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ABSTRACT

A simple formalism for the calculation of the equilibrium activity coefficients of electrons and holes in a nondegener-
ate semiconductor with nonuniform composition is presented. These activity coefficients are functions of bandgap, elec-
tron affinity, and the density of states which vary with position. The calculation of carrier activity coefficients requires the
selection of chemical potential and electrostatic potential references. The choice of these reference states is addressed.
The relations between purely thermodynamic quantities and parameters of the band theory are also presented. It is shown
that the intrinsic level is a purely thermodynamic property of the intrinsic bulk semiconductor. The approach presented
here allows convenient treatment of nonuniform semiconductors in a manner that is both thermodynamically consistent
and consistent with the Poisson-Boltzmann equation for the electrostatic potential.

The activity coefficient is a useful quantity for describ-
ing a system (e.g., a liquid mixture, semiconductor, or
other system) behavior with deviations from its ideality. It
is usually introduced through a relation between the
chemical potential and the concentration and may take
different forms depending on the way in which concentra-
tions for a given system are expressed, i.e., as molarity,
molality, or mole fraction. For instance, the chemical po-
tential (p®) of a species i in phase o may be expressed in
the form [1]

pt =t + RTInaf = p* + RTInyree (1]

where p* is the reference state chemical potential of the
species i in the phase «, and is a function only of tempera-
ture, pressure, and choice of reference state. The activity
coefficient of the species i in phase a is v,% and is a function
of temperature, pressure, and concentration. The molar
concentration is ¢i®. The activity of the species i in phase «
is a;%, and is the product of concentration and activity coef-
ficient. R is the gas constant, and T is the temperature in
K. Equation [1] can be viewed as the defining equation for
the activity coefficient (y;*) of species i in phase a. Note that
the chemical potential is generally split into two terms: a
composition-independent term (p*) and a term which is
composition-dependent and accounts for the difference
between the actual chemical potential of interest and the
reference state chemical potential. The concentration de-
fined in Eqg. [1] is consistent with the carrier densities
(n or p) used in the energy band model for a semicon-
ductor when Eq. [1] is divided by N4 (Avogadro’s number)
and R/N, is replaced by k (Boltzmann constant).

Several different techniques have been employed to in-
vestigate the activity coefficients for electrons and holes in
semiconductors with a uniform energy band structure
(2-8). However, a systematic study (including the choice of
the reference states) of the activity coefficients of electrons
and holes in nonuniform semiconductors does not seem to
exist in the literature. For a nondegenerate electron or hole
in a uniform semiconductor, the activity coefficients are
commonly taken as unity. When the energy bandgap for a
solid is nonuniform, such as in a graded bandgap structure
or in a doped semiconductor with a nonconstant doping
profile under conditions where bandgap narrowing oc-
curs, the working equations for the currents and for the
carrier densities contain extra terms over the conventional
results (9). It will be shown later that this extra term can be
related to the carrier activity coefficients. The activity coef-
ficients no longer equal unity in this case, even though the
semiconductor is nondegenerate.

Activity coefficients derived here are obtained by
straightforward substitution of the carrier densities into
the irreversible thermodynamic definition of the electro-
chemical potential. These coefficients are functions of
electron affinity, bandgap, and the density of states that

vary with position. The results presented here are both
thermodynamically consistent and consistent with the
Poisson-Boltzmann equation for the electrostatic poten-
tial. Thermal equilibrium will be assumed throughout the
discussion, and effects of pressrue will not be considered.

Energy Bands in Nonuniform Semiconductors

The energy band diagram (shown with the underlying
assumption of the following analysis) of a semiconductor
with nonuniform composition is depicted in Fig. 1. The va-
lidity of this energy band model has been discussed by
Marshak and van Vliet (9). From Fig. 1, we have

Er(x) = E; - qV(@) (2]
x(@) = E(x) - E(x) = E, - qV(x) — Efx) (3]

and
Eg(x) = Ex) — Ey(x) [4]

where E, is the field-free vacuum level, E_. is the local vac-
uum level, V is the electrostatic potential, x is the electron
affinity, Eg is the bandgap, E. is the bottom of the con-
duction band, E, is the top of the valence band, and g is the
magnitude of the electronic charge.

If we assume Boltzmann statistics and write the equilib-
rium carrier densities as

no(x) = N(x)e®FEIT = nu(r)eEF-ED/ic T 5]
and

po(x) = Nv( x)e(Ev—EF)/kT — ni( x) e(EIfEF)/IcT [6]

EL®)

Eg(o Ect0

Egix)

—_—
Ey(x)

Electron energy

0 Position (x)

Fig. 1. Energy bands for inhomogeneous material
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where
14(x) = [N, (X)N (x)]V2e FezTl [7]

is the position-dependent intrinsic carrier concentration,
N (x) and N,(x) are effective densities of states in the con-
duction band and in the valence band, respectively. Using
Eq. [3]{7], we obtain the intrinsic energy level

Ny(x)
N(x)

kT
Ex(x) = E, — x(x) — 1/2 Eg(x) + 71n [ ] - qV(x) [8]

It is obvious from Eq. [8] that Ei(x) is not, in general, paral-
lel to V(x) as it is in a uniform semiconductor. It will be
shown later that the intrinsic level E; is a purely thermody-
namic property of the intrinsic bulk semiconductors. Con-
sequently, for a heterojunction, one cannot identify (- E/q)
with electrostatic potential as it is a common practice for
homojunctions (10).

Algebraic manipulation of Eq. [5]-{8], with the neutrality
condition at x = 0 and the reference electrostatic potential
V(0) = 0, gives the following carrier densities under ther-
mal equilibrium (11)

qV(x) + AAEg}
o) = n(0 _— 9
no(x) n()exp{ T [9]
and
—qV(x) + (1 — A)AE
Do) = Po(0) exp{ Vi g} [10]
KT
where
AE, [Ea(x) — Eg(0)] + kT'L [——N”(x)N°(x)] [11]
= - X)) — n
’ ¢ ¢ N,()N(0)
and
[x(@) - xO)] + kT [M(x)]
XX ? [N
A= [12]

AE,

As shown in Fig. 1, we choose x = 0 as the reference posi-
tion for the electrostatic potential at which the material is
uniform. So, both AE, and A are positive quantities. AE, is
called the effective bandgap shrinkage, and A, called the
effective asymmetry factor (12), measures the change in
the conduction bandedge (Ay) and density of states,
0 = A = 1. It is noted that a different choice of the refer-
ence state for the electrostatic potential leads to different
expressions for carrier densities. -For example, if we
choose qV(0) = —kT In (-D + VD?>+ 1) (D = (Np™(0) —
NA™(0))/2n40), Np*(0) — N5 (0) = net doping density at x =
0), then the carrier densities become (11)

qV(x) + AAEg}
o{x) = (0 _ 13
Mol n()exp{ T [13]
and
—qVi 1 — AAE
Pol@) = ni(0) exp{ V@ +k(T ) g} [14]

where AE, and A are the same expressions defined by Eq.
[11] and [12], respectively. Note that the choice of these ref-
erences is quite arbitrary. The appropriate choice, how-
ever, of these reference states can lead to simple working
equations for the problems (11). For AE, = 0, Eq. [13] and
{14] reduce to the conventional (uniform) results. The extra
terms in addition to the conventional results are due to the
nonideal behavior of the carriers and will be related to the
activity coefficients of the carriers as shown below.

Reference States

The electrochemical potential (ji;), or Gibbs energy per
charged particle, of a charged species i in a phase is de-
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fined as the sum of its chemical potential and its electric
potential energy (1, 13)

=+ ZigV [15]

where Z; is the elemental charge of species i, and Zq is the
electric charge carried by a particle of i. The potential V
discussed here is the electrostatic potential which is ob-
tained through integration of Poisson’s equation
(V3V = —ple). In thermodynamic equilibrium, it is the elec-
trochemical potential that must be constant throughout
(equilibrium condition), and this is another name for the
Fermi level (Er) used in the energy band model.

For electrons (i = n), Z, = —1, substituting Eq. [1] into Eq.
[15] and equating i, = Er, we get

Ep = fin = p*s + kT 10 (tova) — gV (16]

It is clear that we have two reference states in Eq. [16], i.e.,
p*, and qV(0). This implies that we have two unknowns
and only one equation. To get consistent results, these two
reference states cannot be chosen independently. When
one is specified, the other must be fixed. In the case of
qV(0) = 0, substituting Eq. [6](x = 0) into Eq. [16] (x = 0) fol-
lowed by some algebraic manipulation results in the fol-
lowing expression for the reference chemical potential in
equilibrium

W = Ep — kT In [1n,0)] = E(0) — kT In [n0)]  [17]

Here we use the fact that v, (0) = 1. Furthermore, by using
Eaq. [3], [7], and [8], we obtain

b = Eq — x(0) — kT In (N(0)] = E(0) — kT In [N(0)] [18]

In a similar manner, for gV(@) = —kT In (-D + VD? + 1),
using Eq. [5], [13], and [16] at x = 0 gives

p*a = E0) — kT In [n(0)] + qV(0) (19]
Again, using Eq. [3],[7], and [8] at x = 0, we have
p¥a = E0) + gV(0) — kT In [N(0)] [20]

which resembles the expression given by Harvey (3).
Equation [20] is also similar to the result of Bonham and
Orazem (14) if the secondary reference state p*
(n* = pp, — Eyp as defined by Ref. (14) equals qV(0). It is ap-
parent from the above equations that p*, depends on tem-
perature and on the choice of reference electrostatic poten-
tial. For holes (i = p), Z, = + 1, substituting Eq. [1] into Eq.
{15] and equating i, = —E, gives

~Ep = fip, = p*, + kT In (Povs,) + gV [21]

A similar reference chemical potential can be obtained for
holes as

w*, = —Ex(0) — kT In [n(0)] (22]
or
w¥, = —E0) — kT In [N(0)] [23]
for qV(0) = 0, and
w¥, = —E(0) — qV(0) — kT In [n,(0)] (24]
or
p, = —E,0) — qV(0) — kT In [N«0)] (25]

for gV(0) = —kTIn (-D + VD? + 1).

Note that negative Fermi energy is used in Eq. [21]. This is
because a hole has a charge opposite that of an electron,
and the energy diagram (including Ey) shown in Fig. 1 indi-
cates electron energies. Again, p*, depends on the tem-
perature and on the choice of the reference electrostatic
potential. Equation [25] is similar to the result given by
Harvey (3).

Activity Coefficients for Electrons and Holes
The activity coefficients defined above can be obtained
by straightforward substitution of the carrier densities
into the definition of the electrochemical potential. For
V(0) = 0, substituting Eq. [9] into Eq. [16] gives
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kT Invy,, = —AAE; — p*; + kT In [n,0)] [26]

We may eliminate p*, by substituting Eq. [17] into Eq. [26].
After some algebra, we find the activity coefficient of con-
duction electrons as

~AAE,
> [27]

Yn, = €XP ( ©T
It can be seen if AE, = 0, then the result reduces to the ideal
case (y,, = 1). In a similar manner, the activity coefficient
can be obtained for the holes as

-(1 - A)AEg] (28]

=eX
‘YPo p [ kT

It is clear that if AE, # 0, the activity coefficients no longer
equal unity as in the case of a homogeneously nondegener-
ate semiconductor. Note that if A = 0.5 (i.e., symmetric
band narrowing), then Eq. [27] and [28] yield v, = vy, Simi-
lar results can be obtained for qV(0) = -kT In
(=D + VD? + 1). The results presented here are written in a
simple form in which the nonideal effects associated with
the nonuniform band structure are described by two quan-
tities, the effective bandgap shrinkage, AE,, and the effec-
tive asymmetry factor, A.

The activity coefficients given by Eq. [27] and [28] can be
related to their carrier concentrations by [13] and [14] as

_ m) qVix)
no(x)—%c = exp[ T ] [29]
and
n(0) —qV(x)
= 30
Pot) Ypo (L) o [ kT ] [30]

We note that the usual expressions of n.(x) and py(x)
(10, 15), yq, (xx) = +yp, (x) = 1, yield an underestimation of the
carrier densities. It is also noted that the pre-exponential
factor in Eqg. [29] and [30] has the same value only if the
bandgap narrowing is symmetric (i.e., A = 1/2 or v,, = v ),
which rarely occurs (12).

Equilibrium p,n, Product and Equilibrium Constant
The equilibrium product of carrier densities p,n, is of in-
terest because it can be inferred from electrical measure-
ments (16) and can be related to the band structure
theoretically. From Eq. [5], [6], [9], and [10], or Eq. [13] and
{14], we obtain the equilibrium p,n, product as

DoX)no(x) = n(x) = ni(0)erEe@rT [31]

For a lightly doped semiconductor (AE, = 0), the equilib-
rium product is a constant at a given temperature, equal to
the square of the intrinsic carrier concentration ny(0), but
for high doping densities (AE; # 0), the product becomes
doping dependent. Note that Eq. [31] is obtained from the
band model of a semiconductor. It is shown below that Eq.
[31] is consistent with the result derived from chemical
thermodynamics.

As discussed above, the negative of the electrochemical
potential of the hole at thermal equilibrium is equal to the
electrochemical potential of the electron

fon = Ep = "llp [32]
By using Eq. [15], Eq. [32] may be rewritten in the form
0=1fint fop = ot 1p [33]

Note that Eq. [33], expressing the Gibbs condition for ther-
mal equilibrium between electrons and holes, implies the
charged particle equilibrium chemical equation

O=e*(p) + e (n) [34]

The conservation of charge condition is met. There are no
reactants, only products. The validity of this chemical
equation was demonstrated by Kroger et al. (17) and by
Thurmond (18). Substituting Eq. [16] and [21] into Eq. [33]
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gives
“‘*n + kT In NoYn, = _l-l'*p —kThn DeYe, [35]
After rearrangement, one can find
Ap,An, = PooYpy¥n, = e~ Wnteplkl = & [36]

where K is a constant called the equilibrium constant. The
entire equation can be called the equilibrium law or mass
action law for the reaction (Eq. [34]), because when this
system is at equilibrium, the value on the left side of the
equation must equal the value of K at a given temperature.
If the value on the left side does not equal K, the system is
not in a state of dynamic equilibrium. Substituting Eq.[17]
and [22] for V(0) = 0, or Eq. [19] and [24] for gV({0) = —kT In
(—D + VD? + 1) into Eq. [36] gives

Ap,On, = PoTlo¥Yp, Y, = ni2(0) =K [37]

It is apparent from Eq. [37] that the equilibrium constant is
a function only of temperature because n(0) is a function
only of temperature. Furthermore, substituting Eq. [27]
and [28] into Eq. [37] yields Eq. [31].

The results presented here imply that the equation
0 = e (n) + e*(p) is a legitimate chemical equation. To indi-
cate chemical equilibrium in a reacting system, we use a
set of double arrows, 2. The use of this notation implies
that the forward reaction (the reaction going from left to
right) is occurring at the same rate as the reverse reaction.
It is noted that the use of a generation-recombination pro-
cess of the carriers, as discussed by Bar-Lev (15), can lead
to a similar result as is presented here.

Discussion

From Eq. [3] and [4] with constant electrostatic potential,
we can obtain

x(0) — x(x) = Efx) — E/0) = —kTA, [38]
and
[Ec(x} — Ec(0)] + [x(x) — x(®)]
= EJ0) — E,(x) = — kTA, [39]
Substituting Eq. [38] and [39] into Eq. [27] and [28] gives

NLO)
[E(x) — E.(0)] + kT In [ ]
Yo, = €XP «x)
kT
= exp (Ac - Ae) [40]
and
N,
[E0) — Efx)] + kTln [ (0)]
Ny(x)
Yp, = €XP
kT

=exp (A, — Ay [41]

where A, and A, are negative values defined as

Ni(O)]

m 1=,V [42]

Ai=1n|:

and represent the shift in the density of states owing to
Coulomb and exchange interaction (7). The fraction of the
reduction in bandgap that occurs in the conduction band
and valence band is represented by A, and A, (usually posi-
tive), respectively. Equations [40] and [41] are consistent
with the form of the activity coefficients presented by Har-
vey (3) and Landsberg and Guy (7). It is noticed that y, and
Ys, are negative deviations (v,,, vp, < 1) because A AE, and
(1 — A)AE, are positive quantities. This implies that the ef-
fect of the bandgap shrinkage and the change in density of
states would result in a net attraction (e.g., electron-posi-
tive impurity ion and hole-negative impurity ion interac-
tions). This further implies that the impurity-band widen-
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ing (19) and band tailing (20, 21) effects may play an
important role in the attractive interactions.

Using Eq. [5], [7], and [8], and Eq. [6], [7], [8] and [21], by
purely algebraic operations, the following relations are ob-
tained between thermodynamic quantities and parameters
of the band theory

p* + kT In vy, (@) = Efx) + qV(@) — kT In [N(x)] [43]
and

w¥p + kT In v, (@) = — [Eo(@) + qV(@)] — kT In [Ny(x)] [44]

By evaluating Eq. [43] and [44] at x = 0, we obtain the same
results of p*, and p*, given by Eq. [18], [20], [23], and [28].
As discussed above, p*, and p*, are functions of tempera-
ture only, thus, E. (x) and E,(x) must vary with the electro-
static potential and concentration at a given temperature.
Accordingly, apart from the variations in N (x) and N (x),
the energy gap Eg(x) = E(x) — E,(x) will decrease as a re-
sult of attractive interactions leading to negative devia-
tions for vy, () and vy, (x).

Choosing qV(0) as the boundary condition for the inte-
gration of Poisson’s equation (assuming a constant dielec-
tric constant €)

—VZV=g(p—’n+ND+‘NA_) [45]
€

leads to self-consistent results for both the thermody-
namic quantities and the Poisson-Boltzmann equation for
the electrostatic potential. It is also important to note that
if the material at x = 0 is intrinsic, then from Eq. [16], [17],
[19], [21], [22], and [24] we find

Er = po(0) = E«0) = —p(0) [46]

Note that this result is independent of the choice of the ref-
erence states. It implies that the intrinsic level is a purely
thermodynamic property of the intrinsic bulk semicon-
ductor. It thus implies that the intrinsic level is only dis-
tantly relative to the potential per se, and not at all to their
relative alignment. This is an important result and can be
used to explain the problem of the intrinsic level that is not
necessarily continuous at the heterojunction interface.

Finally, it is appropriate at this point to place this work
in perspective, relative to several related studies men-
tioned above. In this paper, we have done a consistent
thermodynamic analysis with the energy band model, in-
cluding the choice of the reference states and the explicit
equilibrium constant which is a function only of tempera-
ture, and some other important results shown above.
These results do not exist in the literature. In the future,
this work will be extended to degenerate semiconductors
with nonuniform composition.

Conclusions

In this paper, we have presented the activity coefficients
expressed in terms of the changes in bandgap, electron af-
finity, and density of states in the nonuniform semicon-
ductors. These activity coefficients can also be used in the

J. Electrochem. Soc.: SOLID-STATE SCIENCE AND TECHNOLOGY

November 1988

applicaiton of semiconductor junction devices in thermal
equilibrium.

Several different techniques for deriving the activity co-
efficients with uniform composition exist, but the general-
ity and simplicity of our formulation are important advan-
tages. The choice of the reference states and the relations
between the thermodynamic quantities and the parame-
ters of the energy band model are discussed. The impor-
tance of not using the intrinsic energy level to measure the
electrostatic potential within semiconductors has been
stressed. The equation 0 2 e*(p) + e (n) is also shown to be
alegitimate equilibrium chemical equation. This approach
is restricted, however, by the assumption that the semi-
conductor is nondegenerate.
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