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利用卡曼濾波器整合全球定位系統及慣性量測單元之精簡模型研究 

研究生：黃昱傑         指導教授：成維華 教授 

國立交通大學機械工程學系 

 

中文摘要 

全球定位系統(GPS)及慣性量測單元(IMU)通常以卡曼濾波器整合，而

其往往不能發揮期效益因為沒有辦法正確的建立誤差模型。長久以來，工

程師試圖解析系統狀態以便找到最精確的系統估測方法，而大部分的案例

都需要解析其每一個步驟並建構一個非常複雜的系統。而複雜的系統另一

個缺點就是需要耗費大量的運算時間，不適合用在即時(Real-time)的應用。

本論文之主旨在於建立一動態精簡模型，利用實驗的結果分析其誤差模

型，並找出其最適合之變異係數及參數。從實驗結果得知，此精簡模型可

有效的提高位置及速度之精確度，並可以在全球定位系統接收不良或遺失

訊號時保持穩定運作，且大大減低系統成本並適合於即時系統的應用。 
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Experimental Study on Kalman Filter in a Reduced-Order Integrated GPS/IMU 

Student：Yu-Chieh Huang          Advisor：Dr. Wei-Hua Chieng 

Department of Mechanical Engineering 
National Chiao Tung University 

Abstract  

An integrated GPS/IMU system is often integrated by a Kalman filter which 

cannot work properly without a good error model being made. For decades, 

engineers have tried to decompose the system states, so as to find accurate 

system estimations. However, most of the case it is not easy to identify detail 

processing or measuring errors of individual sub modules. Another drawback of 

complex systems is that the high cost of computation time, it makes them not 

suitable for real-time applications. The aim of this article is to develop a scheme 

in which we can off-line identify the lump error model of reduced-order 

dynamic model until a minimum variance has been found in any desired 

situation, and then simply applying these results to Kalman filter. From 

experimental result, it shows that the position and velocity errors could be 

significantly reduced and controlled. This simple model is robust for tolerating 

data lose, and highly reduce the cost for real-time application. 
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Nomenclature 

 

X , Y , Z : ECEF coordinate 

cX , cY , cZ : ECEF coordinate of the center of local projection  

jX , jY : j-th ECEF coordinate converted from the reading from the GPS 

ϕ , λ , h : LLA coordinate 

cϕ , cλ : LLA coordinate of the center of local projection 

jϕ , jλ : j-th LLA coordinate read from the GPS  

a , b : semi-major and semi-minor axes of the reference ellipsoid of earth 

x , y : local projection coordinate 

 λκ ,  φκ : the mapping constants from LLA coordinate to local projection 

1,ox , 3,ox , 2,ox , 2,oy , 4,ox , 4,oy  L , R , θ : parameters of the test track 

coordinate system 

1,
~

ox , 3,
~

ox , 2,
~

ox , 2,
~

oy , 4,
~

ox , 4,
~

oy  L~ , R~ , θ~ : parameters of the test track 

coordinate system 

var(POS): Position-variance 

var(VEL): Velocity-variance 

var(OVA): Overall-variance 
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Chapter 1 Introduction 

 

1.1 Motivation and Objectives 

 

FMCW ( Frequency Modulated Continuous Wave ) radar systems 

are generally compact and relatively cheap to purchase and to exploit. 

They consume little power and, due to the fact that they are continuously 

operating, they can transmit a modest power, which makes them very 

interesting for military applications. Consequently, FMCW radar 

technology is of interest for civil and military airborne earth observation 

applications, especially in combination with high resolution SAR 

techniques. The novel combination of FMCW technology and Synthetic 

Aperture Radar (SAR) techniques leads to the development of a small, 

lightweight, and cost-effective high resolution imaging sensor. 

Processing Synthetic Aperture Radar (SAR) images is a non trivial 

and computationally heavy task. To perform this process in real time is 

challenging and the final result is highly dependent on the reconstruction 

of the flight path. This reconstruction is performed with data from the 

navigation system and an autofocus algorithm. The performance of 

autofocus algorithms is strongly correlated with the quality of the 

flight-path reconstruction data produced by the navigation system.  

The work here presented describes the Mini-SAR navigation system 

initial stages of development starting with the motivations to the sensors 

selection and finalizing with the analysis of the data. 
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1.2 Background and Literature review 

 

    The Global Positioning System(GPS) represents an inexpensive and 

global method of obtaining the position of a vehicle. Although the 

measurements are highly subjected to noise, the accuracy can be 

improved by applying the principle of differential GPS. However, the 

system gives a low bandwidth, especially when it comes to acceleration 

and speed, which can be calculated by differentiating the position 

measurements. 

    As a contrast, an Inertial Navigation System(INS) only measures the 

forces acting on an Inertial Measurement Unit(IMU), and can thus be 

used to calculate both speed and position estimates without differentiating. 

The INS does not rely on external signals and is therefore not susceptible 

to jamming not the problem of areas lacking satellite coverage. 

    There are several reasons why an integration of GPS and an INS is 

desirable. Generally, and INS gives several advantages that the 

GPS-system lacks, and vice versa. The INS results are available 

whenever the GPS measurements are unavailable and the INS 

measurements are obtained without significant time delay. On the other 

hand, the GPS corrects the integration error from a stand-alone INS 

system and allows on-line calibration of IMU errors. So the integration 

provides real time estimates, as opposed to differentiation. 
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Chapter 2 Reference Frames and Transformations 

 

2.1 Earth Centered – Earth Fixed 

 

    In navigation, several reference frames can be used to present the 

data. Depending on what navigational system is used to obtain the 

measurements, different reference systems are usually required. 

    The Earth Centered, Earth Fixed (ECEF) frame has, as the name 

suggests, its center in the center of the Earth, and the frame is stationary 

relative to the surface. Of all the possible combinations of ECEF 

coordinate systems, two are of particular importance. 

    This is named the ECEF rectangular system but is usually just 

referred to as the ECEF system. Its x-axis points through the intersection 

of the prime median (0o longitude), and equator (0o latitude), its z-axis 

towards the true north pole, and the y-axis to complete the right hand rule 

through the intersection of 90 o longitude and equator. 

    The other representation is called ECEF geodetic frame. This system 

expresses position in latitude, longitude and height, [φ, λ, h] and is given 

in the spherical coordinates. The latitude is found by rotating around the 

z-axis until the x-axis crosses the projection from the position on to the 

x-y-plane. The longitude is then found by rotating around the y-axis until 

the x-axis coincides with the vector from the center of the Earth to the 

position. The height is the distance from the nearest point normal on the 

assumed altitude. 
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2.2 Local Geodetic and Body Frame 

 

    The local geodetic frame takes basis of making a fictional tangent 

plane at the origin, just like presenting the globe as a map. The x-axis 

points north, the y-axis towards east and the z-axis points down, normal 

onto the ellipsoid, therefore also widely known as the NED-frame 

(north-east-down). This frame coincides with the geographic frame for a 

stationary target. The difference between the two is that in the latter 

frame, the origin is a projection of the platform origin onto the Earth's 

geodetic. Another version of this frame is the east, north, up-frame 

(ENU). 

    The body frame is usually in the center of gravity of the body of the 

object in question. Its x-axis points towards the defined front of the object, 

the z-axis points down and the y-axis points right to complete the right 

hand rule. This frame and the NED-frame are widely used for control 

purposes. 

    The frame represents the vehicle states in 6 degrees of freedom (6 

DOF) known as surge, sway and heave (u, v, w), and roll, pitch and yaw 

(φ, λ, ψ). Surge, sway and heave are the speed in x, y and z respectively, 

and roll, pitch and yaw are the vehicle's angular displacement from the 

NED-frame. 

 

2.3 ECEF-to-Tangent Plane Transformation 
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    The transformation from ECEF-to-tangent plane coordinates, starts 

by subtracting the tangent plane origin, given in the ECEF-frame, from 

the ECEF coordinates, leaving the two planes with the same origin. 

( ) ( )TT zyxzyx 000 ,,,,x −=δ                 (2.1) 

The next step is performing a rotation around the ECEF z-axis until the 

y-axis is aligned with tangent-plane east, where the λ is the longitude. 
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By performing a new rotation, this time around the aligned y-axis until 

the new z-axis is aligned with the tangent-plane down where φ is the 

latitude. 
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By combining the two, the complete rotation matrix is obtained. 
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2.4 Body-to-Tangent Plane Transformation 

 

By using the Euler angles derived from the body frame and 

transforming via one axis at a time, and by choosing to start with the 

rotation around the z-axis the new coordinates[ ]Tzyx ′′′ is obtained. 
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The two remaining axes are applied by the same method, and the body 

frame coordinates have obtained. 
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And these can be combined by multiplication, yielding 
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2.5 GPS Coordinate Systems 

 

The use of a reference ellipsoid allows for the conversion of the 

ECEF (Earth-Centered, Earth-Fixed) coordinates to the more commonly 

used geodetic-mapping coordinates (LLA) of Latitude(ϕ ; in degrees), 

Longitude (λ ; in degrees), and Altitude ( h；in meters). GPS commonly 

adopts the LLA coordinate system. The conversion between the two 

reference coordinate systems can be performed using closed formulas. 

The conversion from LLA to ECEF (in meters) is shown as below. 

 λϕ coscos)( hNX +=    (2.9) 

 λϕ sincos)( hNY +=      (2.10) 

 ϕsin)( hN
a
bZ += 2

2

       (2.11) 

where N  is the radius of curvature (meters), defined as 

 
ϕ2

2

22

1 sin
a

ba
aN

−
−

=                            (2.12) 

a  and b  are the semi-major and semi-minor axes of the reference 

ellipsoid of earth, respectively. h denotes the height of the position above 

the reference ellipsoid. According to the WGS84 parameters, we have 

6378137=a and 36356752.=b . 
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2.5 Local Projection 

 

According to the LLA coordinate system, a small region may be 

identified with a center for projection ( cϕ , cλ ) onto a flat mapping 

surface called the x-y plane as follows. 

  )cx λλκλ −= (   (2.13) 

  )cy ϕϕκφ −= (   (2.14) 

The y-axis local project is pointing to the north pole of the earth when the 

center of projection is on the north semi-hemisphere. The x-axis is 

determined through the right-hand law with the thumb pointed to the 

north pole. λκ and ϕκ are the mapping constants from LLA coordinate to 

local projection, which are defined  

λκ  = 180/cos)( ϕπ hN +  (meter/degree)                  (2.15) 

ϕκ  = 18021 24242222
2 /)sin)(cos)(( ϕϕ NhaNaNbha

a
π −++  

(meter/degree)                                         (2.16) 

 



 9

Chapter 3 GPS/IMU 

 

3.1 GPS 

 

    The GPS is part of a satellite-based navigation system developed by 

the U.S. Department of Defense under its NAVSTAR satellite program[4]. 

The fully operational GPS includes 28 or more active satellites 

approximately uniformly dispersed around six circular orbits with four or 

more satellites each. The orbits are inclined at an angle of 55o relative to 

the equator and are separated from each other by multiples of 60o right 

ascension. The orbits are nongeostationary and approximately circular, 

with radii of 26,560 km and orbital periods of one-half sidereal day 

(about 11.967hrs). Theoretically, three or more GPS satellites will always 

be visible from most points on the earth’s surface, and four or more GPS 

satellites can be used to determine an observer’s position anywhere on the 

earth’s surface 24hrs per day. 

 

3.1.1 GPS Signals 

 

    Each GPS satellite transmits two spread spectrum, L-band carrier 

signals – an L1 signal with carrier frequency f1 = 1575.42 MHz and an L2 

signal with carrier frequency f2 = 1227.6 MHz. These two frequencies are 

integral multiples f1 = 1540 f0 and f2 = 1200 f0 of the base frequency f0 = 

1.023 MHz. The L1 signal from each satellite uses binary phase-shift 
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keying(BPSK), modulated by two pseudorandom noise(PRN) codes in 

phase quadrature, designated as the C/A-code and P-code. The L2 signal 

from each satellite is BPSK modulated by only the P-code. Both 

frequencies are available for all users, but due to encryption of the P-code, 

only the C/A-code is usable by the public. 

 

3.1.2 Sources of Errors 

 

    Civilian GPS receivers have potential position errors due to the 

result of the accumulated errors[5] due primarily to some of the following 

sources: 

1. Ionosphere and troposphere delays: 

The satellite signal slow as it passes through the atmosphere. The 

system uses a built-in model that calculate an average, but not an exact, 

amount of delay. 

2. Signal multi-path: 

When the GPS signal is reflected off object such as tall buildings or 

large rock surfaces before it reaches the receiver. 

3. Receiver clock errors: 

Since it’s not practical to have an atomic clock in your GPS receiver, 

the built-in clock can have very slight timing errors. 

4. Orbital errors: 

Also known as “ephemeris errors”, these are inaccuracies of the 

satellite’s reported location. 

5. Number of satellites visible: 
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The more satellites the receiver can “see”, the better the accuracy. 

Anything can block signal reception, causing position errors or 

possibly no position reading at all, like figure 3.1. 

6. Satellite geometry/shading: 

Ideal satellite geometry exists when the satellites are located at wide 

angles relative to each other. Poor geometry results when the satellites 

are located in a line or in a tight grouping. 

7. Intentional degradation of satellite signal: 

The U.S. military’s intentional degradation of the signal is known as 

“Selective Availability”(SA) and is intended to prevent military 

adversaries from using the highly accurate GPS signals. SA accounts 

for the majority of the error in the range. SA was turned off May 2, 

2000, and is currently not active. This means we can expect typical 

GPS accuracies in the range of 6-12 meters. 
 

3.1.3 Velocity Measurements 
 
    The integration is performed in two different frames, depending on 

the measurement. For position, ECEF geodetic [φ, λ, h] is used, while for 

speed, the tangent-plane (NED) has been chosen. In order to transform 

the GPS data, the position, already given in ECEF geodetic coordinates, 

is differentiated. To transform the speed, yielding that: 
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3.2 Inertial Measurement Unit(IMU) 

 

    The IMU chosen is the MicroStrain@ 3DM-GX1(Figure 3.2). It 

consists of three accelerometers, three gyros and three magnetometers, 

and giving acceleration in 6 degrees of freedom(6 DOF) and position in 3 

DOF. This IMU performs an accelerometer bias stability of 0.01G, where 

the G is the Earth’s gravitational constant, and 0.7o/sec for the gyros. And 

the sensors have bandwidth of 100hz, and transmit data over an RS-232 

serial line.  

 

3.3 GPS Module 

 

    The GPS module chosen is GARMIN GPS-18-PC(Figure 3.3). This 

module operates at 8 – 30V, and transmits data through RS-232. It has 

position accuracy at 15m, or 3m with Wide Area Augmentation 

System(WAAS) enabled. And its update rate is 1Hz, so it can transmit 1 

record per second. 
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Chapter 4 Kalman Filter 

 

    The Kalman Filter is an optimal, linear state estimator, able to 

estimate the full system state, depending on incomplete and noisy 

measurement series. The theory of the filter dates back to 1960, when 

Rudolf Kalman proposed the Filter to NASA for the Apollo Program. The 

Kalman filter is essentially a set of mathematical equations that 

implement a predictor-corrector type estimator that is optimal in the sense 

that it minimizes the estimated error covariance—when some presumed 

conditions are met. Since the time of its introduction, the Kalman Filter 

has been the subject of extensive research and application, particularly in 

the area of autonomous or assisted navigation. The filter comes in many 

different forms, but the one most relevant for this work is the discrete 

Kalman Filter, which also will be the one most thoroughly investigated. 

 

4.1 Conventional Kalman Filter Implementation 

 

The Kalman filter addresses the general problem of trying to 

estimate the state nRx ∈  of a discrete-time controlled process that is 

governed by the linear stochastic difference equation. The basic operation 

of Kalman Filter is shown in Figure 4.1 and 4.2. 

The a priori estimation:  

11 −−
− += kkk wx̂Ax̂                                        (4.1) 

The a posteriori estimation:  
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)vx̂Hz(Kx̂x̂ kkkkk +−+= −−                               (4.2) 

The random variables kw  and kv  represent the process and 

measurement noise, respectively. They are assumed to be independent of 

each other, white, and with normal probability distributions 

)Q,(~)w(  0Np  

)R,(~)v(  0Np  

In practice, the process noise covariance Q  and measurement noise 

covariance P  matrices might change with each time step or 

measurement. The Kalman gain K is obtained from the updating scheme: 

1−−− += )RHH(HK T
k

T
kk PP                                (4.3) 

Where 

QA)KHI(A +−= −
−

− T
kk PP 1                                (4.4) 

Problem of the conventional Kalman Filter based position estimation 

is that the update frequency is determined by when the sensor input kz  

frequency. If the sampling frequency of kz  is low, for example sampling 

frequency is 1Hz for the GPS sensor, the position error can be as large as 

100 m for a vehicle running at speed of 100km/hr. 

 

4.2 Model reference Kalman Filter Estimation 

 

In order to solve the problem of the conventional Kalman Filter, a 

dynamic reference model was used as the process model in order to 

enhance the performance at high speeds and during turns, and it can 
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combine the GPS and IMU with different data rate. The basic operation 

of Model reference Kalman Filter is shown in Figure 4.3. 

Discrete form: 

kkk BzAx)BI(x +−= −1                                   (4.5) 

Where B  is diagonal matrix and the diagonal entries can only be 

Boolean (0 or 1).  

The a priori estimation:  

11 −−
− += kkk wx̂Ax̂                                         

The a posteriori estimation:  

)vx̂H(zKx̂x̂ kkkkk +−+= −−                                

When kz  comes from GPS/IMU sensor, i.e. 

⎥
⎥
⎥
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y
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The sampling rate of IMU is higher than that of the GPS in practice. 

Assuming that the sampling time of IMU is T , the system matrix of the 

plant may be written as follows. 

⎥
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The states are 
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The sensor matrix compares only the position differences as follows. 
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Matrix B  may be written into the following form. 

⎥
⎦

⎤
⎢
⎣

⎡
=

I
I

B
δ

χ
0

0
  

where  

⎩
⎨
⎧

=
else

GPSby  updated isposition  if 
0
1

χ   

⎩
⎨
⎧

=
else

GPS/IMUby   updated is velocity if 
0
1

δ  

The Kalman gain K is obtained from the updating scheme: 

1−−− += )RHH(HK T
k

T
kk PP  
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4.2.1 Effect of Covariances 

 

The update scheme of Kalman gain is 

1−−− += )RHH(HK T
k

T
kk PP  

where 

QA)HKI(A +−= −
−−

− T
kkk PP 11  

Assuming that the priori error covariance −
kP and Kalman gain take the 

following forms in the steady state. 

⎥
⎦

⎤
⎢
⎣

⎡
=

××

××−

22222212

22122211

II
II

pp
pp

Pk  
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⎤
⎢
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=

×

×

222

221

I
I

k
k

Kk  

We obtain that  

044844 2
2

2
3

2
4

2
2 =+−−− TkkTkk ηηη                        (4.6) 

Where 2

2

Q

R

σ
ση = . 2k (velocity Kalman gain) is obtained from the fourth 

order polynomial equation (4.6). 1k  (position Kalman gain) may be 

obtained from the following relation (Appendix C). 

η221 1 kk −=                                             (4.7) 

The Kalman gains are function of the ratio of the position covariance and 

velocity covariance, η , not the independent values. That is for the 

systems with the same ratio η , the Kalman gains are identical, which 
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may be considered as the water bed effect. 

 

4.2.2 Adaptive Filtering with Fading Factor 

 

The Kalman gain K is obtained from the updating scheme: 

1−−− += )RHH(HK T
k

T
kk PP  

Where 

Q)BI(AA)BI( +−−=− TT
kk PP                           (4.8.1) 

or 

Q)BI(A)HKI(A)BI( +−−−= −
−−

− TT
kkk PP 11               (4.8.2) 

Since the diagonal entry of matrix B  is a function of sensor data status, 

the updating scheme of −
kP  may then be simplified into 

'QA)HKI(A +−= −
−−

− T
kkk PP 11                            (4.9) 

Where 

Q)('Q
maxd
dα−= 1                                      (4.10) 

maxd  denotes the maximum lost of GPS data endurable to the system. d  

denotes the current loss of GPS data count. The equivalent covariance 

'Q of the process noise is monotonically decreasing with d . 10 ≤< α  

denotes the weight corresponds to the loss GPS data rate, the equivalent 

covariance 'Q  of the process noise is smaller when the same loss of 

GPS data count subjected to larger weight α . It must be noticed that the 
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count is based on a given sampling time T . The situation when the loss 

data count maxdd >  implies that the GPS is down or the vehicle is 

coming into a full stop thus the position cannot be further updated by the 

GPS. In such case, one must terminate the position estimation process 

and set k
T

k zHx = .  

 

4.2.3. GPS/IMU Data Fusion  

 

The GPS data is not only useful for updating the position but also 

the velocity component in kz . A simple forward difference method, 

known as the linear approximation, may be used for the velocity 

approximation purpose as shown in Figure 4.4. Also the circular 

approximation based three known local coordinates may also be used to 

perform the précised estimation especially when the vehicle is moving on 

the circular track.  

The other information may be obtained from the linear and circular 

approximation are the information of the yaw angle of the vehicle which 

may be simply written as follows. 

)tan(
x
y

GPS &

&
=θ  

Since the GPS data refreshing rate is lower than the IMU refreshing rate, 

1 to 7 in our study, the IMU accelerometer may be used to update the 

velocity estimated by GPS. The IMU gyro yields the yaw angle gyroθ  of 

the vehicle can be used to determine the direction of the velocity. When 
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the new velocity is obtained, we will set δ in matrix B  to be 1. 

 

When the vehicle is running on the circular path, the insufficient 

sampling rate of GPS will cause the position component of kz  be zero 

for a long time, the position estimation of kx̂  relies entirely on the 

velocity component of kz . However, the direction of the velocity must 

according to the IMU updates. Figure 4.5 shows that the process of GPS 

and IMU data fusion. In case of high speed turning, the IMU is not fast 

enough to perform the immediately update, the vehicle will then tend to 

outrun the circular path. Since The IMU gyro also yields the yaw angular 

rate gyroθ&  of the vehicle, a yaw compensation scheme proposed 

according to the yaw angular rate as follows may be useful to prevent the 

outrun situation.  
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Chapter 5 Experiment and Comparisons 

 

5.1 Test Track Coordinate System 

 

The benchmark is based on the raw DGPS data acquired from ATRC 

high speed test track, as shown in Figure 5.1, consists of three oval shape 

runways. The total length of the runway is around 3575 m including 2000 

m straight way and 1575m circular way (radius of the middle runway is 

about 250m). The DGPS data is received on a car which runs in a nearly 

constant speed, say 100 km/hr, on the runway. The sampling time of 

DGPS is 1 second and the sampling time of the IMU is 140 ms. The 

geodetic reference (datum) used for GPS is the World Geodetic System 

1984 (WGS84) including the latitude and longitude of the geographic 

coordinates. Equivalently, the rate of IMU data is 3.89m per data received 

and the rate of DGPS data is 28m per data received when the car speed is 

100km/hr which is nearly the resolution of DPGS used in this work. 

Knowing the symmetry the oval shape test track, we are able to estimate 

the center coordinate of the test road by summing all the DGPS data and 

then dividing the total coordinate value by the number of data taken, i.e.  

∑
=

==
n

j
jc n 1

1 λλλ =24.06764624 

∑
=

==
n

j
jc n 1

1 ϕϕϕ =120.382617 

The corresponding ECEF of the center point of the track is calculated 
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based on eq.(2.9) and (2.10) as follows. 

cX = -2947234.9 

cY  = 5026933.9 

cZ  = 2585262.1 

Substituting the center point into the local project coefficient indicated in 

eq. (2.13) and (2.14), we have 

λκ  = 101698.51 

ϕκ = 110760.24 

According to eq. (2.13) and (2.14), we obtain that 

jx  = 101698.51 )cj λλ −(  

 jy =110760.24  )cj ϕϕ −(  

 

An oval shape track with known dimension consists of 4 segments which 

are 2 line segments, as shown in Figure 5.2,  

Segment #1: 01 =+− θtan, yxx o                            (5.1) 

Segment #2: 022
2

2
2 =−−+− Ryyxx oo )()( ,,                  (5.2) 

Segment #3: 03 =+− θtan, yxx o                            (5.3) 

Segment #4: 022
4

2
4 =−−+− Ryyxx oo )()( ,,                   (5.4) 

where 1,ox  and 3,ox  are the linear offsets of the line segment #1 and #3 

from the x-axis, respectively. ( 2,ox , 2,oy ) and ( 4,ox , 4,oy ) denote the 

centers of local projection of circular segment #2 and #4, respectively. 
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Since the line segments are constrained by the shape of the track, we have 

θcos,,
Rxx oo

2
13 −=                                          (5.5) 

The centers of the circular segments are also constrained by the shape of 

the track as follows. 

θ
θ

tan)
cos

( ,,, 2120 oo yRxx −−=                               (5.6)  

and 

θ
θ

tan)
cos

( ,,, 4140 oo yRxx −−=                               (5.7) 

Substituting eq. (5.5), (5.6) and (5.7) into eq.(2.9) to (2.12), there are 

totally five independent unknown parameters in eq. (2.9) to, (2.12), which 

may be integrated into a vector form as follows. 

[ ]T
ooo yyRx 421 ,,,U θ=  

One may write the four segment equations as follows. 

011 =+−= θtan),;U( ,, jojjjj yxxyxf                         (5.8) 

022
2

2
212 =−−++−−= RyyyRxxyxf ojoojjjj )()tan)

cos
((),;U( ,,,, θ

θ
  

(5.9) 

02
13 =+−−= θ

θ
tan)

cos
(),;U( ,, jojjjj yRxxyxf                (5.10) 

022
4

2
414 =−−++−−= RyyyRxxyxf ojoojjjj )()tan)

cos
((),;U( ,,,, θ

θ
 

(5.11) 
In order to linearize the above equations, we let 

UU~U Δ+=                                             (5.12) 

where 

[ ]Tooo yyRx 421 ,,,
~~~~~U~ θ=  

[ ]T
ooo yyRx 421 ,,,U ΔΔΔΔΔ=Δ θ  

According to the Taylor expansion,  
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0=Δ∇+≈≡ U)U~()U~(),;U()U( ,,,,
T

jijijjjiji ffyxff  

The above equation yields that 

)U~(U)U~( ,, ji
T

ji ff =Δ∇−                                   (5.13) 

It is obtained that 

[ ]0001 2
1 θ~sec)U~(, j

T
j yf −=∇−  
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where 

θ
θ

~tan~)~cos

~
~(~

,,, 212 ooo yRxx −−=    

and 

θ
θ

~tan~)~cos

~
~(~

,,, 414 ooo yRxx −−=  

The DGPS data  jx and jy , j = 1, 2, … n, may be organized into four 

segments of the test track, for instance eisi qjq ,, ≤≤  are the DGPS data 

fall into the segment i . The linear equations in eq. (5.13) may be 

integrated with n experiment data as follows: 
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DUC =Δ                                               (5.14) 

MatrixC and vector D  may be assembled as follows. 
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The least square solution yields that 

DC)CC(U TT 1−=Δ                                     (5.15) 

The iteration among procedures according to eq. (5.15) , eq. (5.12), and 

UU~ =  ends when ε≤ΔU  and the Hessian condition is satisfied for 

the minimum, we obtain U~U ≈ . According to the least square result of 

U~  , the test track coordinate system, as shown in Figure 5.3, including 

cx , cy , L , R , and θ  may be obtained that 

( ) ( )2
42

2
42 ,,,,

~~~~
oooo yyxxL −+−=  

RR ~=  

θθ ~=  
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2
42 ,,

~~
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=  

The nominal test track may be written into a formula as follows in terms 

of the parameter u . 

),,,,,(g uRLyx
y
x

cc θ=⎥
⎦

⎤
⎢
⎣

⎡  

 

5.2 Spiral Curves and DGPS Inaccuarcy 

 

The difference )U~(, jif  between the DGPS data and the least square 

test track may be calculated. The residue of vector D  may form a 

trajectory variance that  

DDT=μ  

The trajectory variance μ  contains not only the DGPS inaccuracy but 

also the spiral curves. Spiral curves are generally used to provide a 

gradual change in curvature from a straight section of road to a curved 

section. They assist the driver by providing a natural path to follow. 

Spiral curves also improve the appearance of circular curves by reducing 

the break in alignment perceived by drivers[2]. Figure 5.4 shows the 

placement of spiral curves in relation to circular curves. Figure 5.5 shows 

the components of a spiral curve.  

In order to distinguish the spiral curves from the DGPS inaccuracy, we 
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map the local position ( jx , jy ) onto the test track parameter ju  that 

minimize the offset from the test track, i.e. 

),,,,,(gmin),,,,,(g uRLyx
y
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uRLyx
y
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j
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j
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The trajectory error for local position may be written as 
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e cc
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j
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=  

It may be possible to use the cumulative moving average to calculate the 

spiral curves as follows. 

1j

      
2

2

+
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∑
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jpk

jpk
k

j

e
e  , p is an even integer. 

The maximum DGPS inaccuracy is then evaluated as follows. 

)(max
, jjnjGPS eee −=

=1
 

Since the particular type of the DGPS we used in this study is with 3 

meter inaccuracy, we will choose p such that GPSe  = 3m. 

 

5.3 Experiments and Analysis 

 

In order to increase the accuracy, there are 3 methods we can adjust. 

Following the process below and input these values, there will be a best 

final result. 

1. Adjusting the Q/R ratio. 

2. Finding the best Fading factor. 
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3. GPS/IMU data fusion and Yaw compensation. 

There are 3 output values that we can evaluate the results. The 

Position-variance is the error of position after our process. The 

Velocity-variance is the error of velocity after our process. The 

Overall-variance is equal to ( ) ( )22 VELvarPOSvar + . And the values of 

these variances are the smaller the better. 

 

5.3.1 Adjusting the Q/R ratio 

 

In Kalman Filter, the purpose of the weights is that values with 

better estimated uncertainty are “trusted” more. The Q denotes process 

noise covariance(Velocity-covariance), and the R denotes measurement 

noise covariance(Position-covariance). In this Model reference Kalman 

Filter(MRKF), the smaller covariance means that we “trust” it more. The 

Q/R ratio is equal to 
)(covariancePosition
)(covarianceVelocity

R
Q

−
− . Figure 5.6 shows that 

the Q/R ratio getting bigger will causes the var(POS) getting smaller but 

it also causes the var(VEL) getting bigger. In our process, the velocity of 

vehicle is about 3m per data and the accuracy of DGPS is about 3m, so 

the ratio between R and Q will be the best result at about 1:1.  

 

5.3.2 Finding the best Fading factor 

 

The GPS sensor may loss data by some reasons, like bad weather or 
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shading of buildings. In order to keep MRKF working on the situation of 

GPS loss data count, we should input the adaptive Fading factor. 

Increasing Fading factor means the covariance Q of process noise is 

monotonically decreasing. In other words, because of the GPS loss data 

count, we trust the measurement process less and estimation process will 

be trusted more. Figure 5.7 shows that the bigger Fading factor will 

increase the Position accuracy but decrease the Velocity accuracy, and the 

best Fading factor is about 0.5. 

 

5.3.3 GPS/IMU data fusion and Yaw compensation 

 

The GPS data is not only updating the position but also the velocity 

component in kz .When we use GPS data to update the velocity 

component in kz , the velocity accuracy will be dramatically increased. In 

our application, the vehicle is not only moving on the straight line but 

also on the circular track. In order to know the direction of velocity, we 

have to use the IMU. The accelerometer of IMU may be used to update 

the velocity estimated by GPS and the gyro of IMU yields the yaw angle 

gyroθ  of the vehicle can be used to determine the direction of the velocity. 

As the time goes on, the gyro will yield some drifts and cause the error of 

yaw angular rate. In order to correct the effect of drift, we should add the 

yaw compensation. Figure 5.8 shows the GPS/IMU data fusion and the 

yaw compensation will increase the velocity accuracy but not causing the 

error of position, and the overall variance will be decreased to 1.5.  
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5.3.4 GPS loss data count or the vehicle is moving faster  

 

The GPS data updating rate is 1Hz and the velocity of the vehicle is 

100km/hr in this work. But the GPS sensor may loss data by some 

reasons, like bad weather or shading of buildings. If GPS loss data count 

happened and the updating rate down to 1/2 Hz, then our GPS position 

information received will be 200km per point. In other words, the vehicle 

moving faster is just like the lower GPS updating rate. Figure 5.9 shows 

the trajectories of vehicle reproduced by MRKF in different situations. 

We can find that the estimation error occur when the vehicle is moving in 

circular track. In order to increase the accuracy of MRKF when vehicle is 

moving faster, reducing the estimation error in circular track is very 

important. 

 

5.3.5 Increasing MRKF accuracy in different situations 

 

Since we know that reducing the estimation error in circular track is 

very important, there are 3 methods we can adjust to increase the MRKF 

accuracy. Figure 5.11 and 5.12 represents the velocity of vehicle is 

200km/hr (or GPS data updating rate is 1/2Hz). Figure 5.13 and 5.14 

represents the velocity of vehicle is 400km/hr (or GPS data updating rate 

is 1/4Hz). In method 1, the estimated trajectory only combined by straight 

lines, because there is only position component in kz  at this time. The 
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estimated velocity is seriously distortion and the estimated trajectory is 

overshoot. In method 2, the purpose of Fading factor is making MRKF 

keeps working on the situation of GPS loss data count. The trajectory in 

circular track is more close to the real track and the velocity variance may 

dramatically be reduced. In method 3, we use IMU accelerometer to 

update the estimated velocity and IMU gyro to obtain the information of 

direction. The GPS/IMU data fusion can both reduce the error of 

estimated position and velocity, the estimated trajectory may be more 

closed to the real track, especially in the circular track. Figure 5.15 shows 

the performances of MRKF in different situations. The error of estimated 

velocity can be reduced in every step, but the estimated position accuracy 

can’t be obviously increased. After our adjusting process, we can obtain 

the best result of MRKF and the accuracy can be increased in any 

situation. 
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Chapter 6 Conclusion 

 

In this work, we discussed an enhanced fusion algorithm, MRKF 

(Model Reference Kalman Filter), which is a loosely coupled GPS/IMU 

system integrated by a Kalman Filter to estimate the position, heading, 

and velocity of a car. A dynamic reference model was used as the process 

model in order to enhance the performance at high speeds and during 

turns, and it can combine the GPS and IMU with different data rate. The 

reduced-order Kalman Filter is a simple system and it’s feasible for 

real-time application on MCU or DSP. We analyzed the performance of 

the filter using about 100 Km/hr of experimental tests carried out in 

environments with good and bad GPS coverage. So, if any conclusion is 

to be made, the IMU is clearly not performing at such a level that any 

successful integration can be made, at least not for USV. The solution 

could work to some extent in a car or similar, where the external affect on 

the track is reduced(Spiral curves and driver behavior). The gyro of IMU 

is pretty useful, and can be used directly as a compass. 

Through experiments and comparison of their performance, a 

conclusion can be drawn that the MRKF is much more robust than the 

conventional Kalman Filter in several situations including high speed and 

during turns, short GPS outrage and low-cost IMU. The error of position 

can be reduced to less than 1.2 m, the error of velocity can be reduced to 

less than 1 m/s, and the overall error can be reduced to less than 1.5. 

Adjusting the Q/R ratio can increase the accuracy of position or velocity 

depends on your demands, in our application the best Q/R ratio will be 1. 
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Finding the best Fading factor can dramatically reduce the error of 

velocity and doesn’t affect the position accuracy, and the estimated 

trajectory can be more close to the real track. GPS/IMU data fusion and 

Yaw compensation can increase the accuracy both in position and 

velocity, especially in the circular track. Through these three methods, we 

can increase the accuracy not only in position but also in velocity at 

different situations. 

Therefore, it is expected that the MRKF is superior to the 

conventional Kalman Filter in the state estimation of GPS/IMU 

integration navigation. It based a good foundation for accurate and robust 

processing of SAR systems. Its low-cost is also fit to the requirement of 

Mini-SAR navigation system. 
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Appendix B. 

 

Latitude 
(ϕ) 

Clake 1866 
Ellipsoid 

International  
(Hayford) 
Ellipsoid 

Snyder 
1987 

This paper 
2010 

90 111,699.4 111,700.0 111,694.0 111,694.0
85 111,690.7 111,691.4 111,685.4 111,685.5
80 111,665.0 111,665.8 111,659.9 111,660.2
75 111,622.9 111,624.0 111,618.4 111,618.9
70 111,565.9 111,567.4 111,562.0 111,562.8
65 111,495.7 111,497.7 111,492.6 111,493.7
60 111,414.5 111,417.1 111,412.3 111,413.7
55 111,324.8 111,327.9 111,323.5 111,325.2
50 111,229.3 111,233.1 111,229.1 111,230.9
45 111,130.9 111,135.4 111,131.8 111,133.7
40 111,032.7 111,037.8 111,034.6 111,036.5
35 110,937.6 110,943.3 110,940.6 110,942.2
30 110,848.5 110,854.8 110,852.4 110,853.9
25 110,768.0 110,774.9 110,772.9 110,774.0
20 110,698.7 110,706.0 110,704.3 110,705.0
15 110,642.5 110,650.2 110,648.7 110,649.2
10 110,601.1 110,609.1 110,607.8 110,608.0
5 110,575.7 110,583.9 110,582.7 110,582.8
0 110,567.2 110,575.5 110,574.3 110,574.3
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Appendix C. 
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Figures 
 

 

 
Figure 2.1 The Earth with both ECEF frames and the local geodetic 

frame. 
 
 

 

 
Figure 3.1 GPS signal multi-path and blocked by building. 
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Figure 3.2 MicroStrain@ 3DM-GX1 IMU 

 

 
Figure 3.3 GARMIN GPS-18-PC  

 

 
Figure 4.1 Operation of the Kalman Filter 
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Fig 4.2 Conventional Kalman Filter 

 
 

 
Fig 4.3 Model reference Kalman Filter 
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Fig 4.4 Linear/Circular Approximation weighting 

 
 
 
 

 
Fig 4.5 GPS/IMU data fusion 
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Figure 5.1 ARTC high speed railway 
 
 
 

 
Figure 5.2 An oval shape track 
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Figure 5.3 Test track coordinate system 

 
 

 
Figure 5.4 Placement of spiral curve 

 
 

 
Figure 5.5 Components of a spiral curve 
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Figure 5.6 Effect of Covariances. 

 

 

 

 
Figure 5.7 Effect of Fading factor 
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Figure 5.8 Effect of GPS/IMU data fusion 
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GPS updating rate 

/ Velocity of vehicle 
The trajectory of vehicle estimated by MRKF 

1Hz  

/ 100km/hr 

 

1/2Hz  

/ 200km/hr 

 

1/3Hz  

/ 300km/hr 

 

1/4Hz  

/ 400km/hr 

 

1/5Hz  

/ 500km/hr 

 

1/6Hz  

/ 600km/hr 

 
Figure 5.9 The trajectory of vehicle estimated by MRKF in different 

situations 
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Figure 5.10 MRKF’s performance when the velocity is 100km/hr 
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Figure 5.11 MRKF’s performance when the velocity is 200km/hr 

Adjusting process 
The trajectory of vehicle estimated by MRKF 

when the velocity is 200km/hr 

Method 1 

Q/R ratio = 1 

 

Method 2 

Fading factor = 0.5 

 
Method 3 

GPS/IMU data 

fusion and Yaw 

compensation  

Figure 5.12 The trajectory of vehicle estimated by MRKF when the 

velocity is 200km/hr 
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Figure 5.13 MRKF’s performance when the velocity is 400km/hr 

Adjusting process 
The trajectory of vehicle estimated by MRKF 

when the velocity is 400km/hr 

Method 1 

Q/R ratio = 1 

 

Method 2 

Fading factor = 0.5 

 
Method 3 

GPS/IMU data 

fusion and Yaw 

compensation  

Figure 5.14 The trajectory of vehicle estimated by MRKF when the 

velocity is 400km/hr 
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Figure 5.15 MRKF’s performances in different situations 


