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ABSTRACT

This paper will propose an optimized speech enhancement algorithm aimed at
single-channel noise reduction (NR) ,and.apply the NR algorithm in the speech
recognition. The optimization process is based on an objective function obtained in
a regression model and the simulated annealing (SA) algorithm that is well suited for
problems with many local optima.. The NRalgorithm, minimum mean-square error
noise reduction (MMSE-NR) algorithm; employs a time-recursive averaging (TRA)
method for noise estimation. Objective tests were undertaken to compare the
optimized MMSE-TRA-NR and MMSE-VAD-TRA-NR algorithm with several
conventional NR algorithms. White noise and car noise at signal-to-noise ratio
(SNR) 5 dB are used in these tests. As compared to conventional algorithms, the
optimized MMSE-TRA-NR and MMSE-VAD-TRA-NR algorithm proved effective
in enhancing noise-corrupted speech signals, without compromising the timbral
quality. The optimized MMSE-TRA-NR algorithm also can be used in automatic
speech recognition (ASR), the recognition rate will be enhance by the optimal

parameters of the MMSE-TRA-NR algorithms.
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1. INTRODUCTION
In recent years, applications of mobile communication, video conferencing,
peer-to-peer internet telephony networks such as SRYR&nds-free car-kits, etc.,

are rapidly advancing in modern daily life. In these applications, effective

communication in noisy environments is one of the pressing issues. Noise reduction

(NR) technology has long been research interest in communication industry. How to

achieve high reduction with impairing speech quality has been an imminent issue for

NR algorithm design.

NR algorithms mostly can be divided into three primary classes:

(1) Spectral-subtraction algorithfifs The algorithms subtract an estimate of noise
spectrum from the noisy speech spectrum. The noise spectrum can be estimated
and updated during periods when the signal is absent. Therefore, an estimate of
clean signal can be obtained.

(2) Statistical-model-based- algorithms:  The speech enhancement problem is posed
in a statistical estimation framework. A-linear (or nonlinear) estimator of the
Fourier transform coefficients of the clean signal can be found if a set of the
transform coefficients of the noisy signal are given. The Wiener algditthm
and minimum mean-square error (MMSE) [1], [11] algorithms fall in this
category.

(3) Subspace algorithm: The subspace algorithms are based on linear algebra theory.
The clean signal might be confined to a subspace of the noisy Euclidean space.
Consequently, a method of decomposing the vector space of the noisy signal into
“signal subspace” and “noise subspace” is given. The decomposition can be
done using well-known orthogonal matrix factorization techniques from linear
algebra and the singular value decomposition (SVD) or eigenvector-eigenvalue

factorization. The Karhunen-Loéve transform (KLT) NR algorithm [11]-[12]
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falls in this category.

These NR algorithms need to estimate the noise spectrum or noise covariance
matrix. In fact, the residual noise will be audible and annoying if the noise estimate
is too low. On the contrary, speech will be distortion if the noise estimate is too high.
Various kinds of NR algorithms have been developed in terms of noise estimation
such as voice activity detection (VAD), minimal tracking, time-recursive averaging
(TRA), and histogram-based algorithms. A more detailed literature review can be
found in a monograph on speech enhancement by Loizou [11].

In the paper, an improved MMSE NR algorithm based on VAD and TRA [11],
[13] noise estimation, or abbreviated as MMSE-VAD-TRA-NR, is proposed. An
optimization method employs a simulated-annealing (SA) [14]-[16] to efficiently
search the optimal parameters.in the MMSE-VAD-TRA-NR algorithms. The SA
method mainly finds the maximum of an objective function. The objective function
is constructed by objective measures of the reduction performance and the incurred
distortion of processed speech signals.

In order to assess those NR algorithms, objective tests and subjective listening
tests were carried out. Those algorithms are simulated at the sampling rate of 8 kHz.
The objective tests were employed according to the ITU-T standard P.862 [18]. The
subjective listening tests were conducted according to the ITU-T standard P.835 [19].
The test data were processed by using analysis of variance (ANOVA) to justify the
statistic significance of difference among algorithms. A post-hoc test, Tukey’s HSD,
was conducted to assess the significant differences between NR algorithms.

Besides the MMSE-VAD-TRA-NR algorithm, using the MMSE-VAD-TRA-NR
algorithm to enhance the recognition rate is also proposed in the paper. A series of
parameters in the NR algorithm will be optimal individually by different methods in

order to improve the recognition rate.



2. NOISE REDUCTION ALGORITHMS

Figure 1 illustrates the general structure of NR algorithms. The procedures of
NR algorithms commonly are that the noisy signals would be processed by some
forward and inverse transform operations (e.g., the Fourier transform, the discrete
cosine transform (DCT) or the KLT transform). Between the forward and inverse
transforms, the major NR processes have been accomplished. In this section, a
number of algorithms that generally have been proposed in literature for noise
reduction (NR) are briefly reviewed.
2.1 Spectral subtraction method

Spectral subtraction is a widely used NR method whose original idea is based on
the basic principle that as the.nois€n) ris. additive, the spectral subtraction
algorithm can subtract the noise spectriffw) from the measurement signdh).
The noise spectrum can be estimated and updated during periods when the speech

signal s(n) is not present. The noisy sigiyéh) can be expressed as:
y(n) =N+ \(n. (1)
The estimate of clean speech power spectwlé,(ﬂu)‘2 can be obtained as follows:
@) = H (@) Y@, (2)
where |Y(a))|2 is the noisy speech power spectrum, addw)is known as the

system’s transfer function. The symbol “” is used to indicate the estimated

parameters of interest. From the subtraction rid€w) can be given by

H(w) = (3)

A~ 2
where ‘V(a))‘ is estimate of noise power spectruid,(«w) can be considered to be

a gain function in NR algorithm, and its value is always positive in the range of



O0<H(w)<1. Ageneral version of the spectral subtraction is expressed as follows:

~ p ~ p

S| =M@ | Ua) 4)
where p is the power exponent, with=1 vyielding the original magnitude spectral
subtraction, an¢d = 2 yielding the power spectral subtraction algorithm.

From Eqg. (3) , it can be noticed that

V@ o 1
Y(«) 1+ SNRw)

(5)

Those spectral subtraction algorithms rely on accurate estimate of SNR in the
frequency domain. However, accurate estimation of instantaneous SNR is generally
difficult if not impossible. The estimation error causes the problemusical noise
that is a processing artifact plaguing most spectral subtraction methods. Musical
noise is low-amplitude tonal components-with rapidly varying frequencies.
2.2 Wiener filter-based NR-algorithm

Wiener filter theory can be used to reduce noise by optimizing a mathematically
error criterion and illustrated in Fig..2 [8]...~-The noisy signgh) consists of clean
speechs(n) and noisev(n) as Eq. (1) showed. The erra@(n between the
desired signald(n)= g ) and its estimateS(n) is minimized in the minimum
mean-square error (MMSE) sense. The estin&{tg can be obtained by the inner
product of two vectorswand y .

§nN=w'y, (6)

where WT=[WO,V\11,K,V\4A_1] is the Wiener filter coefficient vector, and

y" =[y(n), ¥n-1)K , y(n- M+1) is the input vector containing the pas

samples of the input. The impulse response of Wiener filigr) is usually a finite

impulse response (FIR) filter, and the frequency response of Wiener filter is



S

W(aw) sz—"'l (7)
The ¢, is defined by
puwy _Est@)]
SO @) eV (@) @

as thea priori SNR at frequencyw,, whereP,(w,) and P, (w,) are power spectra
of clean speech and additive noise, respectively, El{\E}] Is the expectation operator.

From Eq. (7), it could be noticed th&<W(w,)<1, and W(w,) =0 when ¢,
approaches to zero and/(«,) =1 when &, approaches to infinity. We can get the
estimate of clean speech signal by filtering the noisy signal through the Wiener filter.
2.3 Statistical-model-based noise reduction algorithm

Minimum mean-square-error-noise -reduction (MMSE-NR) algorithm yields a
nonlinear estimator of the- magnitude of the DFT coefficients of the signal not the
complex spectrum of the signal done by the Wiener filter. The algorithm is based on
statistical model. This model makes_two assumptions: (1) The Fourier transform
coefficients have a Gaussian probability distribution. The mean of the coefficients is
zero, and the variances of the coefficients are time-varying owing to the
nonstationarity of speech. (2) The Fourier transform coefficients are statistically
independent and, hence, uncorrelated.

The optimal MMSE nonlinear estimatowas searched that minimizes the

mean-square error between the estimated and true magnitudes:
~ 2
e=el(3-5)]. ©)
where éK and S are the estimated and true spectral magnitudes of the clean speech

signal at the frequencyy,, respectively. In particular, the expectation is finished by

Bayesian mean-square error (MSE) approach, and the Bayesian MSE is given by:
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Bmsd §)=[[( 5~ (. $Yd ¢ (10)
where Y =[Y(a)Y(@)L Ya,)] is the noisy speech spectrum, apdY, S ) is

the joint probability density function (PDF). Minimization of Bayesian MSE with
respect toS, leads to the optimal MMSE estimator given by:
S=[sHslv)ds
=EER|YH : (11)
=EER|Y(@) YL Yo )E

In order to determine the MMSE estimator we first need to calculate the posterior

PDF of S, i.e., p(S|Ya@)). Using Bayes'rule to determine it as:

p(Y(w)|S) d )
p(Y(w))
p(Y(@)s)d'$) (12)

_}p(Y(a&)M) o) ds

0

(S| Y@))=

where s, is a realization of the random variab®. Note that p(Y(«,)) is a

normalization factor required to ensure tth(SK|Y(a4()) integrates to 1.

Assuming statistical independence between the Fourier transform coefficients, i.e.,
EER|Mw) X)L Yw)E= B WE (13)

and using the preceding expression fp(sK|Y(cq()), the estimator in Eq. (11)

simplifies to:



S = EBS| Yw)E

= [scp(s] M) ds (14)

[ p(¥@)| 5) ) ds

[p(¥(@)[s) o 5) ds

0

Since
p(s|Y(@)) dg = [ # Yea)| 36.) b.50) &, (15)

where 6, is the realization of the phase random variablécﬁtaK) , We get

0 277

C[sp(M@)] 5.0.) K 38)-a s
S< = OooOZIT . (16)

From the assumed statistical model, we know té&y ) is the sum of two

zero-mean complex Gaussian. random variables. Then the conditional PDF
p(Y(@)|5.6.) will also be Gaussian:

p(Y(@)]s.6,)= m( Mw)- %)), (17)
where p, (E)] is the PDF of the noise Fourier transform coefficie$¢,). Then

the EQ. (17) becomes:

1 exp%_ 1
R (w) O Pu(w)

: (18)

Y (@)- S(@)

p(Y(w)|5.6.) =

O™

For complex Gaussian random variables, the magnitSdeand phased, (k)
random variables ofS(«y,) are independent, and the joint PDF as the product of the

individual PDF’s, i.e., p(s.6,)= p(s) H6,). The PDF of is uniform if-7z, 1),

7



and therefore the joint probability is given by:

2

_ S 0 s
!es =————€X D—
P(5:8) = 2 oy PT B

= (19)
L

Substitute Egs. (18) and (19) into Eq. (14), therefore the optimal MMSE magnitude

estimator can be obtained as:

Pss(a)k)

1+¢,

S = r(1.5®(-0.5,1v,), (20)

where T(J denotes the Gamma function®(J denotes the confluent

hyper-geometric function. Eq. (20) can be rewritten as
~ v DV
g = Y7y o W TS A g (21)

where 1, (JJand I, (0 are the modified Bessel.functions of zero and the first order,

respectively, Y, is the spectral magnitude of the noisy signal at the frequegcy

and v, is defined by

vV, = %

Vi (22)

where y, denotes as theposterioriSNR, and y, is defined as
Y 2 _ Yk2
y 2

Generally, we do not have known the noise variance and gori SNR &, but

(23)

measured noisy signay(n). However, the noise variance can be estimated and
computed via a VAD in MMSE-NR algorithm if we assume the noise is stationary.

A statistical-model-based VAD was used:

1 Oy é, ED>

leogﬁ1 e expEIl fk% : (24)

whereN is the size of the fast Fourier transfoifi, denotes the hypothesis of speech

8



presenceHy denotes the hypothesis of speech absence,fand a fixed threshold,
which was usually set to 0.15.

As fora priori SNR ¢, , a method for estimating treepriori SNR ¢, is called
the “decision-directed”. This method is assuming #ptiori SNR ¢, is related to

a posterioriSNR y, by
&(m) = E{p(m} -1, (25)

where m is the number of frame in the frame-based MMSE-NR algorithm. An

estimator of the a priorBNR ¢, is given by

gk(m) =a

where a is a weighting factor. commonly chosen to be=0.98 and O<a<1,
and éf(m—l) is the amplitude magnitude estimator of speech signal obtained in

the past frame. Therefore, the estimate of clean speech signal magnitude can be

calculated by Eqg. (21). Finally, construct the clean speech signal spéc(twbn
by combing the estimate of clean speech signal magnitude speé{uwith the

noisy signal phase spectrurjg, (k) and calculate the inverse DFT (§(cq() to

obtain the time-domain processed speech sigi{@) . The processed signal
spectrum can be showed as

S(a) = Sexp( B, (k). (27)
It can be shown that the optimal phase estimate is actually the noisy phase by
Ephraim and Malah [11].
2.4 Karhunen-Loéve transform (KLT)-based noise reduction

A subspace algorithm, Karhunen-Loéve transform noise reduction (KLT-NR)

algorithm [11]-[12], is rooted on linear algebra theory and can be also applied to

9



enhance speech signal. First, a noisy speech vectoomprises clean speech and

noise signalv vectors as
y =s+v=[y(n), ¥n-1)K , y(n- M+1)]' (28)
containing M samples of speech, where= [s( n,yn1)K ,gnr M 1)]T is the

noisy-free vector andv =[v(n), \n-1)K ,v(n- M+ 1)]T is the noise signal vector.

Let S=HLy be a linear estimator of the clean speech vestowhere H is a
M xM matrix. The residual erroe obtained by the estimation is given by:
£=5-s= Hy- ¢ (29)
The energy of the residual ergdr is defined as
& =ER"ef-tr(EEeH (30)
The optimum linear estimator can -be aobtained by solving the unconstrained

optimization problem:

min &2 (31)

H KLT

Substitute Eq. (29) in Eq. (30), we obtain:

?=tr(EgH w—s)(H@—s)Tg
tr(E QHOY' HT -sy"™H" -H s’ +ssTg (32)

tr(EFHR,HT -R HT -HR , +R .{)
where R, and R, are the clean and noisy signal covariance matrices, respectively.

Besides, R,, @E{sy’} and R,, @E{ys'}. For white noise, the noise covariance
matrix is given by

R =o?|

\ v

(33)

where g,° is the noise variance antl is an M xM identity matrix.

10



Furthermore, assume the clean speech and noise vectors are uncorrelated and zero

mean, then the matri>Ry can be shown to be
R, =R +R, , (34)

Take the derivative of previouz? with respect toH and set it equal to zero, in

addition, make use of the fact th&], = R, and substitute in Eq. (34), we obtain

the optimal estimator:

-1

Hp =R (R +0%) . (35)
The estimator is simplified by using the eigenvalue decomposition (EVIR of

R,=UAU", (36)

where U is the unitary eigenvector matrix,~and the matrix is often called KLT

transform.  Substitute Eg. (36) into Eq. (35) and assuRe has a rank

K (K <M), we obtain:

(G -0JuU.'O
Hgp =UGU™ =[U, uz]%) OEEJlTEleUJ, (37)
2

where G is a diagonal matrixi x K)

G=A, (A +02 ) (38)
with diagonal matrix A containing the eigenvalueg, sorted in descending order
K. The eigenvector matrity can be partition adJ =[U, U,] in Eq. (37),
where U, is a M xK matrix. Hence, the enhanced speech signal vector can be

obtained byS=H_,y.

3. ENHANCED MMSE-NR ALGORITHMS

In the section, three approaches of technical refinement that can be done to

11



enhance the MMSE-NR algorithm are presented.
3.1 Noise reduction algorithms based on MMSE method

Two noise estimators are posed in this section as the time-recursive averaging
(TRA) algorithm[13] and algorithm combined the TRA and the VAD. As mentioned
earlier in MMSE-NR algorithm, the noise variance can be estimated and computed
via a VAD if the noise is stationary. However, the majority of the VAD algorithms
encounters problems in low-SNR conditions if the noise is nonstationary. An
algorithm called time-recursive averaging (TRA) algorithm is suitable for highly
nonstationary noisy environment to estimate noise variance. A NR algorithm that
noise variance can be estimated via the TRA algorithm we call it “MMSE-TRA-NR”
in this paper.

In TRA algorithm, the individual frequency. bands of noise spectrum can be

updated by noisy spectrum when SNR is extremely low, or the estimate of noise
variance at the last frame will be kept on in estimating noise variance. The TRA

algorithm has the form:

67 (Ak)=a(A,k)G,? (A=1K)+(1-a (A k))[Y(1.K (39)

‘2

where |Y (4, k)| is the noisy speech magnitude spectruiry, (A,k) is the estimate

of noise variance at framd and frequencyk, and a(/],k) is the smoothing

factor, which is the time and frequency dependent. Different algorithms were

developed depending on the selection of the smoothing fam(dr, k). Some chose
to calculatea()l,k) based on the estimated SNR of each frequency bin, whereas
others chose to calculater(/hk) based on the probability of speech being

present/absent at frequendy. Others chose to use a fixed value im()l,k), but

12



updated 6,7 (A,k) only after a certain condition was met. In the paper, the

smoothing factora()l,k) Is chosen to be a sigmoid function of the posteriori SNR

Vi (1) as:
a(Ak)=— (40)
! - 1+ e‘ﬁ(yk(/‘)_d)
where S and o are parameters, and a posteriSNR ), ()l) can be given by
Y (A, K
n(A)=— 10‘ L (41)
62 (A-mK)

104
In Eq. (41), the denominator is the average of the estimated noise variance in the past
ten frames. Figure 3 plots the.smoothing factor calculated according to Eq. (40)
for different values of the parametg®? when J =1. A noisy speech signal (dotted
line) corrupted by a non-stationary noise that consists of three different level of
loudness is shown in Fig. 4. . Toppanel shows the noise (solid line) estimated using
the aforementioned VAD algorithm,.and.bottom panel shows the noise (solid line)
estimated using the TRA algorithm. From Fig. 4 we can notice that the TRA
algorithm works better than the VAD algorithm for non-stationary noise.
To enhance the TRA algorithm, we combine the TRA algorithm and the
VAD algorithm and call it “MMSE-VAD-TRA-NR” in this paper. Using the VAD
algorithm to verify the current frame of the input signal is the speech or the noise.
According to the verification of the VAD algorithm, the speech signal will through
the TRA algorithm process, and the noise signal will be deleted.
3.2 Intelligent tuning of the parameters in enhanced MMSE-NR algorithm
As mentioned previously, the parametefis and 0 are used in the sigmoid

function of the TRA algorithm for noise estimation. Conventionally, choices such

13



as 0=1.5,15< B< 3( are recommended in the literature [11]. To our surprise,
we found that these two parametefs and o have profound effects on the NR
performance of the MMSE-TRA-NR algorithm and the MMSE-VAD-TRA-NR
algorithm. It is then worth exploring how to adjust these two parameters such that
noise reduction performance can be maximized without too much quality
degradation. The SA method provides an optimal way to intelligently tune those
parameters.

3.2.1 SA method

SA [14]-[16] is a generic probabilistic meta-algorithm for the global optimization
problem, namely locating a good approximation to the global optimum of a given
function in a large search space: ' SA -has:demonstrated to be a good technique for
solving global optimization problems with many local optima. The flow diagram of
the SA is illustrated in Fig. 5. In SA method; each point of the search space is
analogous to a state of some physical system, and the objective fuktimnbe
maximized is analogous to the internal energy of the system in that state. The goal is
to bring the system from an initial state to a new state with the minimum possible
energy.

Two conditions can transfer state and update the objective function in accepting
rule of SA method. One is the objective function increasing. The other is the
objective function decreasing but the acceptance probability function is more than a
random numberg which is randomly generated subject to the uniform distribution

on the interval0,1). The acceptance probability function is given by

Psa = €XpAQ /T) (42)
where AQ denotes the variation of the objective function, ahdis a control
parameter called the temperature. It follows that the system actually may move to

14



the new state even when it is worse than the current one. This feature prevents the
method from staying in a local maximum — a state that is worse than the global
maximum but better than any of its neighbors. Initially the high temperdture
causes the high probability of accepting a move that decreases the objective function.
Finally, the probability of accepting a move becomes extremely small when the
objective function is decreasing continuously, and the temperature is getting lower in
accordance with an annealing schedule.

The most generally employed annealing schedule is exponential cooling which
begins at some initial temperaturg and decreases temperature in steps according
to

T =acT, (43)
where O0<a_ <1 is a cooling factor. Typically, a fixed number of moves must be

accepted at each temperature before proceeding to the new state. A way of SA
action is stopped either when the temperature reaches some final Malee the
system is not transformed to a new state after some times. An empirical choice for

a, is 0.95 and thatl, should be chosen so that the initial acceptance probability is

higher than 0.8. The initial solution is generated typically at random.
3.2.2 Objective function Q

An appropriate objective function is very important for optimizing the
performance in MMSE-TRA-NR algorithm and MMSE-VAD-TRA-NR algorithm.
Two objective indices, the segmental SNR (SNRseg) and the perceptual evaluation of
sound quality (PESQ) [18], were applied to construct the objective function. The
SNRseg is a basic objective measure to evaluate noise reduction algorithms, and has

the form:
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w3 S0

SNRseg=1—O log,, —

Ms o (s(n)-3()

where N, is the frame length, and/, is the number of frames in the signal. The

(44)

SNRseg can reflect the SNR level of the enhanced speech by NR algorithms. As for
the PESQ, it is widely used for automated assessment of the speech quality in
telephony industry. The structure of PESQ is complicated that the original and
degraded signals are first level-equalized to a standard listening level and filtered by a
filter with response similar to a standard telephone handset. The signals are aligned
in time to correct for time delays, and then processed through an auditory transform to
obtain the loudness spectra. More details of the PESQ can be found in ITU-T P. 862
[18]. In a word, the SNRseg and the PESQ reflect the SNR level and the sound
quality, respectively, of the processed signals via NR algorithms. The higher values
of SNRseg and PESQ both indicate the better noise reduction performance.

Consider the objective function as a linear combination of the SNRseg and the
PESQ, the weights between the SNRseg and the PESQ can be found from a subjective
listening test. Three subjective indices includmagse reductionsound qualityand
total preferencenvere employed in this listening test. The grading scale is set to be
-3~3. Five NR algorithms are applied to two kinds of noise at SNR level 5 dB: (1)
white noise (2) car noise. Figure 6 shows the waveforms of the test sentence
corrupted by white noise (top panel) and car noise (bottom panel) respectively.
Figure 7(a)-(b) show the spectrograms of the test sentence corrupted by white noise
and car noise. NR algorithms including spectral subtraction, Wiener filtering,
MMSE-NR, MMSE-TRA-NR, MMSE-VAD-TRA-NR and KLT-NR algorithms were
examined. The sampling rate is 8 kHz, the frame length is about 20~32 ms, and the

amount of overlap is 50%. The loudness of all reproduced signals was adjusted to be
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the same level. A headset was used as the means of audio rendering. Multiple
regression analysis enables us to establish the relationship between several
independent variablesigise reductiorandsound quality and a dependent variable
(total preferenck There are thirty-two experienced listeners participating in the
subjective test. The results of multiple regression analysis provide the weights
between the SNRseg and the PESQ for the objective function. Hence, the objective

function is experimentally constructed as

Q=1.867*SNRseg PES . (45)

We can achieve the optimal performances in MMSE-TRA-NR algorithm and
MMSE-VAD-TRA-NR algorithm according to Eq. (45) by using SA method in terms
of objective measures.
3.2.3 Compare with and without optimization MMSE-NR algorithms

The parameters8 and o in the MMSE-TRA-NR algorithm can be randomly
chosen to4=1.6 and & =1 for processing the previous noisy speech signals in
two noise conditions. However, the optimal parameters can be obtained by using SA
method. For white noise condition, the optim&l=0.6117 and the optimal
0 =0.5214 in the MMSE-TRA-NR algorithm, the optimalf =0.5671 and the
optimal 0=0.260€ in the MMSE-VAD-TRA-NR algorithm. For car noise
condition, the optimal #=0.7128 and the optimal 6=0.5265 in the
MMSE-TRA-NR algorithm, the optimals = 0.689€ and the optimald =0.1724 in
the MMSE-VAD-TRA-NR algorithm. Table | shows the NR performance of the
MMSE-TRA-NR algorithm and the MMSE-VAD-TRA-NR algorithm in terms of the
SNRseg and PESQ for different values of paramef@rand 6. Form table I, we
can notice that there are higher values of the SNRseg and the PESQ in

MMSE-TRA-NR and MMSE-VAD-TRA-NR with optimal parameter8 and o.
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Another subjective listening test was conducted to assess the NR performance
between the random and optimal parameters in MMSE-TRA-NR and
MMSE-VAD-TRA-NR. The test conditions are similar to the subjective listening test
for constructing objective function of SA method. The grading scale is set to be 1~5,
as recommended in ITU-T P.835 [19]. Three subjective indices incl&tatp of
Signal Distortion (SIG) Scale of background Intrusiveness (BA&)d Scale of
Overall Quality (OVL) were employed in the listening test. Every subject
participating in the test is instructed with the definitions of the preceding subjective
indices and the procedure prior to the listening test. Figures 8(a)-(d) show the results
of the subjective listening test in white noise and car noise. The scores from all
subjects were also processed by ‘using the MANOVA [20] to justify the statistical
significance of the test results. . The average, 5%-95% bracket and the significance
level of the grades were shown in the analysis. - Cases with significance levels below
0.05 indicate that statistically significant difference exists among methods. From
Figs. 8(a)-(d) and Table II, there.is no significant differend®Wi but SIGandBAK
between the random and optimal parameters in MMSE-TRA-NR algorithm. The
optimal parameters lead to the worse valueSI® however, the random parameters
lead to the worst values &AK that the values almost are the lowest about 1 in the
two noise conditions. According to the values of BAK, there is almost no NR
performance in the MMSE-TRA-NR and MMSE-VAD-TRA-NR by using random
parameters. Form the results of the objective and subjective tests, we always chose
the optimal parameters in MMSE-TRA-NR and MMSE-VAD-TRA-NR algorithms
that optimized by SA method. Furthermore, the optimal MMSE-VAD-TRA-NR will

be compared to some NR algorithms in objective and subjective tests later.
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4. OBJECTIVE AND SUBJECTIVE EVALUATIONS
4.1 Performance evaluation of NR algorithms in objective measure

Two objective measures, the SNRseg and the PESQ, are employed to assess the
performance of six reduction algorithms in two kinds of background noise (white
noise and car noise) at SNR levels 5dB. Six NR algorithms are spectral subtraction,
Wiener filtering, MMSE-NR, MMSE-TRA-NR, MMSE-VAD-TRA-NR, and
KLT-NR algorithms. All test conditions are similar to compare with and without
optimization MMSE-TRA-NR algorithms by using SA method in terms of the
SNRseg and PESQ. These measures assess speech quality by estimating the
“distortion” between the clean and processed signals and then mapping the estimated
distortion value to a quality metric:

Figure 9 (a) shows the noise-free speech signal used for a computer simulation,
where the sampling rate is 8'kHz. The noisy and the processed speech signals by
those NR algorithms aré. shown in Figs. 9(b)-(c). Computational requirement
(processing time) and objective NR performance-are compared in Table lll. The test
signals and conditions are similar to the performance evaluation of NR algorithms in
objective test. The SNRseg and the PESQ are employed in the objective NR
performances. In terms of the SNRseg, the less noise estimation causes more
residual noise in order to avoid serious speech distortion in the Wiener filtering
algorithm. Therefore, the Wiener filtering algorithm leads to the lowest values of
SNRseg in all noise conditions. Opposition to the Wiener filtering, there are the
highest values of SNR in the KLT-NR algorithm. As for PESQ, the result indicated
that there is no significant difference between those NR algorithms in speech quality
of the processed signals.

4.2 Performance evaluation of NR algorithms by subjective listening tests

In order to compare the preceding NR algorithms, subjective listening tests were
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conducted in terms of sound quality. The listening tests were conducted according to
the standards ITU-T P.835 [19]. Thirty-two experienced listeners participated in the
subjective tests. The grading scale is set to be 1~5, as recommended in ITU-T P.835
[19]. Six noise reduction algorithms, spectral subtraction, Wiener filtering,
MMSE-NR, MMSE-TRA-NR, MMSE-VAD-TRA-NR and KLT-NR are compared in

the test. The sampling rate is 8 kHz, the frame length is about 20~32 ms, and the
amount of overlap is 50%. Three subjective indices includ@ogle of Signal
Distortion (SIG) Scale of background Intrusiveness (BAdt)d Scale of Overall
Quality (OVL)were employed in the listening test. Every subject participating in the
test is instructed with the definitions of the preceding subjective indices and the
procedure prior to the listening test. - .In the listening tests, those NR algorithms are
applied to two kinds of noise; (1) white noise (2) car noise at SNR level 5 dB. The
design of the subjective tests is completely the same with the preceding subjective test
for comparing with and without optimization MMSE-TRA-NR algorithms using SA
method. Listening tests were conducted for the noise corrupted speech and the
results are shown in Figs. 10(a)-(b). ~ Not only the mean grades but also the
significance levels were shown in the analysis for different NR algorithms. The
vertical bars indicate 95% confidence intervals. The test results were processed
using MANOVA [20]. The significance level in the MANOVA output is
summarized in Table V. Cases with significance levels below 0.05 indicate that
statistically significant difference exists among methods. According to Table V, the
difference in all cases of the test results was found to be statistically significant.
Furthermore, multiple paired comparisons according to a post-hoc Tukey’s HSD test
[20] were conducted to assess significant differences between NR algorithms. Table
VI shows the results from the Tukey’'s HSD test for the signal disto8I@&h noise

distortion BAK and overall qualityOVL comparisons. Asterisks in the table indicate
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absence of statistically significant differengeX 0.05) between the algorithm with

the highest score and denoted algorithm. That is to say, the NR algorithms denoted
by asterisks in Table VI performed equally well. On the contrary, the algorithms
with no asterisks performed poorly.

From Table VI, we notice that the KLT-NR algorithm performed poorly in terms
of SIGin all noise conditions. The result indicates that the overestimate of noise in
KLT-NR algorithm brings to more signal distortion. In terms of noise distortion
BAK, as mentioned earlier in the objective test, the Wiener filtering algorithm
obtained the worst scores in all noise condition in order to avoid serious signal
distortion. Besides, the residual noise that commonly is musical noise results in the
worse value oBAK in the spectral subtraction algorithm for the two noise conditions.
Another surprising thing is that the MMSE-TRA-NR performed poorly in real-world
noise (car noise) condition.. ' However, the MMSE-VAD-TRA-NR has better perform
than the MMSE-TRA-NR in car noise condition. ' 'As for overall quabL, there
is no significant difference between those NR"“algorithms in car noise condition.
However, the spectral subtraction and KLT-NR algorithms obtained the worse scores
of OVL than the other NR algorithms for white noise case. The result shows that
listeners might be influenced more by speech disto§ighin terms ofOVL when
making judgments. A summary from Table VI is that there is no much difference
between the MMSE-NR, MMSE-TRA-NR and MMSE-VAD-TRA-NR algorithms in

terms of all subjective indices in the two noise scenarios.

5. ENHANCED MMSE-NR ALGORITHMS FOR AUTOMATIC SPEECH
RECOGNITION
We use the MMSE-TRA-NR algorithm to enhance the acoustic speech

recognition (ASR). The database of the speech for the ASR is 50 short chinese
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commands, each command has 6 male and 5 female speakers. The ASR is using the
Hidden Markov Model (HMM). Figure 11 shows that the recognition rates at different
noise types and noise level. It is obivous that the recognition rates of processed
signals are lower than the recognition rates of original signals in babble and movie
noise conditions. Beside, the recognition rates at 6 to 12 dB in the movie condition
noise are significant lower than the recognition rates of original signals. Therefore, we
want to optimal recognition rates of the movie noise condition at 6 to 12 dB and get
the optimal parameters to optimal the recognition rate of babble and movie noise
conditions.

First, we optimal the window length. There is a trade-off between
time-resolution and frequency-resolution ‘when selecting the window length for
frequency-domain analysis. A longer frame length results in more accurate spectral
represenation when we want to obtain better frequency domain resolution. As a
tradeoff between these two competing criteria, a frame length between 20 ms and 30
ms has been widely used in«speech analysis. Even though a window of such short
duration is optimal for analyzing speech signal, there is no guarantee that the optimal
length would be the same for estimating the noise component. It is widely known that
noise changes more slowly than speech signal, thus based on the above discussion, it
is quite obvious that longer windows might be better for estimating the noise.
Whereas, the recognition rate is the most important thing that we concern in our
condition. Therefore, we only have to find a window length that can balance the
time-resolution and frequency-resolution and has higher recognition rate. Figure 12
shows that the recognition rate of movie noise condition will change with different
window length. In movie noise condition at 6 to 12 dB, we search the window length
from 20 to 100 ms and find that the best window length is 50 ms.

Beside the window length, we also optimal the parametgtsand 6. We use

22



the SA method, and the cost function is the recognition rate. Figure 13 shows that the
recognition rates are higher when the optimal parametef$=3.0964 and
0=11.910¢ is used. But, the recognition rates of original signal with SA are lower
than the recognition rates of original signal.

After the passing through the MMSE-TRA algorithm, the features of the speech
may be lost. Therefore, we add some of original signals to the processed signals in
order to restruct the features of the speech. Fig 14 shows that the recognition rates
with adding different ratio of processed signals in movie noise condition at 9 dB, and
the best ratio is 70 %.

With these new optimal parametersf =3.0964 , 0=11.910:, and the
window length is 50 ms, and ratio of the processed signals is 70 %, the Fig 15 shows
the result. After a series of tuning. the parameters, the MMSE-TRA algorithm has

higher recognition rates than the original signals:

6. CONCLUSIONS

An optimization method to efficiently search the optimal parameters in the
MMSE-VAD-TRA-NR algorithms has been proposed. In order to obtain optimal
NR performances, the optimization method employs a SA method and constructs an
appropriate objective function to achieve the goal. We observe that the parameters
L[ and 0 need to be chosen carefully because they can affect the estimate of the
noise spectrum obviously; that ig7 and 0 are the most important parameter to
affect the NR performance of the MMSE-VAD-TRA-NR significantly.

The comparisons and research of some NR algorithms have been represented in
computation complexity, objective tests, and subjective listening tests. The results of
the processing time reflect the calculation and processing data complexity in those NR

algorithms. The results of objective and subjective tests do not only imply that the
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Wiener filtering algorithm yield the more residual noise in order to avoid serious
signal distortion, but also shows that the overestimate of noise results in the lowest
scores of signal distortiosIG in the KTL-NR algorithm. The results of the
subjective listening tests nearly indicate that for all subjective indices, the MMSE-NR,
MMSE-TRA-NR and MMSE-VAD-TRA-NR algorithms perform equally well in the
white and car noise scenarios. Therefore, it can be concluded that the MMSE-NR,
MMSE-TRA-NR and MMSE-VAD-TRA-NR algorithms are better NR algorithms
than others according to the aforementioned comparisons and research in the paper.

To enhance recognition rate is not the main propose of the general NR algorithm.
After the general NR algorithm processing, the signal will enhance speech and reduce
the noise. But, sometimes the speech will-be distortion because the noise reduction
of the NR algorithm is too aggressive. = However, MMSE-TRA-NR can change the
parameters to enhance the “recognition rate and. avoid the trade-off between the
distortion and noise reduction.

Future research is planned on integrating the noise reduction algorithms with the
microphone arrays to exploit its “full potential of noise suppression in
telecommunication applications such as peer-to-peer internet telephony networks,

hands free car-kits, wireless earphones, and so forth.
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TABLE |I. The NR performance of the MMSE-TRA-NR algorithm and

MMSE-VAD-TRA algorithm in terms of the SNRseg and PESQ for different values

of parametersf and o0

Noise type Algorithms ,3 o) SNRseg| PESQ
TRA 1.6 1 -1.0942 1.9639
white noise optimal-TRA 0.6117 0.5214 1.5155 2.1619
VAD-TRA 1.6 1 -1.1833 1.7369
optimal-VAD-TRA | 0.5671 0.2606 1.5899 2.1582
TRA 1.6 1 -1.5609 2.2168
optimal-TRA 0.7128 0.5265 0.7061 2.3145
car VAD-TRA 1.6 1 -1.4524 2.1396
optimal-VAD-TRA | < 0.6896 0.1724 0.7666 2.3219
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TABLE Il. The MANOVA results of the subjective listening test in white noise and

car noise conditions for compare with and without optimization in MMSE-TRA-NR

and MMSE-VAD-TRA-NR.

Significance value
Algorithm Noise type
SIG BAK OVL
White noise 0.040 0.000 0.117
MMSE-TRA
Car noise 0.017 0.000 0.784
White noise 0.042 0.000 0.126
MMSE-VAD-TRA
Car-noise 0.015 0.000 0.631
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TABLE 1ll. Comparison of computational requirement and objective noise

reduction performance of the six noise reduction algorithms.

SNRseg PESQ
Noise condition ) .
_ White Car White Car
NR algorithms
Spectral subtraction 2.115 1.450 2.224 2.118

Wiener filtering 0.878 0.073 2.162 2.322

MMSE-NR 2.215 1.224 2.250 2.394
MMSE-TRA-NR 1515 0.7061 2.161 2.314
MMSE-VAD-TRA-NR 1.5899 0.7666 2.1582 2.3219

KLT-NR 3477 1.856 2.400 2.367

29



TABLE IV. The MANOVA output of the listening test of the NR algorithms.
Cases with significance valug below 0.05 indicate that statistically significant

difference exists among all methods.

Significance valuep

Noise type
SIG BAK OVL
White noise 0.007 0.000 0.006
Car noise 0.012 0.000 0.083
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TABLE V. The result from Tukey's HSD test f&lG BAK andOVL between NR
algorithms (The denoted NR algorithms by asterisks have equally good performance.

The algorithms with no asterisks have poor performance.)

SIG BAK OvVL
Noise condition . _ _
_ White Car White Car White Car
NR algorithms
Spectral subtraction| * * *
Wiener filtering * * * *
MMSE-NR * * * * * *
MMSE-TRA-NR ke * * * *
MMSE-VAD-TRA-NR = /" * * * *
KLT-NR * * *
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FIG. 9. Simulation results for six NR algorithms. (a) The noise-free speech signal

used for a computer simulation. (b) Waveforms of the noisy and processed speech

signals via six NR algorithms in white noise condition. (c) Waveforms of the noisy

and processed speech signals via six NR algorithms in car noise condition. (Dotted
line: noisy speech signals; Solid line: processed speech signals)
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FIG. 10. The results of the listening test analyzed by using the MANOVA. (a) White
noise case. (b) Car case.

48



white noise condition car noise condition

100 100
S S
T @
® ®
14 14
< c
o K]
[=2) (=)}
o o
3 3
14 4
0 ! . . . .
0 2 4 6 8 10 12
SNR(dB) SNR(dB)
movie noise condition babble noise condition
100 100
g 80 1 1
Tz 2}
IS 51
x 60 x 60 1
< c
S 9o
S 40 € 40 q
e} o
3 8 e
@ 20 1 @ 20 e q
0 : : : : : 0 : : : : :
0 2 4 6 8 10 12 0 2 4 6 8 10 12
SNR(dB) SNR(dB)

FIG. 11. The recognition rate in different noise condition and SNR level.

49



Movie noise condition
100 ‘ ‘ ‘

g
(O]
<
o
c
S
£
S 40+t 7
(&)
@
30 s
o 20ms
20 50ms 7
—H— 80ms
10 Original | |
O | | | | |
6 7 8 9 10 11 12

SNR (dB)

FIG. 12. The recognition rate in movie noise condition with different window length
and SNR level.
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FIG. 13. The comparison of recognition rate between the with SA and without SA in
the babble noise condition (the left figure) and in the movie noise condition (the
right figure).
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FIG. 14. The recognition rate in movie noise condition with different processed
signal ratio.
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FIG. 15. The comparison of recognition rate between the with optimum and without
optimum in the babble noise condition (the left figure) and in the movie noise
condition (the right figure).
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