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A B S T R A C T  

A s imple  formal i sm for the  calcula t ion of  the  equ i l ib r ium act ivi ty  coefficients  of  e lec t rons  and holes  in a nondegener -  
ate s e m i c o n d u c t o r  wi th  nonun i fo rm compos i t ion  is presented .  These  act ivi ty  coeff icients  are funct ions  of  bandgap,  elec- 
t ron affinity, and the  dens i ty  of  states wh ich  vary  wi th  posit ion.  The  calcula t ion of  carr ier  ac t iv i ty  coefficients  requi res  the  
se lec t ion  of  chemica l  potent ia l  and electrostat ic  potent ia l  references.  The  choice  of  these  re fe rence  states is addressed.  
The  relat ions be tween  pure ly  t h e r m o d y n a m i c  quant i t ies  and parameters  of  the  band theory  are also presented.  I t  is shown  
that  the  intr insic  level  is a pure ly  t h e r m o d y n a m i c  p roper ty  of  the  intr insic  bu lk  semiconductor .  The  approach  presen ted  
here  al lows conven ien t  t r ea tmen t  of  n o n u n i f o r m  semiconduc to r s  in a m a n n e r  that  is bo th  t he rmodynamica l l y  cons is ten t  
and cons i s ten t  wi th  the  Po i s son-Bol t zmann  equa t ion  for the  electrostat ic  potential .  

The  act ivi ty  coeff icient  is a useful  quan t i ty  for describ-  
ing a sys tem (e.g., a l iquid  mix ture ,  semiconductor ,  or 
o ther  system) behav ior  wi th  devia t ions  f rom its ideality. It  
is usual ly  in t roduced  th rough  a re la t ion be tween  the  
chemica l  potent ia l  and the  concen t ra t ion  and m a y  take  
d i f ferent  forms d e p e n d i n g  on the way  in wh ich  concentra-  
t ions for a g iven  sys tem are expressed ,  i.e., as molari ty,  
molal i ty ,  or mo le  fraction. For  instance,  the  chemica l  po- 
ten t ia l  ( ~ )  of  a species i in phase  ~ m a y  be  expressed  in 
the  form [1] 

~ = ~*~ + R T  In a~ ~ = #*~ + R T  In ~ c i  ~ [1] 

whe re  ~t*~ ~ is the  re ference  state chemica l  potent ia l  of  the  
species  i in the  phase  e, and is a func t ion  only of  tempera-  
ture,  pressure,  and choice  of  re ference  state. The  act ivi ty  
coeff ic ient  of  the  species  i in phase  a is "/1% and is a func t ion  
of  t empera tu re ,  pressure,  and concentra t ion.  The  molar  
concen t ra t ion  is ci ~. The  act ivi ty  of  the  species i in phase  
is ai% and is the  p roduc t  of  concen t ra t ion  and act ivi ty  coef- 
ficient. R is the  gas constant ,  and T is the  t empera tu re  in 
K. Equa t ion  [1] can be  v iewed  as the  def ining equa t ion  for 
the  act ivi ty  coeff icient  (-/i ~) of  species i in phase  6. Note  that  
the  chemica l  potent ia l  is general ly  split  into two terms:  a 
compos i t i on - independen t  t e r m  (tz*-3 and  a t e rm which  is 
compos i t i on -dependen t  and accounts  for the  di f ference 
b e t w e e n  the  actual  chemica l  potent ia l  of  in teres t  and the  
re fe rence  state chemica l  potential .  The  concen t ra t ion  de- 
f ined in Eq.  [1] is cons is ten t  wi th  the  carr ier  densi t ies  
(n or p) used  in the  energy  band mode l  for a semicon-  
duc to r  w h e n  Eq. [1] is d iv ided  by NA (Avogadro 's  number )  
and R/NA is rep laced  by  k (Bol tzmann constant).  

Severa l  d i f ferent  t echn iques  have  been  e m p l o y e d  to in- 
ves t iga te  the  act ivi ty  coefficients  for e lect rons  and holes  in 
s emiconduc to r s  wi th  a un i fo rm energy  band s t ructure  
(2-8). However ,  a sys temat ic  s tudy ( including the  choice  of  
the  re ference  states) of  the  act ivi ty  coefficients  of  e lec t rons  
and holes  in n o n u n i f o r m  semiconduc to r s  does not  s eem to 
exis t  in the  l i terature.  For  a nondegene ra t e  e lec t ron or hole  
in a un i fo rm semiconductor ,  the  act ivi ty  coefficients  are 
c o m m o n l y  t aken  as unity. When the  energy  bandgap  for a 
solid is nonuni form,  such as in a graded  bandgap  s t ruc ture  
or  in a doped  s emiconduc to r  wi th  a noncons tan t  doping  
profi le unde r  condi t ions  where  bandgap  na r rowing  oc- 
curs, the  work ing  equa t ions  for the  currents  and for the 
carr ier  densi t ies  conta in  ext ra  t e rms  over  the  conven t iona l  
resul ts  (9). I t  wil l  be shown later  that  this extra  t e rm can be  
related to the  carr ier  act ivi ty  coefficients.  The  act ivi ty  coef- 
f icients no longer  equal  uni ty  in this case, even  though  the  
s emiconduc to r  is nondegenera te .  

Act iv i ty  coefficients  der ived  here  are ob ta ined  by  
s t ra ight forward  subs t i tu t ion  of  the  carr ier  densi t ies  into 
the  i r revers ible  t h e r m o d y n a m i c  defini t ion of  the  electro- 
chemica l  potential .  These  coeff icients  are funct ions  of  
e lec t ron  affinity, bandgap,  and the  dens i ty  of  states that  

va ry  wi th  posit ion.  The  resul ts  p resen ted  here  are both  
t he rmodynamica l l y  cons is ten t  and consis tent  wi th  the  
Po i s son-Bol t zmann  equa t ion  for the  electrostat ic  poten-  
tial. Thermal  equ i l ib r ium will  be  a s sumed  th roughou t  the  
discussion,  and effects of  pressrue  will  not  be considered.  

Energy Bands in Nonuniform Semiconductors 
The energy  band  d iagram (shown wi th  the  under ly ing  

a s sumpt ion  of  the  fol lowing analysis) of  a s emiconduc to r  
wi th  nonun i fo rm compos i t ion  is dep ic ted  in Fig. 1. The  va- 
l idi ty of  this energy  band mode l  has been  d i scussed  by 
Marshak  and van  Viler (9). F r o m  Fig. 1, we have  

EL(X) = Eo - qV(x) [2] 

and 

• = EL(X) -- Ec(x) = Eo - qV(x) - Ec(x) [3] 

Ea(x) = Ec(x) - Ev(x) [4] 

where  Eo is the  field-free v a c u u m  level,  EL is the  local vac- 
u u m  level,  V is the  electrostat ic  potential ,  X is the  e lec t ron  
a f f in i ty ,  E G is the  bandgap,  Ec is the  bo t tom of  the  con- 
duc t ion  band,  Ev is the  top of  the  va lence  band,  and q is the  
m a g n i t u d e  of  the  e lect ronic  charge.  

I f  we as sume  Bo l t zmann  statistics and write  the  equi l ib-  
r i um carr ier  densi t ies  as 

no(X) = N c ( x ) e  (EF-Ec)/kT = n i ( x ) e  CEF EI)/k T [ 5 ]  

and 

po(X) = N v ( x ) e  (Ev-EF)/kT = n~(x)e ~EI SF)/kr [6] 
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Fig. 1. Energy bands for inhomogeneous material 
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where  

ni(x) = [Nv(x)Nc(x)]ll2e EG(X)/2kT [ 7 ]  

is the  pos i t ion-dependen t  intr insic carr ier  concentra t ion,  
N~(x) and N~(x) are effect ive  densi t ies  of  states in the  con- 
duc t ion  band and in the  va lence  band, respect ively .  Us ing  
Eq. [3]-[7], we  obtain  the  intr insic energy  level  

k T  ln  [ Nv(x) 1 
Ei(x) = Eo - • - 1/2 EG(x) + ~ I_N--~x)] - qV(x )  [8] 

I t  is obvious  f rom Eq. [8] that  Ei(x) is not, in general,  paral- 
lel to V(x)  as it is in a un i fo rm semiconductor .  I t  wil l  be  
shown  later that  the  intrinsic level  E~ is a pure ly  the rmody-  
namic  p roper ty  of  the  intr insic  bulk  semiconductors .  Con- 
sequent ly ,  for a he terojunct ion ,  one cannot  ident i fy  ( - E J q )  
with  electrostat ic  potent ia l  as it is a c o m m o n  pract ice  for 
homojunc t i ons  (10). 

Algebra ic  manipu la t ion  of  Eq. [5]-[8], wi th  the  neut ra l i ty  
condi t ion  at x = 0 and the  reference  electrostat ic  potent ia l  
V(0) = 0, gives the  fol lowing carrier  densi t ies  unde r  ther- 
mal  equ i l ib r ium (11) 

I q V ( x )  + AAEg~ 
no(X) = no(0) exp [ -k-T- J [9] 

and 

I - q V ( x )  + (1 - A)AEg} 
po(X) = po(0) exp  - [10] 

k T  

where  

[Nv(X)Nr 
h E g =  - [Ea(x) - EG(0)] + k T  I n / ~ J  [11] 

and 

l n [  N~(x)] 
[x(x) - X(0)] + k T  L Nc(O)] 

A - [12] 
AEg 

As shown in Fig. 1, we  choose  x = 0 as the  re ference  posi- 
t ion for the  electrostat ic  potent ia l  at wh ich  the  mater ia l  is 
uni form.  So, both  hEg and A are posi t ive  quanti t ies ,  hEg is 
cal led the  effect ive  bandgap  shrinkage,  and A, cal led the  
effect ive  a symmet ry  factor (12), measures  the  change  in 
the  conduc t ion  bandedge  (A x) and dens i ty  of  states, 
0 -< A -< 1. I t  is no ted  that  a different  choice  of  the  refer- 
ence  state for the  electrostat ic  potent ia l  leads to different  
express ions  for carrier  dens i t i e s . -Fo r  example ,  if  we  
choose  qV(O)= - k T  In ( - D  + x/-D ~ + 1) (D ~ (ND+(0) - 
Nh-(O))/2ni(O), N D + ( O )  - -  NA-(0) ~ ne t  dop ing  dens i ty  at x = 
0), then  the  carr ier  densi t ies  b e c o m e  (11) 

n,(0) ex  [ q V ( x )  + A A E g ]  
: P k - r  [13] 

and 

= hi(O) exp  f . - q V ( x )  + (1 - A)AEg~ po(x) [ J k T  
[14] 

whe re  bEg and A are the  same express ions  def ined by Eq. 
[11] and [12], respect ively.  Note  that  the  choice  of  these  ref- 
e rences  is qui te  arbitrary. The  appropr ia te  choice,  how- 
ever,  of  these  reference  states can lead to s imple  work ing  
equa t ions  for the  p rob lems  (11). For  h E g =  0, Eq.  [13] and 
[14] r educe  to the  conven t iona l  (uniform) results.  The  extra  
t e rms  in addi t ion  to the  conven t iona l  resul ts  are due  to the  
non idea l  behav ior  of  the  carriers and will  be re la ted to the  
act ivi ty  coefficients  of  the  carriers as shown below. 

Reference States 
The  e lec t rochemica l  potent ia l  (~i), or Gibbs  energy  per  

charged  particle,  of  a charged species i in a phase  is de- 

f ined as the  sum of its chemica l  potent ia l  and its electr ic  
potent ia l  energy  (1, 13) 

(~i = ~ + Z i q V  [15] 

where  Zi is the  e lementa l  charge  of  species i, and  Z~q is the  
electr ic  charge  carr ied by a part icle of  i. The  potent ia l  V 
d iscussed  here  is the  electrostat ic  potent ia l  which  is ob- 
ta ined  th rough  in tegra t ion of Po isson ' s  equa t ion  
(V2V = -p/e). In  t h e r m o d y n a m i c  equi l ibr ium,  it is the  elec- 
t rochemica l  potent ia l  that  mus t  be cons tant  t h roughou t  
(equi l ibr ium condition),  and this is another  n a m e  for the  
F e r m i  level  (EF) used  in the  energy  band model .  

For  e lectrons (i = n), Zn = - 1, subs t i tu t ing  Eq. [1] into Eq. 
[15] and equa t ing  ~n = EF, we get 

Er = (xn = ~*n + k T  In ( n o ~ / n o )  - -  q V  [16] 

I t  is clear that  we have  two reference  states in Eq.  [16], i.e., 
~*n and qV(O). This impl ies  that  we  have  two u n k n o w n s  
and only one equat ion.  To get consis tent  results,  these  two 
re fe rence  states cannot  be  chosen  independent ly .  When 
one  is specified, the  o ther  mus t  be  fixed. In  the  case of  
qV(O) = O, subst i tu t ing  Eq. [5] (x = 0) into Eq. [16] (x = 0) fol- 
lowed  by some  algebraic  man ipu la t ion  resul ts  in the  fol- 
lowing  express ion  for the  reference  chemica l  potent ia l  in 
equ i l ib r ium 

~% = EF - k T  In [no(0)] = EI(O) - k T  In [ni(0)] [17] 

Here  we use the  fact that  ~no(0) = 1. Fur the rmore ,  by us ing 
Eq. [3], [7], and [8], we  obtain  

~*n = Eo - • - k T  In (Nc(0)] = Ec(0) - k T  In [No(0)] [18] 

In  a s imilar  manner ,  for qV(O) = - k T  in ( - D  + V~D~+ 1), 
us ing  Eq. [5], [13], and [16] at x = 0 gives 

~% = EI(O) - k T  In [ni(0)] + qV(O) [19] 

Again,  us ing Eq. [3], [7], and [8] at x = 0, we have  

~*n = Ec(O) + qV(O) - k T  In [No(0)] [20] 

wh ich  resembles  the  express ion  g iven  by Harvey  (3). 
Equa t ion  [20] is also similar  to the  resul t  of  B o n h a m  and 
Orazem (14) if  the  secondary  reference  state ~* 
(~1~* ~ ~ n  --  El) as def ined by Ref. (14) equals  qV(O). It  is ap- 
pa ren t  f rom the  above  equa t ions  that  t~*n depends  on tem- 
pera ture  and on the  choice  of  re ference  electrostat ic  poten-  
tial. For  holes  (i = p), Zp = + 1, subs t i tu t ing  Eq. [1] into Eq. 
[15] and equa t ing  gp = -Ep  gives 

- - E F  = ~ p  = p~*p + k T  in (Po~po) + q V  [21] 

A s imilar  reference  chemica l  potent ia l  can be  obta ined  for 
holes  as 

tx*p = -EI(O) - k T  in [n~(0)] [22] 

o r  

~*, = -Ev(0) - k T  in [Nv(0)] [23] 

for qV(O) = 0, and 

~*p = - E~(O) - qV(O) - k T  In [nl(0)] [24] 

o r  

~x% = -E~(O) - qV(O) - k T  In [N,(0)] [25] 

for qV(O) = - k T l n  ( - D  + X / ~  + 1). 

Note  that  nega t ive  Fe rmi  energy  is used  in Eq. [21]. This is 
because  a hole  has a charge oppos i te  that  of  an electron,  
and the  energy  d iagram ( including EF) shown in Fig. i indi- 
cates e lec t ron energies.  Again,  tx*p depends  on the  tem- 
pe ra tu re  and on the  choice  of  the  re ference  electrostat ic  
potential .  Equa t ion  [25] is s imilar  to the  resul t  g iven  by 
Harvey  (3). 

Activity Coefficients for Electrons and Holes 
The act ivi ty  coefficients def ined above  can be obta ined  

by s t ra ight forward subst i tu t ion  of  the  carr ier  densi t ies  
into the  defini t ion of  the  e lec t rochemica l  potential .  For  
V(0) = 0, subs t i tu t ing  Eq. [9] into Eq. [16] gives 
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k T  In ~o = -AAEg - ~*~ + kT  In [no(0)] [26] 

We m a y  e l imina te  ~*~ by subs t i tu t ing  Eq. [17] into Eq.  [26]. 
Af te r  some  algebra,  we  find the  act ivi ty  coeff ic ient  of  con- 
duc t ion  e lec t rons  as 

gives 

~*~ + kT In no~]no = - ~*p - kT in po~po 

After rearrangement, one can find 

[35] 

( - A A E ~  [27] 
~ n o = e X p \  kT  / 

I t  can  be  seen i f  AE~ = 0, t hen  the  resul t  r educes  to the  ideal  
case (~-o = 1). In  a s imilar  manner ,  the  act ivi ty  coeff ic ient  
can be  obta ined  for the  holes  as 

~po : exp  [ - ( 1  -A)AEg] 
kT J 

[28] 

It  is clear  that  if  beg ~ 0, the  act ivi ty  coefficients  no longer  
equa l  uni ty  as in the  case of  a h o m o g e n e o u s l y  nondegener -  
ate semiconductor .  Note  that  i f  A = 0.5 (i.e., symmet r i c  
band  narrowing),  t hen  Eq. [27] and [28] yield 7n~ = ~po. Simi-  
lar resul ts  can  be  obta ined  for qV(O) = - k T  In 
( - D  + V ~  ~ + 1). The  resul ts  p resen ted  here  are wr i t ten  in a 
s imple  fo rm in wh ich  t h e  nonidea l  effects  associa ted wi th  
the  n o n u n i f o r m  band  s t ructure  are descr ibed  by two quan-  
tities, the  effect ive  bandgap  shr inkage,  bEg, and the  effec- 
t ive  a s y m m e t r y  factor, A. 

The  act ivi ty  coeff icients  g iven  by Eq. [27] and [28] can be  
related to thei r  carr ier  concent ra t ions  by [13] and [14] as 

and 

qV(x) ] ni(0) exp  [29] 
no(x) = ~o(X) L kT  J 

ni(0) [ - q V ( x )  1 
po(x) = exp  [30] 

~po(X) L--~J 
We note  tha t  the  usua l  express ions  of  no(x) and po(X) 
(10, 15), ~no (x) = 7po (x) = 1, yield an underes t ima t ion  of  the  
carr ier  densi t ies .  I t  is also no ted  that  the  p re -exponent ia l  
factor  in Eq.  [29] and [30] has the  same va lue  only if  the  
bandgap  na r rowing  is symmet r i c  (i.e., A = 1/2 or Tno = ~po), 
wh ich  rarely occurs  (12). 

Equilibrium pono Product and Equilibrium Constant 
The  equ i l ib r ium p roduc t  of  carr ier  densi t ies  pono is of  in- 

te res t  because  it can be  inferred f rom electr ical  measure-  
men t s  (16) and can be  related to the  band  s t ruc ture  
theoret ical ly .  F r o m  Eq. [5], [6], [9], and [10], or  Eq. [13] and 
[14], we obta in  the  equ i l ib r ium pono produc t  as 

po(X)no(X) = ni2(x) = ni2(O)e A~gx)/kT [31] 

Fo r  a l ight ly  doped  semiconduc to r  (hEg= 0), the  equi l ib-  
r i um p roduc t  is a cons tan t  at a g iven  tempera ture ,  equa l  to 
the  square  of  the  intr insic  carr ier  concen t ra t ion  n~(0), bu t  
for h igh  dop ing  densi t ies  (hEg ~ 0), the  p roduc t  becomes  
dop ing  dependent .  Note  that  Eq.  [31] is ob ta ined  f rom the  
band  m o d e l  of  a semiconductor .  I t  is shown  be low that  Eq.  
[31] is cons i s ten t  wi th  the  resul t  de r ived  f rom chemica l  
t he rmodynamics .  

As d i scussed  above,  the  nega t ive  of  the  e lec t rochemica l  
potent ia l  of  the  hole  at t he rmal  equ i l ib r ium is equal  to the  
e l ec t rochemica l  potent ia l  of  the  e lec t ron 

~n = EF = -- ~p [32] 

By  us ing  Eq. [15], Eq.  [32] m a y  be  rewri t ten  in t he  fo rm 

0 = ~ n + ~ p = ~ + ~ p  [33] 

Note  tha t  Eq.  [33], express ing  the  Gibbs  condi t ion  for ther- 
mal  equ i l ib r ium be tween  elect rons  and holes, impl ies  the  
charged  par t ic le  equ i l ib r ium chemica l  equa t ion  

0 ,~- e+(p) + e-(n) [34] 

The  conserva t ion  of  charge  condi t ion  is met .  There  are no 
reactants ,  only  products .  The  val id i ty  of  this chemica l  
equa t ion  was demons t r a t ed  by Kroger  et al. (17) and  by 
T h u r m o n d  (18). Subs t i tu t ing  Eq. [16] and [21] into Eq. [33] 

apoa, o = pono~po~lno = e-(~*" +~*p )lkT = K [36] 

whe re  K is a cons tant  cal led the  equ i l ib r ium constant .  The  
ent i re  equa t ion  can be  cal led the  equ i l ib r ium law or mass  
act ion law for the  react ion (Eq. [34]), because  w h e n  this 
sys tem is at equi l ibr ium,  the  va lue  on the  left  side of  the  
equa t ion  mus t  equa l  the  va lue  of  K at a g iven  tempera tu re .  
I f  the  va lue  on the  left  side does  not  equal  K, the  sys tem is 
no t  in a state of  dynamic  equi l ibr ium.  Subs t i tu t ing  Eq. [17] 
and  [22] for V(0) = 0, or  Eq.  [19] and [24] for qV(O) = - k T l n  
( - D  + ~ + 1) into Eq. [36] gives  

%oano = pono~po~no = n i 2 ( 0 )  : ~4~ [37] 

I t  is apparen t  f rom Eq. [37] that  the  equ i l ib r ium cons tan t  is 
a func t ion  only of  t empe ra tu r e  because  ni(0) is a func t ion  
only of  t empera ture .  Fur the rmore ,  subs t i tu t ing  Eq. [27] 
and [28] into Eq.  [37] yields Eq. [31]. 

The  resul ts  p resen ted  here  imply  that  the  equa t ion  
0 ~- e-(n) + e§ is a leg i t imate  chemica l  equat ion.  To indi-  
cate  chemica l  equ i l i b r ium in a react ing system, we  use  a 
set  of  double  arrows, ~ .  The  use of  this no ta t ion  impl ies  
that  the  forward  react ion (the react ion going f rom left  to 
right) is occur r ing  at the  same rate as the  reverse  reaction.  
I t  is no ted  tha t  the  use  of  a genera t ion- recombina t ion  pro- 
cess  of  the  carriers,  as d i scussed  by Bar -Lev  (15), can  lead 
to a s imilar  resul t  as is p resen ted  here. 

Discussion 
F r o m  Eq. [3] and [4] wi th  cons tan t  e lectrostat ic  potential ,  

we  can obtain  

• - • = Ec(x) - E~(0) ~ -kTA~ [38] 

and 

[EG(X) - EG(0)] + [X(X) - X(0)] 

= Ev(O) - Ev(x) =- - kThh [39] 

Subs t i tu t ing  Eq. [38] and [39] into Eq. [27] and [28] gives 

,I [E~(x)- E~(O)] + k T l n  

~no = exp  / 

= exp  (he - he) [40] 

and 

L  x)j[ Nv(0)] } [Ev(0) - Ev(x)] + kT  In 

~po e x p /  kT  

= exp  (by - hh) [41] 

whe re  hc and Av are nega t ive  va lues  def ined as 

Ni(0) ] ,  i - 
hi=lnLN--~x) j  - c , v  [42] 

and represen t  the  shift  in the  dens i ty  of  states owing  to 
C o u l o m b  and exchange  in teract ion (7). The  fract ion of  the  
reduc t ion  in bandgap  that  occurs  in the  conduc t ion  band  
and va lence  band is r ep resen ted  by Ae and hh (usually posi- 
tive), respect ively .  Equa t ions  [40] and [41] are consis tent  
wi th  the  form of the  act ivi ty  coefficients  p resen ted  by Har- 
vey  (3) and Landsbe rg  and Guy  (7). It  is no t iced  that  ~no and 
7po are nega t ive  devia t ions  (~no, ~po < 1) because  A AEg and 
(1 - A)AEg are  pos i t ive  quant i t ies .  This  impl ies  tha t  the  ef- 
fect  o f  the  bandgap  shr inkage and the  change  in dens i ty  o f  
states wou ld  resul t  in a ne t  a t t ract ion (e.g., electron-posi-  
t ive  impur i ty  ion and hole-negat ive  impur i ty  ion interac-  
tions). This  fur ther  impl ies  that  the  impur i ty -band  widen-  
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ing (19) and band tailing (20, 21) effects may play an 
important role in the attractive interactions. 

Using Eq. [5], [7], and [8], and Eq. [6], [7], [8] and [21], by 
purely algebraic operations, the following relations are ob- 
tained between thermodynamic quantities and parameters 
of the band theory 

~*n + kT In "~n o (x) m Ec(X ) ~- qV(x) - kT In [N~(x)] [43] 

and 

~t*p + kT In ~/po (x) = - [Ev(x) + qV(x)] - kT  in [Nv(x)] [44] 

By evaluating Eq. [43] and [44] at x = 0, we obtain the same 
results of ~*n and ~*p given by Eq. [18], [20], [23], and [28]. 
As discussed above, ~*n and ~*p are functions of tempera- 
ture only, thus, Ec (x) and Ev(x) must vary with the electro- 
static potential and concentration at a given temperature. 
Accordingly, apart from the variations in Nc(x) and Nv(x), 
the energy gap EG(X) = Ec(X) - Ev(x )  will  decrease as a re- 
sult of attractive interactions leading to negative devia- 
tions for ~no (x) and %0 (x). 

Choosing qV(O) as the boundary condition for the inte- 
gration of Poisson's equation (assuming a constant dielec- 
tric constant e) 

- V 2 V  = q ( p  - n + N D  + - N A - )  [ 4 5 ]  
E 

leads to self-consistent results for both the thermody- 
namic quantities and the Poisson-Boltzmann equation for 
the electrostatic potential. It is also important to note that 
if the material at x = 0 is intrinsic, then from Eq. [16], [17], 
[19], [21], [22], and [24] we find 

EF = ~t,(0) = EI(0) = -~p(0) [46] 

Note that this result is independent  of the choice of the ref- 
erence states. It implies that the intrinsic level is a purely 
thermodynamic property of the intrinsic bulk semicon- 
ductor. It thus implies that the intrinsic level is only dis- 
tantly relative to the potential per se, and not at all to their 
relative alignment. This is an important result and can be 
used to explain the problem of the intrinsic level that is not 
necessarily continuous at the heterojunction interface. 

Finally, it is appropriate at this point to place this work 
in perspective, relative to several related studies men- 
tioned above. In this paper, we have done a consistent 
thermodynamic analysis with the energy band model, in- 
cluding the choice of the reference states and the explicit 
equilibrium constant which is a function only of tempera- 
ture, and some other important results shown above. 
These results do not exist in the literature. In the future, 
this work will be extended to degenerate semiconductors 
with nonuniform composition. 

Conclusions 
In this paper, we have presented the activity coefficients 

expressed in terms of the changes in bandgap, electron af- 
finity, and density of states in the nonuniform semicon- 
ductors. These activity coefficients can also be used in the 

applicaiton of semiconductor junct ion devices in thermal 
equilibrium. 

Several different techniques for deriving the activity co- 
efficients with uniform composition exist, but  the general- 
ity and simplicity of our formulation are important advan- 
tages. The choice of the reference states and the relations 
between the thermodynamic quantities and the parame- 
ters of the energy band model are discussed. The impor- 
tance of not using the intrinsic energy level to measure the 
electrostatic potential within semiconductors has been 
stressed. The equation 0 m e§ + e-(n) is also shown to be 
a legitimate equilibrium chemical equation. This approach 
is restricted, however, by the assumption that the semi- 
conductor is nondegenerate. 

Acknowledgments 
This work was supported by the R.O.C. National Science 

Council, Engineering Section, under  Grant no. NSC 76- 
0201-E009-01. The author is indebted to two anonymous re- 
viewers for a careful reading and criticism of the manu- 
script. 

Manuscript submitted July 30, 1987; revised manuscript  
received March 3, 1988. 

National Chiao Tung University assisted in meeting the 
publication costs of  this article. 

REFERENCES 
1. R. Haase, "Thermodynamics of Irreversible Pro- 

cesses," Addison-Wesley, Menlo Park, CA (1969). 
2. A. J. Rosenberg, J. Chem. Phys., 33, 665 (1960). 
3. W. W. Harvey, J. Phys. Chem. Solids, 23, 15,445 (1962). 
4. M. B. Panish and H. C. Casey, ibid., 2 8 ,  1673 (1967). 
5. M. B. Panish and H. C. Casey, ibid., 29, 1719 (1968). 
6. C. J. Hwang and J. R. Brews, ibid., 32, 837 (1971). 
7. P. T. Landsberg and A. G. Guy, Phys. Rev., B, 28, 1187 

(1983). 
8. M. E. Orazem and J. Newman, This Journal, 131, 2716 

(1984). 
9. A. H. Marshak and K. M. van Vliet, Solid-State Elec- 

tron., 21, 417 (1978). 
10. W. Shockley, "Electrons and Holes in Semicon- 

ductors," van Nostrand, Princeton, NJ (1950). 
11. K.M. Chang, Submitted to Solid-State Electron. (1987). 
12. A. H. Marshak, M. A. Shibib, J. G. Fossum, and F. A. 

Lindholm, IEEE Trans. Electron Devices, 28, 293 
(1981). 

13. E. A. Guggenheim, J. Phys. Chem., 33, 842 (1929). 
14. D. B. Bonham and M. E. Orazem, This Journal, 133, 

2081 (1986). 
15. A. Bar-Lev, "Semiconductors and Electronic De- 

vices," Prentice-Hall, Inc., Englewood Cliffs, NJ 
(1979). 

16. J. W. Slotboom and H. C. de Graaff, Solid-State Elec- 
tron., 19, 857 (1959). 

17. F. A. Kroger, F. Stieltjes, and H. J. Vink, Philips Res. 
Rep., 14, 557 (1959). 

18. C. D. Thurmond,  This Journal, 132, 673 (1985). 
19. T. N. Morgan, Phys. Rev., 139, 343 (1965). 
20. E. O. Kane, ibid., 131, 79 (1963). 
21. V. L. Bonch-Bruyevich, "The Electronic Theory of 

Heavily Doped Semiconductors," Elsevier Publish- 
ing Co., New York (1966). 

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 140.113.38.11Downloaded on 2014-04-28 to IP 

http://ecsdl.org/site/terms_use

