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摘要 

本篇論文以相圖、龐卡萊映射圖、李亞普洛夫指數以及分歧圖等數值方法研

究新 Ge-Ku-Mathieu 系統的渾沌現象。對此系統應用部分區域穩定性理論和實用

漸進穩定理論來達成廣義同步；應用主動控制獲得雙重及多重渾沌交織同步。更

進一步使用新模糊模型來研究 Sprott 19, 22 系統的模糊模型化和渾沌同步。此

外，將探討新模糊邏輯常數控制器應用在投影同步及含有不確定性的渾沌系統。

在以上研究中，皆可由相圖和時間歷程圖得到驗證。 
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System and Sprott 19, 22 Systems 

 

 

Student：Xiang- Ping Wang              Advisor：Zheng-Ming Ge 

 

Department of Mechanical Engineering, National Chiao Tung 

University 

Abstract 

In this thesis, the chaotic behavior in new Ge-Ku-Mathieu system is studied by 

phase portraits, time history, Poincaré maps, Lyapunov exponent and bifurcation 

diagrams. A new kind of chaotic generalized synchronization, different translation 

pragmatical generalized synchronization, is obtained by pragmatical asymptotical 

stability theorem and partial region stability theory. Second new type for chaotic 

synchronization, double and multiple symplectic synchronization, are obtained by 

active control. A new method, using new fuzzy model, is studied for fuzzy modeling 

and synchronization of Sprott 19, 22 systems. Moreover, the new fuzzy logic constant 

controller is studied for projective synchronization and chaotic system with 

uncertainty. Numerical analyses, such as phase portraits and time histories can be 

provided to verify the effectiveness in all above studies. 

 

 

 

 



 

iii 

 

誌謝 

    本篇碩士論文能夠順利的完成，首先要感謝的人，便是不斷給予耐心指導

及諄諄教誨，我的指導教授戈正銘老師。老師在我求學的過程中，在研究上，給

予我研究方向及專業領域的知識，遇到困難時，讓我學習如何克服及解決難題。

感謝老師不厭其煩的修改論文，才讓本篇論文得以完整。私底下，與老師的相處，

藉由老師深厚的文學素養，了解古今中外文史的發展，頓時對過去的史事有更深

一層的領悟。從老師的詩詞創作裡，感受到對詩詞欣賞的意境，對文學上有進一

步的認知。最後，誠摯感謝老師過去兩年辛苦的教導，對於未來的路，讓我有新

的啟發及目標。 

    兩年的碩士研究生涯中，感謝博士班張晉銘、李仕宇學長細心指導，碩士班

陳聰文、徐瑜韓、張育銘、陳志銘學長，在研究的過程中，給予我珍貴的意見及

鼓勵。同時要感謝同學尚恩、振賓、泳厚在課業上的幫忙以及過去的兩年中互相

扶持成長，留下許多記憶猶新的記憶。此外還要謝謝一些默默支持我的好朋友

們，無法一一列名，沒有你們就沒有我精彩的人生，在此一併感謝。 

    最終感謝我父親及母親對我的養育及付出，讓我得以一路順利求學，可以不

必擔心課業以外的事物，感謝弟弟們的支持。最後，感謝你們的支持，謹以此論

文獻給你們，我會勇敢堅持下去，朝理想邁進。 

 

 

 

 

 



 

iv 

 

Contents 

Chinese Abstract………………………………………………………………………..i 

Abstract ………………………………………………………………………………..ii 

Acknowledgment……………………………………………………………….…….iii 

Contents ………………………………………………………………………………iv 

List of Figures ... ………………………………………………………………………vi 

Chapter 1 Introduction………………………………………………………………1 

Chapter 2 Chaos for a Ge-Ku-Mathieu System…………………………………….6 

2.1Preliminary……………………………………………………………..……..6 

2.2 Description of Ge-Ku-Mathieu System………………………………….…...6 

2.3 Computational Analysis of Ge-Ku-Mathieu System…………………….…..6 

Chapter 3 Double Symplectic Synchronization for Ge-Ku-Mathieu System…...10 

3.1 Preliminary…………………………………………………………..……...10 

3.2 Double Symplectic Synchronization Scheme.…………………………..….10 

3.3 Synchronization of Two Different New Chaotic Systems………………….12 

3.4 Summary…………………………………………………………….……...18 

Chapter 4 Different Translation Pragmatical Generalized Synchronization by 

Stability Theory of Partial Region for Ge-Ku-Mathieu System………………...25 

4.1 Preliminary………………………………………………………………….25 

4.2 The Scheme of Different Translation Pragmatic Generalized Synchronization  

by Stability Theory of Partial Region Theory………………………………25 

4.3 Different Translation Pragmatical Synchronization of New Ge-Ku-Mathieu  

Chaotic System………………………………...………………………….28 

4.4 Summary……………………………………………………………………37 

Chapter 5 Multiple Symplectic Synchronization for Ge-Ku-Mathieu System.....47 

5.1 Preliminary…………………………………………………….....................47 

5.2 Multiple Symplectic Synchronization Scheme.…………………..……....47 

5.3 Synchronization of Three Different Chaotic Systems………...………...…..48 

5.4 Summary……………………………………………………………........…53 

Chapter 6 Robust Projective Anti-Synchronization of Nonautonomous Chaotic 

Systems with  Stochast ic  Dis turbance by Fuzzy Logic  Const ant 

Controller………………………………………………………………………….61 

6.1 Preliminary……………………………………………………………........61 

6.2 Projective Chaos Anti-Synchronization by FLCC Scheme………………61 

6.3 Simulation Results………………………………………………………….65 

6.4 Summary……………………………………………………………………78 

Chapter 7 Fuzzy Modeling and Synchronization of Chaotic Systems by a New 



 

v 

 

Fuzzy Model………………………………………………………..........................92 

7.1 Preliminary…………………………………………………………………92 

7.2 New Fuzzy Model Theory………………………………….………………92 

7.3 New Fuzzy Model of Chaotic Systems……………………………………94 

7.4 Fuzzy Synchronization Scheme…………………………………………103 

7.5 Simulation Result………………………………………………………..105 

7.6 Summary…………………………………………….…………………..108 

Chapter 8 Conclusions............................................................................................115 

Appendix A  GYC Partial Region Stability Theory………………….………...117 

Appendix B  Pragmatical Asymptotical Stability Theory…………………….125 

References……………………………………………………………………...…..128 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 

 

List of Figures 

Fig. 2.1.The pendulum on rotating arm.                                    7 

Fig. 2.2 The bifurcation diagram for new Ge-Ku-Mathieu system.               8 

Fig. 2.3 The Lyapunov exponents for new Ge-Ku-Mathieu system.              8 

Fig. 2.4 Phase portrait, Poincaré maps, and time histories for new Ge-Ku-Mathieu  

system.                                                             9 

 

Fig. 3.1 The chaotic attractor of a new Double Ge-Ku system.                 19 

Fig. 3.2 The phase portrait of the controlled GKM system for Case1.            19 

Fig. 3.3 Time histories of i ix y  and cosi ix y  for Case1.                   20 

Fig. 3.4 Time histories of the state errors for Case1.                         20 

Fig. 3.5 The chaotic attractor of a new Ge-Ku-van der Pol system.              21 

Fig. 3.6 The phase portrait of the controlled GKM system for Case2.            21 

Fig. 3.7 Time histories of i ix y  and cosi ix y  for Case2.                  22 

Fig. 3.8 Time histories of the state errors for Case2.                        22 

Fig. 3.9 The chaotic attractor of the Ge-Ku-Duffing system.                  23 

Fig. 3.10 The phase portrait of the controlled GKM system for Case3.           23 

Fig. 3.11 Time histories of i ix y  and cosi ix y  for Case3.                  24 

Fig. 3.12 Time histories of the state errors for Case3.                        24 

 

Fig. 4.1 Coordinate translation.                                          38 

Fig. 4.2 Coordinate translation.                                          38 

Fig. 4.3 Phase portrait of the error dynamic for Case 1.                       39 

Fig. 4.4 Time histories of ix , iy  for Case 1.                              39 



 

vii 

 

Fig. 4.5 Time histories of errors for Case 1.                                40 

Fig. 4.6 Time histories of parameter errors for Case 1.                        40 

Fig. 4.7 Time histories of parameter errors for Case 1.                        41 

Fig. 4.8 Phase portrait of the error dynamic for Case 2.                       41 

Fig. 4.9 Time histories of ix , iy  for Case 2.                              42 

Fig. 4.10 Time histories of errors for Case 2.                               42 

Fig. 4.11 Time histories of parameter errors for Case 2.                       43 

Fig. 4.12 Time histories of parameter errors for Case 2.                       43 

Fig. 4.13 Phase portrait of the error dynamic for Case 3.                      44 

Fig. 4.14 Time histories of ix , iy  for Case 3.                             44 

Fig. 4.15 Time histories of errors for Case 3.                               45 

Fig. 4.16 Time histories of parameter errors for Case 3.                       45 

Fig. 4.17 Time histories of parameter errors for Case 3.                       46 

 

Fig. 5.1 The chaotic attractor of the Chen system.                           54 

Fig. 5.2 The chaotic attractor of the Lorenz system.                          54 

Fig. 5.3 Phase portrait of a controlled new Ge-Ku-Mathieu system for Case 1.    55 

Fig. 5.4 Time histories of ( , , , )G z tx y  and ( , , , )z tF x y  for Case 1.            55 

Fig. 5.5 Time histories of the state errors for Case 1.                         56 

Fig. 5.6 The chaotic attractor of the Rossler  system.                       56 

Fig. 5.7 Phase portrait of the controlled Ge-Ku-Mathieu system for Case 2.      57 

Fig. 5.8 Time histories of ( , , , )G z tx y  and ( , , , )z tF x y  for Case 2.            57 

Fig. 5.9 Time histories of the state errors for Case 2.                         58 

Fig. 5.10 The chaotic attractor of the sprott system.                          58 

Fig. 5.11 Phase portrait of the controlled Ge-Ku-Mathieu system for Case 3.      59 



 

viii 

 

Fig. 5.12 Time histories of ( , , , )G z tx y  and ( , , , )z tF x y  for Case 3.           59 

Fig. 5.13 Time histories of the state errors for Case 3.                        60 

 

Fig. 6.1. The configuration of fuzzy logic controller.                         79 

Fig. 6.2. Membership function.                                          79 

Fig. 6.3. Projections of phase portrait of chaotic Sprott No.19 system with a=-0.6, 

b=2.75.                                                            80 

Fig. 6.4. 1  is pulse generator.                                         80 

Fig. 6.5. Projections of phase portrait of nonautonomous chaotic Sprott 19 system and 

a=-0.6, b=2.75.                                                     81 

Fig. 6.6. Projections of phase portrait of chaotic Sprott 22 system with controllers. 81 

Fig.6.7.Time histories of error derivatives for master and slave Sprott nonautonomous 

chaotic systems without controllers.                                     82 

Fig. 6.8. Time histories of errors for Case1 (nonautonomous system) the FLCC is 

added after 30s.                                                     82 

Fig. 6.9. Time histories of states for Case1 (nonautonomous system) the FLCC is 

added after 30s.                                                     83 

Fig. 6.10. The stochastic signal of 2  is band-limited white noise(PSD=0.1).    83 

Fig. 6.11. Projections of phase portrait of nonautonomous chaotic Sprott 19 system 

with stochastic disturbance 2 , a=-0.6 and b=2.75.                        84 

Fig. 6.12. Time histories of error derivatives for master and slave Sprott chaotic 

systems without controllers.                                           84 

Fig. 6.13. Time histories of errors for subsection 3.1.2, the FLCC is applied after 30s. 

85 

Fig. 6.14. Time histories of states for subsection 3.1.2, the FLCC is applied after 30s. 

85 

Fig. 6.15. Time histories of errors for subsection 3.1.3 the traditional nonlinear 



 

ix 

 

controller is applied after 30s.                                          86 

Fig. 6.16. Time histories of states for subsection 3.1.3 the traditional nonlinear 

controller is applied after 30s.                                          86 

Fig. 6.17. Projections of phase portrait of nonautonomous chaotic Sprott 19 system 

with stochastic disturbance where a=-0.6, b=2.75.                          87 

Fig. 6.18. Time histories of error derivatives for subsection 3.2.1.               87 

Fig. 6.19. Time histories of errors for section 3.2 where FLCC is added after 30s.  88 

Fig. 6.20. Time histories of states for subsection 2-3.2 the FLCC is coming into after 

30s.                                                               88 

Fig. 6.21. Projections of phase portrait of nonautonomous chaotic Sprott 19 system 

with stochastic disturbance where a=-0.6, b=2.75.                          89 

Fig. 6.22. Time histories of error derivatives for Sprott chaotic systems without 

controllers.                                                         89 

Fig. 6.23. Time histories of errors for subsection 3.2.2 where FLCC are added after 

30s.                                                               90 

Fig. 6.24. Time histories of states for subsection 3.2.2 where the FLCC are added after 

30s.                                                               90 

Fig. 6.25. Time histories of errors for subsection 3.2.3 where the traditional 

controllers are added into after 30s.                                      91 

Fig. 6.26. Time histories of states for subsection 3.2.3 where the traditional controllers 

are added into after 30s.                                               91 

 

Fig. 7.1 Chaotic behavior of Sprott 19 system.                             109 

Fig. 7.2 The uncertainty signal of 1  is band-limited white noise(PSD=0.001).  109 

Fig. 7.3 2  is pulse generator.                                         110 

Fig. 7.4 Chaotic behavior of Sprott 19 system with uncertainty.               110 

Fig. 7.5 Chaotic behavior of new fuzzy Sprott 19 system with uncertainty.       111 

Fig. 7.6. Chaotic behavior of Sprott 22 system.                            111 



 

x 

 

Fig. 7.7 Chaotic behavior of Sprott 22 system with uncertainty.               112 

Fig. 7.8 Chaotic behavior of new fuzzy Sprott 22 system with uncertainty.       112 

Fig. 7.9 Chaotic behavior of Lorenz system.                               113 

Fig. 7.10 Chaotic behavior of new fuzzy Lorenz system.                     113 

Fig. 7.11. Time histories of errors for Example 1.                           114 

Fig. 7.12. Time histories of errors for Example 2.                          114 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

1 

 

Chapter 1 

Introduction 

Chaos is very interesting nonlinear phenomenon, exhibiting sensitive 

dependence on initial conditions. Because of this property, chaotic behavior is 

beneficial and desirable in many applications such as mixing processes, heat transfer, 

biological systems[1,2] , etc. Chaos synchronization is beneficial and desirable in 

secure communication[3,4]. Many methods of synchronization have been proposed, 

such as linear and nonlinear feedback control[5-11]. 

Generally speaking, designing a system to mimic the behavior of another chaotic 

system is called synchronization. Synchronization of chaotic systems has received a 

significant attention, since Pecora and Carroll presented the chaos synchronization 

method to synchronize two identical chaotic systems with different initial values in 

1990 [12]. 

The various types of synchronization, such as complete synchronization[13], 

phase synchronization[14], lag synchronization[15], and generalized synchronization 

[16-20], are investigated extensively in the past years. Among many kinds of 

synchronizations, the generalized synchronization is investigated. It means there 

exists a functional relationship between the states of the master and those of the slave. 

A special kind of generalized synchronizations ( )y x F t   is studied[21], where x, 

y are the state vectors of the master and the slave respectively, F(t) is a given vector 

function of time, which may take various form, either regular or chaotic functions of 

time. When F(t)=0, it reduces to a generalized synchronization. A new 

synchronization ( , , ) ( )y H x y t F t   is studied, where x, y are the state vectors of 

the master and of the slave, respectively, F(t) is a given function of time in different 

form, such as a regular or a chaotic function. The final desired state y of the slave 
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system not only depends upon the master system state x but also depends upon the 

slave system state y itself. Therefore the slave system is not a traditional pure slave 

obeying the master system completely but plays a role to determine the final desired 

state of the slave system. In other words, it plays an interwined role, so we call this 

kind of synchronization is symplectic synchronization, and call the master system 

partner A, the slave system partner B[22]. 

In the current scheme of adaptive synchronization [23-27], the traditional 

Lyapunov stability theorem and Babalat lemma are used to prove that the error vector 

approaches zero, as time approaches infinity. But the question of that why the 

estimated parameters also approach uncertain parameters remains unanswered. By the 

pragmatical asymptotical stability theorem, the question can be answered strictly. 

Furthermore, in chaos synchronization, most publications often assume that the 

synchronization system is without external disturbances. However, in practical 

applications, it is hard to avoid external disturbances due to uncontrollable 

environmental conditions. The implementation of control inputs of practical systems 

is frequently subject to uncertainties as a result of physical limitations. Thus, the 

derivation of a robust synchronization controller to resist the disturbance is studied. 

In recent years, some chaos synchronizations based on fuzzy systems have been 

proposed since the fuzzy set theory was initiated by Zadeh [28], such as fuzzy control 

[29], fuzzy sliding mode controlling technique [30-31], LMI-based synchronization 

[32] and extended backstepping sliding mode controlling technique [33]. The fuzzy 

logic control (FLC) scheme has been widely developed and has been successful in 

many applications [34]. Recently Yau and Shieh [35] proposed a new idea in 

designing fuzzy logic controllers－constructing fuzzy rules subject to a common 

Lyapunov function such that the master-slave chaos systems satisfy stability in the 

Lyapunov sense. In [35], there are two main controllers in their slave system. One is 
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used in elimination of nonlinear terms and the other is built by fuzzy rules subject to a 

common Lyapunov function. Therefore the resulting controllers are in nonlinear form. 

In this paper, the regular form is necessary. In order to carry out the new method, the 

original system must be transformed into their regular form. Li and Ge [36] propose a 

new strategy which remains constructing fuzzy rules subject to Lyapunov direct 

method. The values of error derivatives are used to be the upper and lower bounds of 

FLCC. Through this new approach, a simplest constant controller can be obtained and 

the difficulty in realization of complicated controllers in chaos synchronization by 

Lyapunov direct method can be eliminated. 

In recent years, fuzzy logic proposed by L. A. Zadeh [37] has received much 

attention as a powerful tool for the nonlinear control. Among various kinds of fuzzy 

methods, Takagi-Sugeno fuzzy (T-S fuzzy) system is widely accepted as a useful tool 

for design and analysis of fuzzy control system [38-43]. Currently, some chaos control 

and synchronization based on T-S fuzzy systems have been proposed, such as fuzzy 

sliding mode controlling technique [44-46], LMI-based synchronization [47-49] and 

robust control [50]. These researches are all focus on two identical nonlinear systems. 

Furthermore, two different nonlinear systems may have different numbers of 

nonlinear terms. It causes different numbers of linear subsystems. For synchronization 

of two different nonlinear systems, the traditional method using the idea of PDC to 

design the fuzzy control law for stabilization of the error dynamics can not be used 

here, since the number of subsystems becomes very large. 

In this thesis, scheme of study is as follows. In Chapter 2, the chaos for a 

Ge-Ku-Mathieu (GKM) system is studied.  

In Chapter 3, symplectic synchronization is defined as ( , , )y H x y t , where x, y 

are the state vectors of the “master” and of the “slave”, respectively. The final desired 

state y of the “slave” not only depends upon the “master” state x but also depends 
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upon the “slave” state y itself. Therefore the “slave” is not a traditional pure slave 

obeying the “master” completely but plays a role to determine the final desired state 

of the “slave”system. In other words, it plays an interwined role, so we call this 

kind of synchronization, “symplectic synchronization”, and call the “master” system 

Partner A, the “slave” system Partner B. A new type of synchronization, double 

symplectic synchronization, ( , , ) ( , , )G x y t F x y t  is studied, where x,y are Partner A 

and Partner B, respectively. Due to the complexity of the form of the double 

symplectic synchronization, it may be applied to increase the security of secret 

communication. 

In Chapter 4, a new chaos synchronization strategy by different shift pragmatic 

synchronization by stability theory of partial region [51-52] is proposed. By using  

the different shift pragmatic synchronization by stability theory of partial region, the 

Lyapunov function is a simple linear homogeneous function of error states and the 

controllers are more simple and have less simulation error because they are in lower 

degree than that of traditional controllers, for which the Lyapunov function is a 

quadratic form of error states, and the question of that why the estimated parameters 

also approach uncertain parameters can be answered strictly. 

In Chapter 5, a new type of synchronization, multiple symplectic synchronization 

is studied. When the double symplectic functions is extended to a more general form, 

( , , , , , ) ( , , , , , )z w t z w t  G x y F x y , it is called “multiple symplectic 

synchronization”. Symplectic synchronization and double symplectic synchronization 

are special cases of the multiple symplectic synchronization. 

In Chapter 6, the values of error derivatives are used to be the upper and lower 

bounds of FLCC. Through this new approach, a simplest constant controller can be 

obtained and the difficulty in realization of complicated controllers in chaos 

synchronization by Lyapunov direct method can be eliminated. 
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In Chapter 7, the new fuzzy model is proposed. It gives a new way to linearize 

complicated nonlinear system and only two subsystems are concluded.  

In Chapter 8, conclusions are given. 
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Chapter 2 

Chaos for a Ge-Ku-Mathieu System 

2.1 Preliminary 

In this Chapter, the chaotic behaviors of a new Ge-Ku Mathieu system is studied 

numerically by phase portraits, time histories, Poincaré maps, Lyapunov exponents, 

and bifurcation diagrams. 

2.2 Description of Ge-Ku-Mathieu System 

Ge and Ku [53] gave a chaotic system formed by a simple pendulum with its 

pivot rotating about a fixed axis as Fig. 2.1. This chaotic system is  

1 2

2 2 1 1

,

sin [ ( cos ) sin ],

x x

x ax x b c x d wt



    
                          (2.1)                              

where , , ,a b c d  are parameters. After simplification 1 1sin x x , 
2

1
1cos 1

2

x
x     

and addition of coupling terms, combining with Mathieu equation  

3 4

3

4 3 4 3 4 4 3

,

( ) ( ) ,

x x

x g hx x g hx nx lx px



      
                        (2.2)                              

where , , , ,g h l n p  are parameters, we get the Ge-Ku-Mathieu system 

 

 

1 2

2

2 2 1 1 2 3

3 1 3 2 1 3

,

,

,

x x

x ax x b c x dx x

x g hx x lx px x



     
 

    

                               (2.3) 

where , , , , , , ,a b c d g h l p  are parameters. 

2.3 Computational Analysis of Ge-Ku-Mathieu System 

For numerical analysis of computation, this system exhibits chaos when the 

parameters of system are a=-0.6, b=5, c=11, d=0.3, g=8, h=10, l=0.5, p=0.2 and the 

initial states of system are (0.01, 0.01, 0.01). The bifurcation diagram by changing 

damping parameter a is shown in Fig. 2.2. Its corresponding Lyapunov exponents are 
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shown in Fig. 2.3. The phase portraits, time histories, and Poincaré maps of the 

systems is showed in Fig. 2.4. 

 

 

 

 

Fig. 2.1. The pendulum on rotating arm. 
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Fig. 2.2 The bifurcation diagram for new Ge-Ku-Mathieu system. 

 

Fig. 2.3 The Lyapunov exponents for new Ge-Ku-Mathieu system. 
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Fig. 2.4 Phase portrait, Poincaré maps, and time histories for new Ge-Ku-Mathieu 

system. 
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Chapter 3 

Double Symplectic Synchronization  

for Ge-Ku-Mathieu System 

3.1 Preliminary 

In this Chapter, a new type of synchronization, double symplectic 

synchronization, ( , , ) ( , , )G x y t F x y t , for two new chaotic systems is proposed. It is 

an extension of symplectic synchronization, ( , , )y F x y t  Since the symplectic 

functions are presented on both sides of the equality, it is called double symplectic 

synchronization. Simulations present the chaotic behaviors of two new chaotic 

systems. The double symplectic synchronization can be applied to the design of 

secure communication with more security. Finally, simulations are provided to show 

the effectiveness of the proposed synchronization scheme. 

3.2 Double Symplectic Synchronization Scheme  

Consider two different nonlinear chaotic systems, Partner A and Partner B, 

described by 

( , )tx f x ,                                                    (3.1) 

( ) ( , )t t y C y + g y u ,                                           (3.2) 

where T

1 2[ , , , ] n

nx x x R x and T

1 2[ , , , ] n

ny y y R y  are the state vectors of 

Partner A and Partner B, n nR C  is a given matrix, f  and g  are continuous 

nonlinear vector functions, and u  is the controller. Our goal is to design the 

controller u  such that ( , , )tG x y asymptotically approaches ( , , ),tF x y  where 

( , , )tG x y  and ( , , )tF x y  are two given functions. For simplicity we take 

( , , )t  G x y x y  and F  is a continuous nonlinear vector function. 
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Property 1 [54]: An m n  matrix A  of real elements defines a linear mapping 

y Ax  from nR  into mR , and the induced p-norm of A  for 1, 2, andp    is 

given by 

1 2
T

max1 2
1 1

max , ( ) , max .
m n

ij ij
j i

i j

A a A A A A a


 

               (3.3) 

The useful property of induced matrix norms for real matrix A  is as follow: 

2 1
A A A


 .                                              (3.4) 

    Theorem: For chaotic systems “Partner A” (1) and “Partner B” (2), if the 

controller u  is designed as 

1( ) [ ( , ) ( ( ) ( , )) ( , ) ( , )

( )( ) ( )],

tt t t t t

t

      

    

y x yu I D F D Ff x D F C y g y D F f x g y

C x F K x y F
    (3.5) 

where x
D F , yD F , tD F  are the Jacobian matrices of ( , , )tF x y , 

1 2diag( , , , )mk k kK , and satisfies 

min( )
1

( )

ik

t


C
,                                                   (3.6) 

then the double symplectic synchronization will be achieved. 

Proof: Define the error vectors as 

( , , )t  e x y F x y ,                                            (3.7) 

then the following error dynamics can be obtained by introducing the designed 

controller 

( , ) ( ) ( , ) ( , ) ( ( ) ( , ))

( )

( ( ) ) .

t

t

d

dt

t t t t t t

t

     

      

 

 

x y

x y

y

e
e x y D Fx D Fy D F

f x C y g y D Ff x D F C y g y D F

I D F u

C K e

   (3.8) 
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Choose a positive definite Lyapunov function of the form 

T1
( )

2
V t  e e .                                                  (3.9) 

Taking the time derivative of ( )V t  along the trajectory of Eq. (3.8), we have 

T

T T

2 2

2

( )

( )

( ) min( )

( ( ) min( )) .

i

i

V t

t

t k

t k



 

  

 

e e

e C e e Ke

C e e

C e

                                   (3.10) 

Let 
2

( ( ) min( ))it k M C e , then 
2

( ) 2 ( )V t M MV t   e . Therefore, it can be 

obtained that 

2( ) (0)e MtV t V                                                 (3.11) 

and 
0

lim ( )
t

t
V d 

   is bounded. Besides, ( )V t  is uniformly continuous. 

According to Barbalat’s lemma [55], the conclusion can be drawn that lim ( ) 0
t

V t


 , 

i.e. lim ( ) 0
t

t


e . Thus, the double symplectic synchronization can be achieved 

asymptotically. 

 

3.3 Synchronization of Two Different New Chaotic Systems 

 Case 1. 

Consider a new Double Ge-Ku system as Partner A described by 

 

 

1 2

2

2 2 1 1 3

2

3 3 3 3 1

,

,

,

x x

x mx x n q x wx

x mx x n q x rx



     
 

     
 

                                 (3.12) 

where 0.5, 1.4, 1.9, 54, 6.2m n q w r        and the initial conditions are 

1 2 3 (0) 0.01, (0) 0.01 , (0) 0.01x x x   . Eq. (3.12) can be rewritten in the form of Eq. 
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(3.1), where  

 

2

2

2 1 1 3

2

3 3 3 1

( , )

x

t mx x n q x wx

mx x n q x rx

 
 
      

  
        

f x . The chaotic attractor of the 

Double Ge-Ku (DGK) system is shown in Fig. 3.1. 

Ge-Ku-Mathieu (GKM) system is considered as Partner B. The controlled GKM 

system is 

 

 

1 2 1

2

2 2 1 1 2 3 2

3 1 3 2 1 3 3

,

,

,

y y u

y ay y b c y dy y u

y g hy y ly py y u

 

      
 

     

                            (3.13) 

where 0.6, 5, 11, 0.3, 8, 10, 0.5, 0.2a b c d g h l p         ,  
T

1 2 3, ,u u uu  is 

the controller, and the initial conditions are 1(0) 0.01y  , 2 (0) 0.01y  , 3(0) 0.01y  . 

Eq. (3.13) can be rewritten in the form of Eq. (3.2), where 

0 1 0

( ) 0

0

t bc a

l g

 
 

  
 
  

C  

and 
3

1 1 2 3

1 3 1 3

0

( , )t by dy y y

hy y py y

 
 

 
 
   

g y . By applying Property 1, it is derived that 

1
( )t bcC , ( )t a bc


  C , and 

2
( ) ( ) 3058t bc a bc   C . Then 

( ) 55t C  is estimated. 

Define 

1 1

2 2

3 3

cos

( , , ) cos

cos

x y

t x y

x y

 
 


 
  

F x y , and our goal is to achieve the double simplectic 

synchronization ( , , )t x y F x y .  According to Theorem, the inequality 

min( )
1

( )

ik

t


C
 has to be satisfied. It can be obtained that min( ) 55ik  . Thus we choose 
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1

2

3

0 0 56 0 0

0 0 0 57 0

0 0 0 0 58

k

k

k

   
   

 
   
      

K  and design the controller as 

1 2 1 1 2 1 2 2 1 1 1 1cos sin cosu x y x y y x y x y x y       , 

     
     

2 2

2 2 1 1 3 2 2 2 1 1 2 3 2

2 2

2 1 1 3 2 1 1 2 3 2 2 2 2

cos sin

cos ,

u mx x n q x wx y x ay y b c y dy y y

mx x n q x wx ay y b c y dy y x y x y

            
   

               
   

 

    

    

2

3 3 3 3 1 3 3 1 3 2 1 3 3

2

3 3 3 1 1 3 2 1 3 3 3 3 3

cos sin

cos ,

u mx x n q x rx y x g hy y ly py y y

mx x n q x rx g hy y ly py y x y x y

             

                

 

The Theorem is satisfied and the double symplectic synchronization is achieved, the 

phase portrait of the controlled GKM system is shown in Fig. 3.2. The time histories 

of i ix y , of cosi ix y
 
 and of the state errors are shown in Fig. 3.3 and Fig. 3.4, 

respectively. 

Case 2. 

Consider a new Ge-Ku-van der Pol (GKv) system as Partner A described by 

 

 

1 2

2

2 2 3 1 3

2

3 3 3 2 1

,

,

1 ,

x x

x mx x n q x wx

x sx f x x rx



     
 

    

                                (3.14) 

where 0.08, 0.35, 100.56, 1000.02, 0.61, 0.08, 0.01m n q w s f r          and 

the initial conditions are 1 2 3 (0) 0.01, (0) 0.01 , (0) 0.01x x x   . Eq. (3.14) can be 

rewritten in the form of Eq. (3.1), where  

 

2

2

2 3 1 3

2

3 3 2 1

( , )

1

x

t mx x n q x wx

sx f x x rx

 
 
      

  
    
 

f x . 
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The chaotic attractor of a new GKv system is shown in Fig. 3.5.  

A new Ge-Ku-Mathieu (GKM) system is considered as Partner B. The 

controlled GKM system is  

 

 

1 2 1

2

2 2 1 1 2 3 2

3 1 3 2 1 3 3

,

,

,

y y u

y ay y b c y dy y u

y g hy y ly py y u

 

      
 

     

                            (3.15) 

where 0.6, 5, 11, 0.3, 8, 10, 0.5, 0.2a b c d g h l p         ,  
T

1 2 3, ,u u uu  is 

the controller, and the initial conditions are 1(0) 0.01y  , 2 (0) 0.01y  , 

3(0) 0.01y  . Eq. (3.15) can be rewritten in the form of Eq. (3.2), where 

0 1 0

( ) 0

0

t bc a

l g

 
 

  
 
  

C  and 3

1 1 2 3

1 3 1 3

0

( , )t by dy y y

hy y py y

 
 

 
 
   

g y . By applying Property 1, it 

can be derived that 
1

( )t bcC , ( )t a bc

  C , and 

2
( ) ( ) 3058t bc a bc   C . Then ( ) 55t C  is  

estimated. 

Define 

1 1

2 2

3 3

cos

( , , ) cos

cos

x y

t x y

x y

 
 


 
  

F x y , and our goal is to achieve the double simplectic 

synchronization ( , , )t x y F x y .  According to Theorem, the inequality 

min( )
1

( )

ik

t


C
 must be satisfied. It can be obtained that min( ) 55ik  . Thus we choose 

1

2

3

0 0 56 0 0

0 0 0 57 0

0 0 0 0 58

k

k

k

   
   

 
   
      

K  and design the controller as 

1 2 1 1 2 1 2 2 1 1 1 1cos sin cosu x y x y y x y x y x y       , 
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2 2

2 2 3 1 3 2 2 2 1 1 2 3 2

2 2

2 3 1 3 2 1 1 2 3 2 2 2 2

cos sin

cos ,

u mx x n q x wx y x ay y b c y dy y y

mx x n q x wx ay y b c y dy y x y x y

            
   

               
   

 

    

    

2

3 3 3 2 1 3 3 1 3 2 1 3 3

2

3 3 2 1 1 3 2 1 3 3 3 3 3

1 cos sin

1 cos ,

u sx f x x rx y x g hy y ly py y y

sx f x x rx g hy y ly py y x y x y

           

                

 

The Theorem is satisfied and the double simplectic synchronization is achieved, the 

phase portrait of the controlled GKM system and the time histories of i ix y , of 

cosi ix y  and of the state errors are shown in Fig. 3.6 and Fig. 3.7 and Fig. 3.8, 

respectively. 

Case 3. 

Consider a new GKD system as Partner A described by 

 
1 2

2

2 2 1 1 3

3

3 3 3 2 1

,

,

,

x x

x mx x n q x wx

x x x fx rx



     
 

    

                                (3.16) 

where 0.1, 11, 40, 54, 6, 30m n q w f r       and the initial conditions are 

1 2 3(0) 2, (0) 2.4 , (0) 5x x x   . Eq. (3.16) can be rewritten in the form of Eq. (3.1), 

where  
2

2

2 1 1 3

3

3 3 2 1

 ( , )

x

t mx x n q x wx

x x fx rx

 
 

       
 
     

f x  . The chaotic attractor of the new 

GKD system is shown in Fig. 3.9. 

Ge-Ku-Mathieu (GKM) system is considered as Partner B. The controlled 

GKM system is 
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1 2 1

2

2 2 1 1 2 3 2

3 1 3 2 1 3 3

,

,

,

y y u

y ay y b c y dy y u

y g hy y ly py y u

 

      
 

     

                            (3.17) 

where 0.6, 5, 11, 0.3, 8, 10, 0.5, 0.2a b c d g h l p         ,  
T

1 2 3, ,u u uu  is 

the controller, and the initial conditions are 1(0) 0.01y  , 2 (0) 0.01y  , 3(0) 0.01y  . 

Eq. (3.17) can be rewritten in the form of Eq. (3.2), where 

0 1 0

( ) 0

0

t bc a

l g

 
 

  
 
  

C  

and 3

1 1 2 3

1 3 1 3

0

( , )t by dy y y

hy y py y

 
 

 
 
   

g y . By applying Property 1, it can be derived that 

1
( )t bcC , ( )t a bc


  C , and 

2
( ) ( ) 3058t bc a bc   C . Then 

( ) 55t C  is estimated. 

Define 

1 1

2 2

3 3

cos

( , , ) cos

cos

x y

t x y

x y

 
 


 
  

F x y , and our goal is to achieve the double simplectic 

synchronization ( , , )t x y F x y .  According to Theorem, the inequality 

min( )
1

( )

ik

t


C
 must be satisfied. It can be obtained that min( ) 55ik  . Thus we choose 

1

2

3

0 0 56 0 0

0 0 0 57 0

0 0 0 0 58

k

k

k

   
   

 
   
      

K  and design the controller as 

1 2 1 1 2 1 2 2 1 1 1 1cos sin cos ,u x y x y y x y x y x y        

     
     

2 2

2 2 1 1 3 2 2 2 1 1 2 3 2

2 2

2 1 1 3 2 1 1 2 3 2 2 2 2

cos sin

cos ,

u mx x n q x wx y x ay y b c y dy y y

mx x n q x wx ay y b c y dy y x y x y
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3

3 3 3 2 1 3 3 1 3 2 1 3 3

3

3 3 2 1 1 3 2 1 3 3 3 3 3

cos sin

cos ,

u x x fx rx y x g hy y ly py y y

x x fx rx g hy y ly py y x y x y

           

                

The Theorem is satisfied and the double simplectic synchronization is achieved, the 

phase portrait of the controlled GKM system and the time histories of i ix y , of 

cosi ix y  and of the state errors are shown in Fig. 3.10 and Fig. 3.11 and Fig. 3.12, 

respectively. 

3.4 Summary 

In this Chapter, a new double symplectic synchronization of chaotic systems are 

investigated based on Barbalat’s Lemma. Traditional generalized synchronization and 

symplectic synchronization are special cases for the double symplectic 

synchronization. By applying active control, the double symplectic synchronization is 

achieved. The simulation results show that the proposed scheme is effective and 

feasible for all chaotic systems. Furthermore, the double symplectic synchronization 

could be applied to the design of secret communication with more security than either  

generalized, or symplectic synchronization due to the complexity of its 

synchronization form. 
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Fig. 3.1 The chaotic attractor of a new Double Ge-Ku system. 

 

Fig. 3.2 The phase portrait of the controlled GKM system for Case1. 
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Fig. 3.3 Time histories of i ix y  and cosi ix y  for Case1. 

  

Fig. 3.4 Time histories of the state errors for Case1. 
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Fig. 3.5 The chaotic attractor of a new Ge-Ku-van der Pol system. 

 

Fig. 3.6 The phase portrait of the controlled GKM system for Case2. 
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Fig. 3.7 Time histories of i ix y  and cosi ix y  for Case2. 

 

Fig. 3.8 Time histories of the state errors for Case2. 
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Fig. 3.9 The chaotic attractor of the Ge-Ku-Duffing system. 

   

Fig. 3.10 The phase portrait of the controlled GKM system for Case3. 
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Fig. 3.11 Time histories of i ix y  and cosi ix y  for Case3. 

 

Fig. 3.12 Time histories of the state errors for Case3. 

 

 



 

25 

 

Chapter 4 

Different Translation Pragmatical Generalized 

Synchronization by Stability Theory of Partial Region for 

Ge-Ku-Mathieu System 

4.1 Preliminary 

In this Chapter, a new strategy to achieve different translation generalized 

synchronization by partial region stability theory and pragmatical stability theory is 

proposed, by which the Lyapunov function is a simple linear homogeneous function 

of error states, the controllers are more simple since they are in lower degree than that 

of traditional controllers. 

 

4.2 The Scheme of Different Translation Pragmatical Generalized 

Synchronization by Stability Theory of Partial Region Theory 

There are two identical nonlinear dynamical systems, and the master system 

synchronizes the slave system. The master system is given by 

( , )x Ax f x B                                                 (4.1) 

The master system after the origin of x -coordinate system is translated to 

1 1 1[ , , , ]K K K  is  

' ' '( , )x Ax f x B                                               (4. '1 ) 

where 
' ' ' '

1 2 1 1 2 1 1[ , , , ] [ , , , ]T T n

n nx x x x x K x K x K R         denotes a state vector, 

where 1 1 1 1[ , , , ]K K K K   is a constant vector with positive element 1K  as shown 

in Fig. 4.1. A  is an n n  uncertain constant coefficients matrix, f  is a nonlinear 

vector function, and B  is a vector of uncertain constant coefficients in f . 
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The slave system is given by  

( , ) ( )y Ay f y B u t                                             (4.2) 

A  is an n n  estimated coefficient matrix, B  is a vector of estimated coefficients 

in f , and 1 2( ) [ ( ), ( ), , ( )]T n

nu t u t u t u t R    is a control input vector. 

The slave system after the origin of y-coordinate system is translated to 

2 2 2[ , , , ]K K K  is  

' ' '( , ) ( )y Ay f y B u t                                           (4. '2 ) 

where ' ' ' '

1 2 1 2 2 2 2[ , , , ] [ , , , ]T n

n ny y y y y y K y K y K R          denotes a state 

vector, where 2K  is a constant vector with positive element 2K  as shown in Fig. 

4.2.  

Our goal is to design a controller ( )u t  so that the state vector of the translated  

slave system (4. '2 ) asymptotically approaches the state vector of the translated master 

system '(3.1 ) plus a given nonchaotic or chaotic vector function 

1 2( ) [ ( ), ( ), , ( )]T

nF t F t F t F t  : 

' ' '( ) ( )y G x x F t   .                                           (4.3) 

The synchronization can be accomplished when t  , the limit of the error vector 

1 2( ) [ , , , ]T

ne t e e e  approaches zero: 

lim 0
t

e


                                                       (4.4) 

where 

 
' ' ( )e x y F t   .                                              (4.5) 

From Eq. (4.5) we have  

' ' ( )e x y F t                                                  (4.6) 
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' ' ' '( , ) ( , ) ( ) ( )e Ax Ay f x B f y B F t u t      .                       (4.7) 

where 1K  and 2K  are chosen to guarantee that the error dynamics always occurs in 

the first quadrant of e  coordinate system. 

A Lyapunov function ( , , )V e A B is chosen as a positive definite function in first 

quadrant of e  coordinate system by stability theory in partial region as shown in 

Appendix A: 

( , , )V e A B e A B                                              (4.8) 

where A A A  , B B B  , A  and B  are two column matrices whose elements 

are all the elements of matrix A  and of column matrix B , respectively. 

Its derivative along any solution of the differential equation system consisting of 

Eq. (4.7) and update parameter differential equations for A  and B  is  

' ' ' '( , , ) ( , ) ( , ) ( ) ( )V e A B Ax Ay f x B f y B F t u t A B                   (4.9) 

where ( )u t , A , and B  are chosen so that V Ce , C  is a diagonal negative 

definite matrix, and V  is a negative semi-definite function of e  and parameter 

differences A  and B . By pragmatical asymptotically stability theorem in Appendix 

B, the Lyapunov function used is a simple linear homogeneous function of states and 

the controllers are simpler because they in lower order than the that of traditional 

controllers. Traditional Lyapunov stability theorem and Babalat lemma are used to 

prove the error vector approaches zero, as time approaches infinity[56-58]. But the 

question, why the estimated parameters also approach to the uncertain parameters, 

remains unanswered. By pragmatical asymptotical stability theorem, the question can 

be answered strictly. 
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4.3 Different Translation Pragmatical Synchronization of New 

Ge-Ku-Mathieu Chaotic System 

Case 1. 

The following chaotic systems are two translated master and slave 

Ge-Ku-Mathieu (GKM) systems of which the old origin is translated to 

1 2 3( , , ) (100,100,100)x x x  , 1 2 3( , , ) (50,50,50)y y y   to guarantee the error dynamics 

always happens in the first quadrant of e  coordinate system. 

1 2

2

2 2 1 1 2 3

3 1 3 2 1 3

100

( 100) ( 100){ [ ( 100) ] ( 150)( 100)}

[ ( 100)]( 100) ( 100) ( 100)( 100)

x x

x a x x b c x d x x

x g h x x l x p x x

 


         
          

  (4.10) 

1 2 1

2

2 2 1 1 2 3 2

3 1 3 2 1 3 3

50

( 50) ( 50){ [ ( 50) ] ( 50)( 50)}

[ ( 50)]( 50) ( 50) ( 50)( 50)

y y u

y a y y b c y d y y u

y g h y y l y p y y u

  


          


          

  (4.11) 

Let initial states be 1 2 3( , , ) (100.01,100.01,100.01)x x x  , 1 2 3( , , )y y y  

(50.01,50.01,50.01) 0 0 0 0 0
, 1, 2, 4, 1, 3,a b c d g           

0 0 0
6, 4, 5h l p      and system parameters 0.6, 5, 11, 0.3,a b c d      

8, 10, 0.5, 0.2g h l p    . 

The state error is 
' ' ' '( ) sine x y F t x y t                          (4.12) 

where ( ) sinF t t  is a nonchaotic given function of time. We find that the error 

dynamic without controller always exists in first quadrant as shown in Fig. 4.3.  

' 'lim lim( sin ) 0i i i
t t

e x y t
 

    , 1, 2,3i                             (4.13) 

Our aim is lim 0
t

e


 . We obtain the error dynamics: 
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1 2 2 1

2

2 2 1 1 2 3

2

2 1 1 2 3 2

3 1 3 2 1 3

100 50 cos

( 100) ( 100){ [ ( 100) ] ( 100)( 100)}

( 50) ( 50){ [ ( 50) ] ( 50)( 50)} cos

[ ( 100)]( 100) ( 100) ( 100)( 100)

[ (

e x y u t

e a x x b c x d x x

a y y b c y d y y u t

e g h x x l x p x x

g h y

     

         

          

         

  1 3 2 1 3 350)]( 50) ( 50) ( 50)( 50) cosy l y p y y u t








         

 (4.14)  

where ˆa a a  , ˆb b b  , ˆc c c  , ˆd d d  , ˆg g g  , ˆh h h  , ˆl l l  , 

ˆp p p  , and a , b , c , d , g , h , l , p  are estimates of uncertain parameters 

a , b , c , d , g , h , l  and p  respectively. 

Using different translation pragmatical synchronization by stability theory of 

partial region, we can choose a Lyapunov function in the form of a positive definite 

function in first quadrant: 

1 2 3V e e e a b c d g h l p                                    (4.15) 

Its time derivative is  

1 2 3

2 2 1

2

2 1 1 2 3

2

2 1 1 2 3 2

1 3

( 100 50 cos )

( 100) ( 100){ [ ( 100) ] ( 100)( 100)}

( 50) ( 50){ [ ( 50) ] ( 50)( 50)} cos

{ [ ( 100)](

V e e e a b c d g h l p

x y u t

a x x b c x d x x

a y y b c y d y y u t

g h x x

          

     

        

          

     2 1 3

1 3 2 1 3 3

100) ( 100) ( 100)( 100)

[ ( 50)]( 50) ( 50) ( 50)( 50) cos }

l x p x x

g h y y l y p y y u t

a b c d g h l p

    

          

       

  (4.16) 

Choose 
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2

2

2

2

3

3

3

3

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

a a ae

b b be

c c ce

d d de

g g ge

h h he

l l le

p p pe

    

    


   

    


   


   


   


   

                                               (4.17) 

1 2 2 1

2

2 2 1 1 2 3

2

2 1 1 2 3

2 2 2 2 2

3 1 3 2 1

100 50 cos

( 100) ( 100){ [ ( 100) ] ( 100)( 100)}

( 50) ( 50){ [ ( 50) ] ( 50)( 50)}

cos

[ ( 100)]( 100) ( 100) ( 100)

u x y t e

u a x x b c x d x x

a y y b c y d y y

t e ae be ce de

u g h x x l x p x

     

         

        

     

         3

1 3 2 1 3

3 3 3 3 3

( 100)

[ ( 50)]( 50) ( 50) ( 50)( 50)

cos

x

g h y y l y p y y

t e ge he le pe








 

        

     

  (3.18)                                           

We obtain  

1 2 3 0V e e e                                                 (4.19) 

which is a negative semi-definite function of 1e , 2e , 3e , a , b , c , d , g ,  h , l , 

p , in the first quadrant. The Lyapunov asymptotical stability theorem is not satisfied. 

We can not obtain that common origin of error dynamics (4.14) and parameter 

dynamics (4.17) is asymptotically stable. By pragamatical asymptotically stability 

theorem, D is a 11-manifold, n=11 and the number of error state variables p=3. When  

1 2 3 0e e e    and a , b , c , d , g , h , l , p , take arbitrary values, 0V  , so 

X is of 3 dimensions i.e. p=3, m=n-p=11-3=8, m+1<n is satisfied. According to the 

pragmatical asymptotically stability theorem, error vector e approaches zero and the 

estimated parameters also approach the uncertain parameters. The equilibrium point is 

pragmatically asymptotically stable. Under the assumption of equal probability, it is 

actually asymptotically stable. The simulation results are shown in Figs. 4.4-4.7. 
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Case 2. 

The following chaotic systems are two translated master and slave 

Ge-Ku-Mathieu (GKM) systems of which the old origin is translated to 

1 2 3( , , ) (100,100,100)x x x  , 1 2 3( , , ) (50,50,50)y y y   to guarantee that the error 

dynamics always happens in the first quadrant e  coordinate system.  

1 2

2

2 2 1 1 2 3

3 1 3 2 1 3

100

( 100) ( 100){ [ ( 100) ] ( 100)( 100)}

[ ( 100)]( 100) ( 100) ( 100)( 100)

x x

x a x x b c x d x x

x g h x x l x p x x

 


         
          

  (4.20) 

1 2 1

2

2 2 1 1 2 3 2

3 1 3 2 1 3 3

50

( 50) ( 50){ [ ( 50) ] ( 50)( 50)}

[ ( 50)]( 50) ( 50) ( 50)( 50)

y y u

y a y y b c y d y y u

y g h y y l y p y y u

  


          


          

  (4.21) 

Let initial states be 1 2 3( , , ) (100.01,100.01,100.01)x x x  , 1 2 3( , , )y y y  

(50.01,50.01,50.01) 0 0 0 0 0
, 1, 2, 4, 0.1, 3,a b c d g       

0 0 0
6, 0.4, 0.15h l p   and system parameters 0.6, 5, 11, 0.3,a b c d      

8, 10, 0.5, 0.2g h l p    . 

The state error is 
' ' ( )e x y F t   , where ( )F t  z 1 2 3[ , , ]z z z  is the chaotic 

state vector of Lorenz system:  

1 2 1

2 1 3 2

3 1 2 3

( )

( )

z r z z

z z q z z

z z z mz

 


  
  

                                            (4.22) 

Let initial states be z 1 2 3[ , , ] [0.01,0.01,0.01]z z z   and system parameters  

10r  , 28q  , 
8

3
m   , the Lorenz system is chaotic. We find that the error 

dynamics without controller always exists in first quadrant as shown in Fig. 4.8. 
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Our aim is lim 0
t

e


 . We obtain the error dynamics. 

' 'lim lim[ ] 0i i i
t t

e x y z
 

    , 1, 2,3i                                (4.23) 

1 2 2 1 2 1

2

2 2 1 1 2 3

2

2 1 1 2 3 2

1 3 2

3 1 3 2 1 3

100 50 ( )

( 100) ( 100){ [ ( 100) ] ( 100)( 100)}

( 50) ( 50){ [ ( 50) ] ( 50)( 50)}

( )

[ ( 100)]( 100) ( 100) ( 100)(

e x y u r z z

e a x x b c x d x x

a y y b c y d y y u

z q z z

e g h x x l x p x x

      

         

         

  

         

1 3 2 1 3 3

1 2 3

100)

[ ( 50)]( 50) ( 50) ( 50)( 50)g h y y l y p y y u

z z mz










         

 

  (4.24) 

where ˆa a a  , ˆb b b  , ˆc c c  , ˆd d d  , ˆg g g  , ˆh h h  , ˆl l l  , 

ˆp p p  , and a , b , c , d , g , h , l , p , are estimates of uncertain parameters 

a , b , c , d , g , h , l  and p  respectively. 

Using different translation pragmatical synchronization by stability theory of 

partial region, we can choose a Lyapunov function in the form of a positive definite 

function in first quadrant: 

1 2 3V e e e a b c d g h l p                                    (4.25) 

Its time derivative is  

1 2 3

2 2 1 2 1

2

2 1 1 2 3

2

2 1 1 2 3 2

1 3 2

[ 100 50 ( )]

( 100) ( 100){ [ ( 100) ] ( 100)( 100)}

( 50) ( 50){ [ ( 50) ] ( 50)( 50)}

( )

{ [ (

V e e e a b c d g h l p

x y u r z z

a x x b c x d x x

a y y b c y d y y u

z q z z

g h x

          

      

        

         

  

   1 3 2 1 3

1 3 2 1 3 3

1 2 3

100)]( 100) ( 100) ( 100)( 100)

[ ( 50)]( 50) ( 50) ( 50)( 50) }

}

x l x p x x

g h y y l y p y y u

z z mz a b c d g h l p

      

         

         

        (4.26) 

Choose 
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2

2

2

2

3

3

3

3

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

a a ae

b b be

c c ce

d d de

g g ge

h h he

l l le

p p pe

    

    


   

    


   


   


   


   

                                               (4.27) 

1 2 2 2 1 1

2

2 2 1 1 2 3

2

2 1 1 2 3

1 3 2 2 2 2 2 2

3 1 3 2

100 50 ( )

( 100) ( 100){ [ ( 100) ] ( 100)( 100)}

( 50) ( 50){ [ ( 50) ] ( 50)( 50)}

( )

[ ( 100)]( 100) ( 100

u x y r z z e

u a x x b c x d x x

a y y b c y d y y

z q z z e ae be ce de

u g h x x l x

      

         

        

       

       1 3

1 3 2 1 3

1 2 3 3 3 3 3 3

) ( 100)( 100)

[ ( 50)]( 50) ( 50) ( 50)( 50)

p x x

g h y y l y p y y

z z mz e ge he le pe








   

        

      

  (4.28)                                          

We obtain  

1 2 3 0V e e e                                                 (4.29) 

which is a negative semi-definite function of 1e , 2e , 3e , a , b , c , d , g ,  h , l , 

p , in the first quadrant. The Lyapunov asymptotical stability theorem is not satisfied. 

We can not obtain that common origin of error dynamics (4.24) and parameter 

dynamics (4.27) is asymptotically stable. By pragamatical asymptotically stability 

theorem, D is a 11-manifold, n=11 and the number of error state variables p=3. When  

1 2 3 0e e e    and a , b , c , d , g , h , l , p , take arbitrary values, 0V  , so 

X is of 3 dimensions i.e. p=3, m=n-p=11-3=8, m+1<n is satisfied. According to the 

pragamatical asymptotically stability theorem, error vector e approaches zero and the 

estimated parameters also approach the uncertain parameters. The equilibrium point is 

pragmatically asymptotically stable. Under the assumption of equal probability, it is 

actually asymptotically stable. The simulation results are shown in Figs. 4.9-4.12. 
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Case 3. 

The following chaotic systems are two translated master and slave 

Ge-Ku-Mathieu (GKM) systems of which the old origin is translated to 

1 2 3( , , ) (350,350,350)x x x  , 1 2 3( , , ) (50,50,50)y y y   to guarantee the error 

dynamics always happens in the first quadrant of e  coordinate system. 

1 2

2

2 2 1 1 2 3

3 1 3 2 1 3

350

( 350) ( 350){ [ ( 350) ] ( 350)( 350)}

[ ( 350)]( 350) ( 350) ( 350)( 350)

x x

x a x x b c x d x x

x g h x x l x p x x

 


         
          

 (4.30) 

1 2 1

2

2 2 1 1 2 3 2

3 1 3 2 1 3 3

50

( 50) ( 50){ [ ( 50) ] ( 50)( 50)}

[ ( 50)]( 50) ( 50) ( 50)( 50)

y y u

y a y y b c y d y y u

y g h y y l y p y y u

  


          


          

  (4.31) 

Let initial states be 1 2 3( , , ) (350.01,350.01,350.01)x x x  , 1 2 3( , , )y y y  

(50.01,50.01,50.01) 0 0 0 0 0
, 1, 2, 4, 0.1, 3,a b c d g       

0 0 0
6, 0.4, 0.15h l p    and system parameters 0.6, 5, 11, 0.3,a b c d      

8, 10, 0.5, 0.2g h l p    .  

The state error is ( )e x y F t   , where ( )F t  z 1 2 3[ , , ]z z z  is state vector the 

new Ge-Ku-van der Pol system:   

1 2

2

2 2 3 1 3

2

3 3 3 2 1

[ ( ) ]

(1 )

z z

z mz z n q z wz

z sz f z z rz




    


    

                                  (4.32) 

Let initial states be z 1 2 3[ , , ] (0.01,0.01,0.01)z z z   and system parameters  

0.08m  , 0.35n   , 100.56q  , 1000.02w  , 0.61s  , 0.08f  , 0.01r   

the Ge-Ku-van der Pol system is a chaotic system. 

We find that the error dynamic without controller always exists in first quadrant as 

shown in Fig. 4.13.  
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Our aim is lim 0
t

e


 . We obtain the error dynamics. 

' 'lim lim[ ] 0i i i
t t

e x y z
 

    , 1, 2,3i                                (4.33) 

1 2 2 1 2

2

2 2 1 1 2 3

2

2 1 1 2 3 2

2

2 3 1 3

3 1 3 2 1

350 50

( 350) ( 350){ [ ( 350) ] ( 350)( 350)}

( 50) ( 50){ [ ( 50) ] ( 50)( 50)}

[ ( ) ]

[ ( 350)]( 350) ( 350) ( 350)(

e x y u z

e a x x b c x d x x

a y y b c y d y y u

mz z n q z wz

e g h x x l x p x

     

         

         

   

         3

1 3 2 1 3 3

2

3 3 2 1

350)

[ ( 50)]( 50) ( 50) ( 50)( 50)

(1 )

x

g h y y l y p y y u

sz f z z rz








 

         

   

 (4.34) 

where ˆa a a  , ˆb b b  , ˆc c c  , ˆd d d  , ˆg g g  , ˆh h h  , ˆl l l  , 

ˆp p p  , and a , b , c , d , g , h , l , p , are estimates of uncertain parameters 

a , b , c , d , g , h , l  and p  respectively. 

Using different translation pragmatical synchronization by stability theory of 

partial region, we can choosen a Lyapunov function in the form of a positive definite 

function in first quadrant: 

1 2 3V e e e a b c d g h l p                                    (4.35) 

Its time derivative is  

1 2 3

2 2 1 2

2

2 1 1 2 3

2

2 1 1 2 3 2

2

2 3 1 3

[ 350 50 ]

( 350) ( 350){ [ ( 350) ] ( 350)( 350)}

( 50) ( 50){ [ ( 50) ] ( 50)( 50)}

[ ( ) ]

{ [

V e e e a b c d g h l p

x y u z

a x x b c x d x x

a y y b c y d y y u

mz z n q z wz

g

          

     

        

         

   

   1 3 2 1 3

1 3 2 1 3 3

2

3 3 2 1

( 350)]( 350) ( 350) ( 350)( 350)

[ ( 50)]( 50) ( 50) ( 50)( 50)

(1 ) }

h x x l x p x x

g h y y l y p y y u

sz f z z rz a b c d g h l p

      

         

           

       (4.36) 

Choose 
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2

2

2

2

3

3

3

3

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

a a ae

b b be

c c ce

d d de

g g ge

h h he

l l le

p p pe

    

    


   

    


   


   


   


   

                                               (4.37) 

1 2 2 2 1

2

2 2 1 1 2 3

2

2 1 1 2 3

2

2 3 1 3 2 2 2 2 2

3 1 3 2

350 50

( 350) ( 350){ [ ( 350) ] ( 350)( 350)}

( 50) ( 50){ [ ( 50) ] ( 50)( 50)}

[ ( ) ]

[ ( 350)]( 350) (

u x y z e

u a x x b c x d x x

a y y b c y d y y

mz z n q z wz e ae be ce de

u g h x x l x

     

         

        

        

       1 3

1 3 2 1 3

2

3 3 2 1 3 3 3 3 3

350) ( 350)( 350)

[ ( 50)]( 50) ( 50) ( 50)( 50)

(1 )

p x x

g h y y l y p y y

sz f z z rz e ge he le pe








   

        

        

 (4.38)                                           

We obtain  

1 2 3 0V e e e                                                 (4.39) 

which is a negative semi-definite function of 1e , 2e , 3e , a , b , c , d , g ,  h , l , 

p , in the first quadrant. The Lyapunov asymptotical stability theorem is not satisfied. 

We can not obtain that common origin of error dynamics (4.34) and parameter 

dynamics (4.37) is asymptotically stable. By pragamatical asymptotically stability 

theorem, D is a 11-manifold, n=11 and the number of error state variables p=3. When  

1 2 3 0e e e    and a , b , c , d , g , h , l , p , take arbitrary values, 0V  , so 

X is of 3 dimensions i.e. p=3, m=n-p=11-3=8, m+1<n is satisfied. According to the 

pragamatical asymptotically stability theorem, error vector e approaches zero and the 

estimated parameters also approach the uncertain parameters. The equilibrium point is 

pragmatically asymptotically stable. Under the assumption of equal probability, it is 

actually asymptotically stable. The simulation results are shown in Figs. 4.14-4.17. 
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4.4 Summary 

In this chapter, a new strategy to achieve chaos synchronization by the different 

translation pragmatical synchronization using stability theory of partial region is 

proposed. The pragmatical asymptotical stability theorem fills the vacancy between 

the actual asymptotical stability and mathematical asymptotical stability, the 

conditions of the Lyapunov function for pragmatical asymptotical stability are lower 

than that for traditional asymptotical stability. By using the different translation 

pragmatical synchronization by stability theory of partial region, with the same 

conditions for Lyapunov function, 0V  , 0V  , as that in current scheme of 

adaptive synchronization, we not only obtain the generalized synchronization of 

chaotic systems but also prove strictly that the estimated parameters approach the 

uncertain values and the Lyapunov function is simple linear homogeneous function 

for error states, the controllers are more simple and have less simulation error because 

they are in lower degree than that of traditional controllers. 

It is important to note that 1K , 2K  are not arbitrary, two proper values must 

chosen to make that the error dynamics always in first quadrant, so give two more 

insurances for secret communication than other synchronization methods. 
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Fig. 4.1 Coordinate translation. 

 

 

 

Fig. 4.2 Coordinate translation. 
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Fig. 4.3 Phase portrait of the error dynamic for Case 1. 

 

  

Fig. 4.4 Time histories of ix , iy  for Case 1. 
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Fig. 4.5 Time histories of errors for Case 1. 

 

  

Fig. 4.6 Time histories of parameter errors for Case 1. 
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Fig. 4.7 Time histories of parameter errors for Case 1. 

 

 

 

Fig. 4.8 Phase portrait of the error dynamic for Case 2. 
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Fig. 4.9 Time histories of ix , iy  for Case 2. 

 

 

Fig. 4.10 Time histories of errors for Case 2. 
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Fig. 4.11 Time histories of parameter errors for Case 2. 

 

 

Fig. 4.12 Time histories of parameter errors for Case 2. 
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Fig. 4.13 Phase portrait of the error dynamic for Case 3. 

 

 

 Fig. 4.14 Time histories of ix , iy  for Case 3. 



 

45 

 

 

  

Fig. 4.15 Time histories of errors for Case 3. 

 

 

Fig. 4.16 Time histories of parameter errors for Case 3. 
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Fig. 4.17 Time histories of parameter errors for Case 3. 
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Chapter 5 

Multiple Symplectic Synchronization for Ge-Ku-Mathieu 

System 

5.1 Preliminary 

In this Chapter, a new type of synchronization, multiple symplectic 

synchronization is studied. Symplectic synchronization and double symplectic 

synchronization are special cases of the multiple symplectic synchronization. When 

the double symplectic functions is extended to a more general form, 

( , , , , , ) ( , , , , , )z w t z w t  G x y F x y , it is called “multiple symplectic 

synchronization”. The multiple symplectic synchronization may be applied to increase 

the security of secret communication due to the complexity of its synchronization 

form. 

 

5.2 Multiple Symplectic Synchronization Scheme 

Generalized synchronization refers to a functional relation between the state 

vectors of master and of slave, i.e. ( , )ty F x , where x  and y  are the state vectors 

of master and slave. Recently, generalized synchronization is extended to a more 

general form, ( , , )ty F x y . This means that the final desired state y of the “slave” 

system not only depends upon the “master” system state x but also depends upon the 

state y itself. Therefore the “slave” system is not traditional pure slave obeying the 

master system completely but plays a role to determine the final desired state of the 

“slave” system. This kind of synchronization, is called “symplectic synchronization”, 

and the “master” system is called Partner A, the “slave” system is called Partner B. 

Since the symplectic functions are presented at both the right hand side and the 

left hand side of the equality, it is called double symplectic synchronization, 
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( , , ) ( , , )t tG x y F x y . Where x,y are state vectors of  Partner A and Partner B , 

respectively, ( , , )tG x y and ( , , )tF x y are given vector functions of x,y and time. 

When the double symplectic functions is extended to a more general form, 

( , , , , , ) ( , , , , , )z w t z w t  G x y F x y , it is called “multiple symplectic 

synchronization”. Where , , , ,z wx y are state vectors of  Partner A and Partner B , 

respectively, ( , , , , , )z w tG x y and ( , , , , , )z w tF x y are given vector functions of 

, , , ,z wx y  and time. 

 

5.3 Synchronization of Three Different Chaotic Systems 

Case 1. 

Define 

1 1 1

2 2 2

3 3 3

( , , , )

x y z

G z t x y z

x y z

  
 

  
 
   

x y

 

, 

1 1 1 2 1 2 3 1 3

1 2 1 2 2 2 3 2 3

1 3 1 2 3 2 3 3 3

cos cos cos

( , , , ) cos cos cos

cos cos cos

x y z x y z x y z

z t x y z x y z x y z

x y z x y z x y z

  
 

  
 
   

F x y , and our goal is to achieve the 

multiple symplectic synchronization ( , , , ) ( , , , )G z t z tx y F x y . 

Consider the Chen system is described by 

1 2 1

2 1 1 3 2

3 1 2 3

( ),

( ) ,

,

x m x x

x w m x x x wx

x x x nx

 

   

 

                                      (5.1) 

where 35, 3, 27.2m n w   and the initial condition is 

1 2 3 (0) 0.5, (0) 0.26 , (0) 0.35x x x   . The chaotic attractor of the Chen system is 

shown in Fig. 5.1.  

The Lorenz system is described by 

1 2 1

2 1 3 2

3 1 2 3

( ),

( ) ,

,

z r z z

z z s z z

z z z fz

 

  

 

                                            (5.2) 
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where 
8

10, 28,
3

r s f   and the initial condition is 

1 2 3 z (0) 0.01, z (0) 0.01 ,z (0) 0.01   . The chaotic attractor of the Lorenz system is 

shown in Fig. 5.2. 

The controlled Ge-Ku-Mathieu(GKM) system is described by 

 

 

1 2 1

2

2 2 1 1 2 3 2

3 1 3 2 1 3 3

,

,

,

y y u

y ay y b c y dy y u

y g hy y ly py y u

 

      
 

     

                             (5.3) 

where 0.6, 5, 11, 0.3, 8, 10, 0.5, 0.2a b c d g h l p         ,  
T

1 2 3, ,u u uu  is 

the controller, and the initial condition is 1(0) 0.01y  , 2 (0) 0.01y  , 3(0) 0.01y  . 

Thus we design the controller as 

 

1 2 1 1 1 1 1 2 1 1 1 2 1 2 1 1 1 3 2

2 1 1 3 2 2 2 2 1 1 2 3 3 1 3 1 1 2 3

3 3 2 1 2 1 2 2 1 1

( ) cos cos ( ) sin cos (( ) )

cos ( ( ) ) sin ( ) cos cos ( )

sin ( ) ( )

u m x x z y x y r z z x z y y z y w m x x x wx

x y z s z z x z y y x x nx z y x y z z fz

x z y y m x x y r z z e

        

       

      

 

2

2 2 1 1 2 1 2 2 1 1 1 2 1 1 2 3 2

2 2 1 1 3 2 2 2 1 3 2

2

2 2 2 1 1 2 3 2 1 2 3 3 2 3 2 1 2 3

3 3 2

( ) cos cos ( ) ( ( ( ) ))sin

cos (( ) ) cos ( ( ) )

( ( ( ) ))sin ( ) cos cos ( )

sin (

u m x x z y x y r z z x z ay y b c y dy y y

z y w m x x x wx x y z s z z

x z ay y b c y dy y y x x nx z y x y z z fz

x z y a

        

      

        

  2

2 1 1 2 3 1 1 3 2

2

2 1 1 2 3 1 3 2 2

( ( ) )) (( ) )

( ( ( ) )) ( ( ) )

y y b c y dy y w m x x x wx

ay y b c y dy y z s z z e

      

        

 

3 2 1 1 3 1 3 2 1 1 1 1 3 2 1 3 3

2 3 1 1 3 2 2 3 1 3 2

2 2 1 3 2 1 3 3 1 2 3 3 3 3 3 1 2 3

3 3 3 1

( ) cos cos ( ) ( ( ) )sin

cos (( ) ) cos ( ( ) )

( ( ) )sin ( ) cos cos ( )

sin ( ( )

u m x x z y x y r z z x z g hy y ly py y y

z y w m x x x wx x y z s z z

x z g hy y ly py y y x x nx z y x y z z fz

x z y g hy

        

      

        

   3 2 1 3 1 2 3

1 3 2 1 3 1 2 3 3

) ( )

( ( ) ) ( )

y ly py y x x nx

g hy y ly py y z z fz e

   

       

 

The Theorem in Chapter 3 is satisfied and the multiple symplectic 

synchronization is achieved. The phase portrait of the controlled Ge-Ku-Mathieu 
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system and the time histories of ( , , , )G z tx y  and ( , , , )z tF x y  and the time histories 

of the state errors are shown in Fig. 5.3 and Fig. 5.4 and Fig. 5.5, respectively. 

Case 2. 

Define 

1 1 1

2 2 2

3 3 3

( , , , )

x y z

G z t x y z

x y z

  
 

  
 
   

x y

 

, 

1 1 1 2 1 2 3 1 3

1 2 1 2 2 2 3 2 3

1 3 1 2 3 2 3 3 3

sin sin sin

( , , , ) sin sin sin

sin sin sin

x y z x y z x y z

z t x y z x y z x y z

x y z x y z x y z

  
 

  
 
   

F x y , and our goal is to achieve the 

multiple symplectic synchronization ( , , , ) ( , , , )G z t z tx y F x y . 

Consider the Rossler  system is described by     

1 2 3

2 1 2

3 1 3 3

( ),

,

,

x x x

x x mx

x n x x wx

  

 

  

                                             (5.4) 

where 0.15, 0.2, 10m n w   , and the initial conditions are 1(0) 2x  , 

2(0) 2.4x  , 3(0) 5x  . The chaotic attractor of the Rossler  system is shown in Fig. 

5.6.  

The Lorenz system is described by 

1 2 1

2 1 3 2

3 1 2 3

( ),

( ) ,

,

z r z z

z z s z z

z z z fz

 

  

 

                                            (5.5) 

where
8

10, 28,
3

r s f    and the initial condition is 

1 2 3 z (0) 0.01, z (0) 0.01 ,z (0) 0.01   .  

The controlled Ge-Ku-Mathieu(GKM) system is described by 

 

 

1 2 1

2

2 2 1 1 2 3 2

3 1 3 2 1 3 3

,

,

,

y y u

y ay y b c y dy y u

y g hy y ly py y u

 

      
 

     

                             (5.6) 
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where 0.6, 5, 11, 0.3, 8, 10, 0.5, 0.2a b c d g h l p         ,  
T

1 2 3, ,u u uu  is 

the controller, and the initial condition is 1(0) 0.01y  , 2 (0) 0.01y  , 3(0) 0.01y  . 

Thus we design the controller as 

 

1 2 3 1 1 1 1 2 1 1 1 2 1 2 1 1 2

2 1 1 3 2 2 2 2 1 1 3 3 3 1 3 1 1 2 3

3 3 2 1 2 3 2 2 1 1

( ) sin sin ( ) cos sin ( )

sin ( ( ) ) cos ( ) sin sin ( )

cos ( ( )) ( )

u x x z y x y r z z x z y y z y x mx

x y z s z z x z y y n x x wx z y x y z z fz

x z y y x x y r z z e

       

        

       

 

2

2 2 3 1 2 1 2 2 1 1 1 2 1 1 2 3 2

2 2 1 2 2 2 1 3 2

2

2 2 2 1 1 2 3 2 1 3 3 3 2 3 2 1 2 3

3 3 2 2 1

( ) sin sin ( ) ( ( ( ) ))cos

sin ( ) sin ( ( ) )

( ( ( ) ))cos ( ) sin sin ( )

cos ( ( (

u x x z y x y r z z x z ay y b c y dy y y

z y x mx x y z s z z

x z ay y b c y dy y y n x x wx z y x y z z fz

x z y ay y b

         

    

         

   2

1 2 3 1 2

2

2 1 1 2 3 1 3 2 2

) )) ( )

( ( ( ) )) ( ( ) )

c y dy y x mx

ay y b c y dy y z s z z e

   

        

 

3 2 3 1 3 1 3 2 1 1 1 1 3 2 1 3 3

2 3 1 2 2 3 1 3 2

2 2 1 3 2 1 3 3 1 3 3 3 3 3 3 1 2 3

3 3 3 1 3 2

( ) sin sin ( ) ( ( ) )cos

sin ( ) sin ( ( ) )

( ( ) )cos ( ) sin sin ( )

cos ( ( )

u x x z y x y r z z x z g hy y ly py y y

z y x mx x y z s z z

x z g hy y ly py y y n x x wx z y x y z z fz

x z y g hy y ly p

         

    

         

     1 3 1 3 3

1 3 2 1 3 1 2 3 3

) ( )

( ( ) ) ( )

y y n x x wx

g hy y ly py y z z fz e

  

       

 

The Theorem in Chapter 3 is satisfied and the multiple symplectic 

synchronization is achieved. The phase portrait of the controlled Ge-Ku-Mathieu 

system and the time histories of ( , , , )G z tx y  and ( , , , )z tF x y  and the time histories 

of the state errors are shown in Fig. 5.7 and Fig. 5.8 and Fig. 5.9, respectively. 

 

Case 3. 

Define 

1 1 1

2 2 2

3 3 3

( , , , )

x y z

G z t x y z

x y z

  
 

  
 
   

x y

 

, 

1 1 1 2 1 2 3 1 3

1 2 1 2 2 2 3 2 3

1 3 1 2 3 2 3 3 3

( , , , )

x y z x y z x y z

z t x y z x y z x y z

x y z x y z x y z

  
 

  
 
   

F x y , 

and our goal is to achieve the multiple symplectic synchronization 
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( , , , ) ( , , , )G z t z tx y F x y . 

Consider the sprott system is described by 

1 2 3

2

2 1 2

3 1

,

,

1 ,

x x x

x x x

x mx



 

 

                                                   (5.7) 

where 4m   and the initial conditions are 1 2 3 (0) 1, (0) 1 , (0) 1x x x      . The 

chaotic attractor of the sprott system is shown in Fig. 5.10.  

The Lorenz system is described by 

1 2 1

2 1 3 2

3 1 2 3

( ),

( ) ,

,

z r z z

z z s z z

z z z fz

 

  

 

                                            (5.8) 

where
8

10, 28,
3

r s f    and the initial condition is 

1 2 3 z (0) 0.01, z (0) 0.01 ,z (0) 0.01   .  

The controlled Ge-Ku-Mathieu(GKM) system is described by 

 

 

1 2 1

2

2 2 1 1 2 3 2

3 1 3 2 1 3 3

,

,

,

y y u

y ay y b c y dy y u

y g hy y ly py y u

 

      
 

     

                             (5.9) 

where 0.6, 5, 11, 0.3, 8, 10, 0.5, 0.2a b c d g h l p         ,  
T

1 2 3, ,u u uu  is 

the controller, and the initial condition is 1(0) 0.01y  , 2 (0) 0.01y  , 3(0) 0.01y  . 

Thus we design the controller as 

2

1 2 3 1 1 1 1 2 1 1 1 2 2 1 1 2

2 1 1 3 2 2 2 2 1 3 1 3 1 1 2 3

3 3 2 2 3 2 2 1 1

( ) ( )

( ( ) ) (1 ) ( )

( )

u x x z y x y r z z x z y z y x x

x y z s z z x z y mx z y x y z z fz

x z y x x y r z z e

     

       

     

, 
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2

2 2 3 1 2 1 2 2 1 1 1 2 1 1 2 3

2

2 2 1 2 2 2 1 3 2

2

2 2 2 1 1 2 3 1 3 2 3 2 1 2 3

2 2

3 3 2 1 1 2 3 1 2

2

2 1 1

( ) ( ( ( ) ))

( ) ( ( ) )

( ( ( ) )) (1 ) ( )

( ( ( ) )) ( )

( ( ( )

u x x z y x y r z z x z ay y b c y dy y

z y x x x y z s z z

x z ay y b c y dy y mx z y x y z z fz

x z ay y b c y dy y x x

ay y b c y

       

    

        

      

     2 3 1 3 2 2)) ( ( ) )dy y z s z z e   

 

3 2 3 1 3 1 3 2 1 1 1 1 3 2 1 3

2

2 3 1 2 2 3 1 3 2

2 2 1 3 2 1 3 1 3 3 3 3 1 2 3

3 3 1 3 2 1 3 1

1 3 2 1 3 1 2

( ) ( ( ) )

( ) ( ( ) )

( ( ) ) (1 ) ( )

( ( ) ) (1 )

( ( ) ) (

u x x z y x y r z z x z g hy y ly py y

z y x x x y z s z z

x z g hy y ly py y mx z y x y z z fz

x z g hy y ly py y mx

g hy y ly py y z z

       

    

        

      

      3 3)fz e 

 

The Theorem in Chapter 3 is satisfied and the multiple symplectic 

synchronization is achieved. The phase portrait of the controlled Ge-Ku-Mathieu 

system and the time histories of ( , , , )G z tx y  and ( , , , )z tF x y  and the time histories 

of the state errors are shown in Fig. 5.11 and Fig. 5.12 and Fig. 5.13, respectively. 

 

5.4 Summary 

A new type of synchronization, multiple symplectic synchronization, is studied 

in this Chapter. It is an extension of double symplectic synchronization. By applying 

active control, the multiple symplectic synchronization is achieved. The simulation 

results show that the proposed scheme is effective and feasible. Furthermore, the 

multiple symplectic synchronization of chaotic systems can be used to increase the 

security of secret communication. 
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Fig. 5.1 The chaotic attractor of the Chen system. 

 

 

Fig. 5.2 The chaotic attractor of the Lorenz system. 
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Fig. 5.3 Phase portrait of a controlled new Ge-Ku-Mathieu system for Case 1. 

 

Fig. 5.4 Time histories of ( , , , )G z tx y  and ( , , , )z tF x y  for Case 1. 
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Fig. 5.5 Time histories of the state errors for Case 1. 

 

 

Fig. 5.6 The chaotic attractor of the Rossler  system. 
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Fig. 5.7 Phase portrait of the controlled Ge-Ku-Mathieu system for Case 2. 

 

Fig. 5.8 Time histories of ( , , , )G z tx y  and ( , , , )z tF x y  for Case 2. 
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Fig. 5.9 Time histories of the state errors for Case 2. 

 

 

Fig. 5.10 The chaotic attractor of the sprott system. 
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Fig. 5.11 Phase portrait of the controlled Ge-Ku-Mathieu system for Case 3. 

 

Fig. 5.12 Time histories of ( , , , )G z tx y  and ( , , , )z tF x y  for Case 3. 
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Fig. 5.13 Time histories of the state errors for Case 3. 
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Chapter 6 

Robust Projective Anti-Synchronization of Nonautonomous 

Chaotic Systems with Stochastic Disturbance by Fuzzy 

Logic Constant Controller 

6.1 Preliminary 

In this paper, a simplest fuzzy logic constant controller (FLCC) ,which is derived 

via fuzzy logic design and Lyapunov direct method, is presented for projective 

anti-synchronization of nonautonomous chaotic systems with uncertain and stochastic 

signals. Controllers in traditional Lyapunov direct method are always nonlinear and 

complicated. However, FLCC proposed are such simple controllers which are 

constant numbers, decided via the values of the upper and lower bounds of the error 

derivatives. This new method is used in projective anti-synchronization of 

nonautonomous chaotic systems with stochastic disturbance to show the robustness 

and effectiveness of FLCC. 

6.2 Projective Chaos Anti-Synchronization by FLCC Scheme 

Consider the following master chaotic system 

( ) ( )A f    x x x          (6.1) 

where 1 2[ , , ]T n

nx x x R x
 
denotes a state vector, A is an n n  constant 

coefficient matrix ,  f  is a nonlinear vector function,   is nonautonomous term 

and   is stochastic disturbance.  

The slave system which can be either identical or different from the master, is  

( )B g  y y y u     (6.2) 

where 1 2[ , , ]T n

ny y y R y  denotes a state vector, B is an n n  constant 



 

62 

 

coefficient matrix, g is a nonlinear vector function, and 1 2[ , , ]T n

nu u u R u is the 

fuzzy logic controller needed to be designed. 

For projective anti-synchronization, in order to make the chaos state y  

approaching the goal statex , define ( )     e x y x y  as the state error, 

here is a constant. The chaos projective anti-synchronization is accomplished in the 

sense that [59]: 

lim lim( ) 0
t t


 

  e x y                                            (6.3) 

where 

1[ , , ]T

ne e    e x y                                           (6.4)                                                                                                 

From Eq. (6-4) we have the following error dynamics: 

    [ ( ) ( ) ] [ ( ) ]A f B g           e x y x x y y u                  (6.5)                        

According to Lyapunov direct method, we have the following Lyapunov function 

to derive the fuzzy logic controller for projective anti-synchronization: 

2 2 2

1 1

1
( , , , , ) ( ) 0

2
m n m nV f e e e e e e                            (6.6)                      

The derivative of the Lyapunov function in Eq. (6.6) is: 

    1 1 m m n nV e e e e e e                                          (6.7) 

If the vector controller in Eq. (6.5) can be suitably designed to achieve 0V , 

then the zero solution 0e  of Eq.(6.5) are asymptotically stable i.e the projective 

anti-synchronization is accomplished. Next, the design process of FLCC is 

introduced. 

We use the error derivative  1 2, , , , ,
T

m ne e e ee(t) , as the antecedent part of 

the proposed FLCC to design the control input u  which is used in the consequent 

part of the proposed FLCC: 

     1 2, , , , ,
T

m nu u u uu                                         (6.8) 
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where u  is a constant column vector and accomplishes the objective to stabilize the 

error dynamics in Eq. (6.5).  

The strategy of the FLCC designed is proposed as follow and the configuration 

of the strategy is shown in Fig. 6.1. 

Assume the upper bound and lower bound of me  are Zm and –Zm, then the 

FLCC can be design step by step: 

(1) If me  is detected as positive ( 0me ), we design a controller for 0me for 

the purpose 0 mmeeV  . Therefore we have the following ith(i=1,2,3) if–then 

fuzzy rule as: 

        Rule 1 : If me is M1  Then um1 = -Zm                             (6.9) 

        Rule 2 : If me is M 2  Then um2 = -Zm                           (6.10) 

        Rule 3 : If me is M 3  Then um3 = me                             (6.11) 

(2) If me  is detected as negative ( 0me ), we design a controller for 0me , for 

the purpose 0 mmeeV  . Therefore we have the following ith if–then fuzzy rule 

as: 

        Rule 1 : If me is M1  Then um1 = Zm                            (6.12) 

        Rule 2 : If me is M 2  Then um2 = Zm                            (6.13) 

        Rule 3 : If me is M 3  Then um3 = me                             (6.14) 

(3) If me approaches to zero, then the synchronization is nearly achieved. 

Therefore we have the following ith if–then fuzzy rule as: 

        Rule 1 : If me is M1  Then um1 = 0me                          (6.15) 

        Rule 2 : If me is M 2  Then um2 = 0me                          (6.16) 

        Rule 3 : If me is M 3  Then um3 = 0me                          (6.17) 

where M1
m

m

e

Z
 , M2

m

m

e

Z
 and M3 sgn( ) sgn( )m m m m

m m

Z e e Z

Z Z

 
  , 
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1M , 2M and
3

M refer to the membership functions of positive (P), negative (N) and 

zero (Z) separately which are presented in Fig. 6.2. For each case, miu , i= 1~3 is the 

i-th output of me , which is a constant controller. The centriod defuzzifier evaluates 

the output of all rules as follows: 

    



 






3

1

3

1

i
i

i
mii

m

M

uM

u                                               (6.18) 

    The fuzzy rule base is listed in Table 1, in which the input variables in the 

antecedent part of the rules are me  and the output variable in the consequent part 

is miu .  

 

Table 1 Rule-table of FLCC 

Rule Antecedent Consequent Part 

 me  miu  

1 Negative (N) 1mu  

2 Positive (P) 2mu  

3 Zero (Z) 3mu  

With appropriate fuzzy logic constant controllers in Eq. (6.7), a negative definite 

derivatives of Lyapunov function V  can be obtained and the asymptotical stability 

of Lyapunov theorem can be achieved.  

Consequently, the processes of FLCC designed to control a system following the 

trajectory of a master system are getting the upper bound and lower bound of the error 

derivatives of the goal and control systems without any controller, i.e. 

mmm ZeZ   . Through the fuzzy logic system which follows the rules of Eq. (6.9) 

~ Eq. (6.17), a negative definite derivatives of Lyapunov function V  can be 
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obtained and the asymptotically stability of Lyapunov theorem can be achieved. 

6.3 Simulation Results 

There are two examples in this Section. Each example is divided into two parts, 

projective anti-synchronization by FLCC and that by traditional method. In the end of 

each example, we give the simulation results of two controllers and list the tables and 

figures to show the effectiveness and robustness of our method. 

Case 1 

6.1 Projective Anti-Synchronization of Sprott Systems by New FLCC 

The Sprott 19 system [60] is: 

1 2

2 3

3

3 3 2 2 1

 

x x

x x

x ax bx x x

 





   

                                        (6.19) 

When initial condition 10 20 30( , , ) (0,1,0)x x x   and parameters
 

0.6, 2.75a b   , 

chaos of the Sprott 19 system appears. The chaotic behavior of Eq. (6.19) is shown in 

Fig. 6.3. 

6.1.1 Projective Anti-Synchronization of Nonautonomous Sprott 19 System by 

New FLCC 

The nonautonomous Sprott 19 system is: 

1
2

2
3

33
1 3 2 2 1

( )
( )

( )
( )

( )
(1 ) ( ) ( )

dx t
x t

dt

dx t
x t

dt

dx t
a x t bx t x x

dt











     


                           (6.20)                                      

When initial condition 10 20 30( , , ) (0,1,0)x x x  , parameters
 

0.6, 2.75a b   ,and  

1 pulse generator   is an nonautonomous term as shown in Fig. 6.4. Chaos of the 

nonautonomous Sprott 19 system appears in Fig. 6.5. 

The Sprott 22 system [60] is: 
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1 2

2 3

3 3 2 1

 

sin

x x

x x

x cx x x





   

                                          (6.21) 

When initial condition 10 20 30( , , ) (0.01,1,0.01)x x x   and parameters
 

0.2c  , chaos of 

the Sprott 22 system is shown in Fig. 6.6. 

The slave Sprott 22 system with controllers is: 

1
2 1

2
3 2

3
3 2 1 3

( )
( )

( )
( )

( )
( ) ( ) sin

dy t
y t u

dt

dy t
y t u

dt

dy t
cy t y t y u

dt


 




 



   


                               (6.22) 

For initial condition ),,( 302010 yyy = (0.01, 1, 0.01) and parameters c=0.25, chaos of 

the slave Sprott 22 system in Eq.(6.21) appears as well. 1u , 2u and 3u are FLCC to 

anti-synchronize the slave Sprott 22 system to master Sprott 19 system.                                                   

The error vector for projective anti-synchronization is 

1 1 1

2 2 2

3 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

e t x t y t

e t x t y t

e t x t y t



     
     

  
     
          

e                                   (6.23) 

Here   is the projective constant. 

Our aim is  

lim 0
t

e                                                          (6.24) 

From Eqs. (6.20), (6.22), (6.23), we have the following error dynamics:                      

1 2 2 1

2 3 3 2

3

3 1 3 2 2 1 3 2 1 3

[ ( )] ( ( ) )

[ ( )] ( ( ) )

[ (1 ) ( ) ( ) ] ( ( ) ( ) sin )

e x t y t u

e x t y t u

e a x t bx t x x cy t y t y u







   


  


        

     (6.25)                                     

Choosing Lyapunov function as: 

    )( 2
3

2
2

2
1 eee

2

1
V                                            (6.26) 
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Its time derivative is: 

1 1 2 2 3 3

1 2 2 1

2 3 3 2

3

3 1 3 2 2 1 3 2 1 3

{ [ ( )] ( ( ) )}

{ [ ( )] ( ( ) )}

{ [ (1 ) ( ) ( ) ] ( ( ) ( ) sin )}

V e e e e e e

e x t y t u

e x t y t u

e a x t bx t x x cy t y t y u







  

  

  

        

   (6.27)                      

    In order to design FLCC, we divide Eq. (6.27) into three parts as follows: 

Assume 321
2
3

2
2

2
1 VVVeee

2

1
V  )( , then 321332211 VVVeeeeeeV   , 

where 2
11 e

2

1
V  , 2

22 e
2

1
V  and 2

33 e
2

1
V  . 

Part 1: 1 1 1 1 2 2 1{ [ ( )] ( ( ) )}V e e e x t y t u     

Part 2: 2 2 2 2 3 3 2{ [ ( )] ( ( ) )}V e e e x t y t u     

Part 3: 

3

3 3 3 3 2 3 2 2 1

3 2 1 3

{ [ (1 ) ( ) ( ) ]

( ( ) ( ) sin )}

V e e e a x t bx t x x

cy t y t y u

      

   
 

FLCC in Part 1, 2 and 3 can be obtained via the fuzzy rules in Table 1. The 

maximum value and minimum value can be observed in time histories of error 

derivatives without any controllers shown in Fig. 6.7. 

    FLCC are proposed in Part 1, 2 and 3 to make 0eeV 111   , 

0eeV 222   and 0eeV 333   . Hence we have 0VVVV 321   . It is clear that 

all of the rules in FLCC can lead that the Lyapunov function satisfies the asymptotical 

stability theorem. The simulation results are shown in Fig. 6.8 and Fig. 6.9. The 

projection of phase portraits of system (6.22) with chaotic behaviors is shown in Fig. 

6.6. 
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6.1.2 Robust Projective Anti-Synchronization of Nonautonomous Sprott 

System with Stochastic Disturbance by FLCC 

The master nonautonomous Sprott 19 system with stochastic disturbance is: 

1
2 2

2
3 2

33
1 3 2 2 1 2

( )
( )

( )
( )

( )
(1 ) ( ) ( )

dx t
x t

dt

dx t
x t

dt

dx t
a x t bx t x x

dt


  




  



       


                       (6.28)                                                                                           

For initial condition ),,( 302010 xxx = (0, 1, 0). The pulse generator 1  is an 

nonautonomous term in Fig. 6.4, 2 is band-limited white noise (PSD=0.1) in Fig. 

6.10, and parameters are a=-0.6, b=2.75. Chaos of Eq. (6.28), the nonautonomous 

Sprott 19 system with stochastic disturbance appears in Fig. 6.11. 

The slave system is the same as Eq. (6.22) and Lyapunov function derived 

through Eq. (6.23)~(6.27). 

Let 2  , we have the following error dynamics:                      

1 2 2 2 1

2 3 2 3 2

3

3 1 3 2 2 1 2 3 2 1 3

[ ( ) ] ( ( ) )

[ ( ) ] ( ( ) )

[ (1 ) ( ) ( ) ] ( ( ) ( ) sin )

e x t y t u

e x t y t u

e a x t bx t x x cy t y t y u







    


   


           

(6.29)  

And time derivative of Lyapunov function is: 

1 1 2 2 3 3

1 2 2 2 1

2 3 2 3 2

3

3 1 3 2 2 1 2

3 2 1 3

  { [ ( ) ] ( ( ) )}

     { [ ( ) ] ( ( ) )}

     { [ (1 ) ( ) ( ) ]

( ( ) ( ) sin )}

V e e e e e e

e x t y t u

e x t y t u

e a x t bx t x x

cy t y t y u







  

    

    

       

   

                       (6.30)    

    The maximum value and minimum value without any controller can be observed 

by time histories of error derivatives shown in Fig 6.12. The robust projective 

anti-synchronization scheme to make 1 1 2 2 3 3 0V e e e e e e    . It is clear that all of 

the rules in FLCC can lead that the Lyapunov function satisfies the asymptotical 
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stability theorem. The simulation results are shown in Fig. 6.13 and Fig. 6.14. 

 

6.1.3 Robust Projective Anti-Synchronization of Nonautonomous Sprott 

System with Stochastic Disturbance by Traditional Method 

In order to lead the derivative of Lyapunov function in Eq. (6.30) to negative 

definite, we choose robust traditional nonlinear controllers as:  

1 2 2 2 1

2 3 2 3 2

3

3 1 3 2 2 1 2 3 2 1 3

[ ( ) ]

[ ( ) ]

{ [ (1 ) ] sin }

u x y e

u x y e

u a x bx x x cy y y e







     


    


          

 

       (6.31) 

And we can obtain 

    1 1 2 2 3 30V e e e e e e                                            (6.32) 

    The derivative of Lyapunov function is negative definite and the error dynamics 

in Eq. (6.29) are going to achieve asymptotically stable. The simulation results are 

shown in Fig. 6.15 and Fig. 6.16. 

 

6.1.4 FLCC Compared to Traditional Method 

    In this subsection, the controllers and numerical simulation results in subsection 

6.1.2 and subsection 6.1.3 are listed in Tables 2 and 3 for comparison. Comparing two 

kinds of controller in Table 2 and two kinds of errors in Table 3, it is clear to find out 

that (1) The controllers in FLCC designing are much simpler than traditional ones; (2) 

The performance of the error convergence of states by FLCC is much better than that 

by traditional method.     

Consequently, even the system contains noise and parameter uncertainty, the 

FLCC can still remain the high performance to synchronize the two chaotic systems 

with uncertainty and stochastic signals exactly and efficiently. 
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Table 2 The controllers of FLCC and of traditional method. 

Controller 

1u  

FLCC Traditional method 

1 10mZ   2 2 2 1[ ( ) ]x y e     

 

2u  

 

2 20mZ   

 

 

3 2 3 2[ ( ) ]x y e     

 

3u  

 

 

3 50mZ   

3

1 3 2 2 1 2

3 2 1 3

{ [ (1 ) ]

sin }

a x bx x x

cy y y e
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Table 3 Errors data after the action of controllers. 

Time  

after the action 

of controllers 

FLCC                                 Traditional method 

 

1e                                     1e  

35.97 s 

35.98 s 

35.99 s 

36.0 s 

36.01 s 

0.00000000000000177636 

0.00000000000000088818 

0.00000000000000088819 

0.00000000000000088818 

-0.00000000000000355271 

 

 

2e  

-0.00054576536205530601 

-0.00054033490596872014 

-0.00053495848382301148 

-0.00052963555797180817 

-0.00052436559611734879  

  

 

2e  

35.97 s 

35.98 s 

35.99 s 

36.0 s 

36.01 s 

0.00000000000000133227 

0.00000000000000133227 

0.00000000000000133227 

0.00000000000000133227 

-0.00000000000000355271  

 

 

3e  

-0.00656173798135295527 

-0.00649644759754419709 

-0.00643180686390909528 

-0.00636780931631975022 

-0.00630444855496925527  

  

 

3e  

36.05 s 

36.06 s 

36.07 s 

36.08 s 

36.09 s 

0.00000000000000799361 

0.00000000000000799361 

0.00000000000000799361 

0.00000000000000710543 

0.00000000000000710543 

0.02132987975686884141 

0.02111764390717763007 

0.02090751983947569670 

0.02069948654118025644 

0.02049352320878927713 
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Case 2 

6.2 Projective Anti-Synchronization of Sprott System and Ge-Ku-Mathieu 

Systems 

6.2.1 Chaos Projective Anti-Synchronization of Nonautonomous Sprott 19 

System and Ge-Ku-Mathieu (GKM) System by New FLCC  

The nonautonomous Sprott 19 system is: 

1
2

2
3

33
1 3 1 2 2 2 1

( )
( )

( )
( )

( )
(1 ) ( ) (1 ) ( )

dx t
x t

dt

dx t
x t

dt

dx t
a x t b x t x x

dt











        


                  (6.33)                                                                

When initial condition 10 20 30( , , ) (0,1,0)x x x  , parameters 0.6, 2.75a b   , 

pulse generator 1  in Fig. 6.4, band-limited white noise 2  in Fig. 6.10, 

chaos of the nonautonomous Sprott 19 system with stochastic disturbance 

appears in Fig. 6.17. 

The slave GKM system is: 

1
2 1

22
2 1 1 2 3 2

3
1 3 2 1 3 3

( )
( )

( )
( ) ( ){ [ ( )] ( ) ( )}

( )
[ ( )] ( ) ( ) ( ) ( )

dy t
y t u

dt

dy t
my t y t n c y t dy t y t u

dt

dy t
g hy t y t ly t py t y t u

dt


 




     



     


               (6.34)                          

When initial condition ),,( 302010 yyy = (0.01, 0.01, 0.01) and parameters m=-0.6, n=5, 

c=11, d=0.3, g=8, h=10, l=0.5, p=0.2, chaos of the GKM system appears as 

well. 1u , 2u and 3u are FLCC to anti-synchronize projectively the slave GKM system to 

the master one.  

Our aim is  

0lim 


e
t

                                                    (6.35) 
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where the error vector 

 
1 1 1

2 2 2

3 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

e t x t y t

e e t x t y t

e t x t y t



     
     

  
     
          

                                 (6.36)                                   

Here   is constant 

From Eq. (6.36), we have the following error dynamics:                      

1 2 2 1

2 3 2 1

2

1 2 3 2

3

3 1 3 1 2 2 2 1

1 3 2 1 3 3

[ ( )] ( ( ) )

[ ( )] { ( ) ( )

[ ( ( )) ( ) ( )] }

[ (1 ) ( ) (1 ) ( ) ]

[ ( ( )) ( ) ( ) ( ) ( ) ]

e x t y t u

e x t my t y t

n c y t dy t y t u

e a x t b x t x x

g hy t y t ly t py t y t u







  


   



   


        
      

                  (6.37)                                     

Choosing Lyapunov function as: 

    )( 2
3

2
2

2
1 eee

2

1
V                                             (6.38) 

Its time derivative is: 

1 1 2 2 3 3

1 2 2 1

2 3 2 1

2

1 2 3 2

3

3 1 3 1 2 2 2 1

1 3 2 1 3 3

{ [ ( )] ( ( ) )}

{ [ ( )] { ( ) ( )

[ ( ( )) ( ) ( )] }

{ [ (1 ) ( ) (1 ) ( ) ]

[ ( ( )) ( ) ( ) ( ) ( ) ]}

V e e e e e e

e x t y t u

e x t my t y t

n c y t dy t y t u

e a x t b x t x x

g hy t y t ly t py t y t u







  

  

   

   

        

     

                   (6.39)                                             

    In order to design FLCC, we divide Eq. (6.39) into three parts as follows: 

Assume 321
2
3

2
2

2
1 VVVeee

2

1
V  )( , then 321332211 VVVeeeeeeV   , 

where 2
11 e

2

1
V  , 2

22 e
2

1
V  and 2

33 e
2

1
V  . 

Part 1: 1 1 1 1 2 2 1{ [ ( )] ( ( ) )}V e e e x t y t u     

Part 2: 
2 2 2 2 3 2 1

2

1 2 3 2

{ [ ( )] { ( ) ( )

[ ( ( )) ( ) ( )] }

V e e e x t my t y t

n c y t dy t y t u
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Part 3: 

3

3 3 3 3 1 3 1 2 2 2 1

1 3 2 1 3 3

{ [ (1 ) ( ) (1 ) ( ) ]

[ ( ( )) ( ) ( ) ( ) ( ) ]

V e e e a x t b x t x x

g hy t y t ly t py t y t u

         

     
 

FLCC in Part 1, 2 and 3 can be obtained via the fuzzy rules in Table 1. The 

maximum value and minimum value can be observed in time histories of error 

derivatives without any controller shown in Fig. 6.18. 

    FLCC are proposed in Part 1, 2 and 3 and make 

0eeV 111   , 0eeV 222   and 0eeV 333   . Hence, we have 0VVVV 321   . 

It is clear that all of the rules in our FLCC can lead that the Lyapunov function 

satisfies the asymptotical stability theorem. The simulation results are shown in Fig. 

6.19 and Fig. 6.20. 

 

6.2.2 Robust Projective Anti-Synchronization of Nonautonomous Sprott 

System with Stochastic Disturbance and GKM System by FLCC 

The master noautonomous Sprott 19 system with stochastic disturbance is: 

1
2 1

2
3

33
2 3 1 2 2 2 1

( )
( )

( )
( )

( )
(1 ) ( ) (1 ) ( )

dx t
x t

dt

dx t
x t

dt

dx t
a x t b x t x x

dt


  








        


                   (6.40)                                                                                           

For initial condition ),,( 302010 xxx = (0, 1, 0), pulse generator 1  in Fig. 6.4, 

band-limited white noise disturbance 2 (PSD=0.1) in Fig. 6.10, and parameters 

a=-0.6, b=2.75, chaos of the nonautonomous Sprott 19 system with stochastic signal 

appears. The chaotic behavior of Eq. (6.40) is shown in Fig. 6.21.  

 

The slave system was same as Eq. (6.34) and Lyapunov function derived through  

Eqs. (6.35) ~(6.39). 



 

75 

 

Let 2  , we have the following error dynamics:                      

1 2 2 2 1

2 3 2 1

2

1 2 3 2

3

3 1 3 1 2 2 2 1

1 3 2 1 3 3

[ ( ) ] ( ( ) )

[ ( )] { ( ) ( )

[ ( ( )) ( ) ( )] }

[ (1 ) ( ) (1 ) ( ) ]

[ ( ( )) ( ) ( ) ( ) ( ) ]

e x t y t u

e x t my t y t

n c y t dy t y t u

e a x t b x t x x

g hy t y t ly t py t y t u







    


   



   


        
      

                (6.41) 

Time derivative of Lyapunov function is: 

1 1 2 2 3 3

1 2 2 2 1

2 3 2 1

2

1 2 3 2

3

3 1 3 1 2 2 2 1

1 3 2 1 3 3

  { [ ( ) ] ( ( ) )}

     { [ ( )] { ( ) ( )

[ ( ( )) ( ) ( )] }}

     { [ (1 ) ( ) (1 ) ( ) ]

[ ( ( )) ( ) ( ) ( ) ( ) ]}

V e e e e e e

e x t y t u

e x t my t y t

n c y t dy t y t u

e a x t b x t x x

g hy t y t ly t py t y t u







  

    

   

   

        

     

     (6.42) 

    The maximum value and minimum value without any controller can be observed 

in time histories of error derivatives shown in Fig 6.22. The projective 

anti-synchronization scheme to make 1 1 2 2 3 3 0V e e e e e e    . It is clear that all of 

the rules in FLCC can lead that the Lyapunov function satisfies the asymptotical 

stability theorem. The simulation results are shown in Fig. 6.23 and Fig. 6.24. 

 

6.2.3 Robust Projective Anti-Synchronization of Nonautonomous Sprott 19 

System with Stochastic Disturbance and GKM System by Traditional Method 

According to Eq. (6.42), we design complicated controllers to anti-synchronize 

projectively chaotic systems in subsection 6.2.2 by traditional method. 

    We choose controllers are 

1 2 2 2 1

2 3 2 1

2

1 2 3 2

3

3 1 3 1 2 2 2 1

1 3 2 1 3 3

[ ( ) ]

{ ( ) [ ( ) ( )

[ ( ( )) ( ) ( )]] }

{ [ (1 ) ( ) (1 ) ( ) ]

[ ( ( )) ( ) ( ) ( ) ( )] }

u x y e

u x t my t y t

n c y t dy t y t e

u a x t b x t x x

g hy t y t ly t py t y t e







     


    



   


         
      

 

               (6.43)                      
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And we can obtain 

    1 1 2 2 3 30V e e e e e e                                         (6.44) 

    The derivative of Lyapunov function is negative definite and the error dynamics 

in Eq. (6.41) achieves asymptotical stability. The simulation results are shown in Fig. 

6.25 and Fig. 6.26. 

 

6.2.4 FLCC Compared to Traditional Method 

    In this case, the controllers and numerical simulation results of subsection 6.2.2 

and subsection 6.2.3 are listed in Table 4 and Table 5 for comparison. The mater and 

slave systems are more complex than Case 1, but the good-robustness and high 

performance can be still achieved through FLCC. The two main superiorities are still 

existed: (1) The controllers in FLCC designing are much simpler than traditional ones; 

(2) The performance of the convergence of error states by FLCC is much better than 

by traditional method. 

 

Table 4 The controller of FLCC and of traditional method. 

Controller 

1u  

FLCC Traditional method 

1 20mZ   2 2 2 1[ ( ) ]x y e     

 

2u  

 

2 100mZ   

 

 

3 2 1

2

1 2 3 2

{ ( ) [ ( ) ( )

[ ( ( )) ( ) ( )]] }

x t my t y t

n c y t dy t y t e

   

   
 

 

3u  

 

 

3 200mZ   

 

3

1 3 1 2 2 2 1

1 3 2 1 3 3

{ [ (1 ) ( ) (1 ) ( ) ]

[ ( ( )) ( ) ( ) ( ) ( )] }

a x t b x t x x

g hy t y t ly t py t y t e

        

     

 

 



 

77 

 

Table 5 Errors data after the action of controllers. 

Time after the 

action of 

controllers 

FLCC                                 Traditional 

 

1e                                     1e  

38.15 s 

38.16 s 

38.17 s 

38.18 s 

38.19 s 

0.00000000000000001388 

-0.00000000000000258127 

0.00000000000000646705 

0.00000000000000641154 

0.00000000000000634215 

 

 

2e  

0.00032496190090512689 

0.00032172847596594056 

0.00031852722414243972 

0.00031535782530682510 

0.00031221996251651341 

 

 

2e  

38.15 s 

38.16 s 

38.17 s 

38.18 s 

38.19 s 

0.00000000000003373603 

0.00000000000003341424 

0.00000000000003309332 

0.00000000000003276893 

0.00000000000003245841  

 

 

3e  

0.00204273347495999638 

0.00202240793727799430 

0.00200228464207508148 

0.00198236157700495399 

0.00196263674974449503 

  

 

3e  

38.15 s 

38.16 s 

38.17 s 

38.18 s 

38.19 s 

0.00000000000003749778 

0.00000000000003713696 

0.00000000000003677614 

0.00000000000003638756 

0.00000000000000360267 

-0.00101150580259323775 

-0.00100144115169376047 

-0.00099147664574397720 

-0.00098161128828502808 

-0.00097184409277292771 
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6.4 Summary 

A simplest fuzzy controller (FLCC) is introduced to projective 

anti-synchronization of non-autonomous chaotic systems with stochastic disturbance. 

Three main contributions can be concluded: (1) High performance of the convergence 

of error states in synchronization; (2) Good robustness in projective 

anti-synchronization of the chaotic systems with stochastic disturbance; (3) Simple 

constant controllers are used, which can be easily obtained. 
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Fig. 6.1. The configuration of fuzzy logic controller. 

 

 

Fig. 6.2. Membership function. 
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Fig. 6.3. Projections of phase portrait of chaotic Sprott No.19 system with a=-0.6, 

b=2.75.  

 

Fig. 6.4. 1  is pulse generator. 
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Fig. 6.5. Projections of phase portrait of nonautonomous chaotic Sprott 19 system and 

a=-0.6, b=2.75. 

  

Fig. 6.6. Projections of phase portrait of chaotic Sprott 22 system with controllers. 
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Fig. 6.7. Time histories of error derivatives for master and slave Sprott 

nonautonomous chaotic systems without controllers. 

  

Fig. 6.8. Time histories of errors for Case1 (nonautonomous system) the FLCC is 

added after 30s. 
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Fig. 6.9. Time histories of states for Case1 (nonautonomous system) the FLCC is 

added after 30s. 

  

Fig. 6.10. The stochastic signal of 2  is band-limited white noise(PSD=0.1).  
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Fig. 6.11. Projections of phase portrait of nonautonomous chaotic Sprott 19 system 

with stochastic disturbance 2 , a=-0.6 and b=2.75. 

 

Fig. 6.12. Time histories of error derivatives for master and slave Sprott chaotic 

systems without controllers. 
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Fig. 6.13. Time histories of errors for subsection 3.1.2, the FLCC is applied after 30s. 

 

Fig. 6.14. Time histories of states for subsection 3.1.2, the FLCC is applied after 30s. 
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Fig. 6.15. Time histories of errors for subsection 3.1.3 the traditional nonlinear 

controller is applied after 30s. 

  

Fig. 6.16. Time histories of states for subsection 3.1.3 the traditional nonlinear 

controller is applied after 30s. 



 

87 

 

  

Fig. 6.17. Projections of phase portrait of nonautonomous chaotic Sprott 19 system 

with stochastic disturbance where a=-0.6, b=2.75. 

  

Fig. 6.18. Time histories of error derivatives for subsection 3.2.1. 
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Fig. 6.19. Time histories of errors for section 3.2 where FLCC is added after 30s. 

 

  

Fig. 6.20. Time histories of states for subsection 2-3.2 the FLCC is coming into after 

30s. 
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Fig. 6.21. Projections of phase portrait of nonautonomous chaotic Sprott 19 system 

with stochastic disturbance where a=-0.6, b=2.75. 

 

Fig. 6.22. Time histories of error derivatives for Sprott chaotic systems without 

controllers. 
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Fig. 6.23. Time histories of errors for subsection 3.2.2 where FLCC are added after 

30s. 

 

Fig. 6.24. Time histories of states for subsection 3.2.2 where the FLCC are added after 

30s. 
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Fig. 6.25. Time histories of errors for subsection 3.2.3 where the traditional 

controllers are added into after 30s. 

  

Fig. 6.26. Time histories of states for subsection 3.2.3 where the traditional 

controllers are added into after 30s. 
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Chapter 7 

Fuzzy Modeling and Synchronization of Chaotic 

Systems by a New Fuzzy Model 

7.1 Preliminary 

In this Chapter, a new fuzzy model [61] is used to simulate and synchronize two 

different chaotic systems. Via the new fuzzy model, a complicated nonlinear system is 

linearized to a simple form – linear coupling of only two linear subsystems and the 

numbers of fuzzy rules can be reduced from N2 to N2  (where N is the number of 

nonlinear terms). The fuzzy equations become much simpler. 

7.2 New Fuzzy Model Theory 

In system analysis and design, it is important to select an appropriate model 

representing a real system. As an expression model of a real plant, the fuzzy 

implications and the fuzzy reasoning method suggested by Takagi and Sugeno are 

traditionally used. The new fuzzy model is also described by fuzzy IF-THEN rules. 

The core of the new fuzzy model is that we express each nonlinear equation into two 

linear sub-equations by fuzzy IF-THEN rules and take all the first linear sub-equations 

to form one linear subsystem and all the second linear sub-equations to form another 

linear subsystem. The overall fuzzy model of the system is achieved by fuzzy 

blending of this two linear subsystem models. Consider a continuous-time nonlinear 

dynamic system as follows:  

Equation i:  

rule 1: 

IF )t(z i  is 1iM  

THEN )t(uB)t(xA)t(x 1i1ii  , 

rule 2: 
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IF )t(z i  is 2iM  

THEN )t(uB)t(xA)t(x 2i2ii  ,                                 (7.1) 

where 

    
T

n21 )]t(x),...,t(x),t(x[)t(x  , 

    
T

n21 )]t(u),...,t(u),t(u[)t(u  , 

n...2,1i  , where n is the number of nonlinear terms. 2i1i M,M are fuzzy sets, 

ii B,A are column vectors and )t(uB)t(xA)t(x ijiji  , 2,1j , is the output from 

the first and the second IF-THEN rules. Given a pair of ( ( ) ( ))t tx ,u  and take all the 

first linear sub-equations to form one linear subsystem and all the second linear 

sub-equations to form another linear subsystem, the final output of the fuzzy system is 

inferred as follows: 

    





















































)t(uB)t(xA

)t(uB)t(xA

)t(uB)t(xA

M

)t(uB)t(xA

)t(uB)t(xA

)t(uB)t(xA

M)t(x

2i2i

2222

1212

2

1i1i

2121

1111

1 
                (7.2) 

where 1M and 2M are diagonal matrices as following: 

dia  1i21111 M...MM)M(  , dia  2i22122 M...MM)M(   

Note that for each equation i: 

    



2

1j

iij 1))t(z(M , 

    0))t(z(M iij  , i = 1, 2,…, n and j=1,2. 

    Via the new fuzzy model, the final form of the fuzzy model becomes very simple. 

The new model provides a much more convenient approach for fuzzy model research 

and fuzzy application. The simulation results of chaotic systems are discussed in next 

Section. 
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7.3 New Fuzzy Model of Chaotic Systems 

In this Section, the new fuzzy models of three chaotic systems, Sprott 19 system,  

Sprott 22 system and Lorenz system, are given for Model 1, Model 2 and Model 3.  

Model system: 

1 2

2 3

3

3 3 2 2 1

 

x x

x x

x ax bx x x

 





   

                                       (7.3) 

When initial condition 10 20 30( , , ) (0,1,0)x x x   and parameters
 

0.6, 2.75a b   , 

chaos of the Sprott 19 system appears. The chaotic behavior of Eq. (7.3) is shown in 

Fig. 7.1. 

 

Model 1: New Fuzzy Model of Sprott 19 System with Uncertainty  

The Sprott 19 system with uncertainty is: 

1 2 1

2 3 2

3

3 3 2 2 1

 

x x

x x

x ax bx x x

  


 


   

                                       (7.4)                                     

with initial condition 10 20 30( , , ) (0,1,0)x x x  . Uncertain terms are 1  is white noise in 

Fig. 7.2 and 2  is pulse generator in Fig. 7.3 with parameters are 0.6, 2.75a b   , 

chaos of the Sprott 19 system with uncertainty appears. The chaotic behavior of Eq. 

(7.4) is shown in Fig. 7.4. 

   If T-S fuzzy model is used for representing local linear models of Sprott 19 

system with uncertainty, 3N  , 
32 2 8N   , 8 fuzzy rules and 8 linear subsystems 

are need. The process of modeling is shown as follows: 

T-S fuzzy model: 

Assume that: 

(1) 1 1 1[ , ]Z Z    and 
1 0Z 

 

(2) 2 2 2[ , ]Z Z    and 
2 0Z   
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(3) 2

2 3 3[ , ]x Z Z   and 
3 0Z   

Then we have the following T-S fuzzy rules: 

Rule 1: IF 1  is 11M  , 2  is 21M  and 2

2x  is 
31M  THEN XAX 1 , 

Rule 2: IF 1  is 11M  , 2  is 21M  and 2

2x  is 
32M  THEN 2X A X , 

Rule 3: IF 1  is 11M  , 2  is 22M  and 2

2x  is 
31M  THEN 3X A X , 

Rule 4: IF 1  is 11M  , 2  is 22M  and 2

2x  is 
32M  THEN 4X A X , 

Rule 5: IF 1  is 12M  , 2  is 21M  and 2

2x  is 
31M  THEN 5X A X , 

Rule 6: IF 1  is 12M  , 2  is 21M  and 2

2x  is 
32M  THEN 6X A X , 

Rule 7: IF 1  is 12M  , 2  is 22M  and 2

2x  is 
31M  THEN 7X A X , 

Rule 8: IF 1  is 12M  , 2  is 22M  and 2

2x  is 
32M  THEN 8X A X , 

Then the final output of the Sprott 19 system with uncertainty can be composed 

by fuzzy linear subsystems mentioned above. It is obviously an inefficient and 

complicated work. 

New fuzzy model: 

By using the new fuzzy model, Sprott 19 system with uncertainty can be 

linearized as simple linear equations. The steps of fuzzy modeling are shown as 

follows: 

Steps of fuzzy modeling:  

Step 1: 

Assume that 1 1 1[ , ]Z Z   and 0Z1  , then the first equation of (7.4) can be 

exactly represented by new fuzzy model as following: 

    Rule 1: IF 1 is 11M , THEN 1 2 1x x Z  ,                            (7.5) 
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    Rule 2: IF 1 is 12M , THEN 1 2 1x x Z  ,                            (7.6) 

where 

    1
11

1

1
(1 )

2
M

Z


  ,  1

12

1

1
(1 )

2
M

Z


  , 

and 1 2Z  . 11M and 12M are fuzzy sets of the first equation of (7.4) and 

11211 MM . 

Step 2: 

Assume that 2 2 2[ , ]Z Z   and 0Z2  , then the second equation of (7.4) can be 

exactly represented by new fuzzy model as following: 

    Rule 1: IF 2 is 21M , THEN 2 3 2x x Z  ,                            (7.7) 

    Rule 2: IF 2 is 22M , THEN 2 3 2x x Z  ,                            (7.8) 

where 

    2
21

2

1
(1 )

2
M

Z


  ,  2

22

2

1
(1 )

2
M

Z


  , 

and 2 0.001Z  . 21M and 22M are fuzzy sets of the second equation of (7.4) and 

21 22 1M M  . 

Step 3: 

Assume that 2

2 3 3[ , ]x Z Z  and 3 0Z  , then the third equation of (7.4) can be 

exactly represented by new fuzzy model as following: 

    Rule 1: IF 2

2x is 31M , THEN 3 3 2 3 2 1x ax bx Z x x    ,                  (7.9) 

    Rule 2: IF 2

2x is 32M , THEN 3 3 2 3 2 1x ax bx Z x x    ,                 (7.10) 

where 

    
2

2
3 1

3

1
( 1 )

2

x
M

Z
  ,  

2

2
32

3

1
(1 )

2

x
M

Z
  , 

and 3 10Z  . 31M and 32M are fuzzy sets of the third equation of (7.4) and 
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13231  MM . 

Here, we call Eqs.(7.5), (7.7) and (7.9) the first linear subsystem under the fuzzy 

rules, and Eqs.(7.6), (7.8) and (7.10) the second linear subsystem under the fuzzy 

rules. 

The first linear subsystem is 

1 2 1

2 3 2

3 3 2 3 2 1

x x Z

x x Z

x ax bx Z x x

 


 
    

                                       (7.11)                                           

The second linear subsystem is 

   

1 2 1

2 3 2

3 3 2 3 2 1

x x Z

x x Z

x ax bx Z x x

 


 
    

                                        (7.12) 

The final output of the fuzzy Sprott 19 system with uncertainty is inferred as 

follows and the chaotic behavior of fuzzy system is shown in Fig. 7.5. Now we have: 

1 2 111

2 21 3 2

313 3 2 3 2 1

2 112

22 3 2

32 3 2 3 2 1

0 0

0 0

0 0

0 0

0 0

0 0

x x ZM

x M x Z

Mx ax bx Z x x

x ZM

M x Z

M ax bx Z x x

    
    

 
    
           

  
  

 
  
        

                    (7.13)                       

Eq. (7.13) can be rewritten as a simple mathematical expression: 

)b
~

)t(XA()t(X i

2

1i
ii 



                                       (7.14) 

where i are diagonal matrices as follows: 

 3121111)( MMMdia  ,  3222122 )( MMMdia   

    1

3

0 1 0

0 0 1

1

A

b Z a

 
 


 
   

, 

1

1 2

0

Z

b Z
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    2

3

0 1 0

0 0 1

1

A

b Z a

 
 


 
   

, 

1

2 2

0

Z

b Z

 
 

 
 
  

 

Via new fuzzy model, the number of fuzzy rules can be greatly reduced. Just two 

linear subsystems are enough to express such complex chaotic behaviors. The 

simulation results are similar the original chaotic behavior of the Sprott 19 system  

with uncertainty as show in Fig. 7.5. 

 

Model system: 

1 2

2 3

3 3 2 1

 

sin

y y

y y

y cy y y





    

                                      (7.15) 

When initial condition 10 20 30( , , ) (0.01,1,0.01)y y y   and parameter 0.25c  , 

chaos of the Sprott 22 system appears. The chaotic behavior of Eq. (7.15) is shown in 

Fig. 7.6. 

 

Model 2: New Fuzzy Model of Sprott 22 System with Uncertainty 

The Sprott 22 system with uncertainty is: 

  

1 2 1

2 3 2

3 3 2 1

 

s i n

y y

y y

y cy y y

  


  
    

                                          (7.16) 

where uncertainty 1  is pulse generator show in Fig. 7.3, 2  is white noise 

(PSD=0.01) show in Fig. 7.2, 0.25c  , and initial conditions are chosen as (0.01, 1, 

0.01), the Sprott 22 model with uncertainty exhibits chaotic motion which is shown in 

Fig. 7.7 

New fuzzy model: 

Assume that: 
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(1) 1 4 4[ , ]Z Z   and 4 0Z  ,  

(2) 2 5 5[ , ]Z Z   and 5 0Z  , 

(3) 1 6 6sin [ , ]y Z Z   and 6 0Z  ,  

then we have the following new fuzzy rules: 

    Rule 1: IF 1 is 11N ,THEN 1 2 4y y Z  ,                            (7.17) 

    Rule 2: IF 1 is 12N ,THEN 1 2 4y y Z  ,                            (7.18) 

where 

    1
11

4

1
(1 )

2
N

Z


  ,  1

12

4

1
(1 )

2
N

Z


  .  

and 

    Rule 1: IF 2 is 21N ,THEN 2 3 5y y Z  ,                           (7.19) 

    Rule 2: IF 2 is 22N ,THEN 2 3 5y y Z  ,                           (7.20) 

where 

    2
21

5

1
(1 )

2
N

Z


  ,  2

22

5

1
(1 )

2
N

Z


  . 

and 

    Rule 1: IF 1sin y  is 31N ,THEN 3 3 2 6y cy y Z    ,                   (7.21) 

    Rule 2: IF 1sin y  is 32N ,THEN 3 3 2 6y cy y Z    ,                   (7.22) 

where 

    1
31

6

sin1
(1 )

2

y
N

Z
  ,  1

32

6

sin1
(1 )

2

y
N

Z
  . 

in Eqs. (7.17)~(7.22), 4 0.00015Z  , 5 0.05Z   and 6 1Z  . 

11N , 12N , 21N , 22N , 31N and 32N are fuzzy sets of Eq.(7.16) 

and 11211  NN , 12221  NN  and 31 32 1N N    

Here, we call (7.17) ,(7.19) and (7.21) the first liner subsystem under the fuzzy 

rules and (7.18) , (7.20) and (7.22) the second liner subsystem under the fuzzy rules. 
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The first linear subsystem is 

1 2 4

2 3 5

3 3 2 6

y y Z

y y Z

y cy y Z

 


 
    

                                           (7.23) 

The second linear subsystem is 

    

1 2 4

2 3 5

3 3 2 6

y y Z

y y Z

y cy y Z

 


 
    

                                           (7.24) 

The final output of the fuzzy Sprott 22 system with uncertainty is inferred as 

follows and the chaotic behavior of fuzzy system is shown in Fig. 7.8. 

1 2 411

2 21 3 5

313 3 2 6

2 412

22 3 5

32 3 2 6

0 0

0 0

0 0

0 0

0 0

0 0

T

T

y y ZN

y N y Z

Ny cy y Z

y ZN

N y Z

N cy y Z

    
    

 
    
           

  
  

 
  
        

                         (7.25) 

Eq. (7.25) can be rewritten as a simple mathematical expression: 

)~)(()(
2

1

i

i

ii ctYCtY 


                                        (7.26) 

where  

 3121111)( NNNdia  ,  3222122 )( NNNdia   

    1

0 1 0

0 0 1

0 1

C

c
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1 5
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Z

c Z
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0 1 0

0 0 1

0 1

C

c
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4

2 5

6

Z

c Z

Z

 
 

 
 
  

 

Via new fuzzy model, two linear subsystems are enough to express such complex 

chaotic behaviors. The simulation results are similar the original chaotic behavior of 
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the Sprott 22 system with uncertainty in Fig. 7.8. 

Model system: 

1 1 2

2 1 3 1 2

3 1 2 3

( )

 

x g x x

x x x hx x

x x x lx

  


   
  

                                            

When initial condition 10 20 30( , , ) (6,5,10)x x x   and parameters
 

10g  , 

27.43h   and 8/3l   , chaos of the Lorenz system appears.  

 

Model 3: New Fuzzy Model of Lorenz System  

The Lorenz system is: 

   

1 1 2

2 1 3 1 2

3 1 2 3

( )

 

x g x x

x x x hx x

x x x lx

  


   
  

                                           (7.27) 

With 10g  , 27.43h  , 8/3l  , and initial conditions are chosen as (6, 5, 10), the 

Lorenz model exhibits chaotic motion which is shown in Fig. 7.9. 

New fuzzy model: 

Assume that: 

(1) 3 7 7[ , ]x Z Z  and 7 0Z  ,  

(2) 2 8 8[ , ]x Z Z  and 8 0Z  , 

 

then we have the following new fuzzy rules: 

1x  is a linear term, so it doesn’t need to linearize 

    Rule 1: 11 0.5Q  , THEN 1 1 2( )x g x x   ,                         (7.28) 

    Rule 2: 12 0.5Q  , THEN 1 1 2( )x g x x   ,                         (7.29) 

      

and 
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    Rule 1: IF 3x is 21Q , THEN 2 1 7 1 2x x Z hx x    ,                     (7.30) 

    Rule 2: IF 3x is 22Q , THEN 2 1 7 1 2x x Z hx x   ,                      (7.31) 

where 

    3
21

7

1
(1 )

2

x
Q

Z
  ,  3

22

7

1
(1 )

2

x
Q

Z
  . 

and 

    Rule 1: IF 2x  is 31Q ,THEN 3 1 8 3x x Z lx  ,                          (7.32) 

    Rule 2: IF 2x  is 32Q ,THEN 3 1 8 3x x Z lx   ,                        (7.33) 

where 

    2
31

8

1
(1 )

2

x
Q

Z
  ,  2

32

8

1
(1 )

2

x
Q

Z
  . 

in Eqs. (7.30)~(7.33), 7 50Z   and 8 30Z  . 11Q , 12Q , 21Q , 22Q , 31Q and 32Q are fuzzy 

sets of Eq.(7-12) and 11 12 1Q Q  , 21 22 1Q Q   and 31 32 1Q Q    

Here, we call (7.28) ,(7.30) and (7.32) the first liner subsystem under the fuzzy 

rules and (7.29) , (7.31) and (7.33) the second liner subsystem under the fuzzy rules. 

The first linear subsystem is 

1 1 2

2 1 7 1 2

3 1 8 3

( )

 

x g x x

x x Z hx x

x x Z lx

  


   
  

                                         (7.34)                                           

The second linear subsystem is 

    

1 1 2

2 1 7 1 2

3 1 8 3

( )

 

x g x x

x x Z hx x

x x Z lx

  


  
   

                                          (7.35) 

The final output of the fuzzy Lorenz system is inferred as follows and the chaotic 

behavior of fuzzy system is shown in Fig. 7.10. 
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1 1 211

2 21 1 7 1 2

313 1 8 3

1 212

22 1 7 1 2

32 1 8 3

( )0 0

0 0

0 0

( )0 0

0 0

0 0

T

T

x g x xQ

x Q x Z hx x

Qx x Z lx

g x xQ

Q x Z hx x

Q x Z lx

     
    

   
    
         

   
  

  
  
       

                         (7.36) 

Eq. (7.36) can be rewritten as a simple mathematical expression: 

2

1

( ) ( ( ) )i i i

i

X t D X t d


                                          (7.37) 

where  

 1 11 21 31( )dia Q Q Q  ,  2 12 22 32( )dia Q Q Q   

    1 7

8

0

1 0

0

g g

D h Z

Z l

 
 

  
 
  

, 1

0

0

0

d

 
 


 
  

 

    2 7

8

0

1 0

0

g g

D h Z

Z l

 
 

  
 
   

, 2

0

0

0

d

 
 


 
  

 

Via new fuzzy model, two linear subsystems are enough to express such complex 

chaotic behaviors. The simulation results are similar the original chaotic behavior of 

the Lorenz system in Fig. 7.10. 

 

7.4 Fuzzy Synchronization Scheme 

In this Section, we derive the new fuzzy synchronization scheme based on our 

new fuzzy model to synchronize two totally different fuzzy chaotic systems. The 

following fuzzy systems as the master and slave systems are given: 

master system: 

)b
~

)t(XA()t(X i

2

1i
ii 



                                        (7.38) 

slave system:  
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)t(BU)c~)t(YC()t(Y i

2

1i
ii 



                                  (7.39) 

Eq. (7.38) and Eq. (7.39) represent the two different chaotic systems, and in Eq. (7.39) 

there is control input U(t). Define the error signal as )t(Y)t(X)t(e  , we have: 

)t(BU)c~)t(YC()b
~

)t(XA()t(Y)t(X)t(e i

2

1i
iii

2

1i
ii 



      (7.40) 

The fuzzy controllers are designed as follows: 

)t(u)t(u)t(U 21                                             (7.41) 

where  

    


2

1i
ii

2

1i
ii1 )t(YP)t(XF)t(u , 

    


2

1i
ii

2

1i
ii2 c~b

~
)t(u  

such that 0)t(e  as t . Our design is to determine the feedback gains Fi and Pi. 

By substituting U(t) into Eq.(7.40), we obtain: 

     


2

1i
iii

2

1i
iii )t(Y)BPC()t(X)BFA()t(e                   (7.42) 

Theorem 1: The error system in Eq. (7.42) is asymptotically stable and the slave 

system in Eq. (7.39) can synchronize the master system in Eq. (7.38) under the fuzzy 

controller in Eq. (7.41) if the following conditions below can be satisfied: 

0)BPC()BFA()BFA(G iiii11  , i=1~2.                 (7.43) 

Proof: 

The errors in Eq. (7.42) can be exactly linearized via the fuzzy controllers in Eq. 

(7.41) if there exist the feedback gains Fi such that 

0)BPC()BPC()BFA()BFA( 22112211  .              (7.44) 

Then the overall control system is linearized as 

)t(Ge)t(e  ,                                                 (7.45) 

where 0)BPC()BPC()BFA()BFA(G 22112211  . 

As a consequence, the zero solution of the error system (7.45) linearized via the 
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fuzzy controller (7.41) is asymptotically stable. 

 

7.5 Simulation Result 

There are two examples in this Section to investigate the effectiveness and 

feasibility of our new fuzzy model.  

Example 1: Synchronization of Sprott 19 System and Sprott 22 System  

The fuzzy Sprott 19 system with uncertainty in Eq. (7.4) is chosen as the master 

system and the fuzzy slave Sprott 22 system with uncertainty in Eq. (7.16), with fuzzy 

controllers is as follows: 

)()~)(()(
2

1

tBUctYCtY i

i

ii 


                                  (7.46) 

where i are diagonal matrices  

 3121111)( NNNdia  ,  3222122 )( NNNdia   
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Therefore, the error and error dynamics are: 
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 (7.47) 

B is chosen as an identity matrix and the fuzzy controllers in Eq. (7.41) are used: 
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According to Eq.(7.43) , we have      112211 BFCBFABFAG   

  0BFC 22  . G is chosen as: 

    

























100

010

001

G                                          (7.49) 

Thus, the feedback gains F1, F2, P1 and P2 can be determined by the following 

equation: 

     1

1 1

3

1 1 0

0 1 1

1 1

F B A G

b Z a



 
 

  
 
    

 

     1

2 2

3

1 1 0

0 1 1

1 1

F B A G

b Z a



 
 

  
 
    

                            (7.50) 

 1

1 1

1 1 0

0 1 1

0 1 1

P B C G

c



 
 

  
 
   

 

     1

2 2

1 1 0

0 1 1

0 1 1

P B C G

c



 
 

  
 
   

 

The synchronization errors are shown in Fig. 7.11.  

Example 2: Synchronization of Lorenz System and Sprott 22 System. 

The fuzzy Lorenz system in Eq. (7.27) is chosen as the master system and the 
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fuzzy slave Sprott 22 system with uncertainty in Eq. (7.16), with fuzzy controllers is 

as follows: 

)()~)(()(
2

1

tBUctYCtY i

i

ii 


                                  (7.51) 

where i are diagonal matrices  

 3121111)( NNNdia  ,  3222122 )( NNNdia   

and 
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0 1
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c
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Therefore, the error and error dynamics are: 
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    (7.52) 

B is chosen as an identity matrix and the fuzzy controllers in Eq. (7.41) are used: 

   
1 1 1

2 1 1 1 2 2 2 2 23 3 3 3

3 3 3

e x x

e D BF x D BF x

e x x
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According to Eq. (7.43), we have      1 1 2 2 1 1G D BF D BF C BF       
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  0BFC 22  . G is chosen as: 

    

























100

010

001

G                                          (7.54) 

Thus, the feedback gains F1, F2, P1 and P2 can be determined by the following 

equation: 

     1

1 1 7

8

1 0

0 0

0 1

g g

F B D G h Z

Z l
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2 2 7
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                           (7.55)  

 1

1 1

1 1 0

0 1 1

0 1 1

P B C G

c
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2 2

1 1 0

0 1 1

0 1 1

P B C G

c



 
 

  
 
   

 

The synchronization errors are shown in Fig. 7.12.  

 

7.6 Summary 

In this Chapter, a new strategy to achieve chaos synchronization via the new fuzzy 

model is proposed. By using the new fuzzy model, not only a complicated nonlinear 

system can be linearized to a simple form, linear coupling of only two linear 

subsystems and the numbers of fuzzy rules can be reduced from N2 to N2 , but also 

the idea of PDC and LMI-based method can be applied to synchronize two totally 

different fuzzy systems. 
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Fig. 7.1 Chaotic behavior of Sprott 19 system. 

 

 

Fig. 7.2 The uncertainty signal of 1  is band-limited white noise(PSD=0.001). 
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Fig. 7.3 2  is pulse generator. 

 

 

Fig. 7.4 Chaotic behavior of Sprott 19 system with uncertainty. 
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Fig. 7.5 Chaotic behavior of new fuzzy Sprott 19 system with uncertainty. 

 

Fig. 7.6. Chaotic behavior of Sprott 22 system. 
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Fig. 7.7 Chaotic behavior of Sprott 22 system with uncertainty. 

 

 

Fig. 7.8 Chaotic behavior of new fuzzy Sprott 22 system with uncertainty. 
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Fig. 7.9 Chaotic behavior of Lorenz system. 

 

 

Fig. 7.10 Chaotic behavior of new fuzzy Lorenz system. 
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Fig. 7.11. Time histories of errors for Example 1. 

 

 

Fig. 7.12. Time histories of errors for Example 2. 
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Chapter 8 

 

Conclusions 

In this thesis, chaos and various chaos synchronizations of Ge-Ku-Mathieu 

system and Sprott 19, 22 systems are studied. In Chapter 2, the chaotic behavior of 

new Ge-Ku-Mathieu system is studied by phase portraits, time history, Poincaré maps, 

Lyapunov exponent and bifurcation diagrams. 

In Chapter 3, a new symplectic synchronization problem of chaotic systems are 

investigated based on Barbalat’s Lemma. Traditional generalized synchronization is a 

special case for the double symplectic synchronization. By applying active control, 

the double symplectic synchronization is achieved. Furthermore, the double 

symplectic synchronization could be applied to the design of secret communication 

with more security than generalized synchronization due to the complexity of its 

synchronization form. 

In Chapter 4, a new strategy to achieve chaos synchronization by the different 

translation pragmatical synchronization using stability theory of partial region is 

proposed. The conditions of the Lyapunov function for pragmatical asymptotical 

stability are lower than that for traditional asymptotical stability. By using the 

different translation pragmatical synchronization by stability theory of partial region, 

with the same conditions for Lyapunov function, 0V  , 0V  , as that in current 

scheme of adaptive synchronization, we not only obtain the generalized 

synchronization of chaotic systems but also prove strictly that the estimated 

parameters approach the uncertain values. The Lyapunov function is simple linear 

homogeneous function for error states, the controllers are more simple and have less 

simulation error because they are in lower degree than that of traditional controllers. 

In Chapter 5, a new type of synchronization, multiple symplectic synchronization, 

is studied. It is an extension of double symplectic synchronization. By applying active 

control, the multiple symplectic synchronization is achieved. Furthermore, the 

multiple symplectic synchronization of chaotic systems can be used to increase the 
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security of secret communication. 

In Chapter 6, a simplest fuzzy controller (FLCC) is introduced to projective 

anti-synchronization of non-autonomous chaotic systems with stochastic disturbance. 

Three main contributions can be concluded: (1) High performance of the convergence 

of error states in synchronization; (2) Good robustness in projective 

anti-synchronization of the chaotic systems with stochastic disturbance; (3) Simple 

constant controllers are used, which can be easily obtained. 

In Chapter 7, a new strategy to achieve chaos synchronization via the new fuzzy 

model is proposed. By using the new fuzzy model, a complicated nonlinear system 

can be linearized to a simple form, linear coupling of only two linear subsystems and 

the numbers of fuzzy rules can be reduced from N2 to N2 .
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Appendix A 

GYC Partial Region Stability Theory 

 

A.1 Definition of the Stability on Partial Region 

Consider the differential equations of disturbed motion of a nonautonomous 

system in the normal form 

1( , , , ), ( 1, , )s
s n

dx
X t x x s n

dt
   (A.1) 

where the function sX  is defined on the intersection of the partial region   

(shown in Fig. A1) and 

2

s

s

x H  (A.2) 

and 0t t , where 0t  and H are certain positive constants. sX which vanishes when 

the variables sx  are all zero, is a real valued function of t, 1, , nx x . It is assumed 

that sX  is smooth enough to ensure the existence, uniqueness of the solution of the 

initial value problem. When sX  does not contain t explicitly, the system is 

autonomous. 

Obviously, 0 ( 1, )sx s n   is a solution of Eq.(A.1). We are interested to 

the asymptotical stability of this zero solution on partial region   (including the 

boundary) of the neighborhood of the origin which in general may consist of several 

subregions (Fig. A1). 

Definition 1: 

For any given number 0  , if there exists a 0  , such that on the closed 

given partial region   when 

2

0 , ( 1, , )s

s

x s n   (A.3) 

for all 0t t , the inequality 
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2 , ( 1, , )s

s

x s n   (A.4) 

is satisfied for the solutions of Eq.(A.1) on  , then the disturbed motion 

0 ( 1, )sx s n   is stable on the partial region  . 

Definition 2: 

If the undisturbed motion is stable on the partial region  , and there exists a 

' 0  , so that on the given partial region   when 

2 '

0 , ( 1, , )s

s

x s n   (A.5) 

The equality 

2lim 0s
t

s

x


 
 

 
  (A.6) 

is satisfied for the solutions of Eq.(A.1) on  , then the undisturbed motion 

0 ( 1, )sx s n   is asymptotically stable on the partial region  . 

The intersection of   and region defined by Eq.(A.5) is called the region of 

attraction. 

Definition of Functions 1( , , , )nV t x x : 

Let us consider the functions 1( , , , )nV t x x  given on the intersection 1  of 

the partial region   and the region 

2 , ( 1, , )s

s

x h s n   (A.7) 

for 0 0t t  , where 0t  and h are positive constants. We suppose that the functions 

are single-valued and have continuous partial derivatives and become zero when 

1 0nx x   . 

Definition 3: 

If there exists 0 0t   and a sufficiently small 0h  , so that on partial region 

1  and 0t t , 0V   (or 0 ), then V is a positive (or negative) semidefinite, in 

general semidefinite, function on the 1  and 0t t . 
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Definition 4: 

If there exists a positive (negative) definitive function 1( )nW x x  on 1 , so 

that on the partial region 1  and 0t t  

0 ( 0),V W or V W      (A.8) 

then 1( , , , )nV t x x  is a positive definite function on the partial region 1  and 

0t t . 

Definition 5: 

If 1( , , , )nV t x x  is neither definite nor semidefinite on 1  and 0t t , then 

1( , , , )nV t x x  is an indefinite function on partial region 1  and 0t t . That is, for 

any small 0h   and any large 0 0t  , 1( , , , )nV t x x  can take either positive or 

negative value on the partial region 1  and 0t t . 

Definition 6: Bounded function V 

If there exist 0 0t  , 0h  , so that on the partial region 1 , we have 

1( , , , )nV t x x L  

where L is a positive constant, then V is said to be bounded on 1 . 

Definition 7:  Function with infinitesimal upper bound 

If V is bounded, and for any 0  , there exists 0  , so that on 1  when 

2

s

s

x  , and 0t t , we have 

1( , , , )nV t x x   

then V admits an infinitesimal upper bound on 1 . 

A.2 GYC Theorem of Stability and of Asymptotical Stability on Partial Region 

Theorem 1 

If there can be found a definite function 1( , , , )nV t x x  on the partial region for 

Eq. (A.1), and the derivative with respect to time based on these equations are: 
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1

n

s

s s

dV V V
X

dt t x

 
 
 

  (A.9) 

Then, it is a semidefinite function on the paritial region whose sense is opposite to 

that of V, or if it becomes zero identically, then the undisturbed motion is stable on the 

partial region. 

Proof: 

Let us assume for the sake of definiteness that V is a positive definite function. 

Consequently, there exists a sufficiently large number 0t  and a sufficiently small 

number h < H, such that on the intersection 1  of partial region   and 

2 , ( 1, , )s

s

x h s n   

and 0t t , the following inequality is satisfied 

1 1( , , , ) ( , , ),n nV t x x W x x  

where W is a certain positive definite function which does not depend on t. Besides 

that, Eq. (A.9) may assume only negative or zero value in this region. 

Let   be an arbitrarily small positive number. We shall suppose that in any case 

h  . Let us consider the aggregation of all possible values of the quantities 

1, , nx x , which are on the intersection 2  of 1  and 

2 ,s

s

x   (A.10) 

and let us designate by 0l   the precise lower limit of the function W under this 

condition. By virtue of Eq. (A.8), we shall have 

1( , , , )nV t x x l  for 1( , , )nx x  on 2 . (A.11) 

We shall now consider the quantities sx  as functions of time which satisfy the 

differential equations of disturbed motion. We shall assume that the initial values 0sx  

of these functions for 0t t  lie on the intersection 2 of 1 and the region 

2 ,s

s

x   (A.12) 



 

121 

 

where   is so small that 

0 10 0( , , , )nV t x x l   (A.13) 

By virtue of the fact that 0( ,0, ,0) 0V t  , such a selection of the number   is 

obviously possible. We shall suppose that in any case the number   is smaller than 

 .Then the inequality 

2 ,s

s

x   (A.14) 

being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently 

small 0t t , since the functions ( )sx t  very continuously with time. We shall show 

that these inequalities will be satisfied for all values 0t t . Indeed, if these 

inequalities were not satisfied at some time, there would have to exist such an instant 

t=T for which this inequality would become an equality. In other words, we would 

have 

2( ) ,s

s

x T   

and consequently, on the basis of Eq. (A.11) 

1( , ( ), , ( ))nV T x T x T l   (A.15) 

On the other hand, since h  , the inequality (Eq.(A.7)) is satisfied in the entire 

interval of time [t0, T], and consequently, in this entire time interval 0
dV

dt
 . This 

yields 

1 0 10 0( , ( ), , ( )) ( , , , ),n nV T x T x T V t x x   

which contradicts Eq. (A.14) on the basis of Eq. (A.13). Thus, the inequality 

(Eq.(A.4)) must be satisfied for all values of 0t t , hence follows that the motion is 

stable. 

Finally, we must point out that from the view-point of mathenatics, the stability 

on partial region in general does not be related logically to the stability on whole 

region. If an undisturbed solution is stable on a partial region, it may be either stable 
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or unstable on the whole region and vice versa. In specific practical problems, we do 

not study the solution starting within 2  and running out of  . 

Theorem 2 

If in satisfying the conditions of Theorem 1, the derivative 
dV

dt
 is a definite 

function on the partial region with opposite sign to that of V and the function V itself 

permits an infinitesimal upper limit, then the undisturbed motion is asymptotically 

stable on the partial region. 

Proof: 

Let us suppose that V is a positive definite function on the partial region and that 

consequently, 
dV

dt
 is negative definite. Thus on the intersection 1  of   and the 

region defined by Eq. (A.7) and 0t t  there will be satisfied not only the inequality 

(Eq.(A.8)), but the following inequality as well: 

1 1( , ),n

dV
W x x

dt
   (A.16) 

where 1W  is a positive definite function on the partial region independent of t. 

Let us consider the quantities sx  as functions of time which satisfy the 

differential equations of disturbed motion assuming that the initial values 0 0( )s sx x t  

of these quantities satisfy the inequalities (Eq. (A.12)). Since the undisturbed motion 

is stable in any case, the magnitude   may be selected so small that for all values of 

0t t  the quantities sx  remain within 1 . Then, on the basis of Eq. (A.16) the 

derivative of function 1( , ( ), , ( ))nV t x t x t  will be negative at all times and, 

consequently, this function will approach a certain limit, as t increases without limit, 

remaining larger than this limit at all times. We shall show that this limit is equal to 

some positive quantity different from zero. Then for all values of 0t t  the following 

inequality will be satisfied: 
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1( , ( ), , ( ))nV t x t x t   (A.17) 

where 0  . 

Since V permits an infinitesimal upper limit, it follows from this inequality that 

2( ) , ( 1, , ),s

s

x t s n   (A.18) 

where   is a certain sufficiently small positive number. Indeed, if such a number   

did not exist, that is , if the quantity ( )s

s

x t  were smaller than any preassigned 

number no matter how small, then the magnitude 1( , ( ), , ( ))nV t x t x t , as follows 

from the definition of an infinitesimal upper limit, would also be arbitrarily small, 

which contradicts Eq. (A.17). 

If for all values of 0t t  the inequality (Eq. (A.18)) is satisfied, then Eq. (A.16) 

shows that the following inequality will be satisfied at all times: 

1,
dV

l
dt

   

where 1l  is positive number different from zero which constitutes the precise lower 

limit of the function 1 1( , ( ), , ( ))nW t x t x t  under condition (Eq. (A.18)). Consequently, 

for all values of 0t t  we shall have: 

0
1 0 10 0 0 10 0 1 0( , ( ), , ( )) ( , , , ) ( , , , ) ( ),

t

n n n
t

dV
V t x t x t V t x x dt V t x x l t t

dt
    

 

which is, obviously, in contradiction with Eq.(A.17). The contradiction thus obtained 

shows that the function 1( , ( ), , ( ))nV t x t x t  approached zero as t increase without 

limit. Consequently, the same will be true for the function 1( ( ), , ( ))nW x t x t  as well, 

from which it follows directly that 

lim ( ) 0, ( 1, , ),s
t

x t s n


   

which proves the theorem. 
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Appendix B 

Pragmatical Asymptotical Stability Theory 

The stability for many problems in real dynamical systems is actual 

asymptotical stability, although may not be mathematical asymptotical stability. The 

mathematical asymptotical stability demands that trajectories from all initial states in 

the neighborhood of zero solution must approach the origin as t  . If there are 

only a small part or even a few of the initial states from which the trajectories do not 

approach the origin as t  , the zero solution is not mathematically 

asymptotically stable. However, when the probability of occurrence of an event is 

zero, it means the event does not occur actually. If the probability of occurrence of 

the event that the trajectries from the initial states are that they do not approach zero 

when t  , is zero, the stability of zero solution is actual asymptotical stability 

though it is not mathematical asymptotical stability. In order to analyze the 

asymptotical stability of the equilibrium point of such systems, the pragmatical 

asymptotical stability theorem is used. 

Let X and Y be two manifolds of dimensions m and n (m<n), respectively, and 

  be a differentiable map from X to Y, then ( )X  is subset of Lebesque measure 

0 of Y [62]. For an autonomous system 

1( , , )n

dx
f x x

dt
                                             (B-1) 

where  1, ,
T

nx x x  is a state vector, the function  1, ,
T

nf f f is defined on 

nD R  and 0x H  . Let x=0 be an equilibrium point for the system (B-1). 

Then 

(0) 0f                                                     (B-2) 
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For a nonautonomous systems, 

          1 1( ,..., )nx f x x                  (B-3) 

where 1 1[ ,..., ]T

nx x x  , the function  1[ ,..., ]T

nf f f  is define on 

nD R R  ,here 1nt x R   . The equilibrium point is  

   1( 0 , ) 0nf x   .               (B-4) 

Definition The equilibrium point for the system (B-1) is pragmatically 

asymptotically stable provided that with initial points on C which is a subset of 

Lebesque measure 0 of D, the behaviors of the corresponding trajectories cannot be 

determined, while with initial points on D－C, the corresponding trajectories behave 

as that agree with traditional asymptotical stability [63,64]. 

Theorem Let 1[ , , ]T

nV x x : D→R+ be positive definite and analytic on D, 

where 1 2, ,..., nx x x  are all space coordinates such that the derivative of V through Eq. 

(A-1)or(A-3), V , is negative semi-definite of 1 2[ , , , ]T

nx x x . 

    For autonomous system, Let X be the m-manifold consisted of point set for 

which 0x  , ( ) 0V x   and D is a n-manifold. If m+1<n, then the equilibrium 

point of the system is pragmatically asymptotically stable. 

    For nonautonomous system, let X  be the 1m -manifold consisting of point 

set of which 1 20, ( , ,..., ) 0nx V x x x   and D is 1n -manifold. If 1 1 1m n    , 

i.e. 1m n  then the equilibrium point of the system is pragmatically asymptotically 

stable. Therefore, for both autonomous and nonautonomous system the formula 

1m n  is universal. So the following proof is only for autonomous system. The 

proof for nonautonomous system is similar. 

Proof Since every point of X can be passed by a trajectory of Eq. (B-1), which 

is one- dimensional, the collection of these trajectories, A, is a (m+1)-manifold [65, 
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66]. 

If m+1＜n, then the collection C is a subset of Lebesque measure 0 of D. By 

the above definition, the equilibrium point of the system is pragmatically 

asymptotically stable.  

If an initial point is ergodicly chosen in D, the probability of that the initial 

point falls on the collection C is zero. Here, equal probability is assumed for every 

point chosen as an initial point in the neighborhood of the equilibrium point. Hence, 

the event that the initial point is chosen from collection C does not occur actually. 

Therefore, under the equal probability assumption, pragmatical asymptotical stability 

becomes actual asymptotical stability. When the initial point falls on D C , 

( ) 0V x  , the corresponding trajectories behave as that agree with traditional 

asymptotical stability because by the existence and uniqueness of the solution of 

initial-value problem, these trajectories never meet C.  

In Eq. (2-7) V is a positive definite function of n variables, i.e. p error state 

variables and n-p=m differences between unknown and estimated parameters, while 

TV e Ce  is a negative semi-definite function of n variables. Since the number of 

error state variables is always more than one, p>1, m+1<n is always satisfied, by 

pragmatical asymptotical stability theorem we have 

lim 0
t

e


                                                    (B-5) 

and the estimated parameters approach the uncertain parameters. The pragmatical 

adaptive control theorem is obtained. Therefore, the equilibrium point of the system is 

pragmatically asymptotically stable. Under the equal probability assumption, it is 

actually asymptotically stable for both error state variables and parameter variables.
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