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Experimental Study on Kalman Filter in a Reduced-Order Integrated GPS/IMU

Student : Yu-Chieh Huang Advisor : Dr. Wei-Hua Chieng

Department of Mechanical Engineering
National Chiao Tung University

Abstract

An integrated GPS/IMU system is often integrated by a Kalman filter which
cannot work properly without a good error model being made. For decades,
engineers have tried to decompose the system states, so as to find accurate
system estimations. However, most:of the case it is not easy to identify detail
processing or measuring errors of individual sub modules. Another drawback of
complex systems is that the high cost of .computation time, it makes them not
suitable for real-time applications. The aim of this article is to develop a scheme
in which we can off-line identify the lump- error model of reduced-order
dynamic model until a minimumvariance has been found in any desired
situation, and then simply applying these results to Kalman filter. From
experimental result, it shows that the position and velocity errors could be
significantly reduced and controlled. This simple model is robust for tolerating

data lose, and highly reduce the cost for real-time application.
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Nomenclature

X, Y, Z:ECEF coordinate

X,, Y., Z, :ECEF coordinate of the center of local projection

X, Y,:j-th ECEF coordinate converted from the reading from the GPS

@, A, h:LLA coordinate

@., A.:LLA coordinate of the center of local projection

@;» A, j-th LLA coordinate read from the GPS

a, b:semi-major and semi-minor axes ofthe reference ellipsoid of earth
x, y:local projection coordinate

K, ,k, :the mapping constants from LLA coordinate to local projection
Xo10 Xo30 X,00 Voor Xoav Yeu L, R, 0.parameters of the test track

coordinate system

~
~ ~ ~ ~

Xo10 Xogr Xoor Voozr Xpur Voa L, R, 0 :parameters of the test track

coordinate system
var(POS): Position-variance
var(VEL): Velocity-variance

var(OVA): Overall-variance
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Chapter 1 Introduction

1.1 Motivation and Objectives

FMCW ( Frequency Modulated Continuous Wave ) radar systems
are generally compact and relatively cheap to purchase and to exploit.
They consume little power and, due to the fact that they are continuously
operating, they can transmit a modest power, which makes them very
interesting for military applications. Consequently, FMCW radar
technology is of interest for civil and military airborne earth observation
applications, especially .in combination with high resolution SAR
techniques. The novel combination of FMCW technology and Synthetic
Aperture Radar (SAR) techniques leads to the development of a small,
lightweight, and cost-effective high resolution-imaging sensor.

Processing Synthetic Aperture Radar (SAR) images is a non trivial
and computationally heavy task. To perform this process in real time is
challenging and the final result is highly dependent on the reconstruction
of the flight path. This reconstruction is performed with data from the
navigation system and an autofocus algorithm. The performance of
autofocus algorithms is strongly correlated with the quality of the
flight-path reconstruction data produced by the navigation system.

The work here presented describes the Mini-SAR navigation system
initial stages of development starting with the motivations to the sensors

selection and finalizing with the analysis of the data.



1.2 Background and Literature review

The Global Positioning System(GPS) represents an inexpensive and
global method of obtaining the position of a vehicle. Although the
measurements are highly subjected to noise, the accuracy can be
improved by applying the principle of differential GPS. However, the
system gives a low bandwidth, especially when it comes to acceleration
and speed, which can be calculated by differentiating the position
measurements.

As a contrast, an Inertial Navigation System(INS) only measures the
forces acting on an Inertial Measurement Unit(IMU), and can thus be
used to calculate both speed and position estimates without differentiating.
The INS does not rely on external signals and is therefore not susceptible
to jamming not the problem of areas lacking satellite coverage.

There are several reasons why an integration of GPS and an INS is
desirable. Generally, and INS gives several advantages that the
GPS-system lacks, and vice versa. The INS results are available
whenever the GPS measurements are unavailable and the INS
measurements are obtained without significant time delay. On the other
hand, the GPS corrects the integration error from a stand-alone INS
system and allows on-line calibration of IMU errors. So the integration

provides real time estimates, as opposed to differentiation.



Chapter 2 Reference Frames and Transformations

2.1 Earth Centered — Earth Fixed

In navigation, several reference frames can be used to present the
data. Depending on what navigational system is used to obtain the
measurements, different reference systems are usually required.

The Earth Centered, Earth Fixed (ECEF) frame has, as the name
suggests, its center in the center of the Earth, and the frame is stationary
relative to the surface. Of all ‘the ‘possible combinations of ECEF
coordinate systems, two are of particular importance.

This is named the ECEF rectangular system but is usually just
referred to as the ECEF system. Its X-axis points through the intersection
of the prime median (0° longitude), and equator (0° latitude), its z-axis
towards the true north pole, and the y-axis to complete the right hand rule
through the intersection of 90 ° longitude and equator.

The other representation is called ECEF geodetic frame. This system
expresses position in latitude, longitude and height, [¢, A, 4] and is given
in the spherical coordinates. The latitude is found by rotating around the
z-axis until the x-axis crosses the projection from the position on to the
x-y-plane. The longitude is then found by rotating around the y-axis until
the x-axis coincides with the vector from the center of the Earth to the
position. The height is the distance from the nearest point normal on the

assumed altitude.



2.2 Local Geodetic and Body Frame

The local geodetic frame takes basis of making a fictional tangent
plane at the origin, just like presenting the globe as a map. The x-axis
points north, the y-axis towards east and the z-axis points down, normal
onto the ellipsoid, therefore also widely known as the NED-frame
(north-east-down). This frame coincides with the geographic frame for a
stationary target. The difference between the two is that in the latter
frame, the origin is a projection of the platform origin onto the Earth's
geodetic. Another version of this frame is the east, north, up-frame
(ENU).

The body frame is usually-in the center of gravity of the body of the
object in question. Its x-axis points towards the defined front of the object,
the z-axis points down and the y-axis points right to complete the right
hand rule. This frame and the'NED-frame are widely used for control
puUrposes.

The frame represents the vehicle states in 6 degrees of freedom (6
DOF) known as surge, sway and heave (u, v, w), and roll, pitch and yaw
(¢, A, w). Surge, sway and heave are the speed in X, y and z respectively,
and roll, pitch and yaw are the vehicle's angular displacement from the

NED-frame.

2.3 ECEF-to-Tangent Plane Transformation



The transformation from ECEF-to-tangent plane coordinates, starts
by subtracting the tangent plane origin, given in the ECEF-frame, from

the ECEF coordinates, leaving the two planes with the same origin.

5X:(x!y’Z)T_(xo’y0’Zo)T (2.1)

The next step is performing a rotation around the ECEF z-axis until the
y-axis is aligned with tangent-plane east, where the A is the longitude.

cos(1) sin(1) 0
R, =|-sin(1) cos(1) 0 (2.2)
0 0 1

By performing a new rotation, «this time-around the aligned y-axis until

the new z-axis is aligned with-the tangent-plane down where ¢ is the

E T . T ]
cos(¢ + Ej 0 sm(¢ + Ej
0

R, = 0 1
—sin(¢+%) 0 cos ¢+£j

—sin(¢) 0 cos(¢) |
=l 0 1 0

—cos(¢) 0 —sin(p)

latitude.

(2.3)

By combining the two, the complete rotation matrix is obtained.
—sin(g)cos(1) —sin(g)sin(1) cos(gp)
R. =| —sin(1) cos(4) 0 (2.4)
—cos(g)cos(4) —cos(g)sin(1) —sin(g)



2.4 Body-to-Tangent Plane Transformation

By using the Euler angles derived from the body frame and

transforming via one axis at a time, and by choosing to start with the

!

rotation around the z-axis the new coordinates[x’ z'["is obtained.

X cos(y) sin(y) O x
y'|=|=sin(y) cos(y) 0|y (2.5)
z' 0 0 1]z

The two remaining axes are applied by the same method, and the body

frame coordinates have obtained.

x"] [cos(8 sin(@) x'
z sm( ~¢cos(6
(2.6) (2.7)
u 1 X
v |=|0 cos sm Ky
w| |0 —sm cos z
And these can be combined by multiplication, yielding
cos(y) sin(y) Ofcos(6) 0 sin(@) 1 0 0
R’=|-sin(y) cos(y) 0f 0 1 0 |0 «cos() sin(6)
0 0 1sin(@) 0 —cos()|0 -sin(@) cos(6)
cos(y )cos(6) sin(y )cos(6) —sin(9)
= | —sin(y)cos(6) + cos(y)sin()sin(¢)  cos(y )cos(@)+ sin(w)sin(@)sin(g)  cos(@)sin(p)

sin(y )sin(@) + cos(y )sin(f)cos(¢) - cos(y )cos(8)+ sin(y )sin(@)sin(g) cos(6)cos(s)



2.5 GPS Coordinate Systems

The use of a reference ellipsoid allows for the conversion of the

ECEF (Earth-Centered, Earth-Fixed) coordinates to the more commonly

used geodetic-mapping coordinates (LLA) of Latitude(¢; in degrees),

Longitude (A4 ; in degrees), and Altitude (%~ ; in meters). GPS commonly

adopts the LLA coordinate system. The conversion between the two
reference coordinate systems can be performed using closed formulas.

The conversion from LLA to ECEF (in meters) is shown as below.

X =(N + h)cos@cos 4 (2.9)

Y =(N+h)cosesin A (2.10)
b? .

Z :(a—2N+h)S|n(p (2.11)

where N is the radius of curvature (meters), defined as

N= (2.12)

a and b are the semi-major and semi-minor axes of the reference
ellipsoid of earth, respectively. /4 denotes the height of the position above
the reference ellipsoid. According to the WGS84 parameters, we have

a =6378137and b =6356752.3.



2.5 Local Projection

According to the LLA coordinate system, a small region may be

identified with a center for projection (¢,, 4.) onto a flat mapping

surface called the x-y plane as follows.

x=k,(1-1) (2.13)

y=x,(p-9.) (2.14)

The y-axis local project is pointing to the north pole of the earth when the
center of projection is on the north. semi-hemisphere. The x-axis is

determined through the right-hand law with the thumb pointed to the

north pole. x,and « are the mapping constants from LLA coordinate to

local projection, which are defined

kK, = m(N +h)cose/180 “(meter/degree) (2.15)

k, = 2(-o(a®h+b*N)? cos? g+ (a' N* — 2a* Nh)sin® ) /180
a

(meter/degree) (2.16)



Chapter 3 GPS/IMU

3.1 GPS

The GPS is part of a satellite-based navigation system developed by
the U.S. Department of Defense under its NAVSTAR satellite program[4].
The fully operational GPS includes 28 or more active satellites
approximately uniformly dispersed around six circular orbits with four or
more satellites each. The orbits are inclined at an angle of 55° relative to
the equator and are separated from each-other by multiples of 60° right
ascension. The orbits are. nongeostationary and approximately circular,
with radii of 26,560 km and orbital periods of one-half sidereal day
(about 11.967hrs). Theoretically, three or more GPS satellites will always
be visible from most points-on.the earth’s surface, and four or more GPS
satellites can be used to determine an observer’s position anywhere on the

earth’s surface 24hrs per day.

3.1.1 GPS Signals

Each GPS satellite transmits two spread spectrum, L-band carrier
signals — an L; signal with carrier frequency f; = 1575.42 MHz and an L,
signal with carrier frequency f,= 1227.6 MHz. These two frequencies are
integral multiples f; = 1540 £, and f>= 1200 f, of the base frequency f,=
1.023 MHz. The L; signal from each satellite uses binary phase-shift

9



keying(BPSK), modulated by two pseudorandom noise(PRN) codes in
phase quadrature, designated as the C/A-code and P-code. The L,signal
from each satellite is BPSK modulated by only the P-code. Both
frequencies are available for all users, but due to encryption of the P-code,

only the C/A-code is usable by the public.

3.1.2 Sources of Errors

Civilian GPS receivers have potential position errors due to the
result of the accumulated errors[5] due primarily to some of the following
sources:

1. lonosphere and troposphere-delays:
The satellite signal slow as it passes through the atmosphere. The
system uses a built-in model that calculate an average, but not an exact,
amount of delay.

2. Signal multi-path:
When the GPS signal is reflected off object such as tall buildings or
large rock surfaces before it reaches the receiver.

3. Receiver clock errors:
Since it’s not practical to have an atomic clock in your GPS receiver,
the built-in clock can have very slight timing errors.

4. Orbital errors:
Also known as “ephemeris errors”, these are inaccuracies of the
satellite’s reported location.

5. Number of satellites visible:

10



The more satellites the receiver can “see”, the better the accuracy.
Anything can block signal reception, causing position errors or
possibly no position reading at all, like figure 3.1.

6. Satellite geometry/shading:
Ideal satellite geometry exists when the satellites are located at wide
angles relative to each other. Poor geometry results when the satellites
are located in a line or in a tight grouping.

[. Intentional degradation of satellite signal:
The U.S. military’s intentional degradation of the signal is known as
“Selective Availability”(SA) and is intended to prevent military
adversaries from using the highly accurate GPS signals. SA accounts
for the majority of the error in'the range. SA was turned off May 2,
2000, and is currently not active. This means we can expect typical

GPS accuracies in the_range of 6-12 meters.

3.1.3 Velocity Measurements

The integration is performed in two different frames, depending on
the measurement. For position, ECEF geodetic [¢, A, 4] is used, while for
speed, the tangent-plane (NED) has been chosen. In order to transform
the GPS data, the position, already given in ECEF geodetic coordinates,

Is differentiated. To transform the speed, yielding that:

vy | [R,+h 0 01]¢
v, [=| 0 (R, +h)cos(¢g) O |4 (3.1)
v 0 0 ~1|

D

11



3.2 Inertial Measurement Unit(IMU)

The IMU chosen is the MicroStrain® 3DM-GX1(Figure 3.2). It
consists of three accelerometers, three gyros and three magnetometers,
and giving acceleration in 6 degrees of freedom(6 DOF) and position in 3
DOF. This IMU performs an accelerometer bias stability of 0.01G, where
the G is the Earth’s gravitational constant, and 0.7°/sec for the gyros. And
the sensors have bandwidth of 100hz, and transmit data over an RS-232

serial line.

3.3 GPS Module

The GPS module chosen is GARMIN GPS-18-PC(Figure 3.3). This
module operates at 8 — 30V, and transmits.data through RS-232. It has
position accuracy at 15m, ‘or 3m with Wide Area Augmentation
System(WAAS) enabled. And its update rate is 1Hz, so it can transmit 1

record per second.

12



Chapter 4 Kalman Filter

The Kalman Filter is an optimal, linear state estimator, able to
estimate the full system state, depending on incomplete and noisy
measurement series. The theory of the filter dates back to 1960, when
Rudolf Kalman proposed the Filter to NASA for the Apollo Program. The
Kalman filter is essentially a set of mathematical equations that
implement a predictor-corrector type estimator that is optimal in the sense
that it minimizes the estimated error covariance—when some presumed
conditions are met. Since the time of its introduction, the Kalman Filter
has been the subject of extensive research'and application, particularly in
the area of autonomous or assisted navigation.-The filter comes in many
different forms, but the-one most relevant for this work is the discrete

Kalman Filter, which also-will be the one most thoroughly investigated.

4.1 Conventional Kalman Filter Implementation

The Kalman filter addresses the general problem of trying to

estimate the state x e R" of a discrete-time controlled process that is

governed by the linear stochastic difference equation. The basic operation
of Kalman Filter is shown in Figure 4.1 and 4.2.

The a priori estimation:
X, =AX,_,+W, (4.2
The a posteriori estimation:

13



X, =X, +K(z, —HX, +vVv,) (4.2)
The random variables w, and v, represent the process and

measurement noise, respectively. They are assumed to be independent of
each other, white, and with normal probability distributions

p(w) ~ N(0,Q)

p(v) ~N(O,R)

In practice, the process noise covariance Q and measurement noise

covariance P matrices might change with each time step or

measurement. The Kalman gain K is obtained from the updating scheme:

K, :Pk‘HT(HPk‘HT +R)™ (4.3)
Where
P =A(-KH)P  A"+Q (4.4)

Problem of the conventional Kalman Filter based position estimation
Is that the update frequency is ‘determined by when the sensor input z,
frequency. If the sampling frequency of z, is low, for example sampling

frequency is 1Hz for the GPS sensor, the position error can be as large as

100 m for a vehicle running at speed of 100km/hr.

4.2 Model reference Kalman Filter Estimation

In order to solve the problem of the conventional Kalman Filter, a
dynamic reference model was used as the process model in order to

enhance the performance at high speeds and during turns, and it can

14



combine the GPS and IMU with different data rate. The basic operation
of Model reference Kalman Filter is shown in Figure 4.3.

Discrete form:

X, =(1-B)Ax, , +Bz, (4.5)
Where B is diagonal matrix and the diagonal entries can only be

Boolean (0 or 1).

The a priori estimation:
X, =AX,_,+W,
The a posteriori estimation:

X, =X, +K(z,—HX, +Vv,)

When z, comes from GPS/IMU:sensar, i.e.

%o o=

A
The sampling rate of IMU is higher than that of the GPS in practice.
Assuming that the sampling time of IMU is T, the system matrix of the
plant may be written as follows.

1 0 T 0]

010 7T
0010
0 0 0 1]

The states are

15
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The sensor matrix compares only the position differences as follows.

1000
H:
{0100}

0 o4

0 0 O 0 |

0 0 O 0 0,.,
Q: 2 = 2 ’

0 0 o 0 o Y

00 0 o,

Matrix B may be written into the following form.

I
|4 O

0 J
where

_ |1 if position is updated by GPS
£= 0 else

5= 1 if velocity is updated by GPS/IMU
o else

The Kalman gain K is obtained from the updating scheme:

K,=P H (HP, H +R)™

16



4.2.1 Effect of Covariances

The update scheme of Kalman gain is

K,=P H (HE, H +R)™

where

P =A(l-K_H)P_, A"+Q

Assuming that the priori error covariance P, and Kalman gain take the

following forms in the steady state.

P = |:p11|2><2 p12|2><2:|

Pl Parlaeo

Kk — |:k1| 2><2:|
k2l2><2

We obtain that

4n’k,* —AnTk,” —8nk,” — ATk, ¥4 =0 (4.6)
o 2
Where n=—-%-. k,(velocity Kalman gain) is obtained from the fourth
(o)
0

order polynomial equation (4.6). k&, (position Kalman gain) may be
obtained from the following relation (Appendix C).

k, =1-k,'n (4.7)
The Kalman gains are function of the ratio of the position covariance and

velocity covariance, 7, not the independent values. That is for the

systems with the same ratio 7, the Kalman gains are identical, which

17



may be considered as the water bed effect.

4.2.2 Adaptive Filtering with Fading Factor

The Kalman gain K is obtained from the updating scheme:

K,=P H'(HP, H +R)™

Where

P =(1-B)APA’(1-B) +Q (4.8.1)
or

P =(1-B)A(I-K, H)Py A"(1-B)“4Q (4.8.2)

Since the diagonal entry of matrix B 'is a function of sensor data status,

the updating scheme of £, may then be simplified into

P =A(I-K,_H)P,  A"+Q! (4.9)
Where

, d
Q'=(@-a—)Q (4.10)

max

d_... denotes the maximum lost of GPS data endurable to the system. d

denotes the current loss of GPS data count. The equivalent covariance

Q'of the process noise is monotonically decreasing with d. O0<a <1

denotes the weight corresponds to the loss GPS data rate, the equivalent

covariance Q' of the process noise is smaller when the same loss of

GPS data count subjected to larger weight « . It must be noticed that the

18



count is based on a given sampling time 7. The situation when the loss
data count d >d_ . implies that the GPS is down or the vehicle is

coming into a full stop thus the position cannot be further updated by the

GPS. In such case, one must terminate the position estimation process

andset x, =H'z,.
4.2.3. GPS/IMU Data Fusion

The GPS data is not only useful for updating the position but also

the velocity component in«z,. A simple forward difference method,

known as the linear approximation, may be used for the velocity
approximation purpose~as shown in Figure “4.4. Also the circular
approximation based three known local coordinates may also be used to
perform the précised estimation especially when the vehicle is moving on
the circular track.

The other information may be obtained from the linear and circular
approximation are the information of the yaw angle of the vehicle which

may be simply written as follows.
Oips = tan(z.)
X
Since the GPS data refreshing rate is lower than the IMU refreshing rate,
1 to 7 in our study, the IMU accelerometer may be used to update the

velocity estimated by GPS. The IMU gyro vyields the yaw angle 6 __ of

gyro

the vehicle can be used to determine the direction of the velocity. When
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the new velocity is obtained, we will set o in matrix B to be 1.

When the vehicle is running on the circular path, the insufficient

sampling rate of GPS will cause the position component of z,_ be zero

for a long time, the position estimation of %, relies entirely on the

k

velocity component of z,. However, the direction of the velocity must

according to the IMU updates. Figure 4.5 shows that the process of GPS
and IMU data fusion. In case of high speed turning, the IMU is not fast
enough to perform the immediately update, the vehicle will then tend to

outrun the circular path. Since The IMU gyro also yields the yaw angular

ro

rate 6., of the vehicle; a—yaw compensation scheme proposed

according to the yaw angular rate as follows may be useful to prevent the

outrun situation.
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Chapter 5 Experiment and Comparisons

5.1 Test Track Coordinate System

The benchmark is based on the raw DGPS data acquired from ATRC
high speed test track, as shown in Figure 5.1, consists of three oval shape
runways. The total length of the runway is around 3575 m including 2000
m straight way and 1575m circular way (radius of the middle runway is
about 250m). The DGPS data is received on a car which runs in a nearly
constant speed, say 100 km/hr,~on the runway. The sampling time of
DGPS is 1 second and the sampling -time. of the IMU is 140 ms. The
geodetic reference (datum) used for GPS is the-World Geodetic System
1984 (WGS84) including the latitude and longitude of the geographic
coordinates. Equivalently, the rate-of IMU data is 3.89m per data received
and the rate of DGPS data is 28m per data received when the car speed is
100km/hr which is nearly the resolution of DPGS used in this work.
Knowing the symmetry the oval shape test track, we are able to estimate
the center coordinate of the test road by summing all the DGPS data and
then dividing the total coordinate value by the number of data taken, i.e.

%:ZZE
n

> 1,=24.06764624

j=1
1
p. =9 ==Y ¢ =120.382617
n3
The corresponding ECEF of the center point of the track is calculated
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based on eq.(2.9) and (2.10) as follows.

X.=-2947234.9
Y, =5026933.9

Z. =2585262.1

Substituting the center point into the local project coefficient indicated in

eg. (2.13) and (2.14), we have

x, =101698.51

x,= 110760.24

According to eg. (2.13) and (2.14), we obtain that
x; =101698.51(4, - 4,)

v, =110760.24(p, - ¢,)

An oval shape track with known:dimension consists of 4 segments which

are 2 line segments, as shown in Figure 5.2,

Segment#1. x-x ,+ytand=0 (5.1)
Segment #2: (x—x,,)*+(y-y,,)" —R* =0 (5.2)
Segment #3: x—x, ,+ytan@=0 (5.3
Segment #4: (x—x,,)" +(y—y,,) —-R* =0 (5.4)

where x_ , and x_ , are the linear offsets of the line segment #1 and #3

from the x-axis, respectively. (x,,, »,,) and (x,,, »,,) denote the

centers of local projection of circular segment #2 and #4, respectively.
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Since the line segments are constrained by the shape of the track, we have
2R

_ 55
cosé@ (55)

xo,3 = xo,l
The centers of the circular segments are also constrained by the shape of

the track as follows.

R
x0,2 = (xo,l _w) - yo,Z ta‘n 0 (56)
and

R
x0,4 = (xo,l _w) - yo,4 ta‘n 0 (57)

Substituting eq. (5.5), (5.6) and (5.7) into eq.(2.9) to (2.12), there are
totally five independent unknown parameters in eq. (2.9) to, (2.12), which

may be integrated into a vector form as_follows.

U= [xo,l 0 R Y, V4 ]T
One may write the four segment equations as follows.

fi,(Uix;,y,)=x, —x,,+y, tan@ =0 (5.8)

R
fZ,j(U;‘xj1yj) :(xj _(‘xo,l_—)+yo,2 tane)2 +(yj _y0,2)2 -R*=0
cos®
(5.9)

f3,j(U;xj’yj):xj_(xo,1_ 2R )+yjtan9:O (510)
cosd
R
f4,](le]’y]):(‘x] _(xo,l_cose)+yo,4tan9)2 +(y] _y0,4)2 _R2 :O

(5.11)
In order to linearize the above equations, we let

U=U+AU (5.12)

where

~

D = [xovl 5 E _)70'2 Yo ]T

AU:[Axo,l A6 AR Ay,, Ayo,4]T
According to the Taylor expansion,
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£,V = £, (Uix,,y) ~ f, (U)+Vf, ,(U) AU =0

The above equation yields that

-vf,,(U)" AU = f, (U) (5.13)
It is obtained that

~v/,(0) =l -y, sec?éd 0 0 0

i 2(x] _;?;2) - - - |
2(x, —X,,)(~y,,5ec* & — Rsecd tand)
~Vf, ,(U)= 2(1-(x, —Eﬁyz)sece)
2((x; —x,,)tand +(y, - »,,))
- O -
—Vf3j(l~J)T:{1 —yjseczé—zﬁsecétané =2 0 0}
’ cosé
i 2(x; —35(24) A\ ]
2(x, — X, )(~w,,56c* @ =Rsecftan o)
_Vf4,j(U) = 2(1_(xj —}014)SEC9)
0
L 2((xj _E0,4)tan9 + (y] _5;0,4))
where
EOZ_(xol_ R~) ontané
cosé '
and
§04_(§ol_ R~) yo4tan§
cosé '

The DGPS data x; and y,, j =1, 2, ... n, may be organized into four

segments of the test track, for instance ¢, < j<g,, are the DGPS data

fall into the segment i. The linear equations in eqg. (5.13) may be

integrated with n experiment data as follows:
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CAU=D (5.14)

Matrix C and vectorD may be assembled as follows.

C =9, O - =v7, (0)]

The least square solution yields that

AU =(C'C)*C'D (5.15)
The iteration among procedures according to eq. (5.15) , eq. (5.12), and

U=U ends when HAUHgg and the Hessian condition is satisfied for

the minimum, we obtainU ~ U . According to the least square result of

~

U , the test track coordinate system, as shown in Figure 5.3, including

x,, y., L, R,and 6@ may be obtained that
~ 2

L= \/ on yo,4)

R=R
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‘ 2
y :}0,2-’_}70,4
‘ 2

The nominal test track may be written into a formula as follows in terms

of the parameter u.

H =g(x,. 7., L, R,0,u)
y
5.2 Spiral Curves and DGPS Inaccuarcy

The difference f; j(L~J) between the DGPS-data and the least square

test track may be calculated. The residue of vector D may form a

trajectory variance that
1=~D"D
The trajectory variance x contains not only the DGPS inaccuracy but

also the spiral curves. Spiral curves are generally used to provide a
gradual change in curvature from a straight section of road to a curved
section. They assist the driver by providing a natural path to follow.
Spiral curves also improve the appearance of circular curves by reducing
the break in alignment perceived by drivers[2]. Figure 5.4 shows the
placement of spiral curves in relation to circular curves. Figure 5.5 shows
the components of a spiral curve.

In order to distinguish the spiral curves from the DGPS inaccuracy, we
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map the local position (x;, y,) onto the test track parameter u, that

minimize the offset from the test track, i.e.

=min
u

{XU.]'_'g(xaw_y61151}?1691u)
V.,

J

{Xv-]"g(XQ,JC;rL1}?,6%14)
y

J

M:Mj

The trajectory error for local position may be written as
X .
e;=| " |-9(x.,y.,L,R,0,u)
Vi
It may be possible to use the cumulative moving average to calculate the

spiral curves as follows.

k=p+jl2
€
— k=pjl2
e. = P—J

; / , plsan eveninteger.
- J+1

The maximum DGPS inaccuracy Is then evaluated as follows.
€Gps = rp:?‘z((ej - Ej)

Since the particular type of the DGPS-we used in this study is with 3

meter inaccuracy, we will choose psuch that e;,, =3m.

5.3 Experiments and Analysis

In order to increase the accuracy, there are 3 methods we can adjust.
Following the process below and input these values, there will be a best
final result.

1. Adjusting the Q/R ratio.

2. Finding the best Fading factor.
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3. GPS/IMU data fusion and Yaw compensation.
There are 3 output values that we can evaluate the results. The
Position-variance is the error of position after our process. The

\elocity-variance is the error of velocity after our process. The

Overall-variance is equal to +/var(POS ) +var(VEL)’ . And the values of

these variances are the smaller the better.

5.3.1 Adjusting the Q/R ratio

In Kalman Filter, the purpose of ‘the weights is that values with
better estimated uncertainty are ‘““trusted” maore. The Q denotes process
noise covariance(Velocity-covariance), and the R denotes measurement
noise covariance(Position-covariance). In_this Model reference Kalman

Filter(MRKEF), the smaller covariance means that we “trust” it more. The

Velocity — covariance(Q)

Q/R ratio is equal to — _
Position — covariance(R)

. Figure 5.6 shows that

the Q/R ratio getting bigger will causes the var(POS) getting smaller but
it also causes the var(VEL) getting bigger. In our process, the velocity of
vehicle is about 3m per data and the accuracy of DGPS is about 3m, so

the ratio between R and Q will be the best result at about 1:1.

5.3.2 Finding the best Fading factor

The GPS sensor may loss data by some reasons, like bad weather or
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shading of buildings. In order to keep MRKF working on the situation of
GPS loss data count, we should input the adaptive Fading factor.
Increasing Fading factor means the covariance Q of process noise is
monotonically decreasing. In other words, because of the GPS loss data
count, we trust the measurement process less and estimation process will
be trusted more. Figure 5.7 shows that the bigger Fading factor will
increase the Position accuracy but decrease the Velocity accuracy, and the

best Fading factor is about 0.5.

5.3.3 GPS/IMU data fusion and Yaw compensation

The GPS data is not-only updating the paosition but also the velocity

component in z, .When we. use GPS. data-to update the velocity

component in z,, the velocity accuracy will be dramatically increased. In

our application, the vehicle is not only moving on the straight line but
also on the circular track. In order to know the direction of velocity, we
have to use the IMU. The accelerometer of IMU may be used to update

the velocity estimated by GPS and the gyro of IMU yields the yaw angle

6, . of the vehicle can be used to determine the direction of the velocity.

gyro
As the time goes on, the gyro will yield some drifts and cause the error of
yaw angular rate. In order to correct the effect of drift, we should add the
yaw compensation. Figure 5.8 shows the GPS/IMU data fusion and the
yaw compensation will increase the velocity accuracy but not causing the

error of position, and the overall variance will be decreased to 1.5.
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5.3.4 GPS loss data count or the vehicle is moving faster

The GPS data updating rate is 1Hz and the velocity of the vehicle is
100km/hr in this work. But the GPS sensor may loss data by some
reasons, like bad weather or shading of buildings. If GPS loss data count
happened and the updating rate down to 1/2 Hz, then our GPS position
information received will be 200km per point. In other words, the vehicle
moving faster is just like the lower GPS updating rate. Figure 5.9 shows
the trajectories of vehicle reproduced by MRKEF in different situations.
We can find that the estimation error occur-when the vehicle is moving in
circular track. In order ta'increase the accuracy of MRKF when vehicle is
moving faster, reducing the estimation error in circular track is very

important.

5.3.5 Increasing MRKF accuracy in different situations

Since we know that reducing the estimation error in circular track is
very important, there are 3 methods we can adjust to increase the MRKF
accuracy. Figure 5.11 and 5.12 represents the velocity of vehicle is
200km/hr (or GPS data updating rate is 1/2Hz). Figure 5.13 and 5.14
represents the velocity of vehicle is 400km/hr (or GPS data updating rate

Is 1/4Hz). In method 1, the estimated trajectory only combined by straight

lines, because there is only position component in z, at this time. The
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estimated velocity is seriously distortion and the estimated trajectory is
overshoot. In method 2, the purpose of Fading factor is making MRKF
keeps working on the situation of GPS loss data count. The trajectory in
circular track is more close to the real track and the velocity variance may
dramatically be reduced. In method 3, we use IMU accelerometer to
update the estimated velocity and IMU gyro to obtain the information of
direction. The GPS/IMU data fusion can both reduce the error of
estimated position and velocity, the estimated trajectory may be more
closed to the real track, especially in the circular track. Figure 5.15 shows
the performances of MRKF in different situations. The error of estimated
velocity can be reduced in every step, but the estimated position accuracy
can’t be obviously increased. After our adjusting process, we can obtain
the best result of MRKF ‘and the accuracy can be increased in any

situation.
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Chapter 6 Conclusion

In this work, we discussed an enhanced fusion algorithm, MRKF
(Model Reference Kalman Filter), which is a loosely coupled GPS/IMU
system integrated by a Kalman Filter to estimate the position, heading,
and velocity of a car. A dynamic reference model was used as the process
model in order to enhance the performance at high speeds and during
turns, and it can combine the GPS and IMU with different data rate. The
reduced-order Kalman Filter is a simple system and it’s feasible for
real-time application on MCU or DSP. We analyzed the performance of
the filter using about 100-Km/hr_of experimental tests carried out in
environments with good and bad GPS-coverage. So, if any conclusion is
to be made, the IMU is_clearly not performing at such a level that any
successful integration can_be 'made, at least not for USV. The solution
could work to some extent in a car or similar, where the external affect on
the track is reduced(Spiral curves and driver behavior). The gyro of IMU
Is pretty useful, and can be used directly as a compass.

Through experiments and comparison of their performance, a
conclusion can be drawn that the MRKF is much more robust than the
conventional Kalman Filter in several situations including high speed and
during turns, short GPS outrage and low-cost IMU. The error of position
can be reduced to less than 1.2 m, the error of velocity can be reduced to
less than 1 m/s, and the overall error can be reduced to less than 1.5.
Adjusting the Q/R ratio can increase the accuracy of position or velocity

depends on your demands, in our application the best Q/R ratio will be 1.
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Finding the best Fading factor can dramatically reduce the error of
velocity and doesn’t affect the position accuracy, and the estimated
trajectory can be more close to the real track. GPS/IMU data fusion and
Yaw compensation can increase the accuracy both in position and
velocity, especially in the circular track. Through these three methods, we
can increase the accuracy not only in position but also in velocity at
different situations.

Therefore, it is expected that the MRKF is superior to the
conventional Kalman Filter in the state estimation of GPS/IMU
integration navigation. It based a good foundation for accurate and robust
processing of SAR systems. Its:low-cost:is also fit to the requirement of

Mini-SAR navigation system.
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Appendix A.

(X+Z—);d¢) X) = ((N + h)cos 1)?(sin pd p)?

(Y+2—Zd¢) YJ = ((N + h)sin A)2(sin pdp)?

(Z+2—Zd ) — ZJ :(iN+h)2(COS(pd(p)2
) a

oo 28] (2] (2]

. b* b®
\/(Nz +2Nh + h?)sin? go+(—4N2 +2—2Nh+hz)cos2 )

2
> + 2Nh + h?)sin? ¢+(—N2+2b— Nii+ h?)cos? ¢

2
= [(N? + 2Nh + h*)sin? (p+(—N2+2b—Nh+h )cos® @

4
a a

bZ 2

CZ

N +2Nh+2

Nh)cos? ¢+ (N* + 2Nh + h?)

4_ 4 2 2
:\/(N2+2Nh+h )sin® @ +(N-2+ b4 N? +2Nh+2b Nh + h*)cos’ ¢

4 2 2
*—a b —a
2 +

a a

Nh)cos® ¢

:aiﬂ/a“(N+h)2 +(b* —a*)N?cos® ¢+ 2a*(b* —a’)Nhcos® ¢

1 472 4 4712 472 4 A72 2 212 4 2
:aT\/(a N°+2a"Nh+a"h®)+(b"N°—a"N°)cos” ¢ +(2a°b°Nh — 2a” Nh)cos* ¢

1 :
:a_z\/(“4N2 —2a*Nh)sin? @ + (a*h* + b*N? + 2a°b*Nh) cos® ¢

1 2 2 2 2 2 h 2
:a—z\/(a h+b2N)?cos? @+ (a*N? — 2a* Nh)sin? ¢
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Appendix B.

International

Latitude |Clake 1866 Snyder This paper
(» | Ellipsoid ('E*Iﬁfsc;? 1987 2010
90| 111,699.4 111,700.0f 111,694.0 111,694.0
85/ 111,690.7 111,691.4] 111,685.4 111,685.5
80, 111,665.0 111,665.8 111,659.9 111,660.2
75| 111,622.9 111,624.0f 111,618.4 111,618.9
70, 111,565.9 111,567.4| 111,562.0 111,562.8
65| 111,495.7 111,497.7) 111,492.6 111,493.7
60| 111,4145 111,417.1] 111,412.3 111,413.7
55/ 111,324.8 111,327.9] 111,323.5 111,325.2
50/ 111,229.3 111,233.1] 111,229.1 111,230.9
45/ 111,130.9 111,1354|. 111,131.8 111,133.7
40/ 111,032.7 111,037.8|" " -111,034.6 111,036.5
35/ 110,937.6 110,943.3| ' 110,940.6 110,942.2
30, 110,848.5 110,854.8| @ 1110,852.4 110,853.9
25| 110,768.0 110,774.9| //110,772.9 110,774.0
20| 110,698.7 110,706.0/ < +110,704.3 110,705.0
15| 110,642.5 110,650.2] 110,648.7 110,649.2
10| 110,601.1 110,609.1f 110,607.8 110,608.0
5/ 110,575.7 110,583.9) 110,582.7 110,582.8
0] 110,567.2 110,575.5| 110,574.3 110,574.3
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Appendix C.

K,=P H (HP,H" +R)™

1 puls
Py T O, Pl

k= Pu
1 2
Pt 0Oyp
k _ plZ
2 2
P T 0Og
Where

P =A(I-KH)P , A" 50Q

A:|:I2><2 T|2><2:|
02><2 I2><2
P = {pnl 22 Pl 2><2:|
=
Pl oo P2l

Kk — |:klI 2x2 :|
k2l2x2
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P =A(l-KH)P_, A" +Q
_ I, T|2><2:||:(1_k1)|2><2 02><2:|{p11|2><2 P12|2x2:|{ P 02><2:|+Q

_Ozxz I, _k2|2><2 oo L Pioloe Palon [T 1 1

_ _(1_k1 -k, )y, T szz:”:(pn +Tpip) e p12I2x2:|
_ +Q
(P +Ipp)ls,  Paulse
(A- ky — sz)(pn + Tplz) + T(p12 +1py, )L 2%2 (A- ky, — kZT)p12 + szz) szz}

_k2|2><2 szz

- (k3 (P + Tpyy) + (P + TP 500 (kP + P +O—Q2)I2x2
5.2
_ 90
P12 k,
2
o, (k, +k,T k
Pn = Q(l : ):O-Qz(l"' =)
k,T k,T

k
2
P11 =0y (?)

(@- ky — sz)(pn + Tplz) + T(p12 +1pys ) = P

(_kl _sz)pll + (1_k1 _kZT)Tp12 i T(p12 + szz) =0

(~k, — kZT)(Z—l) +27=0

2

k’ +k,k,T — 2Tk, =0

) — k,T ++k,"T? +8Tk,
1 =
2

(2- 26,27 + &, T =k,’T? +8TK,

k, = P12 _ 1

2
Pt 0Oy k,
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Figures

Figure 2.1 The Earth with hoth ECEF frames and the local geodetic
frame.

Figure 3.1 GPS signal multi-path and blocked by building.
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Figure 4.1 Operation of the Kalman Filter
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Figure 5.3 Test track coordinate system
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Figure 5.5 Components of a spiral curve
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Effect of Covariances
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Figure 5.7 Effect of Fading factor
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Effect of GPS/IMU data fusion
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Figure 5.8 Effect of GPS/IMU data fusion
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Figure 5.9 The trajectory of vehicle estimated by MRKF in different

situations
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Performances of MRKF(100Km/hr)
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Figure 5.10 MRKF’s performance when the velocity is 100km/hr
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Figure 5.11 MRKF’s performance when the velocity is 200km/hr
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Figure 5.12 The trajectory of vehicle estimated by MRKF when the

velocity is 200km/hr
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Figure 5.13 MRKF’s performance when the velocity is 400km/hr

Adjusting process

The trajectory of vehicle estimated by MRKF
when the velocity is 400km/hr

Method 1
Q/Rratio=1

: =

Method 2
Fading factor = 0.5

Method 3

GPS/IMU data
fusion and Yaw
compensation

e

Figure 5.14 The trajectory of vehicle estimated by MRKF when the

velocity is 400km/hr
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Figure 5.15 MRKF’s performances in different situations



