical stability 

theorem, the question can be answered strictly. 
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5.3 Different Translation Pragmatical Generalized Synchronization 

of New Ge-Ku-van der Pol Chaotic System 

Case 1. 

The following chaotic systems are two translated GKv of which the old origin is 

translated to 
1 2 3 1 1 1( , , ) ( , , )x x x k k k ,

1 2 3( , , )y y y  2 2 2( , , )k k k  to guarantee the 

uncontrolled error dynamics always happen in the first quadrant of e  coordinate 

system when 
1 2150, 30k k  . 
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              (5.10) 
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         (5.11) 

Let initial states be 
1 2 3 1 1 1( , , ) ( 0.01, 0.01, 0.01)x x x k k k    , 

1 2 3 2( , , ) (y y y k 

2 20.01, 0.01, 0.01)k k  and system parameters 0.08, 0.35, 100.56,a b c d    

1000.02, 0.61, 0.08, 0.01g h l    . 

The state error is sin( ) te x y F t x y e         where sin( ) tF t e  is a 

non-chaotic given function of time. We find that the uncontrolled error dynamics 

always exist in first quadrant as shown in Fig. 5.3. 

sinlim lim( ) 0t

i i i
t t

e x y e

 
    , 1, 2,3i                            (5.12) 

Our aim is lim 0
t

e


 . We obtain the error dynamics: 
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

    


   


   

                                       (5.13) 

where ˆa a a  , ˆb b b  , ˆc c c  , ˆd d d  , ˆg g g  , ˆh h h  , ˆl l l  , 
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and a , b , c , d , g , h , l  are estimates of uncertain parameters a , b , c , d , 

g , h  and l  respectively. 

Using different translation pragmatical synchronization by stability theory of 

partial region, we can choose a Lyapunov function in the form of a positive definite 

function in first quadrant: 

1 2 3V e e e a b c d g h l                                      (5.14) 

Its time derivative is  
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 (5.15) 
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                                               (5.16) 
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              (5.17) 

We obtain 

1 2 3 0V e e e                                                 (5.18) 

which is a negative semi-definite function of 
1e , 

2e , 
3e , a , b , c , d , g ,  h , l  

in the first quadrant. The Lyapunov asymptotical stability theorem is not satisfied. We 

can’t obtain that common origin of error dynamics Eq. (5.13) and parameter dynamics 

Eq. (5.16) are asymptotically stable. However, by pragmatical asymptotically stability 

theorem, D is a 10-manifold, n=10 and the number of error state variables p=3. 

When 
1 2 3 0e e e    and a , b , c , d , g , h , l  take arbitrary values, 

0V  , so X is of 3 dimensions, m=n-p=10-3=7, m+1<n is satisfied. According to the 

pragmatical asymptotically stability theorem, error vector e approaches zero and the 

estimated parameters also approach the uncertain parameters. The equilibrium point is 

pragmatically asymptotically stable. Under the assumption of equal probability, it is 

actually asymptotically stable. The simulation results are shown in Figs. 5.4-5.7. 

Case 2. 

The following chaotic systems are two translated GKv of which the old origin is 

translated to 
1 2 3 1 1 1( , , ) ( , , )x x x k k k ,

1 2 3( , , )y y y  2 2 2( , , )k k k  to guarantee the 

uncontrolled error dynamics always happen in the first quadrant of e  coordinate 

system when 
1 2200, 30k k  . 
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              (5.19) 

1 2 2 1

2

2 2 2 3 2 1 2 3 2 2

2

3 3 2 3 2 2 2 1 2 3

( )

( ) ( )( ( ( ) ) ( ))

( ) (1 ( ) )( ) ( )

y y k u

y a y k y k b c y k d y k u

y g y k h y k y k l y k u

  


         


         

         (5.20) 

Let initial states be 
1 2 3 1 1 1( , , ) ( 0.01, 0.01, 0.01)x x x k k k    , 

1 2 3 2( , , ) (y y y k 

2 20.01, 0.01, 0.01)k k  and system parameters 0.08, 0.35, 100.56,a b c d    

1000.02, 0.61, 0.08, 0.01g h l    . 

The state error is ( )e x y F t    where ( )F t  z
1 2 3( , , )z z z is the state vector 

of Chen-Lee (CL) chaotic system: 

1 2 3 1 1

2 1 3 2 2

3 1 2 3 3(1/ 3)

z z z z

z z z z

z z z z







  


 
  

                                          (5.21)

 

where 
1 2 35, 10, 3.8      

 
and initial states are 

1 2 30.01, 0.01,z z z   0.01 . 

And we find that the uncontrolled error dynamics always exist in first quadrant as 

shown in Fig. 5.8. 

Our aim is lim 0
t

e


 . We obtain the error dynamics. 

lim lim( ) 0i i i i
t t

e x y z
 

    , 1,2,3i                               (5.22) 
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

  
   

                                              (5.23) 

where ˆa a a  , ˆb b b  , ˆc c c  , ˆd d d  , ˆg g g  , ˆh h h  , ˆl l l  , 

and a , b , c , d , g , h , l  are estimates of uncertain parameters a , b , c , d , 

g , h  and l  respectively. 

Using different translation pragmatic synchronization by stability theory of 
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partial region, we can choose a Lyapunov function in the form of a positive definite 

function in first quadrant: 

1 2 3V e e e a b c d g h l                                      (5.24) 

Its time derivative is  
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              (5.27) 

We obtain  

1 2 3 0V e e e                                                 (5.28) 
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which is a negative semi-definite function of 
1e , 

2e , 
3e , a , b , c , d , g ,  h , l  

in the first quadrant. The Lyapunov asymptotical stability theorem is not satisfied. We 

can’t obtain that common origin of error dynamics Eq. (5.23) and parameter dynamics 

Eq. (5.26) are asymptotically stable. However, by pragmatical asymptotically stability 

theorem, D is a 10-manifold, n=10 and the number of error state variables p=3.  

When 
1 2 3 0e e e    and a , b , c , d , g , h , l  take arbitrary values, 

0V  , so X is of 3 dimensions, m=n-p=10-3=7, m+1<n is satisfied. According to the 

pragmatical asymptotically stability theorem, error vector e approaches zero and the 

estimated parameters also approach the uncertain parameters. The equilibrium point is 

pragmatically asymptotically stable. Under the assumption of equal probability, it is 

actually asymptotically stable. The simulation results are shown in Figs. 5.9-5.12. 

Case 3. 

The following chaotic systems are two translated GKv of which the old origin is 

translated to 1 2 3 1 1 1( , , ) ( , , )x x x k k k , 1 2 3( , , )y y y  2 2 2( , , )k k k  to guarantee the 

uncontrolled error dynamics always happen in the first quadrant of e  coordinate 

system when 1 2300, 30k k  . 
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              (5.29) 
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         (5.30) 

Let initial states be 1 2 3 1 1 1( , , ) ( 0.01, 0.01, 0.01)x x x k k k    , 1 2 3 2( , , ) (y y y k 

2 20.01, 0.01, 0.01)k k  and system parameters 0.08, 0.35, 100.56,a b c d    

1000.02, 0.61, 0.08, 0.01g h l    . 

The state error is ( )e x y F t     where ( )F t  z 1 2 3( , , )z z z  is the state 
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vector of Ge-Ku-Duffing (GKD) chaotic system: 

1 2
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    

                               (5.31)

 

where 
1 2 3 4 5 60.1, 11, 40, 54, 6, 30           and initial states are

1 0.01,z 

2 30.01, 0.01z z  , the GKD is chaotic Fig. 5.14. And we find that the uncontrolled 

error dynamics  always exist in first quadrant as shown in Fig. 5.13. 

Our aim is lim 0
t

e


 . We obtain the error dynamics. 

lim lim( ) 0i i i i
t t

e x y z
 

    , 1,2,3i                               (5.32) 

1 1 1 1

2 2 2 2

3 3 3 3

e x y z

e x y z

e x y z

  


  
   

                                              (5.33) 

where ˆa a a  , ˆb b b  , ˆc c c  , ˆd d d  , ˆg g g  , ˆh h h  , ˆl l l  , 

and a , b , c , d , g , h , l  are estimates of uncertain parameters a , b , c , d , 

g , h  and l  respectively. 

Using different translation pragmatic synchronization by stability theory of 

partial region, we can choose a Lyapunov function in the form of a positive definite 

function in first quadrant: 

1 2 3V e e e a b c d g h l                                      (5.34) 

Its time derivative is 
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              (5.35) 
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a y k y k b c y k d y k

z z z z a b c d e

u g x k h x k x k l

   

     

        

       

        

        1 1

2

3 2 3 2 2 2 1 2

3

3 3 5 2 6 1 3

)

      ( ) (1 ( ) )( ) ( )

      (1 )

x k

g y k h y k y k l y k

z z z z g h l e 











        

        

              (5.37) 

We obtain  

1 2 3 0V e e e                                                 (5.38) 

which is a negative semi-definite function of 1e , 2e , 3e , a , b , c , d , g ,  h , l  

in the first quadrant. The Lyapunov asymptotical stability theorem is not satisfied. We 

can’t obtain that common origin of error dynamics Eq. (5.33) and parameter dynamics 

Eq. (5.36) are asymptotically stable. However, By pragmatical asymptotically stability 
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theorem, D is a 10-manifold, n=10 and the number of error state variables p=3.  

When 
1 2 3 0e e e    and a , b , c , d , g , h , l  take arbitrary values, 

0V  , so X is of 3 dimensions, m=n-p=10-3=7, m+1<n is satisfied. According to the 

pragmatical asymptotically stability theorem, error vector e approaches zero and the 

estimated parameters also approach the uncertain parameters. The equilibrium point is 

pragmatically asymptotically stable. Under the assumption of equal probability, it is 

actually asymptotically stable. The simulation results are shown in Figs. 5.15-5.18. 
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Fig. 5.1 Coordinate translation of x-states. 

 

 

Fig. 5.2 Coordinate translation of y-states. 
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Fig. 5.3 Phase portrait of the error dynamic for Case 1. 

 

 

Fig. 5.4 Time histories of ix , iy  for Case 1. 
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Fig. 5.5 Time histories of errors for Case 1. 

 

Fig. 5.6 Time histories of parameter errors for Case 1. 
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Fig. 5.7 Time histories of parameter errors for Case 1. 

 

Fig. 5.8 Phase portrait of the error dynamic for Case 2. 
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Fig. 5.9 Time histories of 
ix , 

iy  for Case 2. 

 

 

Fig. 5.10 Time histories of errors for Case 2. 
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Fig. 5.11 Time histories of parameter errors for Case 2. 

 

Fig. 5.12 Time histories of parameter errors for Case 2. 
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Fig. 5.13 Phase portrait of the error dynamic for Case 3. 

 

 

Fig. 5.14 The chaotic attractor of the GKD system. 
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Fig. 5.15 Time histories of 
ix , 

iy  for Case 3. 

 

 

Fig. 5.16 Time histories of errors for Case 3. 
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Fig. 5.17 Time histories of parameter errors for Case 3. 

 

Fig. 5.18 Time histories of parameter errors for Case 3. 
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Chapter 6 

Robust Projective Synchronization of Uncertain Stochastic 

Chaotic Systems by Fuzzy Logic Constant Controller 

6.1 Preliminary 

In this Chapter, a simplest fuzzy logic constant controller (FLCC) which is 

derived via fuzzy logic design and Lyapunov direct method is presented for projective 

synchronization of non-autonomous chaotic systems with uncertain and stochastic 

disturbances. Controllers in traditional Lyapunov direct method are always nonlinear 

and complicated. However, FLCC proposed are such simple controllers which are 

constant numbers, decided via the values of the upper and lower bounds of the error 

derivatives. This new method is used in projective synchronization of non- 

autonomous chaotic systems with stochastic disturbance to show the robustness and 

effectiveness of FLCC. There are two cases illustrated in simulation results to show 

the feasibility of the FLCC, two cases are Sprott system and Ge-Ku-van der Pol 

system. Comparison at the efficiency, accuracy and complexity of the FLCC with that 

of traditional nonlinear controllers is also given in tables and figures. 

6.2 Projective Chaos Synchronization by FLCC Scheme 

Consider the following master chaotic system 

( ) ( )   x A Δ x f x ζ      (6.1) 

where 1 2[ , , ]T n

nx x x R x
 
denotes a state vector, A is an n n  constant 

coefficient matrix , f is a nonlinear vector function, Δ  is non-autonomous term and 

ζ  is stochastic disturbance.  

The slave system which can be either identical or different from the master is  

( )  y By g y u             (6.2) 
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where 1 2[ , , ]T n

ny y y R y  denotes a state vector, B is an n n  constant 

coefficient matrix, g  is a nonlinear vector function and 1 2[ , , ]T n

nu u u R u is the 

fuzzy logic controller needed to be designed. 

For projective synchronization, in order to make the state y  and projective 

number   approaching the goal statex , projective number   is a constant, define 

 e x y  as the state error. The chaos projective synchronization is accomplished in 

the sense that [20-23]: 

lim lim( ) 0
t t


 

  e x y                                            (6.3) 

where 

1[ , , ]T

ne e    e x y                                           (6.4) 

From Eq. (6-4) we have the following error dynamics: 

    [ ( ) ( ) ] [ ( ) ]         e x y A Δ x f x ζ By g y u                     (6.5) 

According to Lyapunov direct method, we have the following Lyapunov function to 

derive the fuzzy logic controller for projective synchronization: 

2 2 2

1 1

1
( , , , , ) ( ... ... ) 0

2
m n m nV f e e e e e e                              (6.6) 

The derivative of the Lyapunov function in Eq. (6.6) is: 

    1 1 ... ...m m n nV e e e e e e                                           (6.7) 

If the vector controller in Eq. (6.5) can be suitably designed to achieve 0V , 

then the zero solution e 0 of Eq. (6.5) are asymptotically stable i.e. the projective 

synchronization is accomplished. Next, the design process of FLCC is introduced. 

The design process of FLCC is introduced in the following section. 

We use the error derivatives  1 2( ) , , , , ,
T

m nt e e e ee , as the antecedent part 

of the proposed FLCC to design the control input u  which is used in the consequent 

part of the proposed FLCC: 
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     1 2, , , , ,
T

m nu u u uu                                         (6.8) 

where u  is a constant column vector and accomplishes the objective to stabilize the 

error dynamics in Eq. (6.5).  

The strategy of the FLCC designed is proposed as follow and the configuration 

of the strategy is shown in Fig. 6.1. 

Assume the upper bound and lower bound of me  are Zm and –Zm, then the 

FLCC can be design step by step: 

(1) If me  is detected as positive ( 0me ), we have to design a controller for

0me
 
for the purpose 0 mmeeV  . Therefore we have the following i-th (i=1,2,3) 

if–then fuzzy rule as: 

        Rule 1 : IF me is 1M   THEN um1 = Zm                         (6.9) 

        Rule 2 : IF me
 
is 2M   THEN um2 = Zm                        (6.10) 

        Rule 3 : IF me
 
is 3M   THEN um3 = me                          (6.11) 

(2) If me  is detected as negative ( 0me ), we have to design a controller for

0me , for the purpose
 

0 mmeeV  . Therefore we have the following m-th if–then 

fuzzy rule as: 

        Rule 1 : IF
 me is 1M   THEN um1 = -Zm                        (6.12) 

        Rule 2 : IF
 me is 2M   THEN um2 = -Zm                       (6.13) 

        Rule 3 : IF
 me is 3M   THEN um3 = me                          (6.14) 

(3) If me approaches to zero, then the synchronization is nearly achieved. 

Therefore we have the following m-th if–then fuzzy rule as: 
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        Rule 1 : IF
 me is 1M   THEN um1 = 0me                      (6.15) 

        Rule 2 : IF
 me is 2M   THEN um2 = 0me                      (6.16) 

        Rule 3 : IF
 me is 3M   THEN um3 = 0me                      (6.17) 

where
1

m

m

e
M

Z
 , 

2

m

m

e
M

Z
 and 3 sgn( ) sgn( )m m m m

m m

Z e e Z
M

Z Z

 
  , 1M , 2M and 3M

refer to the membership functions of positive (P), negative (N) and zero (Z) separately 

which are presented in Fig. 6.2. For each case, miu , i= 1~3 is the i-th output of me , 

which is a constant controller. The centriod defuzzifier evaluates the output of all 

rules as follows: 

    

3

1

3

1

i m i

i
m

i

i

M u

u

M











                                              (6.18) 

    The fuzzy rule base is listed in Table 1, in which the input variables in the 

antecedent part of the rules are me  and the output variable in the consequent part is

miu .  

Table 1 Rule-table of FLCC 

Rule Antecedent Consequent Part 

 
me  miu  

1 Negative (N) 
1mu  

2 Positive (P) 
2mu  

3 Zero (Z) 
3mu  

With appropriate fuzzy logic constant controllers in Eq. (6.7), a negative definite 

of derivatives Lyapunov function V  can be obtained and the asymptotically stability 
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of Lyapunov theorem can be achieved.  

Consequently, the processes of FLCC designed to control a system following the 

trajectory of a goal system are getting the upper bound and lower bound of the error 

derivatives of the master and control systems without any controller, i.e. 

mmm ZeZ   . Through the fuzzy logic system which follows the rules of Eq. 

(6.9-6.17), a negative definite derivatives of Lyapunov function V  can be obtained 

and the asymptotically stability of Lyapunov theorem can be achieved. 

6.3. Simulation Results 

There are two examples in this Section. Each example is divided into two parts, 

projective synchronization by FLCC and that by traditional method. In the end of each 

example, we give the simulation results of two controllers and list the tables and 

figures to show the effectiveness and robustness of our method. 

6.3.1 Case 1 Projective synchronization of identical master and slave Sprott 22 

systems [60] by new FLCC 

    The Sprott 22 system is: 

 

sin

x y

y z

z z y x





    

                                           (6.19) 

The initial condition 0 0 0( , , ) (0.01,1,0.01)x y z  . The parameter
 

0.25  , chaos of the 

Sprott 22 system appears. The chaotic behavior of Eq. (6.19) is shown in Fig 6.3. 

6.3.1.1 Robust projective synchronization of non-autonomous Sprott 22 system by 

FLCC 

The master non-autonomous Sprott 22 system is: 

1 2

2 3

3 3 2 1( ) sin

x x

x x

x x x x





      

                                    (6.20) 
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When initial condition 10 20 30( , , ) (0.01,1,0.01)x x x  , sin( )t   is a non-autonomous 

term with 0.07  , 10  . The parameter is the same as that of Eq. (6.19). Chaos 

of the non-autonomous Sprott 22 system appears. The chaotic behavior of Eq. (6.20) 

is shown in Fig. 6.4. 

The slave system is: 

1 2 1

2 3 2

3 3 2 1 3sin

y y u

y y u

y y y y u

 


 
     

                                     (6.21) 

The initial condition 10 20 30( , , ) (10,10,10)y y y  . The parameter is the same as that of 

Eq. (6.19), chaos of the slave system appears as well. 1u , 2 u and 3 u are FLCC to   

synchronize projectively the slave system to master one, i.e., 

0lim 


e
t

                                                   (6.22) 

where the error vector 

1 1 1

2 2 2

3 3 3

e x y

e x y

e x y



     
     

  
     
          

e                                          (6.23) 

where 4  . We have the following error dynamics:                      

1 1 1 2 2 1

2 2 2 3 3 2

3 3 3 1 3 2 1 3 2 1 3

( )

( )

( ( ) sin ) ( sin ) 

e x y x y u

e x y x y u

e x y x x x y y y u

 

 

   

    


    
             

    (6.24) 

Choosing Lyapunov function as: 

    
2 2 2

1 2 3

1
( ) 0

2
V e e e                                             (6.25) 

Its time derivative is: 
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1 1 2 2 3 3

1 2 2 1

2 3 3 2

3 3 2 1 3 2 1 3

  ( ( ))

     ( ( ))

     ( ( ( ) sin ) ( sin ))

V e e e e e e

e x y u

e x y u

e x x x y y y u





  

  

  

  

         

     (6.26) 

    In order to design FLCC, we divide Eq. (6.26) into three parts as follows: 

Assume 321
2
3

2
2

2
1 VVVeee

2

1
V  )( , then 321332211 VVVeeeeeeV   , 

where
2
11 e

2

1
V  ,

2
22 e

2

1
V  and

2
33 e

2

1
V  . 

Part 1: 1 1 1 1 2 2 1( ( ))V e e e x y u     

Part 2: 2 2 2 2 3 3 2( ( ))V e e e x y u     

Part 3: 3 3 3 3 3 2 1 3 2 1 3( ( ( ) sin ) ( sin ))V e e e x x x y y y u               

    FLCC in Part 1, 2 and 3 can be obtained via the fuzzy rules in Table 1. The 

maximum value and minimum value without any controller can be observed in time 

histories of error derivatives shown in Fig 6.5: 1 20Z  , 2 20Z  , 3 20Z  . 

The synchronization scheme is proposed in Part 1, 2 and 3 and makes 

0eeV 111   , 0eeV 222   and 0eeV 333   . Hence we have 0VVVV 321   . 

It is clear that all of the rules in FLCC can lead that the Lyapunov function satisfies 

the asymptotical stability theorem. The simulation results are shown in Fig. 6.6 and 

Fig. 6.7. 

6.3.1.2 Robust projective synchronization of stochastic Sprott 22 system by FLCC 

The master non-autonomous Sprott 22 system with robust of stochastic 

disturbances is: 

1 2

2 3

3 3 2 1( ) sin

x x

x x

x x x x







 


 
      

                                    (6.27)                                                           
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When initial condition 10 20 30( , , ) (0.01,1,0.01)x x x  , band-limited white noise 
 

(PSD=0.01) and parameter is the same as that of Eq. (6.19). The stochastic 

disturbance  is shown in Fig 6.8. Chaos of the non-autonomous stochastic Sprott 22 

system appears. The chaotic behavior of Eq. (6.27) is shown in Fig 6.9. 

The slave system is the same as Eq. (6.21) and Lyapunov function derived 

through the Eq. (6.22-6.26). 

    Let 4  , we have the following error dynamics:                      

1 1 1 2 2 1

2 2 2 3 3 2

3 3 3 3 2 1 3 2 1 3

( ) ( )

( ) ( )

( ( ) sin ) ( sin ) 

e x y x y u

e x y x y u

e x y x x x y y y u

  

  

   

     


     
             

    (6.28) 

And time derivative of Lyapunov function is: 

1 1 2 2 3 3

1 2 2 1

2 3 3 2

3 3 2 1 3 2 1 3

  ( ( ) ( ))

     ( ( ) ( ))

     ( ( ( ) sin ) ( sin ))

V e e e e e e

e x y u

e x y u

e x x x y y y u

 

 

  

  

   

   

         

     (6.29) 

    The maximum values and minimum values without any controller can be 

observed in time histories of error derivatives shown in Fig. 6.10: 1 25Z  , 2 30Z  , 

3 15Z  . The synchronization scheme makes 1 1 2 2 3 3 0V e e e e e e    . It is clear that 

all of the rules in FLCC can lead that the Lyapunov function satisfies the asymptotical 

stability theorem. The simulation results are shown in Fig. 6.11-13. 

6.3.1.3 Robust projective synchronization of stochastic Sprott 22 system by traditional 

method 

    According to Eq. (6.29), we design complicated controllers to synchronize 

chaotic system with uncertainty by traditional method. 

    We choose controllers are 
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1 2 2 1

2 3 3 2

3 3 2 1 3 2 1 3

( )

( )

[ ( ) sin ] sin

u x y e

u x y e

u x x x y y y e

 

 

  

   


   
          

 

               (6.30) 

and obtain 

    1 1 2 2 3 30V e e e e e e                                            (6.31) 

    The derivative of Lyapunov function is negative definite and the error dynamics 

in Eq. (6.28) are going to achieve asymptotically stable. The simulation results are 

shown in Fig. 6.14 and Fig. 6.15. 

6.3.1.4 Robust projective synchronization of stochastic Sprott 22 system by new FLCC 

compared to using traditional method 

    In this subsection, the controllers and numerical simulation results in subsection 

6.3.1.2 and subsection 6.3.1.3 are listed in Tables 2 and 3 for comparison. Comparing 

two kinds of controller in Table 2 and two kinds of errors in Table 3, it is clear to find 

out that (1) The controllers in FLCC designing are much simpler than traditional ones; 

(2) The performance of the error convergence of states by FLCC is much better than 

that by traditional method. 

Consequently, even the system contains noise and parameter uncertainty, the 

FLCC can still remain the high performance to synchronize the two chaotic systems 

with uncertainty and stochastic disturbances exactly and efficiently. 

 

Table 2 The controllers of FLCC and of traditional method. 

Controller FLCC Traditional method 
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1u  

2u  

3u  

 

1 25Z   

2 30Z   

3 15Z   

2 2 1( )x y e     

3 3 2( )x y e     

3 2 1 3

2 1 3

[ ( ) sin ]

sin

x x x y

y y e

       

 
 

 

Table 3 Errors data after the action of controllers. 

Time after 

the action of 

controllers 

FLCC                                 Traditional 

1e                                     1e  

32.00 s 

32.01 s 

32.02 s 

32.03 s 

32.04 s 

0.0000000000048992 

0.0000000000048512 

-0.0000000000032614 

-0.0000000000032419 

0.0000000000006413 

 

2e  

-3.5187301833233740 

-3.4837182330074956 

-3.4490546574179977 

-3.4147359901684879 

-3.3807587993636190 

 

2e  

31.46 s 

31.47 s 

31.48 s 

31.49 s 

31.50 s 

0.000000000001907 

-0.000000000007070 

-0.000000000007022 

-0.000000000006962 

0.000000000002132 

 

3e  

1.8995112214353798 

1.8806107689867746 

1.8618983791822554 

1.8433721807672345 

1.8250303211064454 

 

3e  

30.44 s 

30.45 s 

30.46 s 

30.47 s 

30.48 s 

-0.0000000000029234 

-0.0000000000029008 

-0.0000000000028781 

-0.0000000000028564 

-0.0000000000028346 

3.1426420748209738 

3.1113722637096530 

3.0804135924175107 

3.0497629650516407 

3.0194173165237430 
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6.3.2 Case 2 Projective synchronization of identical master and slave Ge-Ku-van der 

Pol systems by new FLCC 

    The GKv system is: 

2

1 2 3 4

2

5 6 7

( ( ) )

(1 )

x y

y y z x z

z z z y x

   

  




    


    

                                 (6.32) 

The initial condition 0 0 0( , , ) (0.01,0.01,0.01)x y z  . The parameters are 1 
 

0.08, 2 3 4 5 6 70.35,  100.56,  1000.02,  0.61,  0.08,  0.01             , chaos 

of the GKv system appears. The chaotic behavior of Eq. (6.32) is shown in Fig 6.16. 

6.3.2.1 Robust projective synchronization of non-autonomous GKv system by FLCC 

The master non-autonomous GKv system is: 

1 2

2

2 1 2 3 2 3 1 4 3

2

3 5 3 6 3 2 7 1

( ( ) )

( ) (1 )

x x

x x x x x

x x x x x

   

  




    


      

                            (6.33) 

When initial condition 10 20 30( , , ) (0.01,0.01,0.01)x x x  , sin( )t   is a 

non-autonomous term with 0.5  , 10  . The parameters are the same as that of 

Eq. (6.32). Chaos of the non-autonomous GKv system appears. The chaotic behavior 

of Eq. (6.33) is shown in Fig 6.17. 

The slave system is: 

1 2 1

2

2 1 2 3 2 3 1 4 3 2

2

3 5 3 6 3 2 7 1 3

( ( ) )

(1 )

y y u

y y y y y u

y y y y y u

   

  

 


     


     

                          (6.34) 

The initial condition 10 20 30( , , ) (10,10,10)y y y  . The parameters are the same as that of 

Eq. (6.32), chaos of the slave system appears as well. 1u , 2 u and 3 u are FLCC to 

synchronize projectively the slave system to master one, i.e., 
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0lim 


e
t

                                                    (6.35) 

where the error vector 

1 1 1

2 2 2

3 3 3

e x y

e x y

e x y



     
     

  
     
          

e                                         (6.36) 

    where 2  . We have the following error dynamics:                      

1 1 1 2 2 1

2

2 2 2 1 2 3 2 3 1 4 3

2

1 2 3 2 3 1 4 3 2

2

3 3 3 5 3 6 3 2 7 1

2

5 3 6 3

( )

( ( ( ) )) 

                        ( ( ( ) ) )

( ( ) (1 ) )

                        ( (1

e x y x y u

e x y x x x x

y y y y u

e x y x x x x

y y

 

     

   

    

 

    

      

     

        

    2 7 1 3) ) y y u








  

               (6.37) 

Choosing Lyapunov function as: 

    )( 2
3

2
2

2
1 eee

2

1
V                                             (6.38) 

Its time derivative is: 

1 1 2 2 3 3

1 2 2 1

2

2 1 2 3 2 3 1 4 3

2

1 2 3 2 3 1 4 3 2

2

3 5 3 6 3 2 7 1

2

5 3 6 3 2 7 1 3

  ( ( ))

      ( ( ( ( ) )) 

     ( ( ( ) ) ))

      ( ( ( ) (1 ) )

     ( (1 ) ))

V e e e e e e

e x y u

e x x x x

y y y y u

e x x x x

y y y y u



    

   

   

  

  

   

   

      

     

     

     (6.39) 

    In order to design FLCC, we divide Eq. (6.39) into three parts as follows: 

Assume 321
2
3

2
2

2
1 VVVeee

2

1
V  )( , then 321332211 VVVeeeeeeV   , 

where
2
11 e

2

1
V  ,

2
22 e

2

1
V  and

2
33 e

2

1
V  . 

Part 1: 1 1 1 1 2 2 1( ( ))V e e e x y u     

Part 2: 
2

2 2 2 2 1 2 3 2 3 1 4 3

2

1 2 3 2 3 1 4 3 2

( ( ( ( ) ))

                 ( ( ( ) ) ))

V e e e x x x x

y y y y u

    

   

     

     
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Part 3: 
2

3 3 3 3 5 1 3 6 3 2 7 1

2

5 3 6 3 2 7 1 3

( ( ( ) (1 ) )

                 ( (1 ) ))

V e e e x x x x

y y y y u

   

  

      

     
 

    FLCC in Part 1, 2 and 3 can be obtained via the fuzzy rules in Table 1. The 

maximum value and minimum value without any controller can be observed in time 

histories of error derivatives shown in Fig 6.18. 1 250Z  , 2 1600Z  , 3 15Z  . 

The synchronization scheme is proposed in Part 1, 2 and 3 and makes

0eeV 111   , 0eeV 222   and 0eeV 333   . Hence we have 0VVVV 321   . 

It is clear that all of the rules in FLCC can lead that the Lyapunov function satisfies 

the asymptotical stability theorem. The simulation results are shown in Fig. 6.19 and 

Fig. 6.20. 

6.3.2.2 Robust projective synchronization of stochastic GKv system by FLCC 

The master non-autonomous GKv system with robust of stochastic disturbances 

is: 

1 2 1

2

2 1 2 3 2 3 1 4 3 2

2

3 5 3 6 3 2 7 1

( ( ) )

( ) (1 )

x x

x x x x x

x x x x x



    

  

 


     


      

                          (6.40) 

When initial condition 10 20 30( , , ) (0.01,0.01,0.01)x x x  , 1 band-limited white noise   

(PSD=1). The parameters are the same as that of Eq. (6.32). Here 3

2 1 2[( )
t

e
   

  

(band-limited white noise)] (PSD=0.5) with 1 1  , 2 5  , 3 0.01  . The 

stochastic disturbances 1 and 2 signal are shown in Fig. 6.21 and Fig. 6.22. Chaos 

of the non-autonomous stochastic GKv system appears. The chaotic behavior of Eq. 

(6.40) is shown in Fig 6.23. 

The slave system is the same as Eq. (6.34) and Lyapunov function derived 

through the Eq. (6.35-6.39). 
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where 2  . We have the following error dynamics:                      

1 1 1 2 1 2 1

2

2 2 2 1 2 3 2 3 1 4 3 2

2

1 2 3 2 3 1 4 3 2

2

3 3 3 5 3 6 3 2 7 1

5 3

( ) ( )

( ( ( ) ) ) 

                        ( ( ( ) ) )

( ( ) (1 ) )

                        (

e x y x y u

e x y x x x x

y y y y u

e x y x x x x

y

  

      

   

    



     

       

     

        

   2

6 3 2 7 1 3(1 ) ) y y y u 








   

               (6.41) 

And time derivative of Lyapunov function is: 

1 1 2 2 3 3

1 2 1 2 1

2

2 1 2 3 2 3 1 4 3 2

2

1 2 3 2 3 1 4 3 2

2

3 5 3 6 3 2 7 1

2

5 3 6 3 2 7 1 3

  ( ( ) ( ))

      ( ( ( ( ) ) ) 

     ( ( ( ) ) ))

      ( ( ( ) (1 ) )

     ( (1 ) ))

V e e e e e e

e x y u

e x x x x

y y y y u

e x x x x

y y y y u

 

     

   

   

  

  

    

    

      

     

     

                (6.42) 

The maximum values and minimum values without any controller can be 

observed in time histories of error derivatives shown in Fig. 6.24: 1 300Z  , 

2 3500Z  , 3 40Z  . The projective synchronization scheme makes 

1 1 2 2 3 3 0V e e e e e e    . It is clear that all of the rules in FLCC can lead that the 

Lyapunov function satisfies the asymptotical stability theorem. The simulation results 

are shown in Fig. 6.25 and Fig. 6.26. 

6.3.2.3 Robust projective synchronization of stochastic GKv system by traditional 

method 

According to Eq. (6.42), we design complicated controllers to synchronize 

chaotic system with stochastic disturbance by traditional method. 

    We choose controllers are 

1 2 1 2 1

2

2 1 2 3 2 3 1 4 3 2

2

1 2 3 2 3 1 4 3 2

2

3 5 3 6 3 2 7 1

2

5 3 6 3 2 7 1 3

( )

[ ( ( ) ) ]

      ( ( ) )

[ ( ) (1 ) ]

      (1 )

u x y e

u x x x x

y y y y e

u x x x x

y y y y e

 

     

   

   

  

   


     


    


      
     

 

                       (6.43) 
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and obtain 

    1 1 2 2 3 30V e e e e e e                                            (6.44) 

    The derivative of Lyapunov function is negative definite and the error dynamics 

in Eq. (6.41) achieve asymptotical stability. The simulation results are shown in Fig. 

6.27 and Fig. 6.28. 

6.3.2.4 Robust projective synchronization of stochastic GKv system by new FLCC 

compared to using traditional method 

    In this case, the controllers and numerical simulation results of subsection 6.3.2.2 

and subsection 6.3.2.3 are listed in Table 4 and Table 5 for comparison. The mater and 

slave systems are more complex than Case 1, but the good-robustness and high 

performance can be still achieved through FLCC. The two main superiorities are still 

existed: (1) The controllers in FLCC designing are much simpler than traditional ones; 

(2) The performance of the convergence of error states by FLCC is much better than 

by traditional method. 

 

Table 4 The controller of FLCC and of traditional method. 

Controller FLCC Traditional 

1u  

2u  

 

3u  

 

1 300Z   

2 3500Z 
 
 

 

3 40Z   

2 1 2 1( )x y e     

2

1 2 3 2 3 1 4 3 2

2

1 2 3 2 3 1 4 3 2

[ ( ( ) ) ]

( ( ) )

x x x x

y y y y e

     

   

    

    
 

2

5 3 6 3 2 7 1

2

5 3 6 3 2 7 1 3

[ ( ) (1 ) ]

(1 )

x x x x

y y y y e

   

  

    

    
 

 

Table 5 Errors data after the action of controllers. 

Time after FLCC                                 Traditional 
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the action of 

controllers 
1e                                     1e  

30.50 s 

30.51 s 

30.52 s 

30.53 s 

30.54 s 

 

0.0000000000000853 

0.0000000000000853 

0.0000000000000853 

0.0000000000000711 

0.0000000000000711 

 

2e  

18.895920723453898 

18.707903170792974 

18.521756424039154 

18.337461868362539 

18.155001074154072 

 

2e  

31.64 s 

31.65 s 

31.66 s 

31.67 s 

31.68 s 

0.0000000000039790 

0.0000000000039506 

0.0000000000038938 

0.0000000000038654 

0.0000000000038369 

 

3e  

10.117976168390220 

10.017300623392766 

9.9176268168054662 

9.8189447811645270 

9.7212446481842232 

 

3e  

30.06 s 

30.07 s 

30.08 s 

30.09 s 

30.10 s 

0.0000000000000066 

0.0000000000000066 

0.0000000000000064 

0.0000000000000063 

0.0000000000000060 

-1.1818139746755154 

-1.1700547291499359 

-1.1584124900723243 

-1.1468860932090630 

-1.1354743859108640 

 

 



 

89 

 

 

Fig.6.1 The configuration of fuzzy logic controller. 

 

 
Fig. 6.2 Membership function. 
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Fig. 6.3 The phase portrait of chaotic Sprott 22 system. 

 

 

Fig. 6.4 The phase portrait of chaotic non-autonomous Sprott 22 system which has 

parameters uncertainty. 
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Fig. 6.5 Time histories of error derivatives for identical master and slave chaotic 

non-autonomous Sprott 22 system without controllers. 

 

Fig. 6.6 Time histories of errors for projective synchronization of non-autonomous 

Sprott 22 system by FLCC, the FLCC is coming into after 30s. 
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Fig. 6.7 Time histories of states for projective synchronization of non-autonomous 

Sprott 22 system by FLCC, the FLCC is coming into after 30s. 

 

 

Fig. 6.8 The stochastic disturbance of band-limited white noise   (PSD=0.01). 
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Fig. 6.9 The phase portrait of chaotic Sprott 22 system with stochastic disturbance. 

 

 

Fig. 6.10 Time histories of error derivatives for identical master and slave chaotic 

stochastic Sprott 22 system without controllers. 
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Fig. 6.11 Time histories of errors for projective synchronization of stochastic Sprott 

22 system by FLCC, the FLCC is coming into after 30s. 

 

 

Fig. 6.12 There are irregular ripplies in the detailed time histories of errors which are 

caused by white noise. 
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Fig. 6.13 Time histories of states for projective synchronization of stochastic Sprott 22 

system by FLCC, the FLCC is coming into after 30s. 

 

 

Fig. 6.14 Time histories of states for projective synchronization of stochastic Sprott 22 

system by traditional method, the traditional controller is coming into after 30s 
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Fig. 6.15 Time histories of states for projective synchronization of stochastic Sprott 22 

system by traditional method, the traditional controller is coming into after 30s. 

 

 

Fig. 6.16 The phase portrait of chaotic GKv system. 
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Fig. 6.17 The phase portrait of chaotic non-autonomous GKv system which has 

parameters uncertainty. 

 

Fig. 6.18 Time histories of error derivatives for identical master and slave chaotic 

non-autonomous GKv system without controllers. 
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Fig. 6.19 Time histories of errors for projective synchronization of non-autonomous 

GKv system by FLCC, the FLCC is coming into after 30s. 

 

 

Fig. 6.20 Time histories of states for projective synchronization of non-autonomous 

GKv system by FLCC, the FLCC is coming into after 30s. 
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Fig. 6.21 The stochastic disturbance of 1 band-limited white noise   (PSD=1). 

 

 

 

Fig. 6.22 The stochastic disturbance of 3

2 1 2( ) [band-limited white noise]
t

e
   

  

(PSD=0.5). 
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Fig. 6.23 The phase portrait of chaotic GKv system with stochastic disturbances. 

 

 

 

Fig. 6.24 Time histories of error derivatives for identical master and slave chaotic 

stochastic GKv system without controllers. 
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Fig. 6.25 Time histories of errors for projective synchronization of stochastic GKv 

system by FLCC, the FLCC is coming into after 30s. 

 

Fig. 6.26 Time histories of states for projective synchronization of stochastic GKv 

system by FLCC, the FLCC is coming into after 30s. 
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Fig. 6.27 Time histories of states for projective synchronization of stochastic GKv 

system by traditional method, the traditional controller is coming into after 30s. 

 

 

Fig. 6.28 Time histories of states for projective synchronization of stochastic GKv 

system by traditional method, the traditional controller is coming into after 30s. 
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Chapter 7 

Fuzzy Modeling and Synchronization of Chaotic Systems by 

a Newfangled Fuzzy Model 

7.1 Preliminary 

In this Chapter, a newfangled fuzzy model is used to simulate and synchronize 

two complex nonlinear systems, Ge-Ku-van der Pol system and extended Ge-Ku-van 

der Pol system. Through the fuzzy model mention above, only two linear subsystems 

are needed to generate the complicated chaotic behavior of original nonlinear system. 

In traditional Takagi-Sugeno fuzzy model (T-S fuzzy model) [47], the process of 

fuzzy modeling focus on the whole system. Therefore, there will be N2 linear 

subsystems (according to N2 fuzzy rules) and N2m equations in the T-S fuzzy 

system, where N is the number of nonlinear terms and m is the order of the system. If 

N is large, the number of linear subsystems in T-S fuzzy system is huge. It becomes 

more inefficient and complicated. 

In Ge-Li fuzzy model (G-L fuzzy model) [59], we focus on each equation of the 

system. The numbers of fuzzy rules can be reduced from N2 to N2 . The fuzzy 

equations become much simpler. However, the limitation of G-L fuzzy model is that 

there should be one nonlinear terms in each equation. Consequently, the newfangled 

fuzzy model is proposed to solve this defect－all nonlinear terms in each equation 

will be treated as one nonlinear term. It can be used to model various kinds of 

complex nonlinear systems, even if the nonlinear terms are copious and complicated. 

Ge-Ku-van der Pol (GKv) systems and Ge-Ku-Mathieu (GKM) system are illustrated 

in numerical simulations to show the effectiveness and feasibility of new model. 

7.2 Newfangled Fuzzy Model Theory 

In system analysis and design, it is important to select an appropriate model 
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representing a real system. As an expression model of a real plant, the fuzzy 

implications and the fuzzy reasoning method suggested by Takagi and Sugeno are 

traditionally used. The new fuzzy model is also described by fuzzy IF-THEN rules. 

The core of the newfangled fuzzy model is that we express each nonlinear equation 

into two linear sub-equations by fuzzy IF-THEN rules and take all the first linear 

sub-equations to form one linear subsystem and all the second linear sub-equations to 

form another linear subsystem. And all nonlinear terms in each state equation will be 

treated as one nonlinear term. The overall fuzzy model of the system is achieved by 

fuzzy blending of this two linear subsystem models. Consider a continuous-time 

nonlinear dynamic system as follows:  

Equation i:  

rule 1: 

IF )t(z i  is 1iM  

THEN 1 1( ) ( ) ( )i i ix t A x t B u t  ,                                    (7.1) 

rule 2: 

IF )t(z i  is 2iM  

THEN )t(uB)t(xA)t(x 2i2ii  ,                                 (7.2) 

where 

    1 2( ) [ ( ), ( ),..., ( )]T

nt x t x t x tx ,                                      (7.3) 

    1 2( ) [ ( ), ( ),..., ( )]T

nt u t u t u tu ,                                      (7.4) 

n...2,1i  , where n is the number of nonlinear terms. 2i1i M,M are fuzzy sets, 

ii B,A are column vectors and )t(uB)t(xA)t(x ijiji  , 2,1j , is the output from 

the first and the second IF-THEN rules. Given a pair of ( ( ) ( ))t tx ,u  and take all the 

first linear sub-equations to form one linear subsystem and all the second linear 
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sub-equations to form another linear subsystem, the final output of the fuzzy system is 

inferred as follows: 

    

1 1 1 1 1 2 1 2

2 1 2 1 2 2 2 2

1 2

1 1 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )i i i i

A x t B u t A x t B u t

A x t B u t A x t B u t
t

A x t B u t A x t B u t

    
   

 
    
   
   

    

x M M                  (7.5) 

where 1M and 2M are diagonal matrices as following: 

dia  1 11 21 1( ) ... iM M MM , dia  2 12 22 2( ) ... iM M MM  

Note that for each equation i: 

    



2

1j

iij 1))t(z(M ,                                              (7.6) 

    0))t(z(M iij  , i = 1, 2,…, n and j=1,2. 

    Via the newfangled fuzzy model, the final form of the fuzzy model becomes very 

simple. The new model provides a much more convenient approach for fuzzy model 

research and fuzzy application. The simulation results of chaotic systems are 

discussed in next Section. 

7.3 Newfangled Fuzzy Model of Chaotic Systems 

In this Section, the newfangled fuzzy models of three different chaotic systems, 

GKv [24] master system and extended GKv master system are shown for Model 1 and 

Model 2. GKM [24] slave system is shown for Model 3. 

Model 1: Newfangled fuzzy model of GKv system 

The GKv system is: 

1 2

2

2 1 2 3 2 3 1 4 3

2

3 5 3 6 3 2 7 1

( ( ) )

(1 )

x x

x x x x x

x x x x x

   

  




    


    

                          (7.7) 

with initial states (0.01, 0.01, 0.01). The parameters are 1 2 30.08, 0.35,       
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4 5 6 7100.56,  1000.02,  0.61,  0.08,  0.01        . The chaotic attractor of the 

GKv system is shown in Fig. 7.1. 

   If T-S fuzzy model is used for representing local linear models of GKv system, 8 

fuzzy rules and 8 linear subsystems are need. The process of modeling is shown as 

follows: 

T-S fuzzy model: 

Assume that: 

(1) 2

1 1 1[ , ]x Z Z   and 
1 0Z 

 

(2) 
3 2 2[ , ]x Z Z   and 

2 0Z   

(3) 2

3 3 3[ , ]x Z Z   and 
3 0Z   

Then we have the following T-S fuzzy rules: 

Rule 1: IF 2

1x  is 11M  , 
3x  is 21M  and 2

3x  is 31M  THEN XAX 1 , 

Rule 2: IF 2

1x  is  , 3x  is 21M  and 2

3x  is 32M  THEN 2X A X , 

Rule 3: IF 2

1x  is 11M  , 3x  is 22M  and 2

3x  is 31M  THEN 3X A X , 

Rule 4: IF 2

1x  is 11M  , 3x  is 22M  and 2

3x  is 32M  THEN 4X A X , 

Rule 5: IF 2

1x  is 12M  , 3x  is 21M  and 2

3x  is 31M  THEN 5X A X , 

Rule 6: IF 2

1x  is 12M  , 3x  is 21M  and 2

3x  is 32M  THEN 6X A X , 

Rule 7: IF 2

1x  is 12M  , 3x  is 22M  and 2

3x  is 31M  THEN 7X A X , 

Rule 8: IF 2

1x  is 12M  , 3x  is 22M  and 2

3x  is 32M  THEN 8X A X , 

Then the final output of the GKv system can be composed by fuzzy linear 

subsystems mentioned above. It is obviously an inefficient and complicated work. 

Newfangled fuzzy model: 

11M
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By using the newfangled fuzzy model, the nonlinear terms in GKv system can be 

linearized as simple linear terms. 

1 2

2 1 2 2 3 3 3 1

3 5 3 6 2 7 1 6 2 2

x x

x x x x

x x x x x

  

   




    
      

                            (7.8) 

where 2

1 2 1 4 3x x     and 2

2 3x  . The steps of fuzzy modeling are shown as 

follows: 

Steps of fuzzy modeling:  

Step 1: 

Since no nonlinear term in first equation of Eq. (7.8), we choose 
11

1

2
M  ,  

12

1

2
M  , 11M and 12M are fuzzy sets of the first equation of Eq. (7.8) and 

11211  MM . 

Step 2: 

Assume that 1 2 2[ , ]Z Z   and 0Z2  , then the second equation of Eq. (8) can be 

exactly represented by newfangled fuzzy model as following: 

    Rule 1: IF 1 is 21M , THEN 2 1 2 2 3 3 3 2x x x x Z      ,                (7.9) 

    Rule 2: IF 1 is 22M , THEN 2 1 2 2 3 3 3 2x x x x Z                     (7.10) 

where 

    1
21

2

1
(1 )

2
M

Z


  ,  1

22

2

1
(1 )

2
M

Z


  , 

and 2 3000Z   from Fig. 7.2. 21M and 22M are fuzzy sets of the second equation of 

Eq. (7.8) and 21 22 1M M  . 

Step 3: 

Assume that 2 3 3[ , ]Z Z   and 3 0Z  , then the third equation of Eq. (7.8) can be 

exactly represented by newfangled fuzzy model as following: 

    Rule 1: IF 1x is 31M , THEN 3 5 3 6 2 7 1 6 2 3x x x x x Z                  (7.11) 

    Rule 2: IF 1x is 32M , THEN 3 5 3 6 2 7 1 6 2 3x x x x x Z                  (7.12) 
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where 

    2
31

3

1
(1 )

2
M

Z


  ,  2

32

3

1
(1 )

2
M

Z


  , 

and 3 18Z 
 
from Fig. 7.2. 31M and 32M are fuzzy sets of the third equation of Eq. 

(7.8) and 13231  MM . 

Here, we call Eqs. (7.9) and (7.11) the first linear subsystem under the fuzzy 

rules, and Eqs. (7.10) and (7.12) the second linear subsystem under the fuzzy rules. 

The first linear subsystem is 

1 2

2 1 2 2 3 3 3 2

3 5 3 6 2 7 1 6 2 3

x x

x x x x Z

x x x x x Z

  

   




   
     

                                (7.13) 

The second linear subsystem is 

   

1 2

2 1 2 2 3 3 3 2

3 5 3 6 2 7 1 6 2 3

x x

x x x x Z

x x x x x Z

  

   




   
     

                                (7.14) 

Via newfangled fuzzy model, the number of fuzzy rules can be greatly reduced. 

Just two linear subsystems are enough to express such complex chaotic behaviors. 

The simulation results are similar the original chaotic behavior of the GKv system as 

shown in Fig. 7.3. 

 Now we have: 

1 211

2 21 1 2 2 3 3 3 2

313 5 3 6 2 7 1 6 2 3

212

22 1 2 2 3 3 3 2

32 5 3 6 2 7 1 6 2 3

0 0

0 0

0 0

0 0

0 0

0 0

x xM

x M x x x Z

Mx x x x x Z

xM

M x x x Z

M x x x x Z

  

   

  

   

    
    

   
    
            

  
  

   
  
         

             (7.15) 

Eq. (7.15) can be rewritten as a simple mathematical expression: 

2

1

( ) ( ( ) )i i i

i

t t


 X Ψ A X b                                       (7.16) 
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where i are diagonal matrices as follows: 

 1 11 21 31( )dia M M MΨ ,  2 12 22 32( )dia M M MΨ  

    1 2 3 2

7 6 3 5

0 1 0

0

( 1 )

Z

Z

  

  

 
 

  
 
   

1A , 

0

0

0

 
 


 
  

1b  

    1 2 3 2

7 6 3 5

0 1 0

0

( 1 )

Z

Z

  

  

 
 

  
 
   

2A , 

0

0

0

 
 


 
  

2b  

where 1A , 2A , 1b , 2b are provided for the next Section to fuzzy synchronize. 

Model 2: Newfangled fuzzy model of extended GKv system 

The extended GKv system is: 

1 2

2 3

2 1 2 3 2 3 1 4 3 8 3

2

3 5 3 6 3 2 7 1

( ( ) )

(1 )

x x

x x x x x x

x x x x x

    

  




     


    

                      (7.17) 

with initial states (0.01, 0.01, 0.01). The parameters are the same as that Eq. (7.7) but

3

8 3x , where 8 50  . The chaotic attractor of the extended GKv system is shown in 

Fig. 7.4. 

   If T-S fuzzy model is used for representing local linear models of extended GKv 

system, 16 fuzzy rules and 16 linear subsystems are needed. This T-S fuzzy system 

becomes too complex treat. 

Newfangled fuzzy model: 

By using the newfangled fuzzy model, extended GKv system can be linearized as 

simple linear equations. 

1 2

2 1 2 2 3 3 3 1

3 5 3 6 2 7 1 6 2 2

x x

x x x x

x x x x x

  

   




    
      

                           (7.18) 

where 2 2

1 2 1 4 3 8 3x x x       and 2

2 3x  . The steps of fuzzy modeling are similar 
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to Model 1. 2 4000Z  , 3 12Z   from Fig. 7.5. And the simulation results are similar 

the original chaotic behavior of the extended GKv system as shown in Fig. 7.6. 

Model 3: New fuzzy model of slave GKM system  

The slave GKM system is: 

1 2

2

2 1 2 1 2 3 1 4 2 3

2

3 5 6 1 3 7 2 8 1

( ( ) )

( )

y y

y y y y y y

y y y y y

   

   




    


    

                             (7.19) 

The initial conditions are chosen as (0.05, 0.05, 0.05). The parameters are 

1 2 3 4 5 6 7 80.6, 5,  11,  0.3,  8,  10,  0.5,  0.2                 and the GKM 

system model exhibits chaotic motion which is shown in Fig. 7.7. 

If T-S fuzzy model is used for representing local linear models of extended GKv 

system, 16 fuzzy rules and 16 linear subsystems are need. This T-S fuzzy system 

becomes too complex treat. 

By using the newfangled fuzzy model, GKM system can be linearized as simple 

linear equations. 

1 2

2 1 2 2 3 1 1 1

3 5 3 7 2 1 2

y y

y y y y

y y y y

  

 




    
     

                                (7.20) 

where 2

1 2 1 4 2 3x x x     and 2 6 3 6 1x x     . 

New fuzzy model: 

Assume that: 

(1) 1 2 2[ , ]Z Z   and 2 0Z  ,  

(2) 2 3 3[ , ]Z Z   and 3 0Z  , 

then we have the following new fuzzy rules: 

The first equation of Eq. (7.20) is without nonlinear term, we choose 
11

1

2
N  ,  

12

1

2
N  ,  
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and 

    Rule 1: IF 1 is 21N ,THEN 2 1 2 2 3 1 1 2y y y y Z      ,                (7.21) 

    Rule 2: IF 1 is 22N ,THEN 2 1 2 2 3 1 1 2y y y y Z      ,                (7.22) 

where 

    1
2 1

2

1
( 1 )

2
N

Z


  ,  1

22

2

1
(1 )

2
N

Z


  . 

and 

    Rule 1: IF 2 is 31N ,THEN 3 5 3 7 2 1 3y y y y Z     ,                (7.23) 

    Rule 2: IF 2 is 32N ,THEN 3 5 3 7 2 1 3y y y y Z     ,                (7.24) 

where 

    2
3 1

3

1
( 1 )

2
N

Z


  ,  2

32

3

1
(1 )

2
N

Z


  . In Eqs. (7.21-24), 2 60Z  and 5 300Z   

from Fig. 7.8. 11N , 12N , 21N , 22N , 31N and 32N are fuzzy sets of Eq. (7.20) and

11211  NN , 12221  NN  and 31 32 1N N    

Here we call Eq. (7.21) and Eq. (7.23) the first linear subsystem under the fuzzy 

rules and Eq. (7.22) and Eq. (7.24) the second linear subsystem under the fuzzy rules. 

The first linear subsystem is 

1 2

2 1 2 2 3 1 1 2

3 5 3 7 2 1 3

y y

y y y y Z

y y y y Z

  

 




   
    

                                     (7.25) 

The second linear subsystem is 

    

1 2

2 1 2 2 3 1 1 2

3 5 3 7 2 1 3

y y

y y y y Z

y y y y Z

  

 




   
    

                                     (7.26) 

The final output of the fuzzy GKM system is inferred as follows and the chaotic 

behavior of fuzzy system is shown in Fig. 7.9. 
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1 211

2 21 1 2 2 3 1 1 2

313 5 3 7 2 1 3

212

22 1 2 2 3 1 1 2

32 5 3 7 2 1 3

0 0

0 0

0 0

0 0

0 0

0 0

T

T

y yN

y N y y y Z

Ny y y y Z

yN

N y y y Z

N y y y Z

  

 

  

 

    
    

   
    
           

  
  

   
  
        

                   (7.27) 

Eq. (7-27) can be rewritten as a simple mathematical expression: 

2

1

( ) ( ( ) )i i i

i

t t


 Y Γ C Y c                                        (7.28) 

where  

 1 11 21 31( )dia N N NΓ ,  2 12 22 32( )dia N N NΓ  

    1 2 3 2 1

3 7 5

0 1 0

0Z

Z

  

 

 
 

   
 
  

C , 1

0

0

0

 
 


 
  

c  

    2 2 3 2 1

3 7 5

0 1 0

0Z

Z

  

 

 
 

   
 
   

C , 2

0

0

0

 
 


 
  

c  

where 1C , 2C , 1c , 2c are provided for the next Section to Fuzzy synchronize. 

7.4 Fuzzy Synchronization Scheme 

In this Section, we derive the newfangled fuzzy synchronization scheme based 

on our new fuzzy model to synchronize two different fuzzy chaotic systems. The 

following fuzzy systems as the master and slave systems are given: 

master system: 

2

1

( ) ( ( ) )i i i

i

t t


 X Ψ A X b                                        (7.29) 

slave system:  

2

1

( ) ( ( ) ) ( )i i i

i

t t t


  Y Γ C Y c BU                                  (7.30) 

Eq. (7.29) and Eq. (7.30) represent the two different chaotic systems, and in Eq. (7.30) 
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there is control input U(t). Define the error signal as ( ) ( ) ( )t t t e X Y , we have: 

2 2

1 1

( ) ( ) ( ) ( ( ) ) ( ( ) ) ( )i i i i i i

i i

t t t t t t
 

       e X Y Ψ A X b Γ C Y c BU       (7.31) 

The fuzzy controllers are designed as follows: 

1 2( ) ( ) ( )t t t U u u                                             (7.32) 

where  

    
2 2

1

1 1

( ) ( ) ( )i i i i

i i

t t t
 

  u Ψ F X Γ P Y , 

    
2 2

2

1 1

( ) i i i i

i i

t
 

  u Ψ b Γ c  

such that ( ) 0t e as t . Our design is to determine the feedback gains Fi and Pi. 

By substituting U(t) into Eq.(7.31), we obtain: 

   
2 2

1 1

( ) ( ) ( ) ( ) ( )i i i i i i

i i

t F t P t
 

    e Ψ A B X Γ C B Y                  (7.33) 

Theorem 1: The error system in Eq. (7.33) is asymptotically stable and the slave 

system in Eq. (7.30) can synchronize the master system in Eq. (7.29) under the fuzzy 

controller in Eq. (32) if the following conditions below can be satisfied: 

1 1( ) ( ) ( ) 0i i i i      G A BF A BF C BP , i=1~2.                  (7.34) 

Proof: 

The errors in Eq. (7.33) can be exactly linearized via the fuzzy controllers in Eq. 

(7.32) if there exist the feedback gains Fi such that 

1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) 0       A BF A BF C BP C BP .                (7.35) 

Then the overall control system is linearized as 

( ) ( )t te Ge ,                                                 (7.36) 

where 1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) 0        G A BF A BF C BP C BP . 

As a consequence, the zero solution of the error system Eq. (7.36) linearized via 

the fuzzy controller Eq. (7.32) is asymptotically stable. 
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7.5 Simulation Results 

There are two examples in this Section to investigate the effectiveness and 

feasibility of our new fuzzy model.  

Example 1: Synchronization of Identical Master and Slave GKv systems  

The fuzzy GKv system in Eq. (7.16) is chosen as the master system and the 

fuzzy slave GKv system, with fuzzy controllers is as follows: 

2

1

( ) ( ( ) ) ( )i i i

i

t t t


  Y Γ C Y c BU                                  (7.37) 

where iΓ are diagonal matrices  

 1 11 21 31( )dia N N NΓ ,  2 12 22 32( )dia N N NΓ  

and 

    1 1 2 3 2

7 6 3 5

0 1 0

0

( 1 )

Z

Z

  

  

 
 

  
 
   

C , 1

0

0

0

c

 
 


 
  

 

    2 1 2 3 2

7 6 3 5

0 1 0

0

( 1 )

Z

Z

  

  

 
 

  
 
   

C , 2

0

0

0

c

 
 


 
  

. 

Therefore, the error and error dynamics are: 









































33

22

11

3

2

1

yx

yx

yx

e

e

e

,                                             (7.38) 

1 1 1 2 2

2 2 2

1 1

3 3 3

( ( ) ) ( ( ) ) ( )i i i i i i

i i

e x y

e x y t t t

e x y
 

   
   

      
   
      

 Ψ A X b Γ C Y c BU        (7.39) 

B is chosen as an identity matrix and the fuzzy controllers in Eq. (7.32) are used: 
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   
1 1 1

2 1 1 1 2 2 2 2 23 3 3 3

3 3 3

e x x

e x x

e x x
 

     
     

   
     
          

Ψ A BF Ψ A BF                                            

           
1 1

1 1 1 2 2 2 2 23 3 3 3

3 3

y y

y y

y y
 

   
   

   
   
      

Γ C BP Γ C BP                     (7.40)    

According to Eq. (7.34), we have      1 1 2 2 1 1     G A BF A BF C BP  

 2 2 0  C BP . G is chosen as: 

    

1 0 0

0 1 0

0 0 1

 
 

 
 
  

G                                            (7.41) 

Thus, the feedback gains F1, F2, P1 and P2 can be determined by the following 

equation: 

     1

1 1

1 1 0

0.08 1 3035.196

0.01 1.36 0.39



 
 

   
 
  

F B A G                       (7.42) 

     1

2 2

1 1 0

0.08 1 2964.804

0.01 1.52 0.39



 
 

    
 
  

F B A G                      (7.43) 

 1

1 1

1 1 0

0.08 1 3035.196

0.01 1.36 0.39



 
 

   
 
  

P B C G                       (7.44) 

     1

2 2

1 1 0

0.08 1 2964.804

0.01 1.52 0.39



 
 

    
 
  

P B C G                       (7.45) 

The synchronization errors are shown in Fig. 7.10.  

Example 2: Synchronization of extended GKv system and GKM system. 
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The fuzzy extended GKv system in Eq. (7.16) is chosen as the master system and 

the fuzzy slave GKM system in Eq. (7.28), with fuzzy controllers is as follows: 

2

1

( ) ( ( ) ) ( )i i i

i

t t t


  Y Γ C Y c BU                                  (7.46) 

where iΓ are diagonal matrices  

 1 11 21 31( )dia N N NΓ ,  2 12 22 32( )dia N N NΓ  

Therefore, the error and error dynamics are: 









































33

22

11

3

2

1

yx

yx

yx

e

e

e

,                                             (7.47) 

1 1 1 2 2

2 2 2

1 1

3 3 3

( ( ) ) ( ( ) ) ( )i i i i i i

i i

e x y

e x y t t t

e x y
 

   
   

      
   
      

 Ψ A X b Γ C Y c BU        (7.48) 

B is chosen as an identity matrix and the fuzzy controllers in Eq. (7.32) are used: 

   
1 1 1

2 1 1 1 2 2 2 2 23 3 3 3

3 3 3

e x x

e x x

e x x
 

     
     

   
     
          

Ψ A BF Ψ A BF                                            

           
1 1

1 1 1 2 2 2 2 23 3 3 3

3 3

y y

y y

y y
 

   
   

   
   
      

Γ C BP Γ C BP                     (7.49) 

According to Eq. (7.34), we have      1 1 2 2 1 1     G A BF A BF C BP  

 2 2 0  C BP . G is chosen as: 

    

1 0 0

0 1 0

0 0 1

 
 

 
 
  

G                                            (7.50) 

Thus, the feedback gains F1, F2, P1 and P2 can be determined by the following 

equation: 
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     1

1 1

1 1 0

0.08 1 4035.196

0.01 0.88 0.39

F B A G

 
 

   
 
  

                      (7.51) 

     1

2 2

1 1 0

0.08 1 3964.804

0.01 1.04 0.39

F B A G

 
 

    
 
  

                      (7.52) 

 1

1 1

1 1 0

5 1.6 0

300 0.5 0.8

P B C G

 
 

  
 
  

                              (7.53) 

     1

2 2

1 1 0

115 1.6 0

300 0.5 0.8

P B C G

 
 

   
 
   

                            (7.54) 

The synchronization errors are shown in Fig. 7.11. 
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Fig. 7.1 Chaotic behavior of GKv system. 

 

Fig. 7.2 Time histories of 2Z , 3Z  for GKv system. 
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Fig. 7.3 Chaotic behavior of newfangled fuzzy GKv system. 

 

 

 

Fig. 7.4 Chaotic behavior of extended GKv system. 
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Fig. 7.5 Time histories of 
2Z , 

3Z  for extended GKv system. 

 

 

Fig. 7.6 Chaotic behavior of newfangled fuzzy extended GKv system system. 
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Fig. 7.7 Chaotic behavior of GKM system. 

 

 

Fig. 7.8 Time histories of 2Z , 3Z  for GKM system. 
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Fig. 7.9 Chaotic behavior of newfangled fuzzy GKM system. 

 

 

 

Fig. 7.10 Time histories of errors for Example 1. 
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Fig. 7.11 Time histories of errors for Example 2. 
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Chapter 8 

Conclusions 

In this thesis, the chaotic behavior in new Ge-Ku-van der Pol system is studied 

by phase portraits, time history, Poincaré maps, Lyapunov exponent and bifurcation 

diagrams. 

In Chapter 3, a new double symplectic synchronization of a GKv system is 

studied. The double symplectic synchronization is obtained by applying active control. 

The generalized synchronization and symplectic synchronization are special cases for 

the double symplectic synchronization. Two different chaotic dynamical systems, of 

which one is a new GKv system are in double symplectic synchronization for three 

cases. The Partner A are a new GKD nonlinear system, a new DGK nonlinear system 

and a new GKM nonlinear system respectively. The simulation results show that the 

proposed scheme is effective and feasible for all chaotic systems. Double symplectic 

synchronization of chaotic systems can be used to increase the security of secret 

communication. 

Synchronization of real systems (expressed in real variables) has been widely 

explored in several problems involving physical chemical and ecological systems, 

human heartbeat regulation and secure communications. Yet synchronization of 

complex state system is firstly studied. In Chapter 4, we converted a real variable 

system to a complex variable system. A second-order of Ge-Ku real variable system 

coupled with different first-order complex state equation of complex conjugate form, 

and the results obtained present distinct chaotic behaviors.  

Finally, synchronizations of three different chaotic systems are studied by 

pragmatical adaptive control method. The pragmatical asymptotical stability theorem 

fills the vacancy between the actual asymptotical stability and mathematical 
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asymptotical stability. For traditional adaptive control of chaotic motion, the Babalat’s 

lemma is used to prove the error vector approaches zero, as time approaches infinity. 

But the question, why the estimated parameters also approach to the uncertain 

parameters, remains no answer. By the pragmatical theorem of asymptotical stability 

can be proved strictly that the common zero solution of error dynamics and of 

parameter dynamics is asymptotically stable. The conditions of the Lyapunov 

function for pragmatical asymptotical stability are lower than that for traditional 

asymptotical stability.  

Our studies indicate that generalized synchronization by applying pragmatical 

active control is efficient and of wide applicability to synchronize chaotic system. 

In Chapter 5, the different translation generalized synchronization chaotic of 

systems is studied by pragmatical synchronization and partial region stability theorem 

method. Using GYC partial region stability theorem, the Lyapunov function of 

pragmatical synchronization used is a simple linear homogeneous function of states 

and the lower order controllers are much more simple. 

It is important to note that different translation 1 2,  k k  are not arbitrary, two 

proper values must chosen to make that the error dynamics always in first quadrant, 

so give two more insurances are given for secret communication than other 

synchronization methods. This method enlarges the effective scope of chaos 

synchronization. 

In Chapter 6, a simplest fuzzy controller (FLCC) is introduced to projective 

synchronization of non-autonomous chaotic systems with stochastic disturbance. 

Three main contributions can be concluded: (1) High performance of the convergence 

of error states in synchronization; (2) Good-robustness in projective synchronization 

of the chaotic systems with stochastic disturbance; (3) Simple constant controllers are 

used, which can be easily obtained. 
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Furthermore, due to the characters of FLCC, the mathematical models of studied 

systems can be even entirely unknown, all we have to do is to capture the output 

signals. Through the fuzzy logic rules, the strength of controllers can be adjusted via 

the corresponding membership functions, the well robustness and high performance in 

synchronization of these simplest controllers (FLCC) can be applied to various 

systems with various perturbations, such as neuroscience, un-model bio-systems, 

complicated brain network and so on. 

In Chapter 7, a newfangled fuzzy model is proposed. A complicated nonlinear 

system can be linearized to a simple form. Most importantly, it can break the 

limitation of G-L fuzzy model. 

Through the newfangled fuzzy model, there are two main contributions can be 

included: (1) all the complex nonlinear chaotic systems can be generated as two linear 

subsystems with their corresponding membership functions; (2) only two gain matrix 

are needed to synchronize the two totally different chaotic systems. The numbers of 

linear subsystems and gain matrix are hugely reduced and the simulation results show 

the great effectiveness and feasibility of our new model. 
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Appendix A 

GYC Partial Region Stability Theory 

A.1 Definition of the Stability on Partial Region 

Consider the differential equations of disturbed motion of a nonautonomous 

system in the normal form 

1( , , , ), ( 1, , )s
s n

dx
X t x x s n

dt
   (A.1) 

where the function 
sX  is defined on the intersection of the partial region   

(shown in Fig. A1) and 

2

s

s

x H  (A.2) 

and 
0t t , where 

0t  and H are certain positive constants. 
sX which vanishes when 

the variables 
sx  are all zero, is a real valued function of t, 

1, , nx x . It is assumed 

that 
sX  is smooth enough to ensure the existence, uniqueness of the solution of the 

initial value problem. When 
sX  does not contain t explicitly, the system is 

autonomous. 

Obviously, 0 ( 1, )sx s n   is a solution of Eq. (A.1). We are interested to 

the asymptotical stability of this zero solution on partial region   (including the 

boundary) of the neighborhood of the origin which in general may consist of several 

subregions (Fig. A1). 

Definition 1: 

For any given number 0  , if there exists a 0  , such that on the closed 

given partial region   when 

2

0 , ( 1, , )s

s

x s n   (A.3) 

for all 0t t , the inequality 
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2 , ( 1, , )s

s

x s n   (A.4) 

is satisfied for the solutions of Eq.(A.1) on  , then the disturbed motion 

0 ( 1, )sx s n   is stable on the partial region  . 

Definition 2: 

If the undisturbed motion is stable on the partial region  , and there exists a 

' 0  , so that on the given partial region   when 

2 '

0 , ( 1, , )s

s

x s n   (A.5) 

The equality 

2lim 0s
t

s

x


 
 

 
  (A.6) 

is satisfied for the solutions of Eq.(A.1) on  , then the undisturbed motion 

0 ( 1, )sx s n   is asymptotically stable on the partial region  . 

The intersection of   and region defined by Eq.(A.5) is called the region of 

attraction. 

Definition of Functions 
1( , , , )nV t x x : 

Let us consider the functions 
1( , , , )nV t x x  given on the intersection 

1  of 

the partial region   and the region 

2 , ( 1, , )s

s

x h s n   (A.7) 

for 
0 0t t  , where 0t  and h are positive constants. We suppose that the functions 

are single-valued and have continuous partial derivatives and become zero when 

1 0nx x   . 

Definition 3: 

If there exists 0 0t   and a sufficiently small 0h  , so that on partial region 

1  and 0t t , 0V   (or 0 ), then V is a positive (or negative) semidefinite, in 

general semidefinite, function on the 1  and 0t t . 
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Definition 4: 

If there exists a positive (negative) definitive function 
1( )nW x x  on 

1 , so 

that on the partial region 
1  and 

0t t  

0 ( 0),V W or V W      (A.8) 

then 
1( , , , )nV t x x  is a positive definite function on the partial region 

1  and 

0t t . 

Definition 5: 

If 
1( , , , )nV t x x  is neither definite nor semidefinite on 

1  and 
0t t , then 

1( , , , )nV t x x  is an indefinite function on partial region 
1  and 

0t t . That is, for 

any small 0h   and any large 
0 0t  , 

1( , , , )nV t x x  can take either positive or 

negative value on the partial region 
1  and 

0t t . 

Definition 6: Bounded function V 

If there exist 
0 0t  , 0h  , so that on the partial region 

1 , we have 

1( , , , )nV t x x L  

where L is a positive constant, then V is said to be bounded on 
1 . 

Definition 7:  Function with infinitesimal upper bound 

If V is bounded, and for any 0  , there exists 0  , so that on 
1  when 

2

s

s

x  , and 0t t , we have 

1( , , , )nV t x x   

then V admits an infinitesimal upper bound on 1 . 

A.2 GYC Theorem of Stability and of Asymptotical Stability on Partial Region 

Theorem 1 

If there can be found a definite function 1( , , , )nV t x x  on the partial region for 

Eq. (A.1), and the derivative with respect to time based on these equations are: 
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1

n

s

s s

dV V V
X

dt t x

 
 
 

  (A.9) 

Then, it is a semidefinite function on the paritial region whose sense is opposite to 

that of V, or if it becomes zero identically, then the undisturbed motion is stable on the 

partial region. 

Proof: 

Let us assume for the sake of definiteness that V is a positive definite function. 

Consequently, there exists a sufficiently large number 
0t  and a sufficiently small 

number h < H, such that on the intersection 
1  of partial region   and 

2 , ( 1, , )s

s

x h s n   

and 
0t t , the following inequality is satisfied 

1 1( , , , ) ( , , ),n nV t x x W x x  

where W is a certain positive definite function which does not depend on t. Besides 

that, Eq. (A.9) may assume only negative or zero value in this region. 

Let   be an arbitrarily small positive number. We shall suppose that in any case 

h  . Let us consider the aggregation of all possible values of the quantities 

1, , nx x , which are on the intersection 2  of 
1  and 

2 ,s

s

x   (A.10) 

and let us designate by 0l   the precise lower limit of the function W under this 

condition. By virtue of Eq. (A.8), we shall have 

1( , , , )nV t x x l  for 1( , , )nx x  on 2 . (A.11) 

We shall now consider the quantities sx  as functions of time which satisfy the 

differential equations of disturbed motion. We shall assume that the initial values 0sx  

of these functions for 0t t  lie on the intersection 2 of 1 and the region 
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2 ,s

s

x   (A.12) 

where   is so small that 

0 10 0( , , , )nV t x x l   (A.13) 

By virtue of the fact that 
0( ,0, ,0) 0V t  , such a selection of the number   is 

obviously possible. We shall suppose that in any case the number   is smaller than 

 .Then the inequality 

2 ,s

s

x   (A.14) 

being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently 

small 
0t t , since the functions ( )sx t  very continuously with time. We shall show 

that these inequalities will be satisfied for all values 
0t t . Indeed, if these 

inequalities were not satisfied at some time, there would have to exist such an instant 

t=T for which this inequality would become an equality. In other words, we would 

have 

2 ( ) ,s

s

x T   

and consequently, on the basis of Eq. (A.11) 

1( , ( ), , ( ))nV T x T x T l   (A.15) 

On the other hand, since h  , the inequality (Eq.(A.7)) is satisfied in the entire 

interval of time [t0, T], and consequently, in this entire time interval 0
dV

dt
 . This 

yields 

1 0 10 0( , ( ), , ( )) ( , , , ),n nV T x T x T V t x x   

which contradicts Eq. (A.14) on the basis of Eq. (A.13). Thus, the inequality 

(Eq.(A.4)) must be satisfied for all values of 0t t , hence follows that the motion is 

stable. 

Finally, we must point out that from the view-point of mathenatics, the stability 
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on partial region in general does not be related logically to the stability on whole 

region. If an undisturbed solution is stable on a partial region, it may be either stable 

or unstable on the whole region and vice versa. In specific practical problems, we do 

not study the solution starting within 
2  and running out of  . 

Theorem 2 

If in satisfying the conditions of Theorem 1, the derivative 
dV

dt
 is a definite 

function on the partial region with opposite sign to that of V and the function V itself 

permits an infinitesimal upper limit, then the undisturbed motion is asymptotically 

stable on the partial region. 

Proof: 

Let us suppose that V is a positive definite function on the partial region and that 

consequently, 
dV

dt
 is negative definite. Thus on the intersection 

1  of   and the 

region defined by Eq. (A.7) and 
0t t  there will be satisfied not only the inequality 

(Eq.(A.8)), but the following inequality as well: 

1 1( , ),n

dV
W x x

dt
   (A.16) 

where 1W  is a positive definite function on the partial region independent of t. 

Let us consider the quantities 
sx  as functions of time which satisfy the 

differential equations of disturbed motion assuming that the initial values 0 0( )s sx x t  

of these quantities satisfy the inequalities Eq. (A.12). Since the undisturbed motion is 

stable in any case, the magnitude   may be selected so small that for all values of 

0t t  the quantities sx  remain within 1 . Then, on the basis of Eq. (A.16) the 

derivative of function 1( , ( ), , ( ))nV t x t x t  will be negative at all times and, 

consequently, this function will approach a certain limit, as t increases without limit, 

remaining larger than this limit at all times. We shall show that this limit is equal to 

some positive quantity different from zero. Then for all values of 0t t  the following 
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inequality will be satisfied: 

1( , ( ), , ( ))nV t x t x t   (A.17) 

where 0  . 

Since V permits an infinitesimal upper limit, it follows from this inequality that 

2 ( ) , ( 1, , ),s

s

x t s n   (A.18) 

where   is a certain sufficiently small positive number. Indeed, if such a number   

did not exist, that is , if the quantity ( )s

s

x t  were smaller than any preassigned 

number no matter how small, then the magnitude 
1( , ( ), , ( ))nV t x t x t , as follows 

from the definition of an infinitesimal upper limit, would also be arbitrarily small, 

which contradicts Eq. (A.17). 

If for all values of 
0t t  the inequality Eq. (A.18) is satisfied, then Eq. (A.16) 

shows that the following inequality will be satisfied at all times: 

1,
dV

l
dt

   

where 
1l  is positive number different from zero which constitutes the precise lower 

limit of the function 1 1( , ( ), , ( ))nW t x t x t  under condition Eq. (A.18). Consequently, 

for all values of 0t t  we shall have: 

0
1 0 10 0 0 10 0 1 0( , ( ), , ( )) ( , , , ) ( , , , ) ( ),

t

n n n
t

dV
V t x t x t V t x x dt V t x x l t t

dt
    

 

which is, obviously, in contradiction with Eq.(A.17). The contradiction thus obtained 

shows that the function 1( , ( ), , ( ))nV t x t x t  approached zero as t increase without 

limit. Consequently, the same will be true for the function 1( ( ), , ( ))nW x t x t  as well, 

from which it follows directly that 

lim ( ) 0, ( 1, , ),s
t

x t s n


   

which proves the theorem. 
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subregion 3

subregion 1
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Fig. A.1. Partial regions   and 
1
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Appendix B 

Pragmatical Asymptotical Stability Theory 

The stability for many problems in real dynamical systems is actual 

asymptotical stability, although may not be mathematical asymptotical stability. The 

mathematical asymptotical stability demands that trajectories from all initial states in 

the neighborhood of zero solution must approach the origin as t  . If there are 

only a small part or even a few of the initial states from which the trajectories do not 

approach the origin as t  , the zero solution is not mathematically 

asymptotically stable. However, when the probability of occurrence of an event is 

zero, it means the event does not occur actually. If the probability of occurrence of 

the event that the trajectries from the initial states are that they do not approach zero 

when t  , is zero, the stability of zero solution is actual asymptotical stability 

though it is not mathematical asymptotical stability. In order to analyze the 

asymptotical stability of the equilibrium point of such systems, the pragmatical 

asymptotical stability theorem is used. 

Let X and Y be two manifolds of dimensions m and n (m<n), respectively, and 

  be a differentiable map from X to Y, then ( )X  is subset of Lebesque measure 

0 of Y [61]. For an autonomous system 

1( , , )n

dx
f x x

dt
                                             (B-1) 

where  1, ,
T

nx x x  is a state vector, the function  1, ,
T

nf f f is defined on 

nD R  and 0x H  . Let x=0 be an equilibrium point for the system (B-1). 

Then 

(0) 0f                                                     (B-2) 

For a nonautonomous systems, 
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1 1( ,..., )nx f x x                  (B-3) 

where 1 1[ ,..., ]T

nx x x  , the function  1[ ,..., ]T

nf f f  is define on 

nD R R  ,here 
1nt x R   . The equilibrium point is  

   
1( 0 , ) 0nf x   .               (B-4) 

Definition The equilibrium point for the system (B-1) is pragmatically 

asymptotically stable provided that with initial points on C which is a subset of 

Lebesque measure 0 of D, the behaviors of the corresponding trajectories cannot be 

determined, while with initial points on D－C, the corresponding trajectories behave 

as that agree with traditional asymptotical stability [38,39]. 

Theorem Let 1[ , , ]T

nV x x : D→R+ be positive definite and analytic on D, 

where 1 2, ,..., nx x x  are all space coordinates such that the derivative of V through 

Eq. (A-1)or(A-3), V , is negative semi-definite of 1 2[ , , , ]T

nx x x . 

    For autonomous system, Let X be the m-manifold consisted of point set for 

which 0x  , ( ) 0V x   and D is a n-manifold. If m+1<n, then the equilibrium 

point of the system is pragmatically asymptotically stable. 

    For nonautonomous system, let X  be the 1m -manifold consisting of point 

set of which 1 20, ( , ,..., ) 0nx V x x x   and D is 1n -manifold. If 1 1 1m n    , 

i.e. 1m n  then the equilibrium point of the system is pragmatically asymptotically 

stable. Therefore, for both autonomous and nonautonomous system the formula 

1m n  is universal. So the following proof is only for autonomous system. The 

proof for nonautonomous system is similar. 

Proof Since every point of X can be passed by a trajectory of Eq. (B-1), which 

is one- dimensional, the collection of these trajectories, A, is a (m+1)-manifold [38, 

39]. 
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If m+1＜n, then the collection C is a subset of Lebesque measure 0 of D. By 

the above definition, the equilibrium point of the system is pragmatically 

asymptotically stable.  

If an initial point is ergodicly chosen in D, the probability of that the initial 

point falls on the collection C is zero. Here, equal probability is assumed for every 

point chosen as an initial point in the neighborhood of the equilibrium point. Hence, 

the event that the initial point is chosen from collection C does not occur actually. 

Therefore, under the equal probability assumption, pragmatical asymptotical stability 

becomes actual asymptotical stability. When the initial point falls on D C , 

( ) 0V x  , the corresponding trajectories behave as that agree with traditional 

asymptotical stability because by the existence and uniqueness of the solution of 

initial-value problem, these trajectories never meet C.  

In Eq. (B-2-7) V is a positive definite function of n variables, i.e. p error state 

variables and n-p=m differences between unknown and estimated parameters, while 

TV e Ce  is a negative semi-definite function of n variables. Since the number of 

error state variables is always more than one, p>1, m+1<n is always satisfied, by 

pragmatical asymptotical stability theorem we have 

lim 0
t

e


                                                    (B-5) 

and the estimated parameters approach the uncertain parameters. The pragmatical 

adaptive control theorem is obtained. Therefore, the equilibrium point of the system is 

pragmatically asymptotically stable. Under the equal probability assumption, it is 

actually asymptotically stable for both error state variables and parameter variables.
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