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Abstract

In this thesis, the chaotic behavior inynew,\Ge-Ku-Mathieu system is studied by
phase portraits, time history,-Poincaré maps; Lyapunov exponent and bifurcation
diagrams. A new kind of chaatic generalized.synchronization, different translation
pragmatical generalized synchronization, is_obtained by pragmatical asymptotical
stability theorem and partial region stability theory. Second new type for chaotic
synchronization, double and multiple symplectic synchronization, are obtained by
active control. A new method, using new fuzzy model, is studied for fuzzy modeling
and synchronization of Sprott 19, 22 systems. Moreover, the new fuzzy logic constant
controller is studied for projective synchronization and chaotic system with
uncertainty. Numerical analyses, such as phase portraits and time histories can be

provided to verify the effectiveness in all above studies.
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Chapter 1

Introduction

Chaos is very interesting nonlinear phenomenon, exhibiting sensitive
dependence on initial conditions. Because of this property, chaotic behavior is
beneficial and desirable in many applications such as mixing processes, heat transfer,
biological systems[1,2] , etc. Chaos synchronization is beneficial and desirable in
secure communication[3,4]. Many methods of synchronization have been proposed,
such as linear and nonlinear feedback control[5-11].

Generally speaking, designing a system to mimic the behavior of another chaotic
system is called synchronization. Synchronization of chaotic systems has received a
significant attention, since Pecora and Carroll~presented the chaos synchronization
method to synchronize two identical-echaotic systems-with different initial values in
1990 [12].

The various types of synehrenization, such’as complete synchronization[13],
phase synchronization[14], lag synchronization[15], and generalized synchronization
[16-20], are investigated extensively in the past years. Among many Kkinds of
synchronizations, the generalized synchronization is investigated. It means there
exists a functional relationship between the states of the master and those of the slave.
A special kind of generalized synchronizations y = x+ F(t) is studied[21], where X,
y are the state vectors of the master and the slave respectively, F(t) is a given vector
function of time, which may take various form, either regular or chaotic functions of
time. When F(t)=0, it reduces to a generalized synchronization. A new
synchronization y=H(x,y,t)+F(t) is studied, where X, y are the state vectors of
the master and of the slave, respectively, F(t) is a given function of time in different

form, such as a regular or a chaotic function. The final desired state y of the slave
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system not only depends upon the master system state x but also depends upon the
slave system state y itself. Therefore the slave system is not a traditional pure slave
obeying the master system completely but plays a role to determine the final desired
state of the slave system. In other words, it plays an interwined role, so we call this
kind of synchronization is symplectic synchronization, and call the master system
partner A, the slave system partner B[22].

In the current scheme of adaptive synchronization [23-27], the traditional
Lyapunov stability theorem and Babalat lemma are used to prove that the error vector
approaches zero, as time approaches infinity. But the question of that why the
estimated parameters also approach uncertain parameters remains unanswered. By the
pragmatical asymptotical stability theorem; the. question can be answered strictly.

Furthermore, in chaos synehronization;-most-publications often assume that the
synchronization system is without external” disturbances. However, in practical
applications, it is hard to -avoid. external. disturbances due to uncontrollable
environmental conditions. The implementation.of eontrol inputs of practical systems
is frequently subject to uncertainties as a result of physical limitations. Thus, the
derivation of a robust synchronization controller to resist the disturbance is studied.

In recent years, some chaos synchronizations based on fuzzy systems have been
proposed since the fuzzy set theory was initiated by Zadeh [28], such as fuzzy control
[29], fuzzy sliding mode controlling technique [30-31], LMI-based synchronization
[32] and extended backstepping sliding mode controlling technique [33]. The fuzzy
logic control (FLC) scheme has been widely developed and has been successful in
many applications [34]. Recently Yau and Shieh [35] proposed a new idea in
designing fuzzy logic controllers—constructing fuzzy rules subject to a common
Lyapunov function such that the master-slave chaos systems satisfy stability in the

Lyapunov sense. In [35], there are two main controllers in their slave system. One is
2



used in elimination of nonlinear terms and the other is built by fuzzy rules subject to a
common Lyapunov function. Therefore the resulting controllers are in nonlinear form.
In this paper, the regular form is necessary. In order to carry out the new method, the
original system must be transformed into their regular form. Li and Ge [36] propose a
new strategy which remains constructing fuzzy rules subject to Lyapunov direct
method. The values of error derivatives are used to be the upper and lower bounds of
FLCC. Through this new approach, a simplest constant controller can be obtained and
the difficulty in realization of complicated controllers in chaos synchronization by
Lyapunov direct method can be eliminated.

In recent years, fuzzy logic proposed by L. A. Zadeh [37] has received much
attention as a powerful tool for the nonlinear, control. Among various kinds of fuzzy
methods, Takagi-Sugeno fuzzy (T-S fuzzy) system.is'widely accepted as a useful tool
for design and analysis of fuzzy control system [38-43]..Currently, some chaos control
and synchronization based on-T-S fuzzy systems have-been proposed, such as fuzzy
sliding mode controlling technique [44-46], LMI<based synchronization [47-49] and
robust control [50]. These researches are all focus on two identical nonlinear systems.
Furthermore, two different nonlinear systems may have different numbers of
nonlinear terms. It causes different numbers of linear subsystems. For synchronization
of two different nonlinear systems, the traditional method using the idea of PDC to
design the fuzzy control law for stabilization of the error dynamics can not be used
here, since the number of subsystems becomes very large.

In this thesis, scheme of study is as follows. In Chapter 2, the chaos for a
Ge-Ku-Mathieu (GKM) system is studied.

In Chapter 3, symplectic synchronization is defined as y=H(x,y,t), where x, y
are the state vectors of the “master” and of the “slave”, respectively. The final desired

state y of the “slave” not only depends upon the “master” state x but also depends
3



upon the “slave” state y itself. Therefore the “slave” is not a traditional pure slave
obeying the “master” completely but plays a role to determine the final desired state
of the “slave” system. In other words, it plays an interwined role, so we call this
kind of synchronization, “symplectic synchronization”, and call the “master” system
Partner A, the “slave” system Partner B. A new type of synchronization, double
symplectic synchronization, G(x,y,t)=F(X,y,t) is studied, where x,y are Partner A
and Partner B, respectively. Due to the complexity of the form of the double
symplectic synchronization, it may be applied to increase the security of secret
communication.

In Chapter 4, a new chaos synchronization strategy by different shift pragmatic
synchronization by stability theory of. partial region [51-52] is proposed. By using
the different shift pragmatic synchronization-by. stability theory of partial region, the
Lyapunov function is a simple linear homogeneous function of error states and the
controllers are more simple and haveless.simulation‘error because they are in lower
degree than that of traditional cantrollers, for-which the Lyapunov function is a
quadratic form of error states, and the question of that why the estimated parameters
also approach uncertain parameters can be answered strictly.

In Chapter 5, a new type of synchronization, multiple symplectic synchronization
is studied. When the double symplectic functions is extended to a more general form,
G(xY,z,--wwW,t)=F(X,y,z,--,w,t) , it is called “multiple symplectic
synchronization”. Symplectic synchronization and double symplectic synchronization
are special cases of the multiple symplectic synchronization.

In Chapter 6, the values of error derivatives are used to be the upper and lower
bounds of FLCC. Through this new approach, a simplest constant controller can be
obtained and the difficulty in realization of complicated controllers in chaos

synchronization by Lyapunov direct method can be eliminated.
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In Chapter 7, the new fuzzy model is proposed. It gives a new way to linearize
complicated nonlinear system and only two subsystems are concluded.

In Chapter 8, conclusions are given.




Chapter 2

Chaos for a Ge-Ku-Mathieu System

2.1 Preliminary
In this Chapter, the chaotic behaviors of a new Ge-Ku Mathieu system is studied
numerically by phase portraits, time histories, Poincaré maps, Lyapunov exponents,

and bifurcation diagrams.

2.2 Description of Ge-Ku-Mathieu System

Ge and Ku [53] gave a chaotic system formed by a simple pendulum with its

pivot rotating about a fixed axis as Fig. 2.1. This chaotic system is

S . (2.1)
X, =—ax, —sin x,[b(c + cos x, ) 4 d sinwt];

2

where a,b,c,d are parameters. After “simplification sinx =X, , cosxizl—%

and addition of coupling terms; combining with Mathieu equation

Xy = Xy,
: 3 (2.2)
X, =—(9 +hx;)x, — (9 + hx;)nx,; =%, +pX;,
where g,h,l,n, p are parameters, we get the Ge-Ku-Mathieu system
X =X,
Xzz—axz—xi[b(c—xf)+dx2x3], (2.3)

Xy =—(0+hx )X, +1X, + pX.X,,

where a,b,c,d,g,h,l, p are parameters.

2.3 Computational Analysis of Ge-Ku-Mathieu System

For numerical analysis of computation, this system exhibits chaos when the
parameters of system are a=-0.6, b=5, c=11, d=0.3, g=8, h=10, 1=0.5, p=0.2 and the
initial states of system are (0.01, 0.01, 0.01). The bifurcation diagram by changing

damping parameter a is shown in Fig. 2.2. Its corresponding Lyapunov exponents are

6



shown in Fig. 2.3. The phase portraits, time histories, and Poincaré maps of the

systems is showed in Fig. 2.4.

Fig. 2.1. The pendulum on rotating arm.



Fig. 2.2 The bifurcation diagram for new.Ge-Ku-Mathieu system.
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Chapter 3
Double Symplectic Synchronization

for Ge-Ku-Mathieu System

3.1 Preliminary

In this Chapter, a new type of synchronization, double symplectic
synchronization, G(x,y,t)=F(x,Yy,t), for two new chaotic systems is proposed. It is
an extension of symplectic synchronization, y=F(x,y,t) Since the symplectic
functions are presented on both sides of the equality, it is called double symplectic
synchronization. Simulations present. the ,chaotic behaviors of two new chaotic
systems. The double symplectic synchronization. can be applied to the design of
secure communication with moretsecurity. Finally,-simulations are provided to show
the effectiveness of the proposed synchronization.scheme.
3.2 Double Symplectic Synchroenization’Scheme

Consider two different nonlinear chaotic systems, Partner A and Partner B,

described by
x=f(x1), 3.1)
y=C()y +g(y,t)+u, (3.2)

where X=[X,%,,...,x.]" eR"and y=[y,,¥,,....Y,]' €R" are the state vectors of

Partner A and Partner B, CeR™" is a given matrix, f and g are continuous
nonlinear vector functions, and u is the controller. Our goal is to design the
controller u such that G(x,y,t) asymptotically approaches F(x,y,t), where
G(x,y,t) and F(x,y,t) are two given functions. For simplicity we take

G(x,y,t)=x+y and F isa continuous nonlinear vector function.
10



Property 1 [54]: An mxn matrix A of real elements defines a linear mapping
y=Ax from R" into R™, and the induced p-norm of A for p=1, 2, and o is

given by

|, = max g\a” AL =[ A AT, AL = miaszn_;‘aij | (3.3)
The useful property of induced matrix norms for real matrix A is as follow:

[Al, < lIALIAL - (34)

Theorem: For chaotic systems “Partner A” (1) and “Partner B” (2), if the
controller u is designed as

u=(I1- DyF)‘l[DXFf (x,t) + D,F(C(t)y+g(y, 1)) + D,F —f(x,t) —g(y,t)

(3.5)
+C(t)(x—F)-K(x+y=F)],

where DF , DJF , DF are the: Jacobian matrices of F(x,y,t) ,

K =diag(k,k,,...,k,), and satisfies

min(k;)

1, 3.6
ol 49

then the double symplectic synchronization will be achieved.

Proof: Define the error vectors as
e=x+y—-F(xy,t), (3.7)

then the following error dynamics can be obtained by introducing the designed

controller

de . . . . .

E=e=x+y—Dxe—DyFy—DtF
=f(x.)+C)y+9(y,t) -D,Ff(x,) -D,F(C)y +9(y.1)) -DF  (3.8)
+(I-D,F)u
= (C(t) - K)e.

11



Choose a positive definite Lyapunov function of the form
1
V() :Ee e. (3.9
Taking the time derivative of V(t) along the trajectory of Eq. (3.8), we have

V(t)=e'é
=e'C(t)e—e'Ke
<[lc)]- el ~min(k) ]

= (|c®)]| - min(k,)[e]”-

(3.10)

Let (|C(t)|—min(k)[e| =M , then V (t) <M [e|* =—2MV (t) . Therefore, it can be

obtained that

V (t) <V (0)e ™™ (3.12)

and !im_[;[\/(g)|d§ is bolinded.—Besides, 'V (t)~ is uniformly continuous.

According to Barbalat’s lemma [55],.the-conclusion can be drawn that !imV (t)=0,
i.e. !im||e(t)||:0. Thus, the double’symplectic” synchronization can be achieved

asymptotically.

3.3 Synchronization of Two Different New Chaotic Systems
Case 1.
Consider a new Double Ge-Ku system as Partner A described by

X =X,
X, = —MX, —xl[n(q—xf)+wx3], (3.12)

X, = —MX, —xs[n(q—x§)+ rxl},
where m=-0.5n=-1.4,0=1.9,w=>54,r =6.2 and the initial conditions are
X,(0) =0.01, x,(0) =0.01 ,x,(0) =0.01. Eqg. (3.12) can be rewritten in the form of Eq.

12



X,

(3.1), where f(x,t) =| —mx, —x, [n(q -X )+ WXa] . The chaotic attractor of the

g —x3[n(q—x§)+rx1} |
Double Ge-Ku (DGK) system is shown in Fig. 3.1.

Ge-Ku-Mathieu (GKM) system is considered as Partner B. The controlled GKM

system is
Yi=Y,+U,
I, ==ay, =y | b(c— 7 )+ dy,ys |+, (3.13)

Vs =—(9+hy,)ys +1y, + py,Ys +Us,

where a=-0.6,b=5,c=11,d=0.3,g=8,h=10,1=0.5p=0.2, u:[ul,uz,u3]T §

the controller, and the initial conditions-are~y,(0)=0.01, y,(0)=0.01, y,(0)=0.01.

0 1 0
Eq. (3.13) can be rewritten in the form of Eq.(3.2), where C(t)=|-bc -a O
o 1 -g

0
and g(y,t)=| by —dy,y,y, |. By applying Property 1, it is derived that
_hylys + py1y3

IC®)], =bc, ||Ct)|, =-a+bc,and |Ct)], </bc(—a+bc) =+/3058 . Then
IC(t)||=55 is estimated.

X, COS Y,
Define F(x,y,t)=| x,cosYy, |, and our goal is to achieve the double simplectic
X, COS Y,

synchronization x+y=F(x,y,t). According to Theorem, the inequality
min(k;)

[l

>1 has to be satisfied. It can be obtained that min(k;) >55. Thus we choose

13



=| 0 57 0 | and design the controller as

k 0 0] [56 0 0
0
k,| |0 0 58

K=[0 K,
0 0

U =X, C08 Y, =X Y,SINY, —X, =Y, + X COS Y, =X — Y, ,

u, = {—mx2 - xl[n(q —xf)+wx3]}cos Y, =X, {—ay2 — yl[b(c— yf)+dy2y3]}sin Y,

~{=mx, = [n(a =) +wx, |} {-ay, - yi[b(c—¥7)+ dy,y, |f+x,cosy, =, - v,

U, = {—mx3 —Xg[n(q —x32)+ rxl]}cos Vs — X, [—(g +hy,)y, +1y, + pyl)’s]Sin Vs

—{—mx3—x3[n(q—x§)+rxJ}—[—(g +hyl)Y?f"Wz + pY1y3]+X3 COSY; — X3~ Vs,

The Theorem is satisfied and the'double symplectic:Synchronization is achieved, the

phase portrait of the controlled GKM system-is shown-in Fig. 3.2. The time histories
of x,+y,, of xcosy, and of the state errors-are shown in Fig. 3.3 and Fig. 3.4,

respectively.
Case 2.
Consider a new Ge-Ku-van der Pol (GKv) system as Partner A described by
X =X,
X2=—mx2—x3[n(q—xf)+wx3], (3.14)

Xy = =%, — F (1= X2 )%, +1x,,
where m=0.08,n=-0.35,q=100.56,w=-1000.02,s =0.61, f =0.08,r =0.01 and
the initial conditions are x (0)=0.01, x,(0) =0.01,x,(0) =0.01. Eqg. (3.14) can be

X2
rewritten in the form of Eq. (3.1), where f(xt)= —mxz—xs[n(q—xf)+wx3} .

—s%, — f (1=X) X, +1x,

14



The chaotic attractor of a new GKv system is shown in Fig. 3.5.

A new Ge-Ku-Mathieu (GKM) system is considered as Partner B. The

controlled GKM system is

Yi=Y, tU,
J, =-ay, -y, | b(c—y7)+dy,y; |+, (3.15)
Vs =—(9+hy,)ys +1y, + py,Ys +Us,

where a=-0.6,b=5,c=11,d =0.3,g=8,h=10,1=0.5p=0.2, u:[ul,uz,ug]T S

the controller, and the initial conditions are y,(0)=0.01, v,(0)=0.01,

¥,(0)=0.01. Eg. (3.15) can be rewritten in the form of Eq. (3.2), where

0 1 0 0
C(t)=|-bc -a 0 | and g(y,t)={-by;=dy¥y. |. By applying Property 1, it
0 I -0 —hy1y3 +PYiYs
can  be derived that| [C(O)f,=bc U JC(t)| =-a+bc , and
IC@®)], < /bc(—a+bc) =+/3058%TFhen ||C(t)]|=55is
estimated.
X, COS Y,
Define F(x,y,t)=| x,cosYy, |, and our goal is to achieve the double simplectic
X, COS Y,

synchronization x+y=F(x,y,t). According to Theorem, the inequality

T(I:n((ti;h) >1 must be satisfied. It can be obtained that min(k;) >55. Thus we choose
k 0 O 5 0 O

K=|0 k, 0|=| 0 57 0| anddesign the controller as
0 0 Kk 0 0 58

ul:chosyl_xlyZSinyl_xz_y2+X1COSyl_X1_y1

15



u, = {—mx2 =X [n(q - Xf)+wx3]}cos Y, =%, {—ayz - yl[b(c— yf)+dy2y3}}sin Y,
_{_mx2 —Xs[n(q—xf)+wx3}}—{—ay2 - yl[b(c— yf)+dy2y3}}+x2 COSY, — X, - Y,,

U, :{—sx3 + f (1—x§)x2 +rx1}cos Y;— X [—(g +hy, )y, +ly, + py1y3]Sin Y3
—{—sx3+ f (1—x§)x2+rx1}—[—(g+hy1)y3+ly2+ PY,Ys |+ X; COS Yy — X — Vs,

The Theorem is satisfied and the double simplectic synchronization is achieved, the

phase portrait of the controlled GKM system and the time histories of x +Y,, of

x.cosy, and of the state errors are shown in Fig. 3.6 and Fig. 3.7 and Fig. 3.8,

respectively.
Case 3.
Consider a new GKD system as Partner A described by
% =%,
Xzz—mxz—xl[n(q—xf)+wx3], (3.16)

X, ==X, — X3 — X, + X,
where m=0.1,n=11,q=40,w=>54,f =6,r=30 and the initial conditions are
X (0) =2, X,(0) =2.4 x,(0) =5. Eq. (3.16) can be rewritten in the form of Eq. (3.1),

XZ
where f(x,t) = —mxz—xl[n(q—xf)+wx3] . The chaotic attractor of the new

X, = X5 — X, + 1%,
GKD system is shown in Fig. 3.9.
Ge-Ku-Mathieu (GKM) system is considered as Partner B. The controlled

GKM system is
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yl =Y, +Up,
J, =—ay, - y,[b(c—y7 )+ dy,ys | +u,, (3.17)

Yo =—(9+ny,) Y5 +1y, + py, Y5 +Us,
where a=-0.6,b=5c=11,d=0.3,g=8h=10,1=05p=02, u=[u,u, u,]" is

the controller, and the initial conditions are y,(0)=0.01, y,(0)=0.01, y,(0)=0.01.

0 1 o0
Eqg. (3.17) can be rewritten in the form of Eq. (3.2), where C(t)=|-bc -a 0
0 I -9

0

and g(y,t)=| by, —dy,y,y, |. By applying Property 1, it can be derived that
_hy1y3 + pylyS

IC®)], =bc, ||Ct)|, =-a+bc,and”[[C(t)], < ybe(+a+bc) =+/3058 . Then

IC(t)||=55 is estimated.

X, COSY;
Define F(x,y,t) =| X, cosy, |, and.our.gealis to achieve the double simplectic
X, COS Y,

synchronization x+y=F(x,y,t). According to Theorem, the inequality

T(I:n((ti;h) >1 must be satisfied. It can be obtained that min(k;) >55. Thus we choose
k 0 O 5 0 O

K=/0 k, 0|=| 0 57 0| anddesign the controller as
0 0 Kk 0 0 58

u1:X2COSy1_X1yzSin Y1 =X =Y, +XCOSY, =X, — Vi,

u, = {—mx2 - xl[n(q —Xf)+wX3J}cos Y, =% {—aYZ - yl[b(c— yf)+dy2y3]}sin Y,
_{_mx2 —xl[n(q—xf)+wx3]}—{—ay2 - yl[b(c— yf)+dy2y3]}+x2 COSY, — X, — Y,,

17



U = {=X =3¢ = fX, + 1% [0S Yy =X, [ (g +hy,) Y, +1y, + Py, Jsin y,
—{ %=X = B+ 1} [ (g +hy, ) Y+ 1y, + DY, Y5 |+ X €OS Yy =X, — ¥,

The Theorem is satisfied and the double simplectic synchronization is achieved, the

phase portrait of the controlled GKM system and the time histories of x +Y,, of

X, cosy, and of the state errors are shown in Fig. 3.10 and Fig. 3.11 and Fig. 3.12,

respectively.
3.4 Summary

In this Chapter, a new double symplectic synchronization of chaotic systems are
investigated based on Barbalat’s Lemma. Traditional generalized synchronization and
symplectic synchronization are special cases for the double symplectic
synchronization. By applying active-control, the-double symplectic synchronization is
achieved. The simulation results show that the proposed scheme is effective and
feasible for all chaotic systems. Furthermore, the double symplectic synchronization
could be applied to the design of secret communication with more security than either
generalized, or symplectic synchronization due to the complexity of its

synchronization form.
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Chapter 4
Different Translation Pragmatical Generalized
Synchronization by Stability Theory of Partial Region for

Ge-Ku-Mathieu System

4.1 Preliminary

In this Chapter, a new strategy to achieve different translation generalized
synchronization by partial region stability theory and pragmatical stability theory is
proposed, by which the Lyapunov function is a simple linear homogeneous function
of error states, the controllers are more simple since they are in lower degree than that

of traditional controllers.

4.2 The Scheme of Different Translation| Pragmatical Generalized
Synchronization by Stability ;Theory of Partial Region Theory

There are two identical nonlinear-dynamical systems, and the master system
synchronizes the slave system. The master system is given by

x = Ax+ f (x, B) (4.1)

The master system after the origin of x-coordinate system is translated to

[Kl’ Kl""’ K1] is
X = AX + f(x,B) (4.1)
where X =[x,%, X ] =[x —K, % —K,-x —K] €R" denotes a state vector,

where K, =[K,,K,,--- K,] is a constant vector with positive element K, as shown

in Fig. 4.1. A isan nxn uncertain constant coefficients matrix, f is a nonlinear

vector function, and B is a vector of uncertain constant coefficients in f .
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The slave system is given by

y=Ay+ f(y,B)+u(t) (4.2)
A isan nxn estimated coefficient matrix, B is a vector of estimated coefficients
in f,and u(t)=[u,(t),u,(t),---u ()] €R" is a control input vector.

The slave system after the origin of y-coordinate system is translated to

[Kz’Kz""’Kz] is
y =Ay + f(y,B)+u(t) (4.2)
where vy =[y, ¥, Y. =y=[y,-K,,y,—K,,---y,—K,]eR" denotes a state

vector, where K, is a constant vector with positive element K, as shown in Fig.

4.2.

Our goal is to design a controller u(t) so-that the state vector of the translated

slave system (4.2) asymptotically approaches-the state-vector of the translated master

system (3.1) plus a given wnonchaotic_vor chaotic vector function
FO) =[RO), R0, FOT:

y =G(X)=Xx +F(t). (4.3)
The synchronization can be accomplished when t — o0, the limit of the error vector
e(t) =[e,,e,, -~ e, ]" approaches zero:

lime=0 4.4)

t—oo

where
e=x -y +F(t). (4.5)
From Eq. (4.5) we have

e=x -y +F(t) (4.6)
26



é=AX —Ay + f(x,B)= f(y,B)+F(t)—u(t). (4.7)
where K, and K, are chosen to guarantee that the error dynamics always occurs in
the first quadrant of e coordinate system.

A Lyapunov function V (e, A,B)is chosen as a positive definite function in first

quadrant of e coordinate system by stability theory in partial region as shown in

Appendix A:
V(e,AB)=e+A+B (4.8)

where A=A-A, B=B-B, A and B are two column matrices whose elements
are all the elements of matrix A and of column matrix B, respectively.

Its derivative along any solution'of the differential equation system consisting of

Eq. (4.7) and update parameter-differential-equationsfor A and B is

V(e,A B)= AX — Ay + f(X,B) = f (v, B)+F(t)-u(t)+£+|§ (4.9

where u(t), A and B are chosen so that \=Ce, C is a diagonal negative

definite matrix, and V is a negative semi-definite function of e and parameter
differences A and B. By pragmatical asymptotically stability theorem in Appendix
B, the Lyapunov function used is a simple linear homogeneous function of states and
the controllers are simpler because they in lower order than the that of traditional
controllers. Traditional Lyapunov stability theorem and Babalat lemma are used to
prove the error vector approaches zero, as time approaches infinity[56-58]. But the
question, why the estimated parameters also approach to the uncertain parameters,
remains unanswered. By pragmatical asymptotical stability theorem, the question can

be answered strictly.
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4.3 Different Translation Pragmatical Synchronization of New
Ge-Ku-Mathieu Chaotic System

Case 1.
The following chaotic systems are two translated master and slave

Ge-Ku-Mathieu (GKM) systems of which the old origin is translated to
(X, %,, %) =(100,100,100), (Y,,Y,,Ys)=1(50,50,50) to guarantee the error dynamics

always happens in the first quadrant of e coordinate system.

X, =X, —100
X, =—a(x, —100) — (x, —100){b[c — (x, —100)*1+d(x, —150)(x, —100)}  (4.10)
X, = -9 +h(x, —100)](x; —100) + I(x, —100) + p(x, —100)(x, —100)

yl =Y, —50+U1
Y, =—a(y, —50) (v, — 50){blc — (y, ~50)*]€d(y, ~50)(y, ~50)}+u,  (4.11)
Y, =19 +h(y, —50)](ys=50)F(y,+50)-+p(¥s=50)(y, —50) + U,

Let initial states be (x;, X,7X;) =(100.04,100.01,100:01) , (Y,, Y., Y,)
= (50.01,50.01,50.01) , ao =-1, Bo==2, Co=<4, do=-1, g,=-3,

ho =6, lo=—4, P, =—5 and system parameters a=-0.6,b=5,c=11,d =0.3,
g=8h=10,1=05p=0.2.

The state error is e=X —y +F(t)=x —y +sint (4.12)
where F(t)=sint is a nonchaotic given function of time. We find that the error
dynamic without controller always exists in first quadrant as shown in Fig. 4.3.

lime, :!im(xi'—yi'+sint):0, i=12,3 (4.13)

t—w

Our aim is !im e =0. We obtain the error dynamics:
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€, =X, —100-y, +50—u, +cost

&, =—a(x, —100) — (x, —100){b[c - (x, —100)*] +d (x, —100)(x, —100)}

+a(y, —50) + (Y, —50){b[c — (y, —50)2]+ d (y, —50)(y; —50)}—u, +cost (4.14)
&, =g +h(x, —100)](x, —100) +I(x, —100) + p(x, —100)(x, —100)

+[g +h(y, —50))(y; ~50) —(y, ~50) - p(y, ~50)(y; —50) - U + cost

where a=a—4, b=b-b, ¢=c—¢, d=d-d, §=g-g, h=h-h, I =I-T,

p=p-—p,and a, b, c, d, g, h, B p are estimates of uncertain parameters

o>

a, b, c, d, g, h, I and p respectively.
Using different translation pragmatical synchronization by stability theory of
partial region, we can choose a Lyapunov function in the form of a positive definite

function in first quadrant:
V:e1+e2+es+a+5+6+d+g+h+f+p (4.15)

Its time derivative is
V=g +6 46 +4+b+E0d+ Gahal £ p
= (X, -100-y, +50—u, + cost)
—a(x, —100) — (x, —100){b[c — (% =100)2J d(x, —100)(x, —100)}
+a(y, —50) + (y, —50){b[c — (y, —50)2]+d(y, —50)(y, —50)}—u, +cost  (4.16)
H-[9g +h(x, —100)](x, —100) +I(x, —100) + p(x, —100)(x, —100)

+{g +h(y, —50)](y; —50) —I(y, —50) — p(y, —50)(y, —50) —u, +cost}
+a+b+C+d+g+h+l+p

Choose
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b=—b=—be,

¢ =—C=—ce,

‘i' B _Ol B —ciez (4.17)
g=-g=-Ge,

h=—h=—fe,

[ —

p=—p=—pe,

U, =X, -100-vy, +50+cost +e,

u, = —a(x, —100) — (x, ~100){b[c — (x, —100)?]+d (x, —100)(x, —100)}

+a(y, —50) + (v, ~50){blc - (y, —50)1+d (y, ~50)(y, ~50)}
+cost+e, —ae, —be, —ce, —de, (3.18)
u, =—[g +h(x, —100)](x, —100) +1(x, —100) + p(x, —100)(x, —100)

+{g +h(y, —50)](y, —50) — I (250} Ly, —50)(y; — 50)
+cost +e, — ge, — he, — e~ pe,

We obtain

V=--e-e-6<0 (4.19)

which is a negative semi-definite functionofe,, e,, e,, 4, b, ¢, d, g, h, I,
p, in the first quadrant. The Lyapunov asymptotical stability theorem is not satisfied.
We can not obtain that common origin of error dynamics (4.14) and parameter
dynamics (4.17) is asymptotically stable. By pragamatical asymptotically stability
theorem, D is a 11-manifold, n=11 and the number of error state variables p=3. When

e,=e,=¢,=0 and 4, b, ¢, d, g, h, I, p, take arbitrary values, V =0, so

X is of 3 dimensions i.e. p=3, m=n-p=11-3=8, m+1<n is satisfied. According to the
pragmatical asymptotically stability theorem, error vector e approaches zero and the
estimated parameters also approach the uncertain parameters. The equilibrium point is
pragmatically asymptotically stable. Under the assumption of equal probability, it is

actually asymptotically stable. The simulation results are shown in Figs. 4.4-4.7.
30



Case 2.
The following chaotic systems are two translated master and slave

Ge-Ku-Mathieu (GKM) systems of which the old origin is translated to

(X1, %,, %) =(100,100,100) , (V,,Y,,Ys)=(50,50,50) to guarantee that the error

dynamics always happens in the first quadrant e coordinate system.

X, =X, —100
X, = —a(x, —100) — (x, —100){b[c — (x, —100)*]+d (x, —100)(x, —100)}  (4.20)
X; =g +h(x, —100)](x, —100) +I(x, —100) + p(x, —100)(x, —100)

Y1 =Y, —50+U1
y, =-a(y, -50) - (y; ~50){b[c - (y, ~50)*]+ d(y, ~50)(y; ~50)} +u,  (4.21)
= {9 +h(y, ~50)1(y; —50) (Y, —50)4p(y, —50)(y, —50) +U,

Let initial states be (X, Xyy X3).=(100:0%,100:01,100.01) , (y,,Y,,Vs)
= (50.01,50.01,50.01) , a0 =-1,\ bo=2;ce=4; do=0.1, g, =3,
ho =6, 1o=0.4, p, =0.15 and system parameters a=-0.6,b=5,c=11,d =0.3,
g=8h=10,1=05p=0.2.
The state error is e=Xx —y +F(t), where F(t)=z=[z,2,,2,] is the chaotic
state vector of Lorenz system:
z,=r(z,-1)
7,=2,(0-12,)-1, (4.22)
1,=172,7,—mz,

Let initial states be z=[z,,z,,2,]=[0.01,0.01,0.01] and system parameters

r=10, q=28, ng , the Lorenz system is chaotic. We find that the error
dynamics without controller always exists in first quadrant as shown in Fig. 4.8.
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Ouraimis lime=0.We obtain the error dynamics.

t—oo

lime, :!im[xi'—yi'+z]:0, =123 (4.23)

€ =X,—-100—-y, +50—-u, +r(z, - z,)

&, =—a(x, —100) — (x, —100){b[c — (x, —100)*]+d (x, —100)(x, —100)}

+a(y, —50) + (y, ~50){b[c - (¥, ~50)°]+d (y, ~50)(y, - 50)} -,

+2,(0-2,) -2, (4.24)
&, = —[g +h(x, ~100)](x, —100) +I(x, —100) + p(x, —100)(x, —100)

+[g +h(y, —50)1(y, —50) ~1(y, —50) - p(y, —50)(y, —50) —u,
+2,2, —Mz,

A A
A

where 4=a-4, b=b-b, ¢=c—¢, d=d—-d, §=g-§, h=h-h, T=1-T,

p=p-—p,and a, b, ¢, d, g, h, i, p, are estimates of uncertain parameters

a, b, c, d, g, h, I and p.«respectively.
Using different translation pragmatical synchronization by stability theory of
partial region, we can choose:a LyapunoVv-function in-the form of a positive definite

function in first quadrant:
V:e1+e2+es+a+5+(~:+d+g+h+l~+p (4.25)
Its time derivative is

v :él+é2+é3+é+5+é+5+§+ﬁ+f+ p

=[x, -100—-y, +50—u, +r(z, — z,)]

—a(x, —100) — (x, —~100){b[c — (x, —~100)?]+ d(x, —100)(x, —100)}
+a(y, —50)+ (y, —50){blc - (y, —50)*1+d(y, —50)(y, —50)} - u,
+Zl(q—23)—22

+H-[g +h(x, —100)](x; —100) +1(x, —100) + p(x, —100)(x, —100)
+{g+h(y, -50)I(y, ~50) ~i(y, ~50) — p(y; ~50)(y, —50) ~u}

+2,2, -mz}+a+b+C+d+G+h+i+p

(4.26)

Choose
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b=—b=—be,

¢ =—C=—ce,

i' B _Ol B —ciez (4.27)
g=-g=-0¢&

h=—h=—fe,

[ —

p=—p=—pe,

u, =X, —-100-y, +50+r(z,—-z)+¢

u, = —a(x, —100) — (x, —100){b[c — (x, —100)?]+d (x, —100)(x, —100)}

+a(y, —50) + (v, ~50){blc - (y, —50)1+d (y, ~50)(y, ~50)}

+2,(q-12,)— 2, +e, —ae, —be, —ce, — de, (4.28)
u, =-[g +h(x, —100)](x; —100) +1(x, —100) + p(x, —100)(x, —100)

+[g +h(y, —50)1(y, —50) — I (2 50)-2p(y, — 50)(y, —50)

+2,2, - mz, +e, — ge, — he;—le, — pe;

We obtain

V=--e-e-6<0 (4.29)

which is a negative semi-definite functionofe,, e,, e,, 4, b, ¢, d, g, h, I,
p, in the first quadrant. The Lyapunov asymptotical stability theorem is not satisfied.
We can not obtain that common origin of error dynamics (4.24) and parameter

dynamics (4.27) is asymptotically stable. By pragamatical asymptotically stability

theorem, D is a 11-manifold, n=11 and the number of error state variables p=3. When

e,=e,=¢,=0 and 4, b, ¢, d, g, h, I, p, take arbitrary values, V =0, so

X is of 3 dimensions i.e. p=3, m=n-p=11-3=8, m+1<n is satisfied. According to the
pragamatical asymptotically stability theorem, error vector e approaches zero and the
estimated parameters also approach the uncertain parameters. The equilibrium point is
pragmatically asymptotically stable. Under the assumption of equal probability, it is

actually asymptotically stable. The simulation results are shown in Figs. 4.9-4.12.
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Case 3.
The following chaotic systems are two translated master and slave

Ge-Ku-Mathieu (GKM) systems of which the old origin is translated to
(X1, %,,%)=(350,350,350) , (V,,Y,,Y;)=(50,50,50) to guarantee the error

dynamics always happens in the first quadrant of e coordinate system.

X, =X, —350
X, = —a(x, —350) — (X, —350){b[c — (x, —350)°]+d (x, —350)(x, —350)} (4.30)
X, = -9 +h(x, —350)](x; —350) +1(x, —350) + p(x, —350)(x, —350)

yl =Y, —50+U1
Y, =—a(y, —50) —(y, —50){blc - (y, ~50)21+d (y, ~50)(y, ~50)} +u, ~ (4.31)
Y, =g +h(y, ~50)1(y, —50) +1(y, —50) + p(y, ~50)(y; —50) +U,

Let initial states be (X, X,, X3)=1350.01,350.01;350.01), (Y,,Y,.Ys)
= (50.01,50.01,50.01) , a0 ==1, Bo=2, co=4, do=0.1, g,=3

ho =6, lo=0.4, p, =0.15 andsystem parameters‘a=-0.6,b=5,¢c=11d =0.3,
g=8,h=10,1=0.5p=0.2.
The state erroris e=x—y+F(t), where F(t)=z=[z,z,,2,] is state vector the

new Ge-Ku-van der Pol system:

2,=1,

2, =—mz, —z,[n(q - 27) +Wz,] (4.32)

2,=-sz,+ f(1-23)z, +rz,
Let initial states be z=[z,,z,,2,] =(0.01,0.01,0.01) and system parameters

m=0.08, n=-0.35, q=100.56, w=-1000.02, s=0.61, f =0.08, r=0.01
the Ge-Ku-van der Pol system is a chaotic system.
We find that the error dynamic without controller always exists in first quadrant as

shown in Fig. 4.13.
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Ouraimis lime=0.We obtain the error dynamics.

t—oo

lime, :!im[xi'—yi'+z]:0, =123 (4.33)

€ =X,—-350-y,+50-u, +2,

&, =—a(X, —350) — (x, —350){b[c — (x, —350)*]+d (x, —350)(X, —350)}

+a(y, —50) + (y, ~50){b[c - (y, —50)*]+d (y, —50)(y, ~50)}-u,

—-mz, - z,[n(q - z7) + wz,] (4.34)
€, =—[9 +h(x, —350)](x; —350) +1(x, —350) + p(x, —350)(x, —350)

+g + (Y, ~50)1(y, —50) ~i(y, ~50) — p(y, ~50)(y; —50) - u,

—sz,+ f(1-22)z, +rz,

A A
A

where 4=a-4, b=b-b, ¢=c—¢, d=d—-d, §=g-§, h=h-h, T=1-T,

p=p-—p,and a, 6, c, d, g, h, i, p, are estimates of uncertain parameters
a, b, c, d, g, h, I and p.«respectively.

Using different translation pragmatical synchronization by stability theory of
partial region, we can choosefa Lyapunov function in‘the form of a positive definite

function in first quadrant:
V:e1+e2+es+a+5+(~:+d+g+h+l~+p (4.35)
Its time derivative is

V :é1+éz+é3+é+5+é+é+§+ﬁ+r+ p

=[x, —350-y,+50-u, +2,]

—a(x, —350) — (x, —350){b[c — (x, —350)?]+d (x, —350)(x, —350)}
+a(y, —50) + (y, ~50){b[c - (y, —50)°]+ d (y, ~50)(y; ~50)}-u,
_mzz - Zs[n(q - 212) + sz]

+H-[g +h(x, —350)](x, —350) +1(x, —350) + p(x, —350)(x, —350)
+[g+h(y, ~50)](y, ~50) i(y, ~50) - p(y, —50)(y; —50) —u,

—Sz, + f(l—z§)22+rzl}+é+5+é+5+§+ﬁ+f+f)

(4.36)

Choose
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b=—b= —be,

¢=-C=—Ce,

a= _d =~de; (4.37)
g=-9=—0e,

h=—h=—fe,

[ —

p=—p=—pe,

, =X, —350-Yy,+50+7,+¢

, =—a(x, —350) — (x, —350){b[c — (x, —350)?]+d (x, —350)(x, —350)}

+a(y, —50) + (v, —50){blc - (y, —50)2]+d (y, —50)(y, —50)}

-mz, —z,[n(q - z2) + Wz, ] +e, —ae, —be, —ce, —de, (4.38)
U, =-[g +h(x, —350)](x, —350) + I (x, —350) + p(x, —350)(x, —350)

+[g +h(y, —50)1(y, —50) — I (y::250)-Lp(y, — 50)(y, —50)

—sz,+ f (1—-22)z, + 1z, + £3-Qe, — hey=ie; —pe;,

We obtain

V=--e-e-6<0 (4.39)

which is a negative semi-definite functionofe,, e,, e,, 4, b, ¢, d, g, h, I,
p, in the first quadrant. The Lyapunov asymptotical stability theorem is not satisfied.
We can not obtain that common origin of error dynamics (4.34) and parameter

dynamics (4.37) is asymptotically stable. By pragamatical asymptotically stability

theorem, D is a 11-manifold, n=11 and the number of error state variables p=3. When

e,=e,=¢,=0 and 4, b, ¢, d, g, h, I, p, take arbitrary values, V =0, so

X is of 3 dimensions i.e. p=3, m=n-p=11-3=8, m+1<n is satisfied. According to the
pragamatical asymptotically stability theorem, error vector e approaches zero and the
estimated parameters also approach the uncertain parameters. The equilibrium point is
pragmatically asymptotically stable. Under the assumption of equal probability, it is

actually asymptotically stable. The simulation results are shown in Figs. 4.14-4.17.
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4.4 Summary

In this chapter, a new strategy to achieve chaos synchronization by the different
translation pragmatical synchronization using stability theory of partial region is
proposed. The pragmatical asymptotical stability theorem fills the vacancy between
the actual asymptotical stability and mathematical asymptotical stability, the
conditions of the Lyapunov function for pragmatical asymptotical stability are lower
than that for traditional asymptotical stability. By using the different translation
pragmatical synchronization by stability theory of partial region, with the same
conditions for Lyapunov function, V >0, V <0, as that in current scheme of
adaptive synchronization, we not only obtain the generalized synchronization of
chaotic systems but also prove strictly, that,the estimated parameters approach the
uncertain values and the Lyapunov function-is.simple linear homogeneous function
for error states, the controllers:aresmore simple’and-have less simulation error because

they are in lower degree than that ofitraditional.controllers.

It is important to note that K, =K, _are-nat arbitrary, two proper values must

chosen to make that the error dynamics always in first quadrant, so give two more

insurances for secret communication than other synchronization methods.
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Fig. 4.2 Coordinate translation.
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Fig. 4.3 Phase portrait-of the-error-dynamic for Case 1.
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Chapter 5
Multiple Symplectic Synchronization for Ge-Ku-Mathieu

System

5.1 Preliminary

In this Chapter, a new type of synchronization, multiple symplectic
synchronization is studied. Symplectic synchronization and double symplectic
synchronization are special cases of the multiple symplectic synchronization. When
the double symplectic functions is extended to a more general form,
GxY,z,--wwW,t)=F(Xy,z,--,w,t) , it is called “multiple symplectic
synchronization”. The multiple symplecti¢ synchronization may be applied to increase
the security of secret communication due ito-the complexity of its synchronization

form.

5.2 Multiple Symplectic Synchronization:Scheme

Generalized synchronization refers to a functional relation between the state
vectors of master and of slave, i.e. y=F(x,t), where x and y are the state vectors
of master and slave. Recently, generalized synchronization is extended to a more
general form, y=F(x,y,t). This means that the final desired state y of the “slave”
system not only depends upon the “master” system state x but also depends upon the
state y itself. Therefore the “slave” system is not traditional pure slave obeying the
master system completely but plays a role to determine the final desired state of the
“slave” system. This kind of synchronization, is called “symplectic synchronization”,
and the “master” system is called Partner A, the “slave” system is called Partner B.

Since the symplectic functions are presented at both the right hand side and the

left hand side of the equality, it is called double symplectic synchronization,
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G(x,y,t) =F(x,y,t). Where x,y are state vectors of Partner A and Partner B ,
respectively, G(x,y,t)and F(X,y,t)are given vector functions of x,y and time.
When the double symplectic functions is extended to a more general form,
G(xY,z,-- W, t)=F(X,y,z,--,w,t) , it is called “multiple symplectic
synchronization”. Where Xy, z,---,ware state vectors of Partner A and Partner B ,
respectively, G(x,y,z,--,w,t) and F(x,y,z,---,w,t) are given vector functions of

X,Y,Z,--,W and time.

5.3 Synchronization of Three Different Chaotic Systems
Case 1.

X +Y, +2
Define G(X,Y,z,t) =| X, + Yo #7,
X, Y, + 25

X, COS Y,Z, + X, COSY,Z, +X;COS Y, 2,
F(X,y,z,t) =| X, COS Y,Z, + X, COS Y575 +X; COSY5Z5 | /and our goal is to achieve the
X, COS Y,Z, + X, COS YyZy +X,.COS.Y5Zs

multiple symplectic synchronization G(x,y,z,t)=F(x,y, z,t).

Consider the Chen system is described by

X =m(X, = X),
X, = (W—=m)X, — X X3 + WX,, (5.1)
Xs =X X, —NX;,

where m=35n=3,w=27.2 and the initial condition is

X,(0) =0.5, x,(0) =0.26 ,x,(0) =0.35. The chaotic attractor of the Chen system is

shown in Fig. 5.1.

The Lorenz system is described by
2, = I’(22 - Zl)’

2,=2(5-25) - 12,, (5.2)
1, =172, - fz,,
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where r=10,s=28, f :g and the initial condition is

z,(0)=0.01, z,(0) =0.01 ,z,(0) = 0.01. The chaotic attractor of the Lorenz system is

shown in Fig. 5.2.

The controlled Ge-Ku-Mathieu(GKM) system is described by

Yi =Y, tUp,
V, ==y, = yi[ b(c-¥7) +dyy, ]+, (5.3)

Yo =—(9+ny,) 5 +1y, + py, Y5 +Us,
where a=-0.6,b=5,c=11,d=0.3,g=8h=10,1=05p=02, u=[u,u, u,]" is

the controller, and the initial condition is y,(0) =0.01, v,(0)=0.01, y,(0)=0.01.

Thus we design the controller as

Uy = M(X, —X)Z, COS Y, +X,808 YiF(Z, =21 X2y, SIN Y, +2, COS Y, (W—M)X, =X, X, +WX, )
+ X, COS yl(zl(s - 23) - Zz) — X323, sin i t+ (X1X2 - nX3)Zs COSY; + X, COS yl(zlzZ - fzs)
—X25Y, sin Yi— m(xz - X1) Y~ r(22 - 21) +8

U, = M(X, —X,)Z,COS Y, + X, C0S Y, (2, — ,) — Xz, (-ay, — Y, (b(c — y?) +dy,y;))sin y,
+2,C08 Y, ((W—m)X, — X X; +WX,) + X, COS Y, (Z,(S—2;) — 2,)
—X,2,(-ay, — y,(b(c - y?) +dy,y,))sin y, + (XX, —NX,)Z, COS Y, + X, COS Y, (2,2, — fz,)
—X;Z5SiN Y, (=ay, — ¥ (0(c = y7) +dy, Y;)) = (W—m)X, — XX +WX,)
—(-ay, - v (b(c—y7) +dy,¥5)) — (z,(5 - 2,) - 2,) +e,

Uy = M(X, —X,)Z, COS Y3 + X, COS Y;F (z, —2,) — X2, (=(9 + hy,) y; +1y, + Py, Y;)siny,
+2,C0S Y, (W—m)X, — X X; +WX,) + X, COS Y,(z,(S—2,) - Z,)
—X%Z, (_(g + hyl)yS + Iyz + py1y3)Sin Ys+ (X1X2 - nx3)23 COS y; + X; COS y3(2122 - st)
= %325 SIN Y5 (=(9 +hy,) Y5 + 1y, + pyYs) = ()%, —nx;)
—(—=(g+hy)ys +1ly, + py,ys) — (2,2, — fz;) +e,

The Theorem in Chapter 3 is satisfied and the multiple symplectic

synchronization is achieved. The phase portrait of the controlled Ge-Ku-Mathieu
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system and the time histories of G(x,y,z,t) and F(x,y,z,t) and the time histories

of the state errors are shown in Fig. 5.3 and Fig. 5.4 and Fig. 5.5, respectively.

Case 2.
x1+yl+zl
Define G(X,y,z,t)=| X, +Y,+2Z, | ,
X3+y3+Z3

X, Siny,z, +X,sinYy,z, + X;Sin y, 2,
F(x,y,z,t)=| x;siny,z +X,siny,z, + X, Sin y,z, |, and our goal is to achieve the
X, SIN Y,Z, + X, SiN Y, 2, + X, Sin y,Z,

multiple symplectic synchronization G(x,y,z,t) =F(x,y, z,t).

Consider the Rossler system is described by

X = _(Xz + Xs)v

X, = X, + MX,, (5.4)
Xy = N+ X X3 — WX;,

where m=0.15,n=0.2,w=10 , and -the initial “conditions are x (0)=2 ,

X,(0)=2.4, x,(0)=5. The chaoticattractor of the "Rdssler system is shown in Fig.

5.6.

The Lorenz system is described by

21 = I’(22 - Zl)’

z,=12,(5-12,)—1z,, (5.5)
1, =17y, — fz,,

8

where r=10,s=28, f = 3 and the initial condition is

2,(0) =0.01, z,(0) = 0.01 ,z,(0) = 0.01.

The controlled Ge-Ku-Mathieu(GKM) system is described by

Yi =Y, tUp,
V, ==y, - yi[ b(c-y7) +dyy, ]+, (5.6)

Vs =—(9+hy,)ys +1y, + py,Ys +Us,
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where a=-0.6,b=5,c=11,d=0.3,g=8hn=10,1=0.5p=0.2, u:[ul,uz,us]T is
the controller, and the initial condition is y,(0)=0.01, vy,(0)=0.01,y,(0)=0.01.

Thus we design the controller as

U, =—(X, + %)z, siny, + x siny,r(z, —z,) + X,2,y, Cos y; + z, Sin y, (X, + mx,)
+X,SIN Y, (Z,(S—2,)— Z,) + X,Z,Y, COS Y, + (N+ X, X; —WX;)Z,Sin Y, + X, Sin Y, (z,2, — fz,)
+ X323, C08 Y, —(—(X, + %)) =Y, —r(z, —2,) +¢

U, = —(X, +X;,)z,8iny, + X, sin y,r(z, —z,) + x,z,(-ay, — y,(b(c — y/) +dy, y,)) cos y,
+2,8in Y, (X, +mX,) + X, Sin y,(z,(s—z;) — 2,)
+%,2,(=ay, = Y, (0(C = ¥7) + dy,¥5)) COS Y, + (N+ XX, —WX3)ZySIN Y, + X, SiN Y, (2,2, — 12,)
+X,25 €08 Y, (—ay, — Yy (b(c = ¥7) +dy,Y,)) — (%, +mX,)
= (-ay, -y (b(c—y7) +dy,y,)) 5 (2 (85 25) ~ 2,) +e,

Us = _(Xz + XS)lein Y + X13in yar(zz — Zl) + Xlzl(_(g + hyl)y3 + Iyz + pylys) COS'Y,
+ 2, 8In Y, (X, + MX,) +X, sin Y,(z,(s=2;) - 2,)
+%,2,(=(9 +Ny,) Y; + 15+ PYiYE)COS Y +(N + XX, —WX;)Z, SN Y, + X3 in Y;(2,2, — fz,)
+ %325 €08 Y5 (—(g + hy;) Y5+, + Py, Ys) — (X X, —WX;)
- (_(g + hyl)Ys + Iyz + pylys) _(2122 | | fzs) +€;

The Theorem in Chapter 3 is satisfied and the multiple symplectic
synchronization is achieved. The phase portrait of the controlled Ge-Ku-Mathieu
system and the time histories of G(x,y,z,t) and F(x,y,z,t) and the time histories

of the state errors are shown in Fig. 5.7 and Fig. 5.8 and Fig. 5.9, respectively.

Case 3.
X+Y,+7 X Y12, + X Y12, X312,
Define G(X,y,z,t)=| X, +Y,+2Z, | , FOX,Y,Z,t) =| X Y,Z, + X, Y,Z, + XY, 25 |,
X3+y3+z3 X1y321+X2y322+X3y3z3

and our goal is to achieve the multiple symplectic synchronization
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G(xy,z,t)=F(xY,zt).

Consider the sprott system is described by

X = XX,
X, = X7 —X,, (5.7)
X, =1-mx,

where m=4 and the initial conditions are x,(0) =-1, x,(0) =—1 ,%,(0) =-1. The

chaotic attractor of the sprott system is shown in Fig. 5.10.

The Lorenz system is described by

2, =r(z,-1),
2,=2(5-12,) - 2,, (5.8)
2, =712, — fz,,
where r=10,s=28, f :g and the initial condition is
z,(0)=0.01, z,(0) =0.01 ,z,(0),= 0.01.

The controlled Ge-Ku-Mathieu(GKM)system is described by

Yi=Y,+U,

y,=-ay, -V, [b(c— yf)+dy2y3J+u2, (5.9)

Vs =—(9+hy,)ys +1y, + py,Ys +Us,
where a=-0.6,b=5,c=11,d =0.3,g=8h=10,1=05p=02, u=[u,u,,u,] is

the controller, and the initial condition is y,(0)=0.01, y,(0)=0.01,y,(0)=0.01.

Thus we design the controller as
2
Uy =X X352, Y, + X1y1r(22 - Zl) +X2,Y, +7, yl(Xl - Xz)

+X,Y,(2,(S—2,) —2,) + X,2,Y, + (A —mX) 2.y, + X, ¥, (2,2, — fz;)
+ X323YZ - X2X3 - yz - I‘(22 - Zl) +e1
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Uy =X, X2, + XY, (2, = ) + %2, (-ay, — Yy (b(c - ¥7) +dy,Y;))
+2,Y,(X2 = %,) +X,Y,(z,(s - 2,) - 2,)
+X,2,(-ay, — y,(b(c—y2) +dy,y,)) + L—mx)z,Y, + XY, (2,2, — fz,)
+ XoZy (8, = Yy (B(C = V1) +dy,Y)) — (4 — X,)
—(-ay, — Vi (b(c—y7) +dy,¥,)) — (z(s - 2,) ~ 2,) + &

Uy = X,XsZ, Y5 + X, Y5l (2, = 2,) + %2, (=(9 +hy,) Y5 +1y, + Py, Ys)
+2,¥, (¢ = %) + %, Y, (2,(5 - 2,) - 2,)
+X%,2,(=(g +hy,) y; +1y, + py,Y,) + X =mx)Z, Y, + XY, (2,2, — fz,)
+X%,23(—(9 +hy,) y; + 1y, + py;y;) - (1—-mx,)
— (g +hy,)ys +ly, + py,Ys) - (22, — 12;) + e,

The Theorem in Chapter 3 is satisfied and the multiple symplectic
synchronization is achieved. The phase portrait of the controlled Ge-Ku-Mathieu
system and the time histories of G(x,y, z;t), and F(X,y,z,t) and the time histories

of the state errors are shown in Fig.’5.11 and-Fig. 5.12 and Fig. 5.13, respectively.

5.4 Summary

A new type of synchronization,-multiple_symplectic synchronization, is studied
in this Chapter. It is an extension of double symplectic synchronization. By applying
active control, the multiple symplectic synchronization is achieved. The simulation
results show that the proposed scheme is effective and feasible. Furthermore, the
multiple symplectic synchronization of chaotic systems can be used to increase the

security of secret communication.
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Fig. 5.2 The chaotic attractor of the Lorenz system.
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Chapter 6
Robust Projective Anti-Synchronization of Nonautonomous
Chaotic Systems with Stochastic Disturbance by Fuzzy

Logic Constant Controller

6.1 Preliminary

In this paper, a simplest fuzzy logic constant controller (FLCC) ,which is derived
via fuzzy logic design and Lyapunov direct method, is presented for projective
anti-synchronization of nonautonomous chaotic systems with uncertain and stochastic
signals. Controllers in traditional Lyapunov direct method are always nonlinear and
complicated. However, FLCC proposed--are/such simple controllers which are
constant numbers, decided via.the values of.the upper.and lower bounds of the error
derivatives. This new method IS used in projective anti-synchronization of
nonautonomous chaotic systems, with 'stochastic disturbance to show the robustness
and effectiveness of FLCC.
6.2 Projective Chaos Anti-Synchronization by FLCC Scheme

Consider the following master chaotic system

X=(A+A)X+ f(X)+< (6.1)
where x=[x,X,,---X,]" €R" denotes a state vector, A is an nxn constant

coefficient matrix , f is a nonlinear vector function, A is nonautonomous term
and ¢ is stochastic disturbance.
The slave system which can be either identical or different from the master, is
y=By+g(y)+u (6.2)

where y=[y,,¥,,~--y,]' €R" denotes a state vector, B is an nxn constant
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coefficient matrix, g is a nonlinear vector function, and u=[u,,u,,---u,]" € R"is the

fuzzy logic controller needed to be designed.

For projective anti-synchronization, in order to make the chaos state —y
approaching the goal state ax, define e=ax—(-y)=ax+y as the state error,
here « is a constant. The chaos projective anti-synchronization is accomplished in the
sense that [59]:

!Lrpoe=!Lrpo(ax+y):O (6.3)
where

e=[e, e ] =ax+y (6.4)

From Eq. (6-4) we have the following error dynamics:
e=aXx+y=d @A +;x &(X)& | B ygr ¢ ) (6.5)
According to Lyapunov direct method, we.have the following Lyapunov function

to derive the fuzzy logic controller for projective anti-synchronization:
V="~(, e, e) :%(ef+---+e,f1 +---+62)> 0 (6.6)
The derivative of the Lyapunov function in Eq. (6.6) is:
V=g +-+e6é ++ee (6.7)

If the vector controller in Eq. (6.5) can be suitably designed to achieve V <0,
then the zero solution e=0 of Eq.(6.5) are asymptotically stable i.e the projective
anti-synchronization is accomplished. Next, the design process of FLCC is

introduced.

We use the error derivativeé(t) =[&,,¢,,---,&,,---,6,] , as the antecedent part of

m

the proposed FLCC to design the control input u which is used in the consequent

part of the proposed FLCC:

U=[Uy, Uy, U,y | (6.8)
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where u is a constant column vector and accomplishes the objective to stabilize the
error dynamics in Eq. (6.5).

The strategy of the FLCC designed is proposed as follow and the configuration
of the strategy is shown in Fig. 6.1.

Assume the upper bound and lower bound of €&, are Z, and —Z,, then the

FLCC can be design step by step:

(1) If e, is detected as positive (e, >0), we design a controller foré <0 for
the purpose V =e, &, <0. Therefore we have the following ith(i=1,2,3) if-then

fuzzy rule as:

Rule 1 : Ifé, is My Then um = -Zn (6.9)
Rule 2 : Ifé_is M, ThenUm'="-Zny (6.10)
Rule 3 : Ifé, is M3 Thentmz=e, (6.11)

(2) If e, is detected as negative (e, <0), we design a controller foré,, >0, for

the purpose V =¢ ¢, <0. Therefore we have'the following ith if-then fuzzy rule

as:
Rule 1 : Ifé_is My Then um = Zp, (6.12)
Rule 2 : Ifé, is M, Then un = Zpn (6.13)
Rule 3 : Ifé is M3 Then unz=e, (6.14)

(3) If e, approaches to zero, then the synchronization is nearly achieved.

Therefore we have the following ith if-then fuzzy rule as:

Rule 1 : Ifée, is My Then um =e, =0 (6.15)
Rule 2 : Ifé,,is M, Then uyp,=e, =0 (6.16)
Rule 3 : Ifé, is M3 Then uns=¢e, =0 (6.17)
el [ z —é 6, —Z
whereM:|—m, M, = & and Mz = sgn(——™)4+sgn(——m) |
1 Z 2 z 3 gn( S ) +sgn( > )

m m
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M;,M,andM refer to the membership functions of positive (P), negative (N) and

zero (Z) separately which are presented in Fig. 6.2. For each case,u;, i= 1~3 is the
i-th output of €, which is a constant controller. The centriod defuzzifier evaluates

the output of all rules as follows:

u, =" (6.18)

The fuzzy rule base is listed in Table 1, in which the input variables in the
antecedent part of the rules are €, and the output variable in the consequent part

ISUpp -

Table 1 Rule=table'of'‘Fl:CC

Rule Antecedent Consequent Part
€m Ui
1 Negative (N) U1
2 Positive (P) Un2
3 Zero (2) Ums

With appropriate fuzzy logic constant controllers in Eq. (6.7), a negative definite
derivatives of Lyapunov function V can be obtained and the asymptotical stability
of Lyapunov theorem can be achieved.

Consequently, the processes of FLCC designed to control a system following the
trajectory of a master system are getting the upper bound and lower bound of the error
derivatives of the goal and control systems without any controller, i.e.

—Z,, <é, <Z,. Through the fuzzy logic system which follows the rules of Eq. (6.9)

~ Eq. (6.17), a negative definite derivatives of Lyapunov function V can be
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obtained and the asymptotically stability of Lyapunov theorem can be achieved.
6.3 Simulation Results

There are two examples in this Section. Each example is divided into two parts,
projective anti-synchronization by FLCC and that by traditional method. In the end of
each example, we give the simulation results of two controllers and list the tables and
figures to show the effectiveness and robustness of our method.
Case 1

6.1 Projective Anti-Synchronization of Sprott Systems by New FLCC

The Sprott 19 system [60] is:

X =X,

X, = X, (6.19)
Xa =ax, +bX2 _Xg_x1

When initial condition (X, X, X503 =1(0,1,0) ~.and\ parameters a=-0.6,b=2.75,
chaos of the Sprott 19 system’appears. The chaotic behavior of Eq. (6.19) is shown in
Fig. 6.3.

6.1.1 Projective Anti-Synchronization‘of Nonautonomous Sprott 19 System by
New FLCC

The nonautonomous Sprott 19 system is:

dx, (1) _
pramiabedl)

dx, (t)
dt

dx, ()
dt

= X,(t) (6.20)

=a(l+A,)X (1) +bx, () =X —x,

When initial condition (X, X0, X5,) =(0,1,0) , parameters a=-0.6,b=2.75 ,and
A, =pulse generator is an nonautonomous term as shown in Fig. 6.4. Chaos of the
nonautonomous Sprott 19 system appears in Fig. 6.5.

The Sprott 22 system [60] is:
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X=X
X, = X, (6.21)

X3 = CX; — X, —SIN X

w

When initial condition (X, X,,, X;) = (0.014,1,0.01) and parameters c¢=0.2, chaos of
the Sprott 22 system is shown in Fig. 6.6.

The slave Sprott 22 system with controllers is:

% =Y, (t) +U
dy, (t)

dt =Ys )+ U, o
dﬁ?)=cwﬂ)—yxo—smyr+%

For initial condition (Y., Y40, Ys0) = (0.01, 1, 0.01) and parameters ¢=0.25, chaos of
the slave Sprott 22 system in Eq.(6:21) appears-as well.u, ,u,anduzare FLCC to
anti-synchronize the slave Sprott 22 system to master. Sprott 19 system.

The error vector for projective-anti-synchronization is

e(t) x ) | |y
e=|e,(t) [=a| X(t) |+] V(1) (6.23)

&(t) X (1) | | Ys()
Here « is the projective constant.
Our aim is

lime=0 (6.24)

t—o

From Egs. (6.20), (6.22), (6.23), we have the following error dynamics:

& = a[x,(O]+(y, () +u)
e, = a[X )]+ (y;(t) +u,) (6.25)
& = afa(l+A)x; (1) +b%, (1) =X, =X ]+ (cy; (1) - y, (t) —sin y, +Us,)

Choosing Lyapunov function as:
% =%(el2 +e5 +el) (6.26)
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Its time derivative is:

V =g¢€ +6,6, +6,6,
=e{alx, (O] +(y, (1) +u)}
+e{alx; ()] +(y;(t) +u,)}
+e{afall+A;)X(t) +bx,(t) - Xg =X ]+ (cy,(t) -y, (t) —siny, +u,)}

(6.27)

In order to design FLCC, we divide Eq. (6.27) into three parts as follows:

AssumeV :%(el2 +el +e2) =V, +V, +V,, thenV =ge,6, +€,€, +e,6; =V, +V, +V,,
1, 1, 1,
whereV,; =—e;,V, ==ejandV; = —e;3.
1 2 1 2 2 2 3 2 3
Part 1: V, =eg =e{alx, )]+ (y,() +u)}
Part 2: V, =e,€, = e,{a[x,(1)]+ (y5(t) +u,)}

V, =6, = e, {afa(l4A;)x, () +bx, ()= x5 — x ]
+ (CYS (t) - yz (t) —Sin y1 + us)}

Part 3:

FLCC in Part 1, 2 and '3 can be obtained via the fuzzy rules in Table 1. The
maximum value and minimum’ value can be observed in time histories of error
derivatives without any controllers shown in'Fig. 6.7.

FLCC are proposed in Part 1, 2 and 3 to make V,=egé <0 ,
V, =e,é, <0andV, =e,&, <0. Hence we haveV =V, +V, +V, <0. It is clear that

all of the rules in FLCC can lead that the Lyapunov function satisfies the asymptotical
stability theorem. The simulation results are shown in Fig. 6.8 and Fig. 6.9. The
projection of phase portraits of system (6.22) with chaotic behaviors is shown in Fig.

6.6.
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6.1.2 Robust Projective Anti-Synchronization of Nonautonomous Sprott
System with Stochastic Disturbance by FLCC

The master nonautonomous Sprott 19 system with stochastic disturbance is:

dxé,ft) =X, t+ A,

dx, (1)
dt

% =a(l+A) X () +bx, () — X5 — %, +A,

=X(t)+4, (6.28)

For initial condition (Xyg,X5,%30) = (0, 1, 0). The pulse generator A, is an
nonautonomous term in Fig. 6.4,A,is band-limited white noise (PSD=0.1) in Fig.
6.10, and parameters are a=-0.6, b=2.75. Chaos of Eq. (6.28), the nonautonomous
Sprott 19 system with stochastic disturbance;appears in Fig. 6.11.

The slave system is the same as jEg.(6.22) and Lyapunov function derived
through Eq. (6.23)~(6.27).

Leta =2, we have the following errordynamics:

&, = a[X, (1) + A, ]+ (y,(t) + ;)
e, = alX(t) +A,]+ (y;(t) +uy,) (6.29)
és = a[a(1+A1)X3(t) +bX2 (t) - Xg - X1 +A2]+ (Cys(t) - yz (t) —sin yl +U3)

And time derivative of Lyapunov function is:

V =g +6e,6, +e6,
=e{alx, (t) + A1+ (y, (t) +u,)}
+e{alx(t) + 4,1+ (Y, (t) +u,)} (6.30)
+e{afal+A,)x,(t) +bx, () - X;’ —X +A,]
+ (Cys(t) —Y (t) —sin Yi+ U3)}

The maximum value and minimum value without any controller can be observed

by time histories of error derivatives shown in Fig 6.12. The robust projective
anti-synchronization scheme to make V =eg +e,6, +e,6, <0. It is clear that all of

the rules in FLCC can lead that the Lyapunov function satisfies the asymptotical
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stability theorem. The simulation results are shown in Fig. 6.13 and Fig. 6.14.

6.1.3 Robust Projective Anti-Synchronization of Nonautonomous Sprott
System with Stochastic Disturbance by Traditional Method
In order to lead the derivative of Lyapunov function in Eq. (6.30) to negative

definite, we choose robust traditional nonlinear controllers as:

u =—a(x,+4,)+y,+e]
U, =—a(X;+4,)+Yy;+e,] (6.31)
U, =

—{afa(l+A))X, +bx, =X —x +A,]+cy, —y, —siny, +&,}
And we can obtain
V=—¢¢-¢e-"g (6.32)
The derivative of Lyapunov. functionsis-negative definite and the error dynamics

in Eq. (6.29) are going to achieve asymptotically stable. The simulation results are

shown in Fig. 6.15 and Fig. 6.16.

6.1.4 FLCC Compared to Traditional Method

In this subsection, the controllers and numerical simulation results in subsection
6.1.2 and subsection 6.1.3 are listed in Tables 2 and 3 for comparison. Comparing two
kinds of controller in Table 2 and two kinds of errors in Table 3, it is clear to find out
that (1) The controllers in FLCC designing are much simpler than traditional ones; (2)
The performance of the error convergence of states by FLCC is much better than that
by traditional method.

Consequently, even the system contains noise and parameter uncertainty, the
FLCC can still remain the high performance to synchronize the two chaotic systems

with uncertainty and stochastic signals exactly and efficiently.
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Table 2 The controllers of FLCC and of traditional method.

Controller FLCC Traditional method
u, Z =10 —a(x,+A,)+y,+¢e]
u, Z.,=20 —a(x;+A,)+Yy,+6,]

~{afa@+A)X, +bx, — X3 —x, +A,]

U, Z.,=50 +Cy, — Y, —siny, +e.}

m
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Table 3 Errors data after the action of controllers.

Time
after the action

of controllers

FLCC

Traditional method

S

S

35.97s

35.98s

35.99s

36.0s

36.01s

0.00000000000000177636
0.00000000000000088818
0.00000000000000088819
0.00000000000000088818

-0.00000000000000355271

€,

-0.00054576536205530601
-0.00054033490596872014
-0.00053495848382301148
-0.00052963555797180817

-0.00052436559611734879

€,

35.97s

35.98s

35.99s

36.0s

36.01s

0.00000000000000133227
0.0000000000000013322+
0.00000000000000133227
0.00000000000000133227

-0.00000000000000355271

&

-0.00656173798135295527
-0.00649644759754419709
-0.00643180686390909528
-0.00636780931631975022

-0.00630444855496925527

€

36.05s

36.06 s

36.07 s

36.08 s

36.09 s

0.00000000000000799361

0.00000000000000799361

0.00000000000000799361

0.00000000000000710543

0.00000000000000710543

0.02132987975686884141

0.02111764390717763007

0.02090751983947569670

0.02069948654118025644

0.02049352320878927713
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Case 2
6.2 Projective Anti-Synchronization of Sprott System and Ge-Ku-Mathieu
Systems
6.2.1 Chaos Projective Anti-Synchronization of Nonautonomous Sprott 19
System and Ge-Ku-Mathieu (GKM) System by New FLCC

The nonautonomous Sprott 19 system is:

dx, (t) _
e ®)

dx, (t)
=z =% () (6.33)

E0 _ @ a0 +b+ 48, 1,0 - -,

When initial condition (X,y, X,9 +%s5)=(0,1,0), parametersa=-0.6,b=2.75,
pulse generator A, in Fig. 6.4, band-limited- white noise A, in Fig. 6.10,
chaos of the nonautonomous Sprott 19 system with stochastic disturbance
appears in Fig. 6.17.

The slave GKM system is:

dy, (t) _

dt - y2 (t) + u1
dyé t(t) =—my, (t) - y, (){nc - y; ()] + dy, (1) y; (1)} +u, (6.34)
% =—[g +hy, (t)]y;(t) +1y,(t) + py, () y;(t) + U,

When initial condition (g, Y40, Y30) = (0.01, 0.01, 0.01) and parameters m=-0.6, n=>5,
c=11, d=0.3, g=8, h=10, 1=0.5, p=0.2, chaos of the GKM system appears as
well.u; ,u,andusare FLCC to anti-synchronize projectively the slave GKM system to
the master one.

Our aim is

lime=0 (6.35)

t—oo
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where the error vector

e (t) X0 [v.(t)
[e]=] &) |=a| %) [+] V,(t)
& (t) X (t) | | vs()

Here « is constant

From Eqg. (6.36), we have the following error dynamics:

& = a[x, (O] +(y () +u,)

€, = a[x; (O] +{-my, (1) - y,(t)
x[n(c—yy (1) +dy, () Y5 ()] +u,}

& = afa(l+A) X (t) + bL+AA,)%, (1) —X; — ]
+[=(9 +hy, (0) y5 (1) + Iy, (1) + py, (1) y5 (1) + U,

Choosing Lyapunov function as:
_ 1 5 2 2
\Y _E(el +e5 +€e3)

Its time derivative is:

V =gé€ +6,6, +6e,6,
=e{alx, ()] +(y,(t) +u)}
+e,{a[X; ()] +{—my, (t) - v, (t)
x[n(c -y (1)) +dy, (£) y ()] +u,}
+efafa@+A)X (1) +b(L+AA, )%, (1) = X5 — X
+[=(g +hy, (1) y, () + 1y, (t) + py, (1) y,(t) +u,1}

In order to design FLCC, we divide Eq. (6.39) into three parts as follows:

(6.36)

(6.37)

(6.38)

(6.39)

1 1 1
whereV, = Eef V, = Eeg andV, = Eeg.
Part1: V, =eg =e{alx, O]+ (y,(t)+u)}

vz =,8, = e, {alx; ()] +{-my, (t) -y, (t)
x[n(c—y; () +dy, (©) y; (0] +u,}

Part 2:
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\/3 =e:6; =e{afall+A)x,(t) + b1+ A,A,)%,(t) - Xg —X]
+[—(g +hy, (1)) y5(t) + 1y, (1) + py, (1) y5(t) +us]

Part 3:

FLCC in Part 1, 2 and 3 can be obtained via the fuzzy rules in Table 1. The
maximum value and minimum value can be observed in time histories of error
derivatives without any controller shown in Fig. 6.18.

FLCC are proposed in Part 1, 2 and 3 and make
V, =e6, <0,V, =e,6, <0andV, =e,&, <0. Hence, we haveV =V, +V, +V, <0.

It is clear that all of the rules in our FLCC can lead that the Lyapunov function
satisfies the asymptotical stability theorem. The simulation results are shown in Fig.

6.19 and Fig. 6.20.

6.2.2 Robust Projective-yAnti=Synchronization of Nonautonomous Sprott
System with Stochastic Disturbance‘and GKM System-by FLCC

The master noautonomous.Sprott 19 system with.stochastic disturbance is:

dx,(t) _
=0+,

dx, (t) _
z =% (1) (6.40)

dx, (t) =a(l+A,)%, (1) +bL+AA, )X, (1) = XS — X,

For initial condition (X,g,X5,X5) = (0, 1, 0), pulse generator A, in Fig. 6.4,
band-limited white noise disturbance A,(PSD=0.1) in Fig. 6.10, and parameters
a=-0.6, b=2.75, chaos of the nonautonomous Sprott 19 system with stochastic signal

appears. The chaotic behavior of Eq. (6.40) is shown in Fig. 6.21.

The slave system was same as Eq. (6.34) and Lyapunov function derived through

Egs. (6.35) ~(6.39).
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Leta =2, we have the following error dynamics:

€ =a[X,(t) +A,]+ (Y, (t) +u,)
€, = a[X; ()] +{-my, (t) - y,(t)

x[n(c—y; () +dy, (©) Y5 (D] +u,} (6.41)
&, = afa(l+A)X, (1) +bA+AA, )X, (1) — X5 — ]

+[=(g +hy, (1)) y,(t) + Iy, (t) + py; () y5(t) + u,]

Time derivative of Lyapunov function is:

V =¢eg +6,6, +e.6,
=e{alx, (t)+ A, ]+ (Y, (t) +u)}
+e,{alx, (O] +{-my, (t) - y,(t)
x[n(c—y; (©) +dy, () y; ()] +u,}}
+efafall+A) X, (1) + b+ AA)X, (1) =X —x]
+[=(g +hy, (1)) y5(t) + 1y, (t) + py (t) y,(t) +u,]}

(6.42)

The maximum value and minimum value without any controller can be observed

in time histories of error=derivatives “shown ‘in Fig 6.22. The projective

anti-synchronization scheme to make V-=eg +e,6, +e.6, <0. It is clear that all of

the rules in FLCC can lead that the.Lyapunov function satisfies the asymptotical

stability theorem. The simulation results are shown in Fig. 6.23 and Fig. 6.24.

6.2.3 Robust Projective Anti-Synchronization of Nonautonomous Sprott 19
System with Stochastic Disturbance and GKM System by Traditional Method

According to Eq. (6.42), we design complicated controllers to anti-synchronize
projectively chaotic systems in subsection 6.2.2 by traditional method.

We choose controllers are

U =—fa(x, +A,)+y, +e]
u, = {ax,(t) +[-my, (t) — y,(t)

x[n(c—y; (1) +dy, (1) v, (O)]]+e,} (6.43)
u, = —{afal@+ A%, (1) + b+ AA, )X, (1) = X — X,

+[=(g +hy, (1)) ys (t) + 1y, (1) + py, (1) ys ()] + €5}
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And we can obtain
V=-¢¢-66-g & (6.44)
The derivative of Lyapunov function is negative definite and the error dynamics

in Eq. (6.41) achieves asymptotical stability. The simulation results are shown in Fig.

6.25 and Fig. 6.26.

6.2.4 FLCC Compared to Traditional Method

In this case, the controllers and numerical simulation results of subsection 6.2.2
and subsection 6.2.3 are listed in Table 4 and Table 5 for comparison. The mater and
slave systems are more complex than Case 1, but the good-robustness and high
performance can be still achieved through-FLCC:_ The two main superiorities are still
existed: (1) The controllers in ELCC designing are much simpler than traditional ones;
(2) The performance of the convergence of error states-by FLCC is much better than

by traditional method.

Table 4 The controller of FLCC and of traditional method.

Controller FLCC Traditional method
U £, =20 —a(x, +4,)+y,+e]
u, Ly, =100 o (t) +[-my, (1) - y, ()

x[n(c—yy (1) +dy, (1) Y5 ()11 +e,}

u, Z,,=200 ~{afal+A) X, (1) + b+ AA)X, (1) = X5 —:
+[=(g +hy, (1) y, (t) + 1y, (t) + py, (1) y,(t.
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Table 5 Errors data after the action of controllers.

Time after the
action of

controllers

FLCC

Traditional

S

S

38.15s

38.16 s

38.17s

38.18 s

38.19s

0.00000000000000001388
-0.00000000000000258127
0.00000000000000646705
0.00000000000000641154

0.00000000000000634215

€,

0.00032496190090512689
0.00032172847596594056
0.00031852722414243972
0.00031535782530682510

0.00031221996251651341

€,

38.155s

38.16 s

38.17s

38.18 s

38.19s

0.00000000000003373603
0.0000000000000334 1424
0.00000000000003309332
0.00000000000003276893

0.00000000000003245841

&

0.00204273347495999638
0.00202240793727799430
0.00200228464207508148
0.00198236157700495399

0.00196263674974449503

€

38.15s

38.16 s

38.17s

38.18 s

38.19s

0.00000000000003749778

0.00000000000003713696

0.00000000000003677614

0.00000000000003638756

0.00000000000000360267

-0.00101150580259323775

-0.00100144115169376047

-0.00099147664574397720

-0.00098161128828502808

-0.00097184409277292771

77



6.4 Summary

A simplest fuzzy controller (FLCC) is introduced to projective
anti-synchronization of non-autonomous chaotic systems with stochastic disturbance.
Three main contributions can be concluded: (1) High performance of the convergence
of error states in synchronization; (2) Good robustness in projective
anti-synchronization of the chaotic systems with stochastic disturbance; (3) Simple

constant controllers are used, which can be easily obtained.
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FLCC

e, >0
Rude 1 :36, 15 My then ten) = Zn

Rule 2 : ifé,is My then um = Zn

Integrator Master System @
x,, (£) x,(8)

Integrator Slave System _’k"')

Y (0 Yu(0)

Flowchart— Base on MATLAB

Rude 3 :3fé,is M3 then uns =e,

g, <0
Rule 1 :ifé,,is My then tim; = -Zn
Rule 2 :ifé, is M then tim = -Zn

Rule 3 :ifé,is M3 then ung =€,

2, €0

Rude 1:ifé,is My then tmy=e, %0
Rde 2 16,15 My then iy =e¢, »0

Rde 3 :1fé,is My thenugg=e,_»0

Fig. 6.1. The configuratronof-fuzzy logic controller.

M

Negative
1.0

Positive

=10 ém

Fig. 6.2. Membership function.
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Fig. 6.3. Projections of phase portrait of chaotic Sprott No.19 system with a=-0.6,

h=2.75.
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Fig. 6.4. A, is pulse generator.
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Fig. 6.5. Projections of phase portrait of nonautonemous chaotic Sprott 19 system and

a=-0.6, b=2.75.

Fig. 6.6. Projections of phase portrait of chaotic Sprott 22 system with controllers.
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Fig. 6.7. Time histories of, error derivatives.for master and slave Sprott

nonautonomous chaotie systems without controllers.
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Fig. 6.8. Time histories of errors for Casel (nonautonomous system) the FLCC is

added after 30s.
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90 100

Fig. 6.9. Time histories of states.for Casel (nonautonomous system) the FLCC is

added after 30s.
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Fig. 6.10. The stochastic signal of A, is band-limited white noise(PSD=0.1).
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Fig. 6.11. Projections of phase portrait-of-nenautonomous chaotic Sprott 19 system

with stochastic disturbance A, ,'a=-0.6 and b=2.75.
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Fig. 6.12. Time histories of error derivatives for master and slave Sprott chaotic
systems without controllers.
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Fig. 6.13. Time histories of errors for-subsection-3.2.2, the FLCC is applied after 30s.

Fig. 6.14. Time histories of states for subsection 3.1.2, the FLCC is applied after 30s.
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Fig. 6.15. Time histories of errorsfor subsection 3.1.3 the traditional nonlinear

controlleris applied after 30s.

Fig. 6.16. Time histories of states for subsection 3.1.3 the traditional nonlinear

controller is applied after 30s.

86



Fig. 6.17. Projections of phase portrait-ef-nonautonomous chaotic Sprott 19 system

with stochastic disturbance-where a=-0.6, h=2.75.
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Fig. 6.18. Time histories of error derivatives for subsection 3.2.1.
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Fig. 6.20. Time histories of states for subsection 2-3.2 the FLCC is coming into after

20 30

30s.
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Fig. 6.21. Projections of phase portrait of nonautonomous chaotic Sprott 19 system

with stochastic disturbance where-a=-0.6, h=2.75.
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Fig. 6.22. Time histories of error derivatives for Sprott chaotic systems without

controllers.
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Fig. 6.24. Time histories of states for subsection 3.2.2 where the FLCC are added after

30s.
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Fig. 6.25. Time histories of errorsfor subsection 3.2.3 where the traditional

controllers are-added into after 30s.
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Fig. 6.26. Time histories of states for subsection 3.2.3 where the traditional

controllers are added into after 30s.

91



Chapter 7
Fuzzy Modeling and Synchronization of Chaotic

Systems by a New Fuzzy Model

7.1 Preliminary

In this Chapter, a new fuzzy model [61] is used to simulate and synchronize two
different chaotic systems. Via the new fuzzy model, a complicated nonlinear system is
linearized to a simple form — linear coupling of only two linear subsystems and the
numbers of fuzzy rules can be reduced from2Nto2x N (where N is the number of
nonlinear terms). The fuzzy equations become much simpler.
7.2 New Fuzzy Model Theory

In system analysis and design, it isgsimportant-to select an appropriate model
representing a real system. /Asvan expression model of a real plant, the fuzzy
implications and the fuzzy reasoning method.suggested by Takagi and Sugeno are
traditionally used. The new fuzzy model is alse-described by fuzzy IF-THEN rules.
The core of the new fuzzy model is that we express each nonlinear equation into two
linear sub-equations by fuzzy IF-THEN rules and take all the first linear sub-equations
to form one linear subsystem and all the second linear sub-equations to form another
linear subsystem. The overall fuzzy model of the system is achieved by fuzzy
blending of this two linear subsystem models. Consider a continuous-time nonlinear
dynamic system as follows:
Equation i:
rule 1:

IF z;(t) is My

THEN X;(t) =A;x(t) + Bjpu(t),

rule 2:
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IF Zi(t) is Mi2
THEN Xl(t):A|2X(t)+B|2U(t), (71)
where

X(t) = [Xl(t)’ XZ (t)vv Xn (t)]T )

u(t) =[ug (8), Uz (1) up (017,
i=12..n, where n is the number of nonlinear terms. M;;,M;,are fuzzy sets,
Aj,Bjare column vectors and X; (t) = A;x(t) + Bju(t),, j=1,2, is the output from

the first and the second IF-THEN rules. Given a pair of (x(t),u(t)) and take all the
first linear sub-equations to form one linear subsystem and all the second linear
sub-equations to form another linear subsystem, the final output of the fuzzy system is

inferred as follows:

A X(t) + By yu(t) Apx(t)+Bpu(t)
X(t) = M, :A‘le(t) + B, u(t) M, ;A‘zzx(t) +Bgsu(t) (7.2)
Apx(t) +Bju(t) ApX(t)+ B u(t)

where M, and M, are diagonal matrices as following:
dia(M)=[My My . Myl dia(My)=[Mp My .o M

Note that for each equation i:
2
D Mii(zi (1) =1,
j=1

M”(Zl(t)) >0, i= 1,2,...,n and j=l,2.

Via the new fuzzy model, the final form of the fuzzy model becomes very simple.
The new model provides a much more convenient approach for fuzzy model research
and fuzzy application. The simulation results of chaotic systems are discussed in next

Section.
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7.3 New Fuzzy Model of Chaotic Systems
In this Section, the new fuzzy models of three chaotic systems, Sprott 19 system,
Sprott 22 system and Lorenz system, are given for Model 1, Model 2 and Model 3.

Model system:

X

XZ XS
. 3
X, =ax; +bx, —x; — X,

X,

(7.3)

When initial condition (X, X,y, X;,) =(0,1,0) and parameters a=-0.6,b=2.75,
chaos of the Sprott 19 system appears. The chaotic behavior of Eq. (7.3) is shown in

Fig. 7.1.

Model 1: New Fuzzy Model of Sprott'19 System-with Uncertainty

The Sprott 19 system withsuncertainty is:

X =X, +A;
X, =X +A, (7.4)

X, = ax, +bx, — x5 —x,
with initial condition (x,,, X,y, X;,) = (0,1,0) . Uncertain terms are A, is white noise in
Fig. 7.2and A, is pulse generator in Fig. 7.3 with parameters are a=-0.6,b=2.75,
chaos of the Sprott 19 system with uncertainty appears. The chaotic behavior of Eq.
(7.4) is shown in Fig. 7.4.

If T-S fuzzy model is used for representing local linear models of Sprott 19
system with uncertainty, N =3, 2" =2°=8, 8 fuzzy rules and 8 linear subsystems
are need. The process of modeling is shown as follows:

T-S fuzzy model:
Assume that:
(1) A e[-Z,Z] and Z,>0

2 A, e[-2,,Z,] and Z,>0
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(3) Xt e[-Z,,Z,] and Z,>0
Then we have the following T-S fuzzy rules:

Rulel: IF A, is My, , A, is M, and xZ is M, THEN X =AX,
Rule2:IF A, is My, , A, is My, and X} is M,, THEN X =AX,
Rule3:IF A, is My, , A, is M, and X} is M, THEN X =AX,
Rule4:IF A, is My, , A, is M, and X} is M,, THEN X =AX,
Rule5:IF A, is M, , A, is M, and X} is M, THEN X =AX,
Rule6:IF A, is M, , A, is M, and X} is M,, THEN X =AX,
Rule 7:IF A, is My, , A, is My andx-issM, THEN X =AX,
Rule8:IF A, is M,, , A, i/ M, and % s "M, THEN X =AX,

Then the final output of the Sprott 19 system with uncertainty can be composed
by fuzzy linear subsystems mentioned above:s It is obviously an inefficient and
complicated work.

New fuzzy model:

By using the new fuzzy model, Sprott 19 system with uncertainty can be
linearized as simple linear equations. The steps of fuzzy modeling are shown as
follows:

Steps of fuzzy modeling:

Step 1:
Assume thatA, e[-Z,,Z,]andZ; >0, then the first equation of (7.4) can be
exactly represented by new fuzzy model as following:

Rule 1: IFA,isM,,, THEN % =x,+Z,, (7.5)

95



Rule 2: IFAisM,,, THEN x =x,-Z,, (7.6)
where
1 A,

1, A
M, ==(1+=L), M,==@1-2L),
11 2 ( Zl) 12 2 ( Zl)

and Z,=2 . M,, and M, are fuzzy sets of the first equation of (7.4) and
M,+M,=1.
Step 2:

Assume thatA, €[-Z,,Z,]and Z, >0, then the second equation of (7.4) can be

exactly represented by new fuzzy model as following:

Rule 1: IFA,isM,,, THEN X, =X, +Z,, (7.7)
Rule 2: IFA,isM,,, THEN X257, (7.8)
where

My= 50430, Ma=pd-28),
and Z, =0.001. M,, and M., are . fuzzy sets of the.second equation of (7.4) and
M, +M,, =1.
Step 3:

Assume thatx? e[-Z,,Z,]and Z, >0, then the third equation of (7.4) can be

exactly represented by new fuzzy model as following:

Rule 1: IFxZisM,,, THEN X, =ax, +bx, —Z.,X, — X, (7.9)
Rule 2: IFX;isM,,, THEN X, = ax, +bx, + Z,X, — X, (7.10)
where
1, %X 1, X
M, ==(B22 | M, =>(1-22),
31 2( Z3 . 32 2( Z3)

and Z,=10. My, and M,, are fuzzy sets of the third equation of (7.4) and
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M, +M,, =1.

Here, we call Egs.(7.5), (7.7) and (7.9) the first linear subsystem under the fuzzy
rules, and Egs.(7.6), (7.8) and (7.10) the second linear subsystem under the fuzzy
rules.

The first linear subsystem is

X =X+Z
X, =X; + 2, (7.11)
X, = aX; +bx, —Z,;X, — X,

The second linear subsystem is

X =X, =2
X, =% —2, (7.12)
Xy = aX, +bX, + Z,X, — X,

The final output of the fuzzy [Sprott 19 systemi with uncertainty is inferred as

follows and the chaotic behavior of fuzzy system is shown in Fig. 7.5. Now we have:

X M, O 0 [pX3H+Z,
X =] 0 M, 0 ||X#Z;
Xq 0 0 My ||ax, +bX, —Z,%x, — X, (7.13)
M, O 0 || X -2
+ 0 M, 0 |IX-Z,
0 0 My, || ax, +bx, +Z,x, — X,
Eq. (7.13) can be rewritten as a simple mathematical expression:
. 2 ~
X(t) = _zl\yi (A;X(t) +b;) (7.14)
1=

where \¥; are diagonal matrices as follows:

dia(qjl)z[Mll M,, Msl]v dia(\Pz)=[|\/|12 M, Msz]

0 1 Z
A=|0 0 , b =2,
-1 b-2% 0
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0 1 -7,

A =0 0 , b, =|-2,

-1 b+ Z 0
Via new fuzzy model, the number of fuzzy rules can be greatly reduced. Just two
linear subsystems are enough to express such complex chaotic behaviors. The

simulation results are similar the original chaotic behavior of the Sprott 19 system

with uncertainty as show in Fig. 7.5.

Model system:

Y=Y,
yz =Y, (7-15)
ys =—CY;—Y, —sin Y1

When initial condition (Y5, Yo0: ¥a0) =(0.01,1,0.01) and parameter c=0.25 ,

chaos of the Sprott 22 system-appears. The chaotic behavior of Eq. (7.15) is shown in

Fig. 7.6.

Model 2: New Fuzzy Model of Sprott 22 System with Uncertainty

The Sprott 22 system with uncertainty is:

371:3/2"'A 1
S’zzys‘*‘A 2 (7-16)
Yo=—Cy,—Y zsity ,

where uncertainty A, is pulse generator show in Fig. 7.3, A, is white noise
(PSD=0.01) show in Fig. 7.2, ¢=0.25, and initial conditions are chosen as (0.01, 1,
0.01), the Sprott 22 model with uncertainty exhibits chaotic motion which is shown in
Fig. 7.7

New fuzzy model:

Assume that:
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(1) A e[-Z,,Z,]JandZ, >0,
(2) A, e[-Z,,Z;]andZ, >0,
(3) siny, e[-Z,Z¢] andZ, >0,

then we have the following new fuzzy rules:

Rule 1: IFA,isN,,,THEN vy, =y, +Z,, (7.17)
Rule 2: IFA,isN,,, THEN vy, =y,-Z,, (7.18)
where
1 A 1 A
N,==(1+=%), N,==(@1-=2).
11 2( 24) 12 2( 24)
and
Rule 1: IFA,isN,,, THEN v, = y3¥ZJ, (7.19)
Rule 2: IFA,isN,, THEN 'y, =y, =Z;, (7.20)
where
1. A Los DA
N, ==@1+=2), N,==-(1==2).
21 2( Z5) 22 2( 25)
and
Rule 1: IFsiny, isN, ,THEN y,=-cy,-y,—-Z, (7.21)
Rule 2: IFsiny, isN,, , THEN y,=-cy,-y,+Z, (7.22)
where
1 siny. 1 siny.
31 2( ZG ) 32 2( Z6 )
in  Egs. (7.17)~(7.22), Z,=0.00015 , Z,=0.05 and Z,=1

N, , N, , Ny , N, , Ny and N, are fuzzy sets of EQq.(7.16)

andN;,; +N;, =1,N,;+N,, =1 and N, +N,, =1

Here, we call (7.17) ,(7.19) and (7.21) the first liner subsystem under the fuzzy

rules and (7.18) , (7.20) and (7.22) the second liner subsystem under the fuzzy rules.
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The first linear subsystem is

yl =Y, + Z4
Yo =Ys+Zs (7.23)
ye =—CYy;—Y, _Zs

The second linear subsystem is

Yn=Y,-4,
Y, =Y, —Zs (7.24)
Y3 =—CYs =Y, +Z;

The final output of the fuzzy Sprott 22 system with uncertainty is inferred as

follows and the chaotic behavior of fuzzy system is shown in Fig. 7.8.

T

Y1 Nn 0 0 Y, + Z4
yz =| 0 N21 0 Y; + Zs
y 0 0 N oy, =y, -2
3 31 i Y=Y, 6 (7.25)
N12 0 0 Y, = Z4
+ 0 N, O Yo =2Ze
0 0 N32 _Cya =Y, t Ze

Eq. (7.25) can be rewritten as'a simple mathematical expression:
. 2 —_~
Y(t)=> I (CY(1)+C) (7.26)
i=1
where

dia(rl)z[Nll N,y N31]’ dia(l“z):[le Ny, Naz]

0 1 0 Z,
C,=|0 0 1|, ¢=| Z
0 -1 — -Z
0 1 © -Z,
C,=|0 0 1, ¢=|-Z
0 -1 -c Z,

Via new fuzzy model, two linear subsystems are enough to express such complex

chaotic behaviors. The simulation results are similar the original chaotic behavior of
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the Sprott 22 system with uncertainty in Fig. 7.8.

Model system:

=-g(X% —X,)
=X X5 +hx, — X,

X,
X, =
Xy = XX, = I%,

When initial condition (X, X, %) =(6,5,10) and parameters g=10 ,

h=27.43 and 1=8/3 , chaos of the Lorenz system appears.

Model 3: New Fuzzy Model of Lorenz System

The Lorenz system is:

=_g(xl_x l
=—XX #hx 5x (7.27)

X
XZ
X, =XX =X ,

With g=10, h=27.43, |1=8/3, and initial’conditions are chosen as (6, 5, 10), the
Lorenz model exhibits chaotic'motion‘whieh:1s-shown.in Fig. 7.9.
New fuzzy model:
Assume that:
(1) x,e[-Z,,Z,]JandZ, >0,

(2) x, e[-Z5,Z5]and Z, >0,

then we have the following new fuzzy rules:

X, 1s alinear term, so it doesn’t need to linearize
Rule 1: Q,=0.5, THEN X =-9(x,—X,), (7.28)

Rule 2: Q,=0.5, THEN X =-g(x —X,), (7.29)

and
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Rule 1: IF X,isQ,, THEN X, =—xZ,+hx —X,, (7.30)

Rule 2: IF x,isQ,,, THEN X, =xZ, +hx —X,, (7.31)
where

Qu=50+7). Q=307
and

Rule 1: IF X, isQ,; , THEN X, =xZ;—IX;, (7.32)

Rule 2: IFx, isQ,, ,THEN X, =-xZ,—Ix;, (7.33)
where

Qu=50+7). Qu=30-32)
in Egs. (7.30)~(7.33), Z,=50 andZ,=30. Q;,Q,,Q,,,Q,,,Q;and Q,, are fuzzy
sets of Eq.(7-12) and Q,, +Q,, =1,Q5+Q,, =1"and . Q,, +Q,, =1

Here, we call (7.28) ,(7.30) and=(7.32)the first liner subsystem under the fuzzy
rules and (7.29) , (7.31) and (7.33) the second liner subsystem under the fuzzy rules.

The first linear subsystem is

% ==0(X —X,)
X, ==X2Z, +hX;, — X, (7.34)
X =X Zg —1IX,

The second linear subsystem is

% =-g(x,—Xx)
X, =XZ #hx X (7.35)
XS

=—X{ g Ix 3
The final output of the fuzzy Lorenz system is inferred as follows and the chaotic

behavior of fuzzy system is shown in Fig. 7.10.
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Xl Q11 0 0 ' -9 (X1 - Xz)
X, = 0 Q, O —XZ, +hx, —X,
X 0 0 Qg X, Zg =X,

. (7.36)

Q12 0 0 -9 (X:L - X2)

+ 0 Qnp 0 | |xZ,+hx —X,
0 0 Qsz _X1zs - |X3
Eq. (7.36) can be rewritten as a simple mathematical expression:
. 2 ~
X(t)=>TI(DX(t)+d) (7.37)
i=1

where

dia(rl):[Qll QZl QSl]’ dia(rz):[Qﬂ Q22 Q32]

-g g 0 0
D,=|h-Z, -1 0], d,=|0
z, 0 -l 0
-g g 0 0
D,=|h+z, -1 0],d,=0
-z, 0 -l 0

Via new fuzzy model, two linear subsystems are enough to express such complex
chaotic behaviors. The simulation results are similar the original chaotic behavior of

the Lorenz system in Fig. 7.10.

7.4 Fuzzy Synchronization Scheme

In this Section, we derive the new fuzzy synchronization scheme based on our
new fuzzy model to synchronize two totally different fuzzy chaotic systems. The
following fuzzy systems as the master and slave systems are given:

master system:
X(t) = 3. (AX(8) + ) (7.38)
i=1

slave system:
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Y(t) = 3T (C.Y(1) + &)+ BU(1) (7.39)
i=1

Eq. (7.38) and Eq. (7.39) represent the two different chaotic systems, and in Eq. (7.39)

there is control input U(t). Define the error signal ase(t) = X(t) — Y(t), we have:

&(t) = X(t) - Y(t) = é W (AX(t)+b:) - éri (C.Y(1)+5)—BU(1) (7.40)
The fuzzy controllers are designed as follows:

U(t) = uy () +u,(t) (7.41)
where

U (1) = SWEX(H - STPY(D),

2 2

u,(t) = _;llyibi _éri G
such that|e(t)|| > Oast — oo. Our design-is-to-determine the feedback gains F; and P;.
By substituting U(t) into Eq.(7:40), we-obtain:

2 2
e(t) = 2 Wi (A — BR)X(O} - LTAC =BP) V(1)) (7.42)

i=l

Theorem 1: The error systemin-Eqg. (7.42)-is.asymptotically stable and the slave
system in Eq. (7.39) can synchronize the master system in Eq. (7.38) under the fuzzy
controller in Eq. (7.41) if the following conditions below can be satisfied:

G=(A,-BF)=(A,-BF)=(C, -BP;) <0, i=1~2. (7.43)
Proof:

The errors in Eq. (7.42) can be exactly linearized via the fuzzy controllers in Eq.
(7.41) if there exist the feedback gains F; such that

(A, -BF)=(A,—-BF,)=(C, -BP,)=(C, -BP,) <0. (7.44)
Then the overall control system is linearized as

&(t) = Ge(t), (7.45)
where G = (A, -BF) =(A, -BF,)=(C, -BP,) =(C, —-BP,) <0.

As a consequence, the zero solution of the error system (7.45) linearized via the
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fuzzy controller (7.41) is asymptotically stable.

7.5 Simulation Result

There are two examples in this Section to investigate the effectiveness and
feasibility of our new fuzzy model.
Example 1: Synchronization of Sprott 19 System and Sprott 22 System

The fuzzy Sprott 19 system with uncertainty in Eq. (7.4) is chosen as the master
system and the fuzzy slave Sprott 22 system with uncertainty in Eq. (7.16), with fuzzy

controllers is as follows:

Y(t) = zzlri (CY(t)+C)+BU(t) (7.46)

i=1

where I';are diagonal matrices

dia(rl):[Nll N,y N31]' dia(F2)=[le sz Naz]

and
0 1 O Z,
C,=|0 0 1, ¢=|2;
0 -1 — —Z,
0 1 0 -Z,
C,=/0 0 1|, ¢, =|-Z
0 -1 —c Z

Therefore, the error and error dynamics are:

€ X =Y

&= X =Y |,

18] [ X3 = Y5
_él_ I X =Y | 2 ~ 2

€ |=| %~ Y2 :Z\Pi(AiX(t)-i_bi)_Y.(t):ZFi CY([®)+C)-BU() (7.47)
€3] [ %, -V,] 7 B

B is chosen as an identity matrix and the fuzzy controllers in Eq. (7.41) are used:
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€ Xy Xy

€, |= LPl[Al - BFl ]3><3 X, |+, [Az - BFz ]3><3 X,
é3 X, X,
Y1 Y1
- Fl [Cl - BF1]3><3 Yo |~ Fz [Cz - BFZ ]3><3 Y, (7-48)
Y3 Y3

According to Eq.(7.43) , we have G =[A, —-BF,|=[A, —BF,]=[C, —BF,]

=[C, —BF,]<0. G is chosen as:

1 0 0
G=[0 -1 0 (7.49)
0 0 -1

Thus, the feedback gains Fi, F,, P;.and R, can be determined by the following

equation:
1 1 0
F=B'[A-G]=| 0 =1 1
-1 b=Z a+l
1 1 0
F2=B*1[A2—G]= 0 1 1 (7.50)
-1 b+Z, a+l
1 1 0
PR=B"[C,-G]=l0 1 1
0 -1 1-c
1 1 0
P,=B"[C,-G]=|0 1 1
0 -1 1-c

The synchronization errors are shown in Fig. 7.11.
Example 2: Synchronization of Lorenz System and Sprott 22 System.

The fuzzy Lorenz system in Eq. (7.27) is chosen as the master system and the

106



fuzzy slave Sprott 22 system with uncertainty in Eq. (7.16), with fuzzy controllers is

as follows:

Y(t) = ZZ:ri (CY(t)+C,)+BU(t) (7.51)

i=1

where I’ are diagonal matrices

dia(rl):[Nll N21 Nsl]v dia(rz):[le N22 st]

and
0 1 0 Z,
C,=|0 0 1|, ¢ =| Z;
0 -1 —c -Z
0 1 0 0

o

-1 —c 1-2.

Therefore, the error and error dynamics-are:

€ X =Y

€ =X~ Y2,
| €5 | X3~ Y3
_él_ % =Y ) 3 )

€ |=| % =Y, :zTi(Dix(t)_i_di)_Y.(t)zzri(CiY(t)+Ci)_BU t (7.52)
. .. i=1 i=1
_e3_ X3—Ys

B is chosen as an identity matrix and the fuzzy controllers in Eq. (7.41) are used:

€ X X
€, :‘Pl[Dl—BFl]3X3 X, +‘P2[D2—BF2]3X3 X,
€ X3 X3
Y1 Y1
-1 [Cl - BFl ]3><3 Y, |= 15 [Cz - BFz ]3><3 Y2 (7-53)
Ys Ys

According to Eq. (7.43), we have G=[D,-BF]=[D,-BF,|=[C,-BF]
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=[C, -BF,]<0. G is chosen as:

1 0 0
G=|0 -1 0 (7.54)
0 0 -1

Thus, the feedback gains Fi, F;, P1 and P, can be determined by the following

equation:
1-g g O
FlzB‘l[Dl—G]: h-z,0 O
Z, 0 1-1I
1-g g O
F2=B‘1[D2—G]: h+z, 0 O (7.55)
-Z; 0 1-1
1 1 0
P1:B‘1[C1—G]= 0 1 1
0 -1 1-c
1 1 0
P2:B‘1[C2—G]: 0 1 1
0 -1 1-c

The synchronization errors are shown in Fig. 7.12.

7.6 Summary

In this Chapter, a new strategy to achieve chaos synchronization via the new fuzzy
model is proposed. By using the new fuzzy model, not only a complicated nonlinear
system can be linearized to a simple form, linear coupling of only two linear
subsystems and the numbers of fuzzy rules can be reduced from 2™ to 2x N, but also
the idea of PDC and LMI-based method can be applied to synchronize two totally

different fuzzy systems.

108



D L -
[t}
-4
5l 4
_4 1 L 1 1 L 1 1
0 0.5 1 1.5 2 25 3 35 4
X

_1- .....................................................................................
e : ; : ; : : : : ;
0 1 2 3 4 ) B 7 g 9 10
t

Fig. 7.2 The uncertainty signal of A, is band-limited white noise(PSD=0.001).
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Fig. 7.4 Chaotic behavior of Sprott 19 system with uncertainty.
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Fig. 7.6. Chaotic behavior of Sprott 22 system.
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Fig. 7.8 Chaotic behavior of new fuzzy Sprott 22 system with uncertainty.
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Fig. 7.10 Chaotic behavior of new fuzzy Lorenz system.
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Fig. 7.12. Time histories of errors for Example 2.
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Chapter 8

Conclusions

In this thesis, chaos and various chaos synchronizations of Ge-Ku-Mathieu
system and Sprott 19, 22 systems are studied. In Chapter 2, the chaotic behavior of
new Ge-Ku-Mathieu system is studied by phase portraits, time history, Poincaré maps,
Lyapunov exponent and bifurcation diagrams.

In Chapter 3, a new symplectic synchronization problem of chaotic systems are
investigated based on Barbalat’s Lemma. Traditional generalized synchronization is a
special case for the double symplectic synchronization. By applying active control,
the double symplectic synchronization-is‘achieved. Furthermore, the double
symplectic synchronization could be-applied to the design of secret communication
with more security than generalized synchronization-due to the complexity of its

synchronization form.

In Chapter 4, a new strategy to-achieve-chaos synchronization by the different
translation pragmatical synchronization using stability theory of partial region is
proposed. The conditions of the Lyapunov function for pragmatical asymptotical
stability are lower than that for traditional asymptotical stability. By using the
different translation pragmatical synchronization by stability theory of partial region,
with the same conditions for Lyapunov function, V >0, V <0, as that in current
scheme of adaptive synchronization, we not only obtain the generalized
synchronization of chaotic systems but also prove strictly that the estimated
parameters approach the uncertain values. The Lyapunov function is simple linear
homogeneous function for error states, the controllers are more simple and have less
simulation error because they are in lower degree than that of traditional controllers.

In Chapter 5, a new type of synchronization, multiple symplectic synchronization,
is studied. It is an extension of double symplectic synchronization. By applying active
control, the multiple symplectic synchronization is achieved. Furthermore, the

multiple symplectic synchronization of chaotic systems can be used to increase the
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security of secret communication.

In Chapter 6, a simplest fuzzy controller (FLCC) is introduced to projective
anti-synchronization of non-autonomous chaotic systems with stochastic disturbance.
Three main contributions can be concluded: (1) High performance of the convergence
of error states in synchronization; (2) Good robustness in projective
anti-synchronization of the chaotic systems with stochastic disturbance; (3) Simple
constant controllers are used, which can be easily obtained.

In Chapter 7, a new strategy to achieve chaos synchronization via the new fuzzy
model is proposed. By using the new fuzzy model, a complicated nonlinear system

can be linearized to a simple form, linear coupling of only two linear subsystems and

the numbers of fuzzy rules can be reduced from2Nto2x N.
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Appendix A
GYC Partial Region Stability Theory

A.1 Definition of the Stability on Partial Region
Consider the differential equations of disturbed motion of a nonautonomous

system in the normal form

dx,
dt

= X (t, %, %), (s=1.n) (A1)
where the function X, is defined on the intersection of the partial region Q
(shown in Fig. Al) and

> x<H (A.2)

and t>t,, where t, and H are certain-positive constants. X, which vanishes when
the variables x, are all zero-is a real valued function of t, x,---,X,. It is assumed
that X, is smooth enough to‘ensure the-existence, uniqueness of the solution of the
initial value problem. When X does._not-contain t explicitly, the system is
autonomous.

Obviously, x,=0 (s=1:---n) is a solution of Eq.(A.1). We are interested to
the asymptotical stability of this zero solution on partial region Q (including the
boundary) of the neighborhood of the origin which in general may consist of several
subregions (Fig. Al).

Definition 1:

For any given number & >0, if there exists a 6 >0, such that on the closed

given partial region Q when

> X% <68, (s=1--,n) (A.3)

forall t>t,, the inequality
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Y x<e (s=1--,n) (A.4)

is satisfied for the solutions of Eq.(A.1) on Q, then the disturbed motion
X, =0 (s=1:---n) isstable on the partial region Q.
Definition 2:

If the undisturbed motion is stable on the partial region Q, and there exists a

& >0, so that on the given partial region Q when

> x5 <8, (s=1--,n) (A.5)

The equality
!LT[;XSZJ:O (A.6)

is satisfied for the solutions of Eg.(Ad),on Q, then the undisturbed motion
X, =0 (s=1:---n) isasymptotically stable.onthe partial region Q.

The intersection of Q and+region defined by Eq.(A.5) is called the region of
attraction.
Definition of Functions V (t, X, *«5X.).:

Let us consider the functions V(t,x,---,X,) given on the intersection Q, of

the partial region Q and the region

> xt<h, (s=1--n) (A7)

for t>t, >0, where t, and h are positive constants. We suppose that the functions
are single-valued and have continuous partial derivatives and become zero when
X, ==X, =0.
Definition 3:

If there exists t, >0 and a sufficiently small h>0, so that on partial region
Q, and t>t,, V>0 (or <£0), then V is a positive (or negative) semidefinite, in

general semidefinite, function onthe Q, and t>t,.
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Definition 4:

If there exists a positive (negative) definitive function W(x,...x,) on Q,, so
that on the partial region Q, and t>t,

V -W >0 (or -V -W >0), (A.8)
then V(t,x,...,x,) is a positive definite function on the partial region Q, and
t>t,.

Definition 5:

If V(t,x,...,X,) is neither definite nor semidefinite on Q, and t>t,, then
V(t,x,...,X,) is an indefinite function on partial region Q, and t>t,. That is, for
any small h>0 and any large t,>0, V(t,x,...,X,) can take either positive or
negative value on the partial region Q, .and t>t,.

Definition 6: Bounded functionV/
If there exist t, >0, h>0,so thaton the partial region Q,, we have

V(t, %, ..., X< &

where L is a positive constant, then'Vis-said:to-be bounded on €, .

Definition 7:  Function with infinitesimal upper bound

If V is bounded, and for any A >0, there exists x>0, so that on Q, when

> xt<p,and t=t,, we have
S

V(t,X,... )| <A

then V admits an infinitesimal upper bound on Q, .
A.2 GYC Theorem of Stability and of Asymptotical Stability on Partial Region

Theorem 1

If there can be found a definite function V (t,x,,...,X,) on the partial region for

Eq. (A.1), and the derivative with respect to time based on these equations are:
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VNV SV

Y _ A9
d o <ox, ° (A-9)

Then, it is a semidefinite function on the paritial region whose sense is opposite to
that of V, or if it becomes zero identically, then the undisturbed motion is stable on the
partial region.
Proof:

Let us assume for the sake of definiteness that V is a positive definite function.
Consequently, there exists a sufficiently large number t, and a sufficiently small

number h < H, such that on the intersection €, of partial region Q and
> xt<h, (s=1...n)

and t>t,, the following inequality is satisfied
V(I X,.... %) 2WLX,..., X,),
where W is a certain positive ‘definite-function which-does not depend on t. Besides
that, Eq. (A.9) may assume only negative or zero valuein this region.
Let & be an arbitrarily smallpositive numbef.:\We shall suppose that in any case
e<h. Let us consider the aggregation”of all possible values of the quantities

X;,---, X, , Which are on the intersection @, of €, and

> X =g, (A.10)

S

and let us designate by | >0 the precise lower limit of the function W under this
condition. By virtue of Eq. (A.8), we shall have

V({t,X,....x,) =l for (x,...,x,) on w,. (A.11)

We shall now consider the quantities X, as functions of time which satisfy the

differential equations of disturbed motion. We shall assume that the initial values X,

of these functions for t=t, lie on the intersection Q,of €, and the region

> x¢<s, (A.12)
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where ¢ is so small that
V(ty, Xgr-eey Xy0) < (A.13)
By virtue of the fact that V(t,,0,...,0) =0, such a selection of the number s is
obviously possible. We shall suppose that in any case the number & is smaller than

& .Then the inequality

Y x<e, (A.14)

being satisfied at the initial instant will be satisfied, in the very least, for a sufficiently
small t—t,, since the functions x(t) very continuously with time. We shall show
that these inequalities will be satisfied for all values t>t,. Indeed, if these
inequalities were not satisfied at some time, there would have to exist such an instant
t=T for which this inequality would ‘become-ansequality. In other words, we would

have
D XM =4
and consequently, on the basis of Eg. (A.11)

V(T %(T),....x, (T)Z] (A.15)

On the other hand, since & < h, the inequality (Eq.(A.7)) is satisfied in the entire

interval of time [to, T], and consequently, in this entire time interval Otlj_\t/SO' This

yields
VT, % (M), %, (T)) SV (ty, Xyps -+ X0
which contradicts Eq. (A.14) on the basis of Eq. (A.13). Thus, the inequality
(Eq.(A.4)) must be satisfied for all values of t >t,, hence follows that the motion is
stable.
Finally, we must point out that from the view-point of mathenatics, the stability
on partial region in general does not be related logically to the stability on whole

region. If an undisturbed solution is stable on a partial region, it may be either stable
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or unstable on the whole region and vice versa. In specific practical problems, we do

not study the solution starting within Q. and running out of Q.

Theorem 2

If in satisfying the conditions of Theorem 1, the derivative %—\: is a definite

function on the partial region with opposite sign to that of V and the function V itself
permits an infinitesimal upper limit, then the undisturbed motion is asymptotically
stable on the partial region.

Proof:

Let us suppose that V is a positive definite function on the partial region and that
consequently, (?j_\t/ Is negative definite. Thus on the intersection €, of Q and the

region defined by Eq. (A.7) and .t =1, there will be satisfied not only the inequality

(Eq.(A.8)), but the following inequality-as-well:

dv
Eé—wl(xl,...xn), (A.16)

where W, is a positive definite function on the.partial region independent of t.

Let us consider the quantities x, as functions of time which satisfy the
differential equations of disturbed motion assuming that the initial values x,, =X (t,)
of these quantities satisfy the inequalities (Eq. (A.12)). Since the undisturbed motion
is stable in any case, the magnitude 6 may be selected so small that for all values of
t>t, the quantities x, remain within €,. Then, on the basis of Eq. (A.16) the
derivative of function V(t,x(t),...,x,(t)) will be negative at all times and,
consequently, this function will approach a certain limit, as t increases without limit,
remaining larger than this limit at all times. We shall show that this limit is equal to
some positive quantity different from zero. Then for all values of t>t, the following

inequality will be satisfied:
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V(t,x@),...x ) >« (A.17)
where o >0.

Since V permits an infinitesimal upper limit, it follows from this inequality that

dYXM)=A, (s=1...n), (A.18)

where A is a certain sufficiently small positive number. Indeed, if such a number 4

did not exist, that is , if the quantity sz (t) were smaller than any preassigned

number no matter how small, then the magnitude V (t,x,(t),...,x,(t)), as follows
from the definition of an infinitesimal upper limit, would also be arbitrarily small,
which contradicts Eq. (A.17).

If for all values of t>t, the inequality (Eq. (A.18)) is satisfied, then Eq. (A.16)

shows that the following inequality will be satisfied at all times:

w_,

dt

where |, is positive number different from.zero which constitutes the precise lower
limit of the function W, (t, x, (t),.74Xx(t)) undercondition (Eq. (A.18)). Consequently,

for all values of t>t, we shall have:

V(t,x (t),.... X, () =V(t0,x10,...,xno)+_[;il—\t/dt SV (g, Xpgs -+ Xo) — L (T —1;),

which is, obviously, in contradiction with Eq.(A.17). The contradiction thus obtained
shows that the function V(t,x(t),...,X,(t)) approached zero as t increase without
limit. Consequently, the same will be true for the function W (x,(t),..., X, (t)) as well,
from which it follows directly that

!Lrgxs(t):o, (s=1...,n),

which proves the theorem.
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Appendix B
Pragmatical Asymptotical Stability Theory

The stability for many problems in real dynamical systems is actual
asymptotical stability, although may not be mathematical asymptotical stability. The
mathematical asymptotical stability demands that trajectories from all initial states in
the neighborhood of zero solution must approach the origin as t—oo. If there are
only a small part or even a few of the initial states from which the trajectories do not
approach the origin as t—oo , the zero solution is not mathematically
asymptotically stable. However, when the probability of occurrence of an event is
zero, it means the event does not occur actually., If the probability of occurrence of
the event that the trajectries from the-initial states are‘that they do not approach zero
when t—o0, is zero, the stability of zero-solution is-actual asymptotical stability
though it is not mathematical \asymptotical stability. In order to analyze the
asymptotical stability of the equilibritim=point of such systems, the pragmatical

asymptotical stability theorem is used.

Let X and Y be two manifolds of dimensions m and n (m<n), respectively, and

@ be a differentiable map from X to Y, then ¢(X) is subset of Lebesque measure

0 of Y [62]. For an autonomous system

dx

E_ f(xil...,xn) (B-l)

where x =[x, -, x,]" is a state vector, the function f =[f,,---, f,] is defined on

DcR" and |X|<H >0. Let x=0 be an equilibrium point for the system (B-1).

Then
f(0)=0 (B-2)

125



For a nonautonomous systems,
%= F (X X0u1) (B-3)

where X =[x,...,X,,,]' , the function f =[f,.,f] is define on

DcR"xR, here t=x,, <R, .The equilibrium point is

F(OXa 3 - (B-4)
Definition The equilibrium point for the system (B-1) is pragmatically
asymptotically stable provided that with initial points on C which is a subset of
Lebesque measure 0 of D, the behaviors of the corresponding trajectories cannot be
determined, while with initial points on D —C, the corresponding trajectories behave

as that agree with traditional asymptotical stability [63,64].
Theorem Let V =[x, -+, xa]'*"D—R be positive definite and analytic on D,

where X, X,,...,X, are all space coordinates such that the derivative of V through Eq.

T

(A-1)or(A-3), V , is negative semi-definiterof [, %, X ] -

For autonomous system, Let " X’be-the-m=manifold consisted of point set for
which vx=0, V(x)=0 and D is a n-manifold. If m+1<n, then the equilibrium
point of the system is pragmatically asymptotically stable.

For nonautonomous system, let X be the m+1-manifold consisting of point

set of which Wx#0,V (%, X,,....x,)=0and Dis n+1-manifold. If m+1+1<n+1,

i.e.m-+1<nthen the equilibrium point of the system is pragmatically asymptotically
stable. Therefore, for both autonomous and nonautonomous system the formula
m+1<nis universal. So the following proof is only for autonomous system. The
proof for nonautonomous system is similar.

Proof Since every point of X can be passed by a trajectory of Eq. (B-1), which

is one- dimensional, the collection of these trajectories, A, is a (m+1)-manifold [65,
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66].

If m+1<n, then the collection C is a subset of Lebesque measure 0 of D. By
the above definition, the equilibrium point of the system is pragmatically
asymptotically stable.

If an initial point is ergodicly chosen in D, the probability of that the initial
point falls on the collection C is zero. Here, equal probability is assumed for every
point chosen as an initial point in the neighborhood of the equilibrium point. Hence,
the event that the initial point is chosen from collection C does not occur actually.
Therefore, under the equal probability assumption, pragmatical asymptotical stability
becomes actual asymptotical stability. When the initial point falls on D-C,
V(x)<0, the corresponding trajectories; behave as that agree with traditional
asymptotical stability because by the existence and- uniqueness of the solution of
initial-value problem, these trajectories never meet C.

In Eq. (2-7) V is a positive definite-function of-n variables, i.e. p error state
variables and n-p=m differences between unknewn-and estimated parameters, while
V =e'Ce is a negative semi-definite function of n variables. Since the number of
error state variables is always more than one, p>1, m+1<n is always satisfied, by

pragmatical asymptotical stability theorem we have

lime=0 (B-5)

to
and the estimated parameters approach the uncertain parameters. The pragmatical

adaptive control theorem is obtained. Therefore, the equilibrium point of the system is
pragmatically asymptotically stable. Under the equal probability assumption, it is

actually asymptotically stable for both error state variables and parameter variables.
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