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Single-channel noise reduction algorithms for speech 

enhancement 

 
Student：：：：Chun-hung Chen                          Advisor：：：：Ming-Sian Bai 

 

Department of Mechanical Engineering 

National Chiao-Tung University 

 

ABSTRACT 

This paper will propose an optimized speech enhancement algorithm aimed at 

single-channel noise reduction (NR) ,and apply the NR algorithm in the speech 

recognition.  The optimization process is based on an objective function obtained in 

a regression model and the simulated annealing (SA) algorithm that is well suited for 

problems with many local optima.  The NR algorithm, minimum mean-square error 

noise reduction (MMSE-NR) algorithm, employs a time-recursive averaging (TRA) 

method for noise estimation.  Objective tests were undertaken to compare the 

optimized MMSE-TRA-NR and MMSE-VAD-TRA-NR algorithm with several 

conventional NR algorithms.  White noise and car noise at signal-to-noise ratio 

(SNR) 5 dB are used in these tests.  As compared to conventional algorithms, the 

optimized MMSE-TRA-NR and MMSE-VAD-TRA-NR algorithm proved effective 

in enhancing noise-corrupted speech signals, without compromising the timbral 

quality.  The optimized MMSE-TRA-NR algorithm also can be used in automatic 

speech recognition (ASR), the recognition rate will be enhance by the optimal 

parameters of the MMSE-TRA-NR algorithms. 
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1. INTRODUCTION 

In recent years, applications of mobile communication, video conferencing, 

peer-to-peer internet telephony networks such as SKYPE®, hands-free car-kits, etc., 

are rapidly advancing in modern daily life.  In these applications, effective 

communication in noisy environments is one of the pressing issues.  Noise reduction 

(NR) technology has long been research interest in communication industry.  How to 

achieve high reduction with impairing speech quality has been an imminent issue for 

NR algorithm design.    

NR algorithms mostly can be divided into three primary classes:  

(1) Spectral-subtraction algorithms1-6:  The algorithms subtract an estimate of noise 

spectrum from the noisy speech spectrum.  The noise spectrum can be estimated 

and updated during periods when the signal is absent.  Therefore, an estimate of 

clean signal can be obtained.   

(2) Statistical-model-based algorithms:  The speech enhancement problem is posed 

in a statistical estimation framework.  A linear (or nonlinear) estimator of the 

Fourier transform coefficients of the clean signal can be found if a set of the 

transform coefficients of the noisy signal are given.  The Wiener algorithm7-10 

and minimum mean-square error (MMSE) [1], [11] algorithms fall in this 

category. 

(3) Subspace algorithm:  The subspace algorithms are based on linear algebra theory.  

The clean signal might be confined to a subspace of the noisy Euclidean space.  

Consequently, a method of decomposing the vector space of the noisy signal into 

“signal subspace” and “noise subspace” is given.  The decomposition can be 

done using well-known orthogonal matrix factorization techniques from linear 

algebra and the singular value decomposition (SVD) or eigenvector-eigenvalue 

factorization.  The Karhunen-Loéve transform (KLT) NR algorithm [11]-[12] 
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falls in this category. 

These NR algorithms need to estimate the noise spectrum or noise covariance 

matrix.  In fact, the residual noise will be audible and annoying if the noise estimate 

is too low.  On the contrary, speech will be distortion if the noise estimate is too high.   

Various kinds of NR algorithms have been developed in terms of noise estimation 

such as voice activity detection (VAD), minimal tracking, time-recursive averaging 

(TRA), and histogram-based algorithms.  A more detailed literature review can be 

found in a monograph on speech enhancement by Loizou [11].  

In the paper, an improved MMSE NR algorithm based on VAD and TRA [11], 

[13] noise estimation, or abbreviated as MMSE-VAD-TRA-NR, is proposed.  An 

optimization method employs a simulated annealing (SA) [14]-[16] to efficiently 

search the optimal parameters in the MMSE-VAD-TRA-NR algorithms.  The SA 

method mainly finds the maximum of an objective function.  The objective function 

is constructed by objective measures of the reduction performance and the incurred 

distortion of processed speech signals.   

In order to assess those NR algorithms, objective tests and subjective listening 

tests were carried out.  Those algorithms are simulated at the sampling rate of 8 kHz.  

The objective tests were employed according to the ITU-T standard P.862 [18].  The 

subjective listening tests were conducted according to the ITU-T standard P.835 [19].  

The test data were processed by using analysis of variance (ANOVA) to justify the 

statistic significance of difference among algorithms.  A post-hoc test, Tukey’s HSD, 

was conducted to assess the significant differences between NR algorithms. 

Besides the MMSE-VAD-TRA-NR algorithm, using the MMSE-VAD-TRA-NR 

algorithm to enhance the recognition rate is also proposed in the paper. A series of 

parameters in the NR algorithm will be optimal individually by different methods in 

order to improve the recognition rate.  
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2. NOISE REDUCTION ALGORITHMS 

Figure 1 illustrates the general structure of NR algorithms.  The procedures of 

NR algorithms commonly are that the noisy signals would be processed by some 

forward and inverse transform operations (e.g., the Fourier transform, the discrete 

cosine transform (DCT) or the KLT transform).  Between the forward and inverse 

transforms, the major NR processes have been accomplished.   In this section, a 

number of algorithms that generally have been proposed in literature for noise 

reduction (NR) are briefly reviewed. 

2.1 Spectral subtraction method 

Spectral subtraction is a widely used NR method whose original idea is based on 

the basic principle that as the noise ( )v n  is additive, the spectral subtraction 

algorithm can subtract the noise spectrum ( )V ω  from the measurement signal( )y n .  

The noise spectrum can be estimated and updated during periods when the speech 

signal ( )s n  is not present.  The noisy signal( )y n  can be expressed as: 

( ) ( ) ( )y n s n v n= + .                                               (1) 

The estimate of clean speech power spectrum 
2ˆ( )S ω  can be obtained as follows:  

2 22ˆ( ) ( ) ( )S H Yω ω ω= ,                                  (2 ) 

where 
2

( )Y ω  is the noisy speech power spectrum, and ( )H ω is known as the 

system’s transfer function.  The symbol “^” is used to indicate the estimated 

parameters of interest.  From the subtraction rule, ( )H ω  can be given by 

2

2

ˆ ( )
( ) 1

( )

V
H

Y

ω
ω

ω
= − ,                                       (3) 

where 
2ˆ( )V ω  is estimate of noise power spectrum, ( )H ω  can be considered to be 

a gain function in NR algorithm, and its value is always positive in the range of 
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0 ( ) 1H ω≤ ≤ .  A general version of the spectral subtraction is expressed as follows: 

    ˆ ˆ( ) ( ) ( )
p pp

S Y Vω ω ω= −                                 (4 ) 

where p  is the power exponent, with 1p =  yielding the original magnitude spectral 

subtraction, and 2p =  yielding the power spectral subtraction algorithm. 

From Eq. (3) , it can be noticed that 

    
2

2

( ) 1

1 ( )( )

V

SNRY

ω
ωω

=
+

.                                           (5) 

Those spectral subtraction algorithms rely on accurate estimate of SNR in the 

frequency domain.  However, accurate estimation of instantaneous SNR is generally 

difficult if not impossible.  The estimation error causes the problem of musical noise 

that is a processing artifact plaguing most spectral subtraction methods.  Musical 

noise is low-amplitude tonal components with rapidly varying frequencies. 

2.2 Wiener filter-based NR algorithm 

Wiener filter theory can be used to reduce noise by optimizing a mathematically 

error criterion and illustrated in Fig. 2 [8].  The noisy signal ( )y n  consists of clean 

speech ( )s n and noise ( )v n  as Eq. (1) showed.  The error ( )e n  between the 

desired signal ( ) ( )d n s n=  and its estimate ̂( )s n  is minimized in the minimum 

mean-square error (MMSE) sense.  The estimate ˆ( )s n  can be obtained by the inner 

product of two vectors w and y . 

ˆ( ) Ts n = w y ,                                                    (6) 

where [ ]0 1 1, , ,T
Mw w w −=w K  is the Wiener filter coefficient vector, and 

[ ]( ), ( 1), , ( 1)T y n y n y n M= − − +y K  is the input vector containing the past M  

samples of the input.  The impulse response of Wiener filter ( )w n  is usually a finite 

impulse response (FIR) filter, and the frequency response of Wiener filter is 
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( )
1

k
k

k

W
ξω

ξ
=

+
 .                                         (7) 

The kξ  is defined by 

 
( ){ }
( ){ }

2

2

( )

( )

k
ss k

k
vv k

k

E SP

P E V

ωωξ
ω ω

=@                                     (8) 

as the a priori SNR at frequency kω , where ( )ss kP ω and ( )vv kP ω  are power spectra 

of clean speech and additive noise, respectively, and {}E ⋅  is the expectation operator.  

From Eq. (7), it could be noticed that 0 ( ) 1kW ω≤ ≤ , and ( ) 0kW ω ≈  when kξ  

approaches to zero and ( ) 1kW ω ≈  when kξ  approaches to infinity.  We can get the 

estimate of clean speech signal by filtering the noisy signal through the Wiener filter. 

2.3 Statistical-model-based noise reduction algorithm 

Minimum mean-square-error noise reduction (MMSE-NR) algorithm yields a 

nonlinear estimator of the magnitude of the DFT coefficients of the signal not the 

complex spectrum of the signal done by the Wiener filter.  The algorithm is based on 

statistical model.  This model makes two assumptions: (1) The Fourier transform 

coefficients have a Gaussian probability distribution.  The mean of the coefficients is 

zero, and the variances of the coefficients are time-varying owing to the 

nonstationarity of speech.  (2) The Fourier transform coefficients are statistically 

independent and, hence, uncorrelated. 

  The optimal MMSE nonlinear estimator1 was searched that minimizes the 

mean-square error between the estimated and true magnitudes: 

( ){ }2ˆ
k ke E S S= − ,                                          (9) 

where ˆ
kS  and kS  are the estimated and true spectral magnitudes of the clean speech 

signal at the frequency kω , respectively.  In particular, the expectation is finished by 

Bayesian mean-square error (MSE) approach, and the Bayesian MSE is given by: 
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( ) ( ) ( )
2ˆ ˆ ,k k k k kBmse S S S p S d dS= −∫ ∫ Y Y ,                          (10) 

where [ ]0 1 1( ) ( ) ( )NY Y Yω ω ω −=Y L  is the noisy speech spectrum, and ( ), kp SY  is 

the joint probability density function (PDF).  Minimization of Bayesian MSE with 

respect to kS  leads to the optimal MMSE estimator given by: 

( )

0 1 1

ˆ

    

    ( ) ( ) ( )

k k k k

k

k N

S S p S dS

E S

E S Y Y Yω ω ω −

=

 =  
 =  

∫ Y

Y

L

.                                (11) 

In order to determine the MMSE estimator we first need to calculate the posterior 

PDF of kS , i.e., ( )( )k kp S Yω .  Using Bayes’ rule to determine it as: 

( ) ( ) ( )
( )

( ) ( )

( ) ( )
0

( )
( )

( )

( )
                     

( )

k k k

k k
k

k k k

k k k k

p Y S p S
p S Y

p Y

p Y S p S

p Y s p s ds

ω
ω

ω

ω

ω
∞

=

=

∫

,                            (12) 

where ks  is a realization of the random variable kS .  Note that ( )( )kp Y ω  is a 

normalization factor required to ensure that ( )( )k kp S Yω  integrates to 1.  

Assuming statistical independence between the Fourier transform coefficients, i.e.,  

0 1 1( ) ( ) ( ) ( )k N k kE S Y Y Y E S Yω ω ω ω−   =   L ,                       (13) 

and using the preceding expression for ( )( )k kp s Y ω , the estimator in Eq. (11) 

simplifies to: 
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( )

( ) ( )

( ) ( )

0

0

0

ˆ ( )

    ( )

( )

    

( )

k k k

k k k k

k k k k k

k k k k

S E S Y

s p s Y ds

s p Y s p s ds

p Y s p s ds

ω

ω

ω

ω

∞

∞

∞

 =  

=

=

∫

∫

∫

                                  (14) 

Since  

( ) ( ) ( )
2

0

( ) ( ) , ,k k k k k s k s sp s Y ds p Y s p s d
π

ω ω θ θ θ= ∫ ,                   (15) 

where sθ  is the realization of the phase random variable of ( )kS ω , we get 

( ) ( )

( ) ( )

2

0 0
2

0 0

( ) , ,
ˆ

( ) , ,

k k k s k s s k

k

k k s k s s k

s p Y s p s d ds

S

p Y s p s d ds

π

π

ω θ θ θ

ω θ θ θ

∞

∞=
∫ ∫

∫ ∫
.                         (16) 

From the assumed statistical model, we know that ( )kY ω  is the sum of two 

zero-mean complex Gaussian random variables.  Then the conditional PDF 

( )( ) ,k k sp Y sω θ  will also be Gaussian: 

( ) ( )( ) , ( ) ( )k k s D k kp Y s p Y Sω θ ω ω= − ,                              (17) 

where ( )Dp ⋅  is the PDF of the noise Fourier transform coefficients, ( )kV ω .  Then 

the Eq. (17) becomes: 

( ) ( ) ( ) 21 1
( ) , exp

( ) ( )k k s k k
vv k vv k

p Y s Y S
P P

ω θ ω ω
π ω ω

 
= − − 

 
,           (18) 

For complex Gaussian random variables, the magnitude kS  and phase ( )s kθ  

random variables of ( )kS ω  are independent, and the joint PDF as the product of the 

individual PDF’s, i.e., ( ) ( ) ( ),k s k sp s p s pθ θ= .  The PDF of is uniform in( ),π π− , 
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and therefore the joint probability is given by: 

( )
2

, exp
( ) ( )
k k

k s
ss k ss k

s s
p s

P P
θ

π ω ω
 

= − 
 

,                               (19) 

Substitute Eqs. (18) and (19) into Eq. (14), therefore the optimal MMSE magnitude 

estimator can be obtained as: 

( ) ( )( )ˆ 1.5 0.5,1;
1
ss k

k k
k

P
S v

ω
ξ

= Γ Φ − −
+

,                               (20) 

where ( )Γ ⋅  denotes the Gamma function, ( )Φ ⋅  denotes the confluent 

hyper-geometric function.  Eq. (20) can be rewritten as 

( ) 0 1
ˆ exp 1

2 2 2 2
k k k k

k k k k
k

v v v v
S v I v I Y

π
γ

      = − + +            
,              (21) 

where ( )0I ⋅ and ( )1I ⋅  are the modified Bessel functions of zero and the first order, 

respectively, kY  is the spectral magnitude of the noisy signal at the frequency kω ,  

and kv  is defined by  

1
k

k k
k

v
ξ γ

ξ
=

+
                                                  (22) 

where kγ  denotes as the a posteriori SNR, and kγ  is defined as 

( ){ }
2 2

2( )
k k

k
vv k

k

Y Y

P E V
γ

ω ω
=@                                       (23) 

Generally, we do not have known the noise variance and the a priori SNR kξ  but 

measured noisy signal ( )y n .  However, the noise variance can be estimated and 

computed via a VAD in MMSE-NR algorithm if we assume the noise is stationary.  

A statistical-model-based VAD was used: 

1

0

1

1

1 1
log exp

1 1

H
N

k k

k k k
H

N

γ ξ
ξ ξ

−

=

   >
∆   + + <  

∑ ,                                 (24) 

where N is the size of the fast Fourier transform, H1 denotes the hypothesis of speech 
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presence, H0 denotes the hypothesis of speech absence, and ∆  is a fixed threshold, 

which was usually set to 0.15. 

As for a priori SNR kξ , a method for estimating the a priori SNR kξ  is called 

the “decision-directed”.  This method is assuming that a priori SNR kξ  is related to 

a posteriori SNR kγ  by  

{ }( ) ( ) 1k km E mξ γ= −  ,                                          (25) 

where m  is the number of frame in the frame-based MMSE-NR algorithm.  An 

estimator of the a priori SNR kξ  is given by 

( )
( ) ( ) ( )
2ˆ 1ˆ ( ) 1 max ( ) 1,  0

, 1
k

k k
vv k

S m
m a a m

P m
ξ γ

ω
−

= + − −
−

 .                  (26) 

where a  is a weighting factor commonly chosen to be 0.98a =  and 0 1a< < ,  

and ( )2ˆ 1kS m−  is the amplitude magnitude estimator of speech signal obtained in 

the past frame.  Therefore, the estimate of clean speech signal magnitude can be 

calculated by Eq. (21).  Finally, construct the clean speech signal spectrum( )ˆ
kS ω  

by combing the estimate of clean speech signal magnitude spectrum ˆ
kS  with the 

noisy signal phase spectrum ( )yj kθ  and calculate the inverse DFT of ( )ˆ
kS ω  to 

obtain the time-domain processed speech signal ˆ( )s n .  The processed signal 

spectrum can be showed as  

( ) ( )ˆ ˆ exp ( )k yS S j kω θ= .                                         (27) 

It can be shown that the optimal phase estimate is actually the noisy phase by 

Ephraim and Malah [11]. 

2.4 Karhunen-Loéve transform (KLT)-based noise reduction 

A subspace algorithm, Karhunen-Loéve transform noise reduction (KLT-NR) 

algorithm [11]-[12], is rooted on linear algebra theory and can be also applied to 
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enhance speech signal.  First, a noisy speech vector y  comprises clean speech and 

noise signal v  vectors as 

[ ]( ), ( 1), , ( 1)
T

y n y n y n M= + = − − +y s v K                           (28) 

containing M  samples of speech, where [ ]( ), ( 1), , ( 1)
T

s n s n s n M= − − +s K  is the 

noisy-free vector and [ ]( ), ( 1), , ( 1)
T

v n v n v n M= − − +v K  is the noise signal vector.  

Let ˆ = ⋅s H y  be a linear estimator of the clean speech vector s, where H  is a 

M M×  matrix.  The residual error ε  obtained by the estimation is given by: 

ˆε = − = ⋅ −s s H y s                                       (29) 

The energy of the residual error2ε  is defined as 

( )2 trT TE Eε ε ε ε ε   = =                                          (30) 

The optimum linear estimator can be obtained by solving the unconstrained 

optimization problem: 

2min
KLT

ε
H

                                                       (31) 

Substitute Eq. (29) in Eq. (30), we obtain: 

( )
( )
( )

2 tr ( )( )

   tr (

   tr (

T

T T T T T T

T T
y sy ys s

E

E

E

ε  = ⋅ − ⋅ − 

 = ⋅ ⋅ − − ⋅ + 

 = − − + 

H y s H y s

H yy H sy H H ys ss

HR H R H HR R

                     (32) 

where sR  and yR  are the clean and noisy signal covariance matrices, respectively. 

Besides, { }T
sy ER sy@  and { }T

ys ER ys@ .  For white noise, the noise covariance 

matrix is given by  

2
v vσ=R I ,                                                     (33) 

where 2
vσ  is the noise variance and I  is an M M×  identity matrix. 
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Furthermore, assume the clean speech and noise vectors are uncorrelated and zero 

mean, then the matrix yR  can be shown to be 

y s v= +R R R  ,                                               (34) 

Take the derivative of previous 2ε  with respect to H  and set it equal to zero, in 

addition, make use of the fact that Tys sy=R R  and substitute in Eq. (34), we obtain 

the optimal estimator: 

( ) 12
opt s s vσ

−
= +H R R I .                                          (35) 

The estimator is simplified by using the eigenvalue decomposition (EVD) of sR : 

T
s s=R UΛ U ,                                                  (36) 

where U  is the unitary eigenvector matrix, and the matrix is often called KLT 

transform.  Substitute Eq. (36) into Eq. (35) and assume sR  has a rank 

( )K K M< , we obtain: 

[ ] 1
1 2 1 1

2

0

0 0

T
T T

opt T

  
= = =  

   

G U
H UGU U U U GU

U
,                   (37) 

where G  is a diagonal matrix (K K× ) 

( ) 12
s s v kσ

−
= Λ Λ +G I                                          (38) 

with diagonal matrix sΛ  containing the eigenvalues sσ  sorted in descending order 

K .  The eigenvector matrix U  can be partition as [ ]1 2=U U U  in Eq. (37), 

where 1U  is a M K× matrix.  Hence, the enhanced speech signal vector can be 

obtained by ̂ opt=s H y . 

 

3. ENHANCED MMSE-NR ALGORITHMS 

In the section, three approaches of technical refinement that can be done to 
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enhance the MMSE-NR algorithm are presented. 

3.1 Noise reduction algorithms based on MMSE method 

Two noise estimators are posed in this section as the time-recursive averaging 

(TRA) algorithm[13] and algorithm combined the TRA and the VAD.  As mentioned 

earlier in MMSE-NR algorithm, the noise variance can be estimated and computed 

via a VAD if the noise is stationary.  However, the majority of the VAD algorithms 

encounters problems in low-SNR conditions if the noise is nonstationary.  An 

algorithm called time-recursive averaging (TRA) algorithm is suitable for highly 

nonstationary noisy environment to estimate noise variance.  A NR algorithm that 

noise variance can be estimated via the TRA algorithm we call it “MMSE-TRA-NR” 

in this paper. 

  In TRA algorithm, the individual frequency bands of noise spectrum can be 

updated by noisy spectrum when SNR is extremely low, or the estimate of noise 

variance at the last frame will be kept on in estimating noise variance.  The TRA 

algorithm has the form: 

( ) ( ) ( ) ( )( ) ( ) 22 2ˆ ˆ, , 1, 1 , ,v vk k k k Y kσ λ α λ σ λ α λ λ= − + −                (39) 

where ( ),Y kλ  is the noisy speech magnitude spectrum, ( )2ˆ ,v kσ λ  is the estimate 

of noise variance at frame λ  and frequency k , and ( ),kα λ  is the smoothing 

factor, which is the time and frequency dependent.  Different algorithms were 

developed depending on the selection of the smoothing factor ( ),kα λ .  Some chose 

to calculate ( ),kα λ  based on the estimated SNR of each frequency bin, whereas 

others chose to calculate ( ),kα λ  based on the probability of speech being 

present/absent at frequency k .  Others chose to use a fixed value for ( ),kα λ , but 
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updated ( )2ˆ ,v kσ λ  only after a certain condition was met.  In the paper, the 

smoothing factor ( ),kα λ  is chosen to be a sigmoid function of the posteriori SNR 

( )kγ λ  as: 

( ) ( )( )
1

,
1 k

k
e

β γ λ δ
α λ

− −
=

+
                                       (40) 

where β  and δ  are parameters, and a posteriori SNR ( )kγ λ  can be given by 

( ) ( )

( )

2

10
2

1

,

1
ˆ ,

10

k

v
m

Y k

m k

λ
γ λ

σ λ
=

=
−∑

                                      (41) 

In Eq. (41), the denominator is the average of the estimated noise variance in the past 

ten frames.  Figure 3 plots the smoothing factor α  calculated according to Eq. (40) 

for different values of the parameter β  when 1δ = .  A noisy speech signal (dotted 

line) corrupted by a non-stationary noise that consists of three different level of 

loudness is shown in Fig. 4.  Top panel shows the noise (solid line) estimated using 

the aforementioned VAD algorithm, and bottom panel shows the noise (solid line) 

estimated using the TRA algorithm.  From Fig. 4 we can notice that the TRA 

algorithm works better than the VAD algorithm for non-stationary noise. 

  To enhance the TRA algorithm, we combine the TRA algorithm and the 

VAD algorithm and call it “MMSE-VAD-TRA-NR” in this paper.  Using the VAD 

algorithm to verify the current frame of the input signal is the speech or the noise.  

According to the verification of the VAD algorithm, the speech signal will through 

the TRA algorithm process, and the noise signal will be deleted. 

3.2 Intelligent tuning of the parameters in enhanced MMSE-NR algorithm 

As mentioned previously, the parameters β  and δ  are used in the sigmoid 

function of the TRA algorithm for noise estimation.  Conventionally, choices such 
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as 1.5,15 30δ β= ≤ ≤  are recommended in the literature [11].  To our surprise, 

we found that these two parameters β  and δ  have profound effects on the NR 

performance of the MMSE-TRA-NR algorithm and the MMSE-VAD-TRA-NR 

algorithm.  It is then worth exploring how to adjust these two parameters such that 

noise reduction performance can be maximized without too much quality 

degradation. The SA method provides an optimal way to intelligently tune those 

parameters. 

3.2.1 SA method 

SA [14]-[16] is a generic probabilistic meta-algorithm for the global optimization 

problem, namely locating a good approximation to the global optimum of a given 

function in a large search space.  SA has demonstrated to be a good technique for 

solving global optimization problems with many local optima.  The flow diagram of 

the SA is illustrated in Fig. 5.  In SA method, each point of the search space is 

analogous to a state of some physical system, and the objective function Q  to be 

maximized is analogous to the internal energy of the system in that state.  The goal is 

to bring the system from an initial state to a new state with the minimum possible 

energy. 

Two conditions can transfer state and update the objective function in accepting 

rule of SA method.  One is the objective function increasing.  The other is the 

objective function decreasing but the acceptance probability function is more than a 

random number ϕ  which is randomly generated subject to the uniform distribution 

on the interval(0,1).  The acceptance probability function is given by 

exp( / )SAp Q T= ∆                                             (42) 

where Q∆  denotes the variation of the objective function, and T  is a control 

parameter called the temperature.  It follows that the system actually may move to 
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the new state even when it is worse than the current one.  This feature prevents the 

method from staying in a local maximum – a state that is worse than the global 

maximum but better than any of its neighbors.  Initially the high temperature T  

causes the high probability of accepting a move that decreases the objective function.  

Finally, the probability of accepting a move becomes extremely small when the 

objective function is decreasing continuously, and the temperature is getting lower in 

accordance with an annealing schedule.  

    The most generally employed annealing schedule is exponential cooling which 

begins at some initial temperature 0T  and decreases temperature in steps according 

to  

1k c kT Tα+ =                                                    (43) 

where 0 1cα< <  is a cooling factor.  Typically, a fixed number of moves must be 

accepted at each temperature before proceeding to the new state.  A way of SA 

action is stopped either when the temperature reaches some final value fT  or the 

system is not transformed to a new state after some times.  An empirical choice for 

cα  is 0.95 and that 0T  should be chosen so that the initial acceptance probability is 

higher than 0.8.  The initial solution is generated typically at random.  

3.2.2 Objective function Q 

An appropriate objective function is very important for optimizing the 

performance in MMSE-TRA-NR algorithm and MMSE-VAD-TRA-NR algorithm.  

Two objective indices, the segmental SNR (SNRseg) and the perceptual evaluation of 

sound quality (PESQ) [18], were applied to construct the objective function.  The 

SNRseg is a basic objective measure to evaluate noise reduction algorithms, and has 

the form: 
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( )

( ) ( )( )
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1
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+ −

−
=

=

=
−

∑
∑  ,                        (44) 

where sN  is the frame length, and sM  is the number of frames in the signal.  The 

SNRseg can reflect the SNR level of the enhanced speech by NR algorithms.  As for 

the PESQ, it is widely used for automated assessment of the speech quality in 

telephony industry.  The structure of PESQ is complicated that the original and 

degraded signals are first level-equalized to a standard listening level and filtered by a 

filter with response similar to a standard telephone handset.  The signals are aligned 

in time to correct for time delays, and then processed through an auditory transform to 

obtain the loudness spectra.  More details of the PESQ can be found in ITU-T P. 862 

[18].  In a word, the SNRseg and the PESQ reflect the SNR level and the sound 

quality, respectively, of the processed signals via NR algorithms.  The higher values 

of SNRseg and PESQ both indicate the better noise reduction performance. 

  Consider the objective function as a linear combination of the SNRseg and the 

PESQ, the weights between the SNRseg and the PESQ can be found from a subjective 

listening test.  Three subjective indices including noise reduction, sound quality and 

total preference were employed in this listening test.  The grading scale is set to be 

-3~3.  Five NR algorithms are applied to two kinds of noise at SNR level 5 dB: (1) 

white noise (2) car noise.  Figure 6 shows the waveforms of the test sentence 

corrupted by white noise (top panel) and car noise (bottom panel) respectively.  

Figure 7(a)-(b) show the spectrograms of the test sentence corrupted by white noise 

and car noise.  NR algorithms including spectral subtraction, Wiener filtering, 

MMSE-NR, MMSE-TRA-NR, MMSE-VAD-TRA-NR and KLT-NR algorithms were 

examined.  The sampling rate is 8 kHz, the frame length is about 20~32 ms, and the 

amount of overlap is 50%.  The loudness of all reproduced signals was adjusted to be 
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the same level.  A headset was used as the means of audio rendering.  Multiple 

regression analysis enables us to establish the relationship between several 

independent variables (noise reduction and sound quality) and a dependent variable 

(total preference).  There are thirty-two experienced listeners participating in the 

subjective test.  The results of multiple regression analysis provide the weights 

between the SNRseg and the PESQ for the objective function.  Hence, the objective 

function is experimentally constructed as 

1.867*Q SNRseg PESQ= +  .                                 (45) 

We can achieve the optimal performances in MMSE-TRA-NR algorithm and 

MMSE-VAD-TRA-NR algorithm according to Eq. (45) by using SA method in terms 

of objective measures. 

3.2.3 Compare with and without optimization MMSE-NR algorithms 

The parameters β  and δ  in the MMSE-TRA-NR algorithm can be randomly 

chosen to 1.6β =  and 1δ =  for processing the previous noisy speech signals in 

two noise conditions.  However, the optimal parameters can be obtained by using SA 

method.  For white noise condition, the optimal 0.6117β =  and the optimal 

0.5214δ =  in the MMSE-TRA-NR algorithm, the optimal 0.5671β =  and the 

optimal 0.2606δ =  in the MMSE-VAD-TRA-NR algorithm.  For car noise 

condition, the optimal 0.7128β =  and the optimal 0.5265δ =  in the 

MMSE-TRA-NR algorithm, the optimal 0.6896β =  and the optimal 0.1724δ =  in 

the MMSE-VAD-TRA-NR algorithm.  Table I shows the NR performance of the 

MMSE-TRA-NR algorithm and the MMSE-VAD-TRA-NR algorithm in terms of the 

SNRseg and PESQ for different values of parameters β  and δ . Form table I, we 

can notice that there are higher values of the SNRseg and the PESQ in 

MMSE-TRA-NR and MMSE-VAD-TRA-NR with optimal parameters β  and δ . 
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Another subjective listening test was conducted to assess the NR performance 

between the random and optimal parameters in MMSE-TRA-NR and 

MMSE-VAD-TRA-NR. The test conditions are similar to the subjective listening test 

for constructing objective function of SA method.  The grading scale is set to be 1~5, 

as recommended in ITU-T P.835 [19].  Three subjective indices including Scale of 

Signal Distortion (SIG), Scale of background Intrusiveness (BAK) and Scale of 

Overall Quality (OVL) were employed in the listening test.  Every subject 

participating in the test is instructed with the definitions of the preceding subjective 

indices and the procedure prior to the listening test.  Figures 8(a)-(d) show the results 

of the subjective listening test in white noise and car noise.  The scores from all 

subjects were also processed by using the MANOVA [20] to justify the statistical 

significance of the test results.  The average, 5%-95% bracket and the significance 

level of the grades were shown in the analysis.  Cases with significance levels below 

0.05 indicate that statistically significant difference exists among methods.  From 

Figs. 8(a)-(d) and Table II, there is no significant difference in OVL but SIG and BAK 

between the random and optimal parameters in MMSE-TRA-NR algorithm.  The 

optimal parameters lead to the worse values in SIG, however, the random parameters 

lead to the worst values of BAK that the values almost are the lowest about 1 in the 

two noise conditions.  According to the values of BAK, there is almost no NR 

performance in the MMSE-TRA-NR and MMSE-VAD-TRA-NR by using random 

parameters.  Form the results of the objective and subjective tests, we always chose 

the optimal parameters in MMSE-TRA-NR and MMSE-VAD-TRA-NR algorithms 

that optimized by SA method.  Furthermore, the optimal MMSE-VAD-TRA-NR will 

be compared to some NR algorithms in objective and subjective tests later. 
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4. OBJECTIVE AND SUBJECTIVE EVALUATIONS 

4.1 Performance evaluation of NR algorithms in objective measure 

Two objective measures, the SNRseg and the PESQ, are employed to assess the 

performance of six reduction algorithms in two kinds of background noise (white 

noise and car noise) at SNR levels 5dB.  Six NR algorithms are spectral subtraction, 

Wiener filtering, MMSE-NR, MMSE-TRA-NR, MMSE-VAD-TRA-NR, and 

KLT-NR algorithms.  All test conditions are similar to compare with and without 

optimization MMSE-TRA-NR algorithms by using SA method in terms of the 

SNRseg and PESQ.  These measures assess speech quality by estimating the 

“distortion” between the clean and processed signals and then mapping the estimated 

distortion value to a quality metric. 

Figure 9 (a) shows the noise-free speech signal used for a computer simulation, 

where the sampling rate is 8 kHz.  The noisy and the processed speech signals by 

those NR algorithms are shown in Figs. 9(b)-(c).  Computational requirement 

(processing time) and objective NR performance are compared in Table III.  The test 

signals and conditions are similar to the performance evaluation of NR algorithms in 

objective test.  The SNRseg and the PESQ are employed in the objective NR 

performances.  In terms of the SNRseg, the less noise estimation causes more 

residual noise in order to avoid serious speech distortion in the Wiener filtering 

algorithm.  Therefore, the Wiener filtering algorithm leads to the lowest values of 

SNRseg in all noise conditions.  Opposition to the Wiener filtering, there are the 

highest values of SNR in the KLT-NR algorithm.  As for PESQ, the result indicated 

that there is no significant difference between those NR algorithms in speech quality 

of the processed signals.  

4.2 Performance evaluation of NR algorithms by subjective listening tests 

In order to compare the preceding NR algorithms, subjective listening tests were 
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conducted in terms of sound quality.  The listening tests were conducted according to 

the standards ITU-T P.835 [19].  Thirty-two experienced listeners participated in the 

subjective tests.  The grading scale is set to be 1~5, as recommended in ITU-T P.835 

[19].  Six noise reduction algorithms, spectral subtraction, Wiener filtering, 

MMSE-NR, MMSE-TRA-NR, MMSE-VAD-TRA-NR and KLT-NR are compared in 

the test.  The sampling rate is 8 kHz, the frame length is about 20~32 ms, and the 

amount of overlap is 50%.  Three subjective indices including Scale of Signal 

Distortion (SIG), Scale of background Intrusiveness (BAK) and Scale of Overall 

Quality (OVL) were employed in the listening test.  Every subject participating in the 

test is instructed with the definitions of the preceding subjective indices and the 

procedure prior to the listening test.  In the listening tests, those NR algorithms are 

applied to two kinds of noise: (1) white noise (2) car noise at SNR level 5 dB.  The 

design of the subjective tests is completely the same with the preceding subjective test 

for comparing with and without optimization MMSE-TRA-NR algorithms using SA 

method.  Listening tests were conducted for the noise corrupted speech and the 

results are shown in Figs. 10(a)-(b).  Not only the mean grades but also the 

significance levels were shown in the analysis for different NR algorithms.  The 

vertical bars indicate 95% confidence intervals.  The test results were processed 

using MANOVA [20].  The significance level in the MANOVA output is 

summarized in Table V.  Cases with significance levels below 0.05 indicate that 

statistically significant difference exists among methods.  According to Table V, the 

difference in all cases of the test results was found to be statistically significant.  

Furthermore, multiple paired comparisons according to a post-hoc Tukey’s HSD test 

[20] were conducted to assess significant differences between NR algorithms.  Table 

VI shows the results from the Tukey’s HSD test for the signal distortion SIG, noise 

distortion BAK and overall quality OVL comparisons. Asterisks in the table indicate 
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absence of statistically significant difference (p > 0.05) between the algorithm with 

the highest score and denoted algorithm.  That is to say, the NR algorithms denoted 

by asterisks in Table VI performed equally well.  On the contrary, the algorithms 

with no asterisks performed poorly.   

From Table VI, we notice that the KLT-NR algorithm performed poorly in terms 

of SIG in all noise conditions.  The result indicates that the overestimate of noise in 

KLT-NR algorithm brings to more signal distortion.  In terms of noise distortion 

BAK, as mentioned earlier in the objective test, the Wiener filtering algorithm 

obtained the worst scores in all noise condition in order to avoid serious signal 

distortion.  Besides, the residual noise that commonly is musical noise results in the 

worse value of BAK in the spectral subtraction algorithm for the two noise conditions.  

Another surprising thing is that the MMSE-TRA-NR performed poorly in real-world 

noise (car noise) condition.  However, the MMSE-VAD-TRA-NR has better perform 

than the MMSE-TRA-NR in car noise condition.  As for overall quality OVL, there 

is no significant difference between those NR algorithms in car noise condition.  

However, the spectral subtraction and KLT-NR algorithms obtained the worse scores 

of OVL than the other NR algorithms for white noise case.  The result shows that 

listeners might be influenced more by speech distortion SIG in terms of OVL when 

making judgments.  A summary from Table VI is that there is no much difference 

between the MMSE-NR, MMSE-TRA-NR and MMSE-VAD-TRA-NR algorithms in 

terms of all subjective indices in the two noise scenarios. 

 

5. ENHANCED MMSE-NR ALGORITHMS FOR AUTOMATIC SPEECH 

RECOGNITION 

We use the MMSE-TRA-NR algorithm to enhance the acoustic speech 

recognition (ASR). The database of the speech for the ASR is 50 short chinese 
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commands, each command has 6 male and 5 female speakers.  The ASR is using the 

Hidden Markov Model (HMM). Figure 11 shows that the recognition rates at different 

noise types and noise level. It is obivous that the recognition rates of processed 

signals are lower than the recognition rates of original signals in babble and movie 

noise conditions. Beside, the recognition rates at 6 to 12 dB in the movie condition 

noise are significant lower than the recognition rates of original signals. Therefore, we 

want to optimal recognition rates of the movie noise condition at 6 to 12 dB and get 

the optimal parameters to optimal the recognition rate of babble and movie noise 

conditions.  

First, we optimal the window length. There is a trade-off between 

time-resolution and frequency-resolution when selecting the window length for 

frequency-domain analysis. A longer frame length results in more accurate spectral 

represenation when we want to obtain better frequency domain resolution. As a 

tradeoff between these two competing criteria, a frame length between 20 ms and 30 

ms has been widely used in speech analysis.  Even though a window of such short 

duration is optimal for analyzing speech signal, there is no guarantee that the optimal 

length would be the same for estimating the noise component. It is widely known that 

noise changes more slowly than speech signal, thus based on the above discussion, it 

is quite obvious that longer windows might be better for estimating the noise. 

Whereas, the recognition rate is the most important thing that we concern in our 

condition. Therefore, we only have to find a window length that can balance the 

time-resolution and frequency-resolution and has higher recognition rate. Figure 12 

shows that the recognition rate of movie noise condition will change with different 

window length. In movie noise condition at 6 to 12 dB, we search the window length 

from 20 to 100 ms and find that the best window length is 50 ms. 

Beside the window length, we also optimal the parameters  β  and δ . We use 
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the SA method, and the cost function is the recognition rate. Figure 13 shows that the 

recognition rates are higher when the optimal parameters  3.0964β =  and 

11.9103δ =  is used. But,  the recognition rates of original signal with SA are lower 

than the recognition rates of original signal.  

After the passing through the MMSE-TRA algorithm, the features of the speech 

may be lost. Therefore, we add some of original signals to the processed signals in 

order to restruct the features of the speech. Fig 14 shows that the recognition rates 

with adding different ratio of processed signals in movie noise condition at 9 dB, and 

the best ratio is 70 %. 

With these new optimal parameters  3.0964β =  , 11.9103δ = , and the 

window length is 50 ms, and ratio of the processed signals is 70 %, the Fig 15 shows 

the result. After a series of tuning the parameters, the MMSE-TRA algorithm has 

higher recognition rates than the original signals. 

 

6. CONCLUSIONS 

An optimization method to efficiently search the optimal parameters in the 

MMSE-VAD-TRA-NR algorithms has been proposed.  In order to obtain optimal 

NR performances, the optimization method employs a SA method and constructs an 

appropriate objective function to achieve the goal.  We observe that the parameters 

β  and δ  need to be chosen carefully because they can affect the estimate of the 

noise spectrum obviously; that is, β  and δ  are the most important parameter to 

affect the NR performance of the MMSE-VAD-TRA-NR significantly.  

The comparisons and research of some NR algorithms have been represented in 

computation complexity, objective tests, and subjective listening tests.  The results of 

the processing time reflect the calculation and processing data complexity in those NR 

algorithms.  The results of objective and subjective tests do not only imply that the 
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Wiener filtering algorithm yield the more residual noise in order to avoid serious 

signal distortion, but also shows that the overestimate of noise results in the lowest 

scores of signal distortion SIG in the KTL-NR algorithm.  The results of the 

subjective listening tests nearly indicate that for all subjective indices, the MMSE-NR, 

MMSE-TRA-NR and MMSE-VAD-TRA-NR algorithms perform equally well in the 

white and car noise scenarios.  Therefore, it can be concluded that the MMSE-NR, 

MMSE-TRA-NR and MMSE-VAD-TRA-NR algorithms are better NR algorithms 

than others according to the aforementioned comparisons and research in the paper. 

To enhance recognition rate is not the main propose of the general NR algorithm.  

After the general NR algorithm processing, the signal will enhance speech and reduce 

the noise.  But, sometimes the speech will be distortion because the noise reduction 

of the NR algorithm is too aggressive.  However, MMSE-TRA-NR can change the 

parameters to enhance the recognition rate and avoid the trade-off between the 

distortion and noise reduction. 

Future research is planned on integrating the noise reduction algorithms with the 

microphone arrays to exploit its full potential of noise suppression in 

telecommunication applications such as peer-to-peer internet telephony networks, 

hands free car-kits, wireless earphones, and so forth. 
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TABLE I.  The NR performance of the MMSE-TRA-NR algorithm and 

MMSE-VAD-TRA algorithm in terms of the SNRseg and PESQ for different values 

of parameters β  and δ  

 

Noise type Algorithms β  δ  SNRseg PESQ 

TRA 1.6 1 -1.0942 1.9639 

optimal-TRA 0.6117 0.5214 1.5155 2.1619 

VAD-TRA 1.6 1 -1.1833 1.7369 
white noise 

optimal-VAD-TRA 0.5671 0.2606 1.5899 2.1582 

TRA 1.6 1 -1.5609 2.2168 

optimal-TRA 0.7128 0.5265 0.7061 2.3145 

VAD-TRA 1.6 1 -1.4524 2.1396 
car 

optimal-VAD-TRA 0.6896 0.1724 0.7666 2.3219 
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TABLE II. The MANOVA results of the subjective listening test in white noise and 

car noise conditions for compare with and without optimization in MMSE-TRA-NR 

and MMSE-VAD-TRA-NR. 

Significance value 

Algorithm Noise type 
SIG BAK OVL 

White noise 0.040 0.000 0.117 

MMSE-TRA 

Car noise 0.017 0.000 0.784 

White noise 0.042 0.000 0.126 

MMSE-VAD-TRA 

Car noise 0.015 0.000 0.631 
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TABLE III.  Comparison of computational requirement and objective noise 

reduction performance of the six noise reduction algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 SNRseg PESQ   

Noise condition  

NR algorithms 
White Car White Car 

Spectral subtraction 2.115 1.450 2.224 2.118 

Wiener filtering 0.878 0.073 2.162 2.322 

MMSE-NR 2.215 1.224 2.250 2.394 

MMSE-TRA-NR 1.515 0.7061 2.161 2.314 

MMSE-VAD-TRA-NR 1.5899 0.7666 2.1582 2.3219 

KLT-NR 3.177 1.856 2.400 2.367 
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TABLE IV.  The MANOVA output of the listening test of the NR algorithms.  

Cases with significance value p below 0.05 indicate that statistically significant 

difference exists among all methods. 

 

Significance value p 
Noise type 

SIG BAK OVL 

White noise 0.007 0.000 0.006 

Car noise 0.012 0.000 0.083 
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TABLE V.  The result from Tukey’s HSD test for SIG, BAK and OVL between NR 

algorithms. (The denoted NR algorithms by asterisks have equally good performance.  

The algorithms with no asterisks have poor performance.)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 SIG BAK OVL   

Noise condition  

NR algorithms 
White Car White Car White Car 

Spectral subtraction * *    * 

Wiener filtering * *   * * 

MMSE-NR * * * * * * 

MMSE-TRA-NR * * *  * * 

MMSE-VAD-TRA-NR * * * * * * 

KLT-NR   * *  * 
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FIG. 1. General structure of NR algorithms. 
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FIG. 2. Block diagram of the filtering problem. 

 

 

 

 

 

 

Output 
Linear time-invariant 

filter 
+ 

-



 34

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 3. The smoothing factor ( ),kα λ  calculated according to Eq. (40) for 

different values of the parameter β  when 1δ = . (Solid line: 5β = ; Dash 

line: 10β = ;  Dotted line: 20β = ) 
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FIG. 4. Plots of the non-stationary noise (solid line) estimated using the VAD (top 

panel) and TRA (bottom panel) algorithms from noisy speech signal (dotted line). 
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FIG. 5. The flow diagram of the SA method. 
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FIG. 6. The waveforms of a test sentence corrupted by white noise (top panel) and 

car noise (bottom panel). 
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FIG. 7 The spectrograms of the test sentence corrupted by two noise conditions. (a) 

White noise. (b) Car noise. 
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FIG. 8 The results of the listening test analyzed by using the MANOVA. (a) 

MMSE-TRA-NR in white noise condition. (b) MMSE-TRA-NR in car noise 

condition. (c) MMSE-VAD-TRA-NR in white noise condition. (d) 

MMSE-VAD-TRA-NR in car noise condition. 
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FIG. 9. Simulation results for six NR algorithms. (a) The noise-free speech signal 

used for a computer simulation. (b) Waveforms of the noisy and processed speech 

signals via six NR algorithms in white noise condition. (c) Waveforms of the noisy 

and processed speech signals via six NR algorithms in car noise condition. (Dotted 

line: noisy speech signals; Solid line: processed speech signals) 
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FIG. 10. The results of the listening test analyzed by using the MANOVA. (a) White 

noise case. (b) Car case. 
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FIG. 11. The recognition rate in different noise condition and SNR level. 
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FIG. 12. The recognition rate in movie noise condition with different window length 

and SNR level. 
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FIG. 13. The comparison of recognition rate between the with SA and without SA in 

the babble noise condition (the left figure) and in the movie noise condition (the 

right figure). 
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FIG. 14. The recognition rate in movie noise condition with different processed 

signal ratio. 
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FIG. 15. The comparison of recognition rate between the with optimum and without 

optimum in the babble noise condition (the left figure) and in the movie noise 

condition (the right figure). 

 


