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摘 要       

 

 
 

金氧半太陽能電池的結構中，以氧化層的品質和厚度控制為其重要。我們利

用磁控濺鍍機沉積此超薄穿隧氧化層，其厚度由濺鍍的時間控制；薄膜的品質，

則由濺鍍的工作壓力以及後續氫退火改善。 

首先個別分析 p型和 n型的金氧半太陽能電池，一開始以半穿透的金屬薄膜

當作載子收集層並且提高開路電壓，為了降低表面反射率及缺陷，我們利用氮化

矽或氧化鋁鈍化層分別沉積在具有粗糙化結構的 p型及 n型矽基板上，來取代半

穿透金屬薄膜。除此之外，鈍化層也會在半導體表面形成反轉層，使得金屬和半

導體間獲得更大能障差，進而提高開路電壓。 

為了更進一步提升開路電壓，藉由直接晶圓結合的方式將 p型與 n型接合形

成疊合式金氧半太陽能電池，在標準光源 AM1.5G 的量測系統下，其開路電壓可

達到 720mV。
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Abstract 
 

 
In MIS solar cells, the ultrathin insulating layer deposited by radio frequency 

sputtering plays an important role. Its thickness is controlled by sputtering duration time. 

The quality of thin film is enhanced by adjusting the working pressure of sputtering and H2 

post-annealing. 

The p-type and n-type of MIS solar cells are first investigated. Initially, the 

semi-transparent metal as a carrier collection layer is used in order to get better open 

circuit voltage (Voc). Then, both SiNx and Al2O3 are the passivation layers. In order to 

reduce the surface reflection and defects, SiNx is deposited on textured silicon substrate of 

p-type and Al2O3 is deposited on that of n-type to replace the semi-transparent metal. In 

addition, passivation layers can also induce inversion layer at surfaces of semiconductor. 

The formation makes lager barrier height between the metal and semiconductor and 

therefore enhances the Voc. 

With the aim to further improve the Voc, the p-type and n-type silicon substrates are 

adhered by the direct wafer bonding technique to form the MIS stacked solar cell. Finally, 

under the standard measurement AM1.5G, the Voc can reach 720mV. 
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Chapter 1     Introduction 

1.1  Background  

In a few decades, due to the influences of greenhouse effect and energy crisis, 

many groups pay much attention on researching and developing other substitute 

energy. The new energy must be renewable and unpolluted and generate from natural 

resources such as solar, tides, wind, geothermal heat, hydroelectric and so on. Among 

those renewable energies, the solar energy plays an important role because it products 

eternal and enormous energy about 1000W/m2 without local limitation and pollution. 

One of solar energy is the solar cell that can absorb sunlight to convert electrical 

energy by separating electrons and holes at depletion regions between the p-n 

junctions. So far, the solar cells have been more promising and potential for 

worldwide usage. 

 

1.2  MIS solar cells 

The first solar cell which uses the diffused p-n junction is invented at Bell 

laboratory in the early 1950’s. In that time, the sunlight energy conversion efficiency 

is about 6%, and the cost is high. Subsequently, the GaAs solar cell with high 

efficiency is fabricated by Zhore Alferov’s group at USSR [1,2]. However, it uses the 

III-V semiconductor substrates which are so expensive, so the applications of III-V 
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semiconductor solar cell usually use in outer space. For worldwide usage, the 

reduction of the cost-per-watt ratio has been a primary issue in solar cell industries.  

The formation of p-n junction solar cells needs high thermal budget because 

diffusion and annealing processes usually carry out about 850℃-1000℃, and the 

process are more complex compare with the metal-insulator-semiconductor (MIS) 

solar cells. Recently, it is has been received much attention on the MIS solar cell 

because the process are simple and low-temperature fabrication, and the efficiency is 

comparable to diffused p-n junction solar cells [3-9]. Therefore, MIS solar cells are 

potential to supersede p-n junction solar cells. The MIS solar cells can be described as 

a Schottky junction that is fabricated by depositing a thin insulating layer between 

low work function metal and the p-type semiconductor. There is an electrical filed 

when Schottky barrier is formed at the surface of semiconductor. Photons generate 

majority carriers and minority carriers at the Schottky junction, and theses carriers 

will be driven across the junction from each side, or will be recombined. At the same 

time, the minority carriers are able to tunnel through insulating layer by quantum 

mechanism effect while the insulating layer is thin enough [3], and the majority 

carriers are blocked. However, using the semi-transparent metal layer in MIS solar 

cell has a major disadvantage that is the metal layer increasing the reflection. In 

addition, there is a trade-off between carrier collection and surface reflection. To 
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overcome above issues, grating-type MIS solar cell with only collecting grid fingers is 

proposed. Although the MIS solar cell has photovoltaic properties, several treatments 

have been done in order to enhance devices performance. This kind of devices is 

called an MIS inversion layer (MIS-IL) solar cell [10]. Then, the quality and thickness 

of insulating layer is also a critical point. Therefore, some reports employ other 

deposited methods to develop the insulating layer such as the liquid-phase-deposited 

(LPD) [11] or anodization SiO2 [12]. 

 

1.2.1. MIS-IL solar cells 

The cross-section of the MIS-IL solar cell with bifacial sensitivity is shown in 

Fig 1.1. The inversion layer is induced by SiNx passivation layer deposited by remote 

PECVD because of the positive fixed oxide charges a lot in SiNx film [5]. The SiNx 

film covers both the silicon surface and the MIS contacts. 

To increase fixed oxide charges in film, the cell has to dip in cesium solution, 

and cesium ions can easily be caught in the traps [10]. The degradation of cells after 

cesium dip is faster, so SiNx layer deposited serves as a passivation layer and 

decreases the surface recombination [3,10]. In this structure, the ultrathin oxide layer 

(<2nm) blocks majority carrier (hole) currents injected into the metal at forward bias 

and reduces surface recombination. Therefore, a higher open circuit voltage (Voc) of 
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MIS solar cells than that of Schottky barrier solar cells can be achieved. 

 

Fig. 1.1: The cross-section of the first generation MIS-IL solar cell with bifacial 

sensitivity. 

 

However, the surface recombination velocity is still large due to low-temperature 

SiNx passavation by PECVD [3,10]. Therefore, the following treatments are applied 

on MIS-IL solar cells in order to improve the efficiency. 

(a) Formation of truncated-pyramid on semiconductor surface.  

(b) Before front electrodes are deposited, SiNx passivation layer will deposits at high 

temperature. 

(c) Selective contact region by window opening on the top after removal of 

passivation layer. 

There are two improved MIS-IL solar cells that are shown in Fig. 1.2 and Fig. 

1.3. 
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Fig. 1.2: A truncated-pyramid MIS-IL silicon solar cell [13]. 

 

 

 

Fig. 1.3: A wire-grooved Abrased-Ridge-Top solar cell [3]. 

 

This kind of cells depositing Aluminum electrode on traditional diffused p-n 

junctions with thin tunneling oxide in between is called hybrid MIS-n+p [14]. The 
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current also can tunnel through it by trap-assisted tunneling. All the processes are 

carried out in room temperature, and the thickness of insulating layer don’t need 

accurately control. 

 

1.2.3. Anodization SiO2 

In order to control oxide thickness, the MIS structure solar cell is prepared by 

low temperature (<400℃ ) anodization technique [12]. The overall reaction of 

anodization by DI water is listed as below 

Si+2h+ + 2H2O → SiO2 + 2H+ + H2      (Eq. 1.1) 

The silicon substrate is as the anode electrode which is supplied by the positive 

potential with respect to the Pt cathode electrode during anodization. The Eq. 1.1 

shows that chemical reactions of holes accumulated near the p-type substrate. By the 

anodization time, the thickness of ultrathin insulating layer of MIS solar cell can be 

controlled appropriately. 

 

1.3  Fabrication of MIS solar cell in this thesis 

We employ the semi-transparent metal layer in our MIS solar cell in order to 

improve the Voc and carrier collection. The detailed processes are listed as below: 

(a) Wafer cleaning with RCA clean 
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In this study, we propose the RF magnetron sputtering SiO2 as the insulating 

layer of MIS solar cells because the thickness of ultra-thin SiO2 can be 

well-controlled by duration time of RF magnetron sputtering. First, the p-type and the 

n-type MIS solar will be investigated, respectively. Second, the p-type and n-type 

silicon are adhered by direct wafer bonding technique to form the MIS stacked solar 

cell. 
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2.1.  Photovoltaic properties with SiO2 insulating layer 

In spite of depositing thermal SiO2, chemical vapor-deposited SiO2, chemical 

based SiO2, and SiOx have been used as an ultrathin insulating layer of MIS solar cells. 

The ultrathin SiO2 thickness is controlled by sputtering duration. The optimized 

process conditions of the SiO2 insulating layer of both high performance p-type and 

n-type MIS solar cells are obtained. For the p-type MIS solar cell, the SiO2 insulating 

layer close to 1 nm is deposited at 20mTorr, and then anneal in hydrogen atmosphere 

at 500℃ for 1 hour as shown in Fig. 2.2 and Fig. 2.3. For the n-type MIS solar cell, 

the process conditions are the similar to the p-type MIS solar cell, except the 

thickness of the SiO2 insulating layer closing to 2 nm. 

 Fig. 2.6 to Fig. 2.9 show effects of the SiO2 thickness of insulating layer and the 

working pressure of the sputtering process on the characteristics of MIS solar cells. 

The different SiO2 thickness determines the probability for carriers tunneling through 

the SiO2. The effects of different working pressure on the SiO2 quality such as defects 

and fixed oxide charges are shows in Fig. 2.10 and Fig. 2.11.  
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  2.1.1  The effects of H2 annealing 

The MIS solar cells exhibit poor photovoltaic characteristics without H2 

annealing as shown in Fig.2.2 and Fig.2.3. The interface properties between the 

ultrathin insulating layers and silicon wafers play an important role in the 

performance of MIS solar cells. Large leakage current is observed in both C-V curves. 

It indicates that there are probably a great number of trap states at the interface, such 

as silicon dangling bonds (i.e., Si dangling bond interface states and suboxide species) 

and silanol groups [15,16]. Charge carriers can flow via the trap states to cause 

current leakage, and the capacitance is reduced.  

To passivate those traps, H2 annealing was introduced. Fig. 2.2 to Fig. 2.5 show 

the J-V and C-V curves of MIS solar cells with or without H2 annealling at 500℃ for 

1 hour. The MIS solar cells with H2 annealing exhibit better photovoltaic properties. 

The C-V curves of the p-type and n-type MIS solar cells with H2 annealing display 

smaller drops at the accumulation region. This can be attributed to the formation of 

Si-H bonds at the interface. As a result, the trap states can be diminished, and the 

leakage current is decreased. Therefore, H2 annealing can improve the performance of 

MIS solar cells with ultrathin sputtering SiO2 layers because of the passivation of trap 

states. 
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Fig. 2.2: Photovoltaic properties of p-type MIS solar cell with and without H2 

annealing. 
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Fig. 2.3: Photovoltaic properties of n-type MIS solar cell with and without H2 

annealing. 
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Fig. 2.4: C-V measurement of p-type MIS solar cell with and without H2 annealing. 
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Fig. 2.5: C-V measurement of n-type MIS solar cell with and without H2 annealing. 
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  2.1.2  The effects of the thickness of SiO2 

The thickness of insulating layer of MIS solar cells must be less than 2 nm so 

that tunneling currents are sufficient for application. Fig. 2.6 and Fig. 2.7 show the 

thickness of both p-type and n-type dependent J-V curves of MIS solar cells under 

AM 1.5G with a SiO2 insulating layer deposited by RF sputtering. It is obvious that 

not only Voc but also fill factor (FF) decreased with the increasing thickness of the 

SiO2 insulating layer in the p-type MIS solar cells. An ultrathin insulating layer 

sandwiched between metal and semiconductor can lower carrier recombination 

probability and thus increases Voc, as shown in Fig. 2.6. But the tunneling probability 

of minority carriers will be reduced significantly if the thickness of the insulating 

layer is too thick. As a result, photo-excited carriers can not be collected by 

electrodes. 

Additionally, with increasing thickness, a voltage drop across the insulating layer 

will also increase, and hence less output power can be used due to thermal dissipation. 

Therefore, the thickness of the SiO2 insulating layer plays an important role in the 

performance of MIS solar cells. 
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Fig. 2.6: Thickness dependent J-V curves of p-type MIS solar cells. 
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Fig. 2.7: Thickness dependent J-V curves of n-type MIS solar cells. 
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  2.1.3  The effects of working pressure 

The J-V curves of the MIS solar cells with the same thickness of ultrathin SiO2 

deposited under different working pressures are shown in Fig. 2.8 and Fig. 2.9 for 

p-type and n-type respectively. For the p-type MIS solar cells, the Voc values of 

475mV, 386mV, and 350mV correspond to working pressures at 20mTorr, 30mTorr, 

and 40mTorr, respectively. The Voc values of the n-type MIS solar cells are 422mV, 

339mV, and 313mV corresponding to working pressures at 20mTorr, 30mTorr, and 

40mTorr respectively. Higher working pressure results in lower Voc.  

From C-V measurements as shown in Fig. 2.10 and Fig. 2.11, curve shift toward 

positive bias (Fig.2.10) or negative (Fig. 2.11) with increasing working pressure 

revealed that the barrier heights at MIS junctions are reduced. Furthermore, the slowly 

capacitances rise at 30mTorr and 40mTorr marked by the yellow circles of working 

pressure. Those indicated that more defects are induced in the ultrathin SiO2 

insulating layers with increasing working pressure because of more plasma damages. 

Therefore, the working pressure of RF magnetron sputtering affects on the barrier 

height and defect density. 
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Fig. 2.8: The working pressure dependent J-V curves of p-type MIS solar cells. 
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Fig. 2.9: The working pressure dependent J-V curves of n-type MIS solar cells. 
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Fig. 2.10: The working pressure dependent C-V curves of p-type MIS solar cells. 
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Fig. 2.11: The working pressure dependent C-V curves of n-type MIS solar cells. 
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2.2.  Photovoltaic properties with different insulating layer 

The key parameter of MIS solar cells is the insulating layer. In addition to 

sputtering ultrathin SiO2, the insulating layers are deposited by PECVD SiNx or 

furnace SiOxNy for comparison. The ultrathin SiNx are deposited by PECVD at 300℃ 

by pyolysis of silane diluted in Ar (2％ SiH4 in Ar) at a pressure of 100 pa and the rf 

power at 35w. The ultra thin SiOxNy were deposited by quartz furnace at filling with 

mixing gas oxygen and Nitrous oxide at 500℃. 

Table 2.1 lists the important properties of the MIS solar cells with a ultrathin 

sputtering SiO2, PECVD SiNx, or thermal SiOxNy insulating layer. It is obvious that 

the characteristics with a sputtering SiO2 insulating layer are comparable to those of 

the others. If all MIS solar cells were deposited with a passivation layer(s), their 

performance would been greatly promoted. This is because of the passivation layer(s) 

can reduce surface recombination rate and the reflection of incident light. In addition, 

the passivation layer(s) can provide positive or negative charges to induce inversion 

layers near the surfaces.  

From above results, sputtering SiO2 is an excellent alternative insulating layer of 

MIS solar cells because of comparable characteristics of that using a PECVD SiNx or 

thermal SiOxNy insulating layer and better thickness control. 
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Table 2.1: The key parameters of open circuit voltage, short circuit current 

density, filling factor, energy conversion efficiency of the MIS solar cells with a 

ultrathin sputtering SiO2, PECVD SiNx , or thermal SiOxNy insulating layer. 

Substrate Insulating layer Voc(mV) Jsc(mA/cm2) FF(%) η(%) 

p-type SiO2 475 16.9 64.3 5.15 

n-type SiO2 422 14.4 58.4 3.55 

p-type SiNx 530 9.07 76.3 3.71 

n-type SiNx 420 16.50 60.7 4.20 

p-type SiOxNy 531 13.35 72.8 5.17 

n-type SiOxNy 314 10.26 70.5 2.27 
 

 

The characteristics of MIS solar cells with sputtering a SiO2 insulating layer are 

studied. Influences of the thickness of the SiO2 insulating layer and the working 

pressure of the sputtering process are discussed. The thickness of the SiO2 insulating 

layer has a great impact on tunneling probability of photo-excited minority carriers, 

carrier recombination rate, and carrier collection efficiency. The working pressure of 

RF magnetron sputtering has a significant impact on the barrier height and interface 

defect density. The sputtering SiO2 is a good choice as a insulating layer of MIS solar 

cells due to similar characteristics of that using a PECVD SiNx or thermal SiOxNy 

insulating layer.  

So far, the structure is front electrode / semi-transparent metal / insulating layer / 

silicon. The reflectance raises because of the semi-transparent metal. Therefore, the 
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semi-transparent metal will be removed, textured surface will be formed, and then the 

passivation layer will be deposited on top surface that will be discussed in the next 

sections. 

 

2.3.  Surface texture 

Optical and electrical losses are two major reasons that reduce the conversion 

efficiency of silicon solar cells. Surface texturing is well known as one of the methods 

to enhance the conversion efficiency of silicon solar cells by increasing the short 

circuit current through effective light trapping. The textured surfaces of crystalline 

silicon wafer are usually made in alkaline solutions. Alkaline etching of silicon, such 

as potassium hydroxide (KOH) [20-22] and sodium hydroxide (NaOH) [17-19], is 

anisotropic in nature, and therefore representative results of texturing for solar cell is 

forming random pyramids on the surface. 
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Fig. 2.12: SEM image of silicon surface with different etching time: (a) 30 minutes, (b) 

40 minutes, (c) 50minutes, (d) 60minutes. 

 

P-type silicon wafers (100) with a resistivity of 1-10 ohm-cm and n-type silicon 

wafers (100) with a resistivity of 5-10 ohm-cm are used. First, after a standard RCA 

cleaning process, the surfaces of the wafers are cleaned to remove any organic and 

(a)  (b) 

(c)  (d) 
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metal impurities. The wafers are dipped in buffed oxide etching (BOE) solution that 

remove any unintentional oxide after rising the wafers with DI water between each 

cleaning step. The cleaned wafers are texturized in alkaline etchants using mixtures of 

potassium hydroxide (KOH) and isopropyl alcohol (IPA) at 85℃. There are five 

duration times of texturing the surface: 0 minute (polish), 30 minutes, 40 minutes, 50 

minutes and 60 minutes as shown in Fig. 2.12. The pyramids of all conditions are 

7-10 μm in size. By comparison, the numbers of pyramids at texture time of 30 

minutes obvious less and uneven distribution than others as shown in Fig. 2.12 (a). 
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Fig. 2.13: Reflectance of the textured silicon wafers for wavelength between 300 and 

1100nm. 

Fig. 2.13 shows the surface reflectance with different etching time at 

wavelengths between 300nm and 1100nm. On the whole, the reflectance of the 
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non-textured wafer is higher than that of the textured wafers. In addition, the etching 

time of wafer must exceed 30 minutes, and then, the reflection will close to saturation. 

Fig. 2.14 provides a numerical comparison by averaging all of the reflectance values. 

These results show that the etching time must exceed 30 minutes to obtain even 

distribution and lower reflectance of pyramids.  
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Fig. 2.14: Average % reflectance between 300and 1100nm. 

 

2.4.  Surface Passivation 

Crystalline silicon is an indirect semiconductor and hence recombination losses 

in the material occur largely via defect levels within the bandgap, notably at surface. 

Due to the involvement of non-silicon atoms, the situation is more complicated at the 

silicon surface. The surface represents the largest possible disturbance of the 

39.15 

21.90 

12.64  12.45  16.62 
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symmetry of the crystal lattice and hence, because of non-saturated (‘dangling’) bonds, 

a large density of defects (‘surface states’) within the bandgap exists at the surface of 

the crystal [23]. 
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Fig. 2.15: Reflectance of the textured silicon wafers after anti-reflection coating 

for wavelength between 300nm and 1100nm. 

 

Because of high surface recombination losses and high surface reflectance, the 

PECVD SiNx film is deposited on surface as highly efficient surface-passivating and 

anti-reflection coatings [24-25]. The thickness of 80nm SiNx is deposited on above 

substrates (There are five duration times of texturing the surface: 0 minute (polish), 30 

minutes, 40 minutes, 50 minutes and 60 minutes) as shown in Fig. 2.13. Compared 
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with Fig. 2.11, the reflectance is reduced again. Fig. 2.16 provides a numerical 

comparison by averaging all of the reflectance values. These results show that SiNx is 

a good anti-reflection coating layer. 
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Fig. 2.16: Average % reflectance between 300and 1100nm after depositing the 

SiNx film. 
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Fig. 2.18: Photovoltaic properties of MIS solar cells after depositing the SiNx 

film with non-textured surfaces. 

 

Table 2.2: Photovoltaic of MIS solar cells after depositing the SiNx film with 

non-textured surfaces. 

Type   Voc (mV)  Jsc (mA/cm2)  FF (%)   η (%)   
No SiNx(non‐texture) 372   1.57   65.75   0.39   
100  ℃(non‐texture)   533   37.07   34.26   6.77   
200  ℃(non‐texture)   400   15.01   43.89   2.64   
300  ℃(non‐texture) 393   11.28   48.16   2.14   

 

The effects of the SiNx film deposited on the solar cell are ascribed to (i) the 

reduction of the surface recombination velocity by hydrogen passivation of surface 

states, (ii) the formation of an inversion layer at the silicon surface by the high 

positive insulator charges [26] as shown in Fig. 2.20, and (iii) the reduction of surface 
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reflectance as shown in Fig2.15.  

Table 2.2 and Table 2.3 summarize the one-sun parameters of the processed 

p-type MIS solar cells featuring different surface passivation schemes, as measured 

under standard testing conditions (25℃, 100mW/cm2, AM1.5G ). The results exhibit 

significantly enhancement of a short circuit current of Jsc = 37.07mA/cm2, an open 

circuit voltage of Voc = 533mV at the condition of 100℃(non-texture). 
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Fig. 2.19: Photovoltaic properties of MIS solar cells after depositing the SiNx 

film with textured surfaces. 
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Table 2.3: Photovoltaic of MIS solar cells after depositing the SiNx film with 

textured surfaces. 

Type   Voc (mV)  Jsc (mA/cm2)  FF (%)   η (%)   
No SiNx (texture) 332   2.19   67.1   0.49   
100  ℃(texture) 507   36.86   42.84   8.01   
200  ℃(texture) 352   11.10   53.61   2.10   
300  ℃(texture) 341   11.01   60.09   2.26   
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Fig. 2.20: The C-V curve of the SiNx film with different deposited temperatures. 

 

2.6.  Photovoltaic properties of n-type MIS solar cells 

The device processes of n-type MIS solar cell are identical as p-type MIS solar 

cells, except the thickness of SiO2. Although the SiNx film is an excellent passivtion 

for p-type MIS solar cells, it is not suitable for n-type MIS solar cells. There are large 

amount of positive charges within the SiNx film that can induce an inversion layer in 
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the p-type silicon underneath the SiNx. The benefits of the positive charges don’t meet 

requirements of n-type MIS solar cells. Therefore, the Al2O3 film by e-gun 

evaporation is substituted for SiNx because of the large amount of negative charges 

within the Al2O3 film. We expect that using Al2O3 film can induce inversion layer for 

n-type MIS solar cells applications. 
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Fig. 2.21: Photovoltaic properties of n-type MIS solar cells with Al2O3 films 

 

As shown in Fig.2.21, although there are negative charges within Al2O3 film, the 

effects of the Al2O3 film on n-type MIS solar cells are not significantly. From the 

results, it is probably due to the Al2O3 film that is deposited by e-gun evaporating so 

the quality of the Al2O3 film is worse compare with other deposition methods such as 

ALD [27] and MOCVD. Therefore, the performances of n-type MIS don’t get 

significantly improvement. 
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Fig. 2.22: Photovoltaic properties of n-type MIS solar cells with semi-transparent Au 

 

Table 2.4: Photovoltaic of n-type MIS solar cells after depositing Al2O3 film or 

semi-transparent Au 

Type  Voc (mV) Jsc (mA/cm2) FF (%)  η (%)  
Al2O3 240  0.3  41.14  0.03  

Texture + Al2O3  381  6.21  45.49  1.08  
Au 20nm  381  10.24  59.43  2.32  

Texture + Au 20nm  380  19.76  58.42  4.39  

 

Until now, we don’t find the useful passivation layer for n-type MIS solar cells 

so semi-transparent Au of 20nm is re-deposited on textured surface. Fig. 2.22 shows 

the J-V curve of n-type MIS solar cells with semi-transparent Au. The summary of the 

electrical characteristics is shown in Table 2.4. 
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2.7.  Summary  

In this chapter, using sputtering SiO2 as the insulating layer of MIS solar cells 

has been discussed at different situations. The post annealing in hydrogen atmosphere 

is necessary because there are a lot of defects in as-deposited sputtering SiO2. 

Moreover, controlling the oxide thickness and working pressure are also critical in 

MIS solar cells. 

To concentrate more incident light, the semi-transparent metal is removed, 

textured surface is formed, and then the passivation layer is deposited on top surface. 

Finally, we use the textured surface and the 80nm SiNx films deposited at 100℃ as 

passivation layer to reduce the surface reflection and the surface recombination. There 

are exactly improvements in Voc and Jsc, but the fill factor is worse. So far, the Voc of 

MIS solar cells can reach 507mV and 380mV for p-type and n-type on texture surface, 

respectively. 
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Chapter 3     MIS stacked solar cells 

From the results of chapter 2, the n-type and p-type MIS solar cells are 

demonstrated, and we use the direct wafer bonding method to combine n-type and 

p-type in this chapter, then fabricate two MIS solar cells on both side each other. The 

analysis of the MIS stacked show that the tunneling diode is formed between the 

n-type and the p-type MIS solar cells, and the total thickness of MIS stacked solar 

cells is critical.  

 

3.1  Tunneling diode 

Tunneling diode is also called Esaki diode [28-30] because it is invented by Leo 

Esaki in August 1957. It is one of the most important issues affecting performance of 

stacked solar cell. The effects of the formation of tunnel junction are related to the 

uniform highly doped layer without defects that result in carrier recombination and 

leakage currents in depletion regions. In a general tunneling diode, the degenerate 

semiconductor [31,32] are used to increase tunneling probability via depletion region. 

EF െ E୴ ൌ kT ln ቀN౬
୮బ
ቁ  (Eq. 3.1) 

EC െ EF ൌ kT ln ቀNC
୬బ
ቁ  (Eq. 3.2) 

Nc and Nv are the effective density of states, n0 and p0 are doping density of the 

electron and hole. From Eq. 3.1 and Eq. 3.2, the degenerate semiconductor can obtain 
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3.1(a), when a reverse bias is applied, current flows by electron tunneling from p–side 

valence band which is occupied states into n-side conduction band which is 

unoccupied states. In equilibrium, the net tunneling current is zero with no applied 

bias in Fig 3.1(b). With a small forward bias, current flows by electron tunneling is 

increased to a peak current Ip at voltage Vp, as labeled in Fig 3.1(c). When the position 

of conduction band on the n-side is raised above the valence band position on the 

p-side, the valley current Iv is resulted at a voltage Vv in Fig 3.1(d). With further 

increasing in the voltage, the current increases due to tunneling through defect states 

in the depletion layer and thermionic emission over the diode internal barrier, Fig 

3.1(e). 

For the better performance, the doping profile is key point for the performance in 

a tunneling diode. Once an abrupt doping profile is obtained, the junction obtains the 

lower resistance. That is, less voltage loss in a stacked solar cell with a higher Voc 

could be acquired. On the contrary, the extended profiles of abrupt doping increases 

the tunneling diode depletion region, and significantly reduces the tunneling 

probability through depletion region. Accordingly, the performance of stacked solar 

cell will be dramatically degraded. 

Fig.3.2 shows a tunneling junction band diagram with ion implantation on polish 

sides each other. In order to achieve tunneling diode, a general method is to employ 
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(8) Thinning wafers with Si etchant (HF:CH3COOH:HNO3=6:7:20) and 

texturing wafers with other Si etchant (KOH:IPA:DI water =1:6:55). 

(9) Wafers are cleaned by RCA clean. 

(10) Deposit tunneling silicon dioxide with sputter at both sides. 

(11) H2 annealing at 500℃ 1hr for passivating defects in silicon dioxide. 

(12) The top cell deposits the semi-transparent and electrode Au fingers. 

(13) The bottom cell deposits rear electrode Al. 

(14) The structures of MIS stacked solar cells are shown in Fig. 3.3. 

 

 

 

Fig. 3.4: Process flow diagram for the MIS stacked solar cells fabricated. 
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1050℃, the outgassing develops from contaminants on inside bonding materials due 

to the a heat treatment. Then, Step C, because of RCA clean at 90℃, the gases are 

diffused along the bonding interface. Finally, when bonded pairs thinning and textured 

by using silicon etchant, the image don’t change obviously because the Step D 

process temperature of the step D (85℃) is close to Step C. 

From the results, if there are a lot of bubbles formed at as-bonded, the bonded 

Si/Si pairs will easily separate after post processes. 

 

 

Fig. 3.7: IR images of bonded Si/Si pair in different process Step. 
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3.4  Photovoltaic properties of MIS stacked solar cells 

The current-voltage curves of MIS stacked solar cells under AM1.5 are shown in 

Fig. 3.8 and Table 3.1. All parameters of the device process are identical unless with 

or without semi-transparent metal. The cell is thinning as above describe, the 

thickness of n-type and p-type are about 90μm and 400μm, respectively. From the 

currents of Fig 3.8, Jsc is low about 5.9mA/cm2 despite with or without 

semi-transparent metal.  
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Fig. 3.8 Photovoltaic properties of MIS stacked solar cells with or without 

semi-transparent metal. 
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Table 3.1 Photovoltaic properties of MIS stacked solar cells with and without 

semi-transparent metal. 

 

 

Through the incident photon to current efficiency (IPCE) curves as shown in Fig. 

3.9, we can realize Jsc by IPCE measurement system are higher than solar simulator 

measurement system, and the currents with semi-transparent metal cell are larger than 

without semi-transparent metal cell. In Table 3.2, The semi-transparent metal improve 

the currents of IPCE measurement but the currents have no enhancement of solar 

simulator measurement systems which ascribe to limited current by the bottom cell. 

 

Table 3.2: The current density is measured by different measurements (solar simulator 

and IPCE). 
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Fig. 3.9: IPCE curves of MIS stacked solar cells with and without semi-transparent 

metal. 
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Fig. 3.10: The transmission of different wafer thickness. 
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However, we can realize that the transmission of the thickness 90μm of n-type 

silicon increase drastically after an appropriate 900nm of wavelength from the Fig. 

3.10. It means that the bottom cell would absorb infrared light not the visible light so 

the photo currents of bottom cell would be small. 

 

3.5  Summary 

The tunneling diode is fabricated by direct bonding method with ion 

implantation on polish side each other. Dopants are activated by RTA at 1050℃. In 

order to get current matching, the thickness of devises has to thinning by silicon 

etchants. Although the total thickness are reduced to 490μm, the device are not 

transparent to normal visible light, the transmitting light with an appropriate 

wavelength is 900nm. The bottom cell absorbs too less light, so products a little 

current. Finally, we integrate the n-type and the p-type to form a MIS stacked solar 

cell which can obtain Voc=720mV, Jsc=5.96mA/cm2, FF= 58.96%, η= 5.93. The Voc 

of MIS stacked cells obtain 720mV which is larger than that of p-type and n-type 

cells. 
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Chapter 4     Conclusion and future work 

4.1   Conclusion 

In this study, first, the characteristics of both p-type and n-type 

Metal-Insulator-Semiconductor (MIS) solar cells with sputtering SiO2 insulating 

layers fabricated by radio-frequency (RF) magnetron sputtering are investigated 

individually. 

From the beginning, the structure of the MIS solar cell is proposed with the 

semi-transparent metal on both n-type and p-type silicon substrates. The influence of 

processes parameters are researched such as H2 annealing, insulating layer thickness 

and the working pressure on the MIS solar cell. However, the reflection of surface is 

high due to the semi-transparent metal. In order to reduce the reflection of surface, we 

remove the semi-transparent metal, form the texture on surface, and then deposit the 

passivating SiNx film on surface as a AR coating which also can induce the inversion 

layer on the insulating layer between metal and semiconductor so that improve the 

performance of the p-type MIS solar cells. Regarding the n-type MIS solar cells, we 

also deposit Al2O3 film as the passivating layer, but the effects on n-type MIS solar 

cell are not obviously. Therefore, the structure of n-type MIS solar cells with the 

semi-transparent metal are used to make the MIS stacked solar cell. So far, MIS solar 

cells reach Voc 380mV and 507mV with n-type and p-type silicon wafer, respectively. 
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Finally, by the direct wafer bonding, we integrate the n-type and the p-type to 

form a MIS stacked solar cell which can obtain Voc=720mV, Jsc=5.96mA/cm2, FF= 

58.96%, η= 5.93. The Voc of MIS stacked cells obtain 720mV which is larger than 

that of p-type and n-type cells. 

  

4.2   Future work 

Although the Voc on the MIS stacked solar cell is 720mV which is lower than 

theoretic Voc equals to 0.9V. There are still many issues that exist in the staked cell. 

The voltage drops at the bonding interfaces that can further improve by the tunneling 

current with proper dopants activation and defect passivation. However, the total 

thickness of MIS stacked solar cell is another important issue. In order to obtain the 

current matching, the bottom cell needs to absorb more sunlight. Therefore, the total 

thickness has to be decreased and optimized. 

In addition to the issues of the bonding interface and thickness, we can use 

different substrate to bond together such as Ge substrate, or deposit different bandgap 

Si such as uc-Si so that in order to absorb different region sunlight. Although the 

semi-transparent metal has been removed, the finger electrodes also reflect the 

sunlight. The transparent conductive oxide such as ITO and ZnO can be introduced in 

the stacked solar cell with the aid of sputtering to further increase Jsc.  
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