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A Comparison of Different Front-End Techniques for

Speaker-Independent Speech Recognition

Student : Yi-Nuo Hsiao Advisor : Professor Yon-Ping Chen

Department of Electrical and Control Engineering

National Chiao Tung University

ABSTRACT

Several parametric representations of the speech-signal are compared with regard
to monophone-based recognition “performance 'and syllable-based recognition
performance of speaker-independent “speech recognition system. The parametric
representation, namely the feature extraction techniques, evaluated in this thesis can
be divided into two groups: based on the speech production and based on the speech
perception. The first group includes the Linear Predictive Coding (LPC), LPC-derived
Cepstrum (LPCC) and Reflection coefficients (RC). The second group comprises the
Mel-frequency Cepstral Coefficients (MFCC) and Perceptual Linear Predictive (PLP)
analysis. From the experimental results, the speech perception group, including
MFCC (78.3% for monophone-based and 98.5% for syllable-based) and PLP (78.9%
for monophone-based and 98.5% for syllable-based), are superior to the features
based on the speech production, including LPC, LPCC and RC, in the

speaker-independent recognition experiments.
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Chapter 1

Introduction

1.1 Motivation

Imaging that if we can control the equipments and tools in our surroundings
through voice command, just like people in the sci-fi movies do, the world will be
more convenient and fantastic. In many real-world applications, such as toys, cell
phones, automatic ticket booking, goods ordering, etc and it can be foreseen that there
will be more and more services provided in the form of speech in the future. The
speaker-independent (SI) automatic speech recognition is the way to achieve the goal.
Although the speaker-dependent automatic speechirecognition system outperforms the
speaker-independent automatic speech recognition. system in the recognition rate, it is
infeasible to collect large speech data“of-the-user and then train the models in real
applications, especially the popular commodities. Hence, the solution of providing
services for general users is to build a speaker-independent (SI) automatic speech

recognition system.

It has been shown that the selection of parametric representations significantly
affects the recognition results in an isolated-word recognition system [16]. Therefore,
this thesis focuses on the selection of the best parametric representation of speech data
for speaker-independent automatic speech recognition. The parametric representation,
namely the feature extraction techniques, evaluated in this thesis can be divided into
two groups: based on the speech production and based on the speech perception. The
first group includes the Linear Predictive Coding (LPC), LPC-derived Cepstrum

(LPCC) and Reflection coefficients (RC). The second group comprises the



Mel-frequency Cepstral Coefficients (MFCC) and Perceptual Linear Predictive (PLP)
analysis. In general, the speech signal is comprised of the context information and the
speaker information. The objective of selecting the best features of
speaker-independent automatic speech recognition is to eliminating the difference
between speakers and enhancing the difference of phonetic characteristics. Therefore,
in this thesis, two corpora are employed in the experiment to evaluate the performance

of different features.

In recent years, Hidden Markov Model (HMM) has become the most powerful
and popular speech model used in ASR due to its remarkable ability of characterizing
the acoustic signals in a mathematically tractable way and better performance
compared to other methods, such as Neural Network (NN), Dynamic Time Warping
(DTW). The statistical model HMM plays ah important role to model the speech
signals especially for speech recognition system since the template method is no more
feasible for large number of usérs and.large-vocabulary system. HMM is proceeded
after the extracting the features from'the speech signal where the features means
MFCCs, LPCs, PLPs, etc. The Hidden Markov Model is employed to model the

acoustic features in all the experiments in this thesis.

1.2 Overview

The chapter of thesis is organized as follows. In chapter 2, the front-end
techniques of the speech recognition system will be introduced, including the feature
extraction methods, such as LPC, MFCC and PLP, utilized in this thesis. The chapter
3 will show the concept of Hidden Markov Model and its training and recognition
procedure. Then the experimental results and comparison of different features will be

shown in chapter 4. The experimental conclusion will be given in the last chapter.



Chapter 2

Front-End Techniques of Speech Recognition System

In modern speech recognition systems, the front-end techniques mainly
includes converting the analog signal to a digital form, extracting important signal
characteristics such as energy or frequency response, and augmenting perceptual
meanings of these characteristics, such as human production and hearing. The purpose
of the front-end processing of the speech signal is to transform a speech waveform
into a sequence of parameter blocks and to produce a compact and meaningful
representation of the speech signal. Besides, the front-end techniques can also remove
the redundancies of the speech andsthen reduce the computational complexity and
storage in the training and recognition steps, thus the performance of recognition will
improve through effective front=end techniques.

Independent of what the parameter kind extracted later is, there are four simple
pre-processing steps, including constant bias removing, pre-emphasis, frame blocking,
and windowing, which are applied prior to performing feature extraction. And these
steps will be expressed and stated in the following four sections. In addition, three
common feature extraction methods, Linear Prediction Coding (LPC) [2], Mel
Frequency Cepstral Coefficient (MFCC) [3], and Perceptual Linear Predictive (PLP)

Analysis [4], will be described in the last section of this chapter.

2.1 Constant bias Removing

The speech waveform probably has a nonzero mean, denoted as DC bias, due to

the environments, the recording equipments, or the analogous-digital conversion. In



order to get better feature vectors, it is necessary to estimate the DC bias and then

remove it. The DC bias value is estimated by

DCbias = ZS(k) (2_1)

S
NS
where s(k) is the speech signal possessing N samples. Then the signal after removing

the DC bias, denoted by s'(k), is given

1<k<N (2-2)

where N is the total samples of the speech signal. After the process of constant bias
removing, the pre-emphasis filter is then applied to the speech signal S'(k) which is

stated in the next section.

2.2 Pre-emphasis

The purpose of pre-emphasis 18" to eliminate the effect of glottis while
producing sound and to compensate the high-frequency parts depressed by the speech
generation system. Typically, the pre-emphasis is fulfilled with a high-pass filter in a
form as

P(z)=1-uz", 0.9 < u<1.0 (2-3)
which increases the relative energy of the high-frequency spectrum and introduces a
zero near 4. In order to cancel a pole near z = 1 due to the glottal effect, the value of i
is usually greater than 0.9 and it is set to be = 0.97 in this paper. The pole and zero
of the filter P(z) = 1- 0.97 z ' are 0 and 0.97 respectively. Furthermore, the frequency
responses for the pre-emphasis filter with #= 0.9, 0.97, and 1 are given in Fig 2-1.
The filter is intended to boost the signal spectrum 20dB per decade approximately [5].

Fig.2-2 shows the comparison of the speech signal before and after pre-emphasis.
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2.3 Frame Blocking

The objective of frame blocking is to decompose the speech signal into a series

of overlapping frames. In general, the speech signal changes rapidly in time domain;



nevertheless, the spectrum changes slowly with time from the viewpoint of the
frequency domain. Hence, it could be assumed that the spectrum of the speech signal
is stationary in a short time, and then it is more reasonable to do spectrum analysis
after blocking the speech signal into frames. There are two parameters should be

concerned, that is frame duration and frame period, shown in Fig.2-3.

I. Frame duration

The frame duration is the length of time (in seconds), usually ranging between
10 ms ~ 30 ms, over which a set of parameters are valid. If the sampling frequency of
the waveform is 16 kHz and the frame duration is 25 ms, there are 16 kHz x 25 ms =
400 samples in one frame. It is noted that the total number of samples in a frame is

called the frame size.

II. Frame period

As shown in Fig.2-3, the:frame period is often:selected on purpose shorter than
the frame duration to avoid the'.characteristics changing too rapidly between two
successive frames. In other words, there is an overlap with time length equal to the

difference of frame duration and frame period.
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2.4 Windowing

After frame blocking, the process of windowing applies to each frame by
multiplying a Hamming window, shown in Fig.2-4 for N=64, to minimize the

spectrum distortion and discontinuities. Let the Hamming window be given as

27wn

w(n)=0.54—0.46-cos( ] 0<n<N-1 (2-4)

where N is the window size, chosen the same as the frame size. Then the result of

windowing process to m-th sample s,,(n) can be obtained as
s, (1) =5, (n)w(n), 0<n<N-1 (2-5)

Fig.2-5 shows an example of the time domain and frequency response for two
successive frames, frame m and frame,m+1, of the speech signal before and after
multiplying by a Hamming window. Fromthis figure, the spectrum of s,,,(n) is
smoother than the s,(n). It is noted that there is little variation between two

consecutive frames in their frequency response:

(a) Hamming window
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Fig.2-4 Hamming window (a) in time domain and (b) frequency response
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2.5 Feature Extraction Methods

Feature extraction is the major part of front-end technique for the speech
recognition system. The purpose of feature extraction is to convert the speech
waveform to a series of feature vectors for further analysis and processing. Up to now,
several feasible features have been developed and applied to the speech recognition,
such as Linear Prediction Coding (LPC), Mel Frequency Cepstral Coefficient
(MFCC), and Perceptual Linear Predictive (PLP) Analysis, etc. The following

sections will present all the techniques.

2.5.1 Linear Prediction Coding (LPC)

For the past years, Linear Prediction Coding (LPC), also known as
auto-regressive (AR) modeling,“has beéen reégarded as one of the most effective
techniques for speech analysis.=The basic ptinciple of LPC states that the vocal tract

transfer function can be modeled-by an all-pole filter as

B S(z) B 1 ]
Hz)= GU(z) =Y gt Az (0

k=1

where S(z) is the speech signal, U(z) is the normalized excitation, G is the gain of the
excitation, and p is the number of poles (or the order of LPC). As for the coefficients
{a), ay,...,a,}, they are controlled by the vocal tract characteristics of the sound being
produced. It is noted that the vocal tract is a non-uniform acoustic tube which extends
from the glottis to the lips and varies in shape as a function of time. Suppose that
characteristic of vocal tract changes slowly with time, thus {a;} are assumed to be
constant in a short time. The speech signal s(n) can be viewed as the output of the
all-pole filter H(z), which is excited by acoustic sources, either impulse train with

period P for voiced sound or random noise with a flat spectrum for unvoiced sound,



shown in Fig.2-6.
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Fig.2-6 Speech production model estimated based on LPC model

From (2-6), the relation between speech signal s(n) and the scaled excitation

Gu(n) can be rewritten as

s(n)= iakS(l’l—k)-i‘ Gu(n) (2-7)

k=1

P
where Zaks(n— k) is a linear combination of the ‘past p speech samples. In general,
k=1

the prediction value of the speech signal s(n) is defined as

§(n)= Zp:aks(n— k) (2-8)

k=1

and then the prediction error e(n) could be found as

e(n)=s(n)-5(n)= s(n)—iaks(n— k) (2-9)

k=1

which is clearly equal to the scaled excitation Gu(n) from (2-7). In other words, the
prediction error reflects the effect caused by the scaled excitation Gu(n).

To use the LPC is mainly to determine the coefficients {a;, ay,...,a,} that
minimizes the square of the prediction error. From (2-9), the mean-square error, called

the short-term prediction error, is then defined as

E, = pre,f(m) = Z[s (m)- iaksn (m— k)j (2-10)

where N is the number of samples in a frame. It is commented that the short-term

10



prediction error is equal to G” and the notation of s,(m) is defined as

S(m+ n)w(m), 0<m<N-1

] (2-11)
0, otherwise

s )=

which means s,(m) is zero outside the window w(m). It can be imaged that In the
range of m=0 to m=p—1or in the range of m=N to m=N-1+p, the windowed
signals s,(m) are predicted as §,(m) by previous p signals and some of the previous
signals are equal to zero since s,(m) is zero when m <0 or m>N—1. Therefore, the
prediction error e,(m) is sometimes large at the beginning (m=0 to m=p—1) or the

end (m=N tom=N—-1+p) of the section (m=0 tom=N—-1+p).

The minimum of the prediction error can be obtained by differentiating £, with

respect to each a;, and setting the result to zero as

OF, _
oa,

0, Kk=12..p (2-12)

and then E, is replaced by (2-11), the:above-equation-can be rewritten as

N-1+
ps m—pds m—k) s \m—i)=0, i=12,...p (2-13)
n k®n n
m=0 k=1

where i and k are two independent variables and @, are the values of g, for

k=1,2,..., p that minimize E,. From (2-13), we can further expand the equation as

N-l+p P N-l+p
an(m)sn(m—i)= a, an(m—k)sn(m—i), i=12,...p (2-14)
m=0 k=1 m=0

N-1+ N-1+
where the term van (m)s,(m—i) and Zz;n (m—k)s,(m—i) will be replaced by the
m=0

m=0
autocorrelation function r,(i) and r,(i— k) respectively. The autocorrelation function is
defined as
N-1+p

r(i—k)= an(m— k)s, (m—1i), i=12,..,p (2-15)
m=0
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where 7,(i—k) is equal to r,(k —i ). Hence, it is equivalent to use r,(|i—4|) to replace

N-1+p
the term an(m— k)s,(m—i) in (2-16). By replacing (2-16) with autocorrelation

m=0

function r,(i) and r,(i— k), we can obtain

Zp:dkrn (i~ K])=r, (@), i=12,..,p (2-16)
k=1

A A O B A R )] I n(3) (2-17)

which is in the form of Rx = r where R is a Toeplitz matrix, that means the matrix has
constant entries along its diagonal.

The Levinson-Durbin recutrsion-is-an-efficient algorithm to deal with this kind
of equation, where the matrix R is'a Toeplitzzmatrix and furthermore it is symmetric.
Hence the Levinson-Durbin recursion is then employed to solve (2-20), and the
recursion can be divided into three steps, as
Step 1. Initialization

E(0)=r,(0), a(0,0)=1

n

Step 2. Iteration (a/ is denoted as a(i,;))

fori=1top {

i—1
l+1 Za]l 1 )
Jj=1

E(l 1)

k(i) =
ali,i)= k(i)

for j=1toi-1

12



a(ji)=a(ji=1)=k(@i)ali- ji-1)
E()=1- k(Y )EG-1)
}

Step 3. Final Solution
forj=1 top

a(j)=alj.p)

where the d_/.:a(j) for j=1,2,...,p, and the coefficients k(i) are called

reflection coefficients whose value is bounded between 1 and -1. In general, the (i)

is replaced by a normalized form as

(2-18)

rn7 normailizd (l ) =

which will result in identical LPC.coefficients (PARCOR) but the recursion will be

more robust to the problem with-arithmetic precision:

Another problem of LPC is to decide the order p. As p increases, more detailed
properties of the speech spectrum will be reserved and the prediction errors will be
lower relatively, but it should be notice when p is beyond some value that some
irrelevant details will be involved. Therefore, the guideline for choosing the order p is

given as

F+(4 or 5) voiced
p=9 (2-19)

. 9
F unvoiced

S

where F| is the sampling frequency of the speech in kHz [6]. For example, if the
speech signal is sampled at 8 kHz, then the order p is can be chosen as 8~13. Another
rule of thumb is to use one complex pole per kHz plus 2-4 poles [7], hence p is often

chosen as 10 for the sampling frequency 8 kHz.

13



Historically, LPC is first used directly in the feature extraction process of the
automatic speech recognition system. LPC is widely used because it is fast and simple.
In addition, LPC is effective to compute the feature vectors by Levinson-Durbin
recursion. It is noted that the unvoiced speech has higher error than the voiced speech
since the LPC model is more accurate for voiced speech. However, the LPC analysis
approximates power distribution equally well at all frequencies of the analysis band
which is inconsistent with human hearing because the spectral resolution decreases
with frequency beyond 800 Hz and hearing is also more sensitive in the middle

frequency range of the audible spectrum.[11]

In order to make the LPC more robust, the cepstral processing, which is a kind
of homomorphic transformation, is then employed to separate the source e(n) from the
all-pole filter A(n). It is commented| that the homomorphic transformation

%(n)= D(x(n)) is a transformation that converts a cofivolution
x(n)=e(n)* h(n) (2-20)

into a sum
i(n)= é(n)+ﬁ(n) (2-21)

which is usually used for processing signals that have been combined by convolution.
It is assumed that a value N can be found such that the cepstrum of the filter ﬁ(n) ~0
for n > N and the excitation of é(n)~0 for n < N. The lifter (“I-i-f-ter” is the inverse
of the word “f-i-I-ter””) /(n) is used for approximately recovering é(n) and l;(n)

from )E(n) Fig.2-7 shows how to recover A(n) with /(n) given by

; 1 |n|<N 9.9
W=l0 Pz (322
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and the operator D usually uses the logarithmic arithmetic and D' use inverse

Z-transform. In the similar way, the /(n) is given by

)=t =Y 2-23
"0 <n (2:23)

which is utilized for recovering the signal e(n) from x(n).
In general, the complex cepstrum can be obtained directly from LPC

coefficients by the formula expressed as

0 n<0
InG n=0
A n_l A
h(n)=1a,+ [5jh(k)a,,_k 0<n<p (2-24)
k=1\ 7
n—1 .
S (Hiwa,  ws
k=n-p n

where };(n) is the desired LPC:derivedicepstrum coefficients c(n). It is noted that,

while there are finite number of LPC coefficients, thé number of cepstrum is infinite.
Empirically, the number of cepstrum which is approximately equal to 1.5p is

sufficient.

P? > D[ ] —» hn

Multiply fc(n) by
\ J\ ) In)
L n
M\\‘\A,\/\/\/\/\/’\-\

Fig.2-7 Homomorphic filtering
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2.5.2 Mel-Frequency Cepstral Coefficients (MFCC)

The Mel-Frequency Cepstral Coefficients (MFCC) is the most widely used
feature extraction method for state-of-the-art speech recognition system. The
conception of MFCC is to use nonlinear frequency scale, which approximates the
behavior of the auditory system. The scheme of the MFCC processing is shown in

Fig.2.8, and each step will be described below.

Speech Filter Banks

1- f
{s(k)} »| Pre-processing {S“’(k)i FET {St(k)li Mel-Frequency | {X(m)}

E“ifgy logX Xi(m)
€

derivatives |4

c(i)
¢ Mel Cepstrum

DCT |le—tm |

Fig.2-8 Scheme of obtaining Mel-frequency Cepstral Coefficients

After the pre-processing steps discussed above, including constant bias
removing, pre-emphasis, frame blocking, and windowing, are applied to the speech
signal, the Discrete Fourier Transform (DFT) is then performed to obtain the spectrum

where DFT is expressed as
S (k)= s (i)e’™ 0<k<N (2-25)

where N is the size of DFT chosen the same as the window size. The Fast Fourier
Transform (FFT) is often adopted to substitute for the DFT for more efficient
computation. The Mel filter banks will be defined later after making a short
introduction of the Mel scale.
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The Mel scale, is obtained by Stevens and Volkman [8][9], is a perceptual scale
motivated by nonlinear properties of human hearing and it attempts to mimic the
human ear in terms of the manner that the frequencies are sensed and resolved. In the
experiment, the reference frequency was selected as 1 kHz and equaled it with 1000
mels where a mel is defined as a psychoacoustic unit of measuring for the perceived
pitch of a tone [10]. The subjects were asked to change the frequency until the pitch
they perceived was twice the reference, 10 times, half, 1/10, etc. For instance, if the
frequency they perceived is twice the reference, namely 2 kHz, while the actual
frequency is 3.5 kHz, the frequency 3.5 kHz is mapping to the Mel frequency twice

1000 mels, that is, 2000 mels. The formulation of Mel scale is approximated by

B(f)= 259510g10(1 + 7—&)) (2-26)

where B(f) is a function for mapping the actual frequency to the Mel frequency,
shown in Fig.2.9, and the Mel scale: frequeney; is almost linear below 1 kHz and is
logarithmic above. The Mel filter bank:is then-designed by placing M triangular filters
non-uniformly along the frequency axis to simulate the band-pass filters of human

ears, and the m-th triangular filter is expressed as

(k= rln-1) k< flm=1)
R A
(f(m+1)= f(m)) fm)<k < f(m+1)
0 k > f(m+ 1)
O0<k<N, 1<ms<M (2-27)

M
which satisfies ZH (k)=1 and N is the size of the FFT. The boundary points f()

m=1

in the above equation can be calculated by
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f(m)z(%JB‘l(B(f,ﬁ ij, 1<m<M (2-28)

N

where f; and f; is the lowest and highest frequency (Hz) of the filter bank, F, is the
sampling frequency of the speech signal and the function B (f) is the function to map
the actual frequency to Mel frequency given in (2-24). The function B (b) is the

inverse of the B(f) given by
B (b)=700(10"** —1) (2-29)

where b is the Mel frequency. It is noted that the boundary points f(m) are uniformly
spaced in the Mel scale. By replacing B and B in (2-28) by (2-26) and (2-29), the

equation can be rewritten as

f(m)=N-

W
7004 /, ,[700+ch _ 700 (2-30)

F 700 + f; F,

S N

which can be used in programming: In-general, M is equal to 20 for the speech signal
with 8 kHz sampling frequency and 24 for 16 kHz sampling frequency. The Mel filter
banks of the 8 kHz (M=20) and 16 kHz (M=24) are shown in Fig.2-10(a) and
Fig.2-10(b) respectively. The region of spectrum below 1 kHz is processed by more
filter banks since this region contains more information on the vocal tract such as the
first formant. The nonlinear filter bank is employed to achieve both frequency and
time resolution where the narrow band-pass filter at low frequencies enables
harmonics to be detected and the longer band-pass filter at high frequencies allows for

higher temporal resolution of bursts.

The Mel spectrum is derived by multiplied each FFT magnitude coefficient

with the corresponding filter gain as
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X, (k)=|s,(k)H,,(k), 0<k<N-1I (2-31)
and the results is accumulated and taken logarithm as
N-1
Y,(m)=1og > X, (k). 0<m<M (2-32)
k=0

which is robust to noise and spectral estimation errors. The reason of using the
magnitude of Si(k) is that the information of phase is useless in speech recognition.
The logarithm operation is utilized to reduce the component amplitudes at every
frequency and to perform a dynamic compression in order to make the feature
extraction less sensitive to variations in dynamics where the dynamics means the
magnitude of the sound. Besides, the logarithm is applied to separate the excitation

produced by the vocal tract and the filters that represents the vocal tract.

Since the log-magnitude spectrum Y(mr) is real and symmetric, the inverse
Discrete Fourier Transform (IDET).is reducedto the Discrete Cosine Transform (DCT)

and applied to derive the Mel Frequency-Cepstral Coefficients ¢,(i) as

c,(i)= %iY(m)cos(%[m—lD, i=L-L (2-33)

m=l1 2

where L is the number of cepstrum coefficients desired and L <M. It is noted that the
cepstrum is defined in the quefrency domain. The process of DCT successfully
separates the excitation and the vocal tract, in other words, the low quefrencies,
namely lower order of cepstrum, represents the slow changes of the envelope of the
vocal tract and the high quefrencies, namely, higher order of cepstrum represents the
periodic excitation. In general, 12 MFCCs (L=12) and the energy is adapted where the

energy term computed by the log of the energy as
N
e, =log> s, (k) (2-34)
k=1

which often referred to as absolute MFCCs, and then the first and second-order
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derivatives of these absolute coefficients are given

Zp(cnp(i)_ Ct—p(i))
Ac,(i) =42 S , i=l-L (2-35)
221)2

and

> plac,, i) 4., ()
A (i)=2

_
-
~
Il
—_
-
&~

(2-36)

which are useful to cancel the channel effect of the speech. In addition, the derivative
operation is utilized to obtain the dynamic evolution of the speech signal, that is, the
temporal information of the feature vector ¢,(i). If the value of P is too small, the
dynamic evolution may not be caught; if the,value P is too large, the derivatives have
less meaning since two frames may describe different acoustic phenomena. In practice,
energy term (e, and their first-order - derivatives (A{c(i)}|=12. .12, A{e:}) and

second-order derivatives (A*{c(i)}|=12." 12y A*{e,}).

(a) (b)
Mel-frequency Mel-frequency
3000 ' ‘ ' ' ‘ 3500 T T
2500 3000}---
2600 |-+
2000
3 = 2000f---1
£ 1500 =
=y =y
= = 1500 }---
o o
1000
1000 ---+
500 500 }---
0 i H H i H H i 0 H """"_ T "1_\ | R
0 1000 2000 3000 4000 5000 60OO 7000 8OOO 10 10 107 10 10
unwarped freqency (Hz) unwarped freqency (Hz)

Fig.2- 9 Frequency Warping according to the Mel scale (a) linear frequency
scale (b) logarithmic frequency scale
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(b)

The Perceptual Linear Predictive (PLP) analysis is first presented and examined

...... Hs(k) Hyo(k) Hoo(k)
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Fig.2-10 The Mel filter banks (a) F; = 8 kHz and (b) F;, =16 kHz

2.5.3 Perceptual Linear Predictive (PLP) Analysis

by Hermansky in 1990 [4] for analyzing speech. This technique combines several
engineering approximations of psychophysics of human hearing processes, including
critical-band spectral resolution, the equal-loudness curve, and the intensity-loudness
power law. As a result, the PLP analysis is more consistent with the human hearing. In
addition, the PLP analysis is beneficial for speaker-independent speech recognition

due to its computational efficiency and yielding a low-dimensional representation of
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speech. The block diagram of the PLP method is shown in Fig.2.11, and each step will

be described below. [12]

k {s,,(k) Critical-band
M} Pre-processing —L FFT [—P
Speech analysis
Equal-Loudness Intensity-Loudness
—> — P —»| IDFT
Pre-emphasis Conversion

L p| Autoregressive modeling —— All-pole Model

Fig.2-11 Scheme of obtaining Perceptual Linear Predictive coefficeints

Step I.  Spectral analysis

The fast Fourier Transform (FFT) is first applied on the windowed speech
segment (s,(k), for k=1,2,...N) into the frequency domain. The short- term power

spectrum is expressed as

P(@)=[Re(S,(@))f + [1m(S, ()} (2-37)

where the real and imaginary components of the short-term speech spectrum are
squared and added. There is an example in Fig.2-12 which shows the short-term

speech signal and its power spectrum P(w).
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( ) Time Domain
a 0.06

Magnitude

1 1
0 0.005 0.01 0.015
Ti
Frequlgr;]%xssﬁgl‘l‘nain

(b)

Piw)

0 0.5 1 1.5 2 25 3 35 4 45 5
angular frequency (rad/s) " 104

Fig.2-12  Short-term speech signal (a) in time domain and (b) power spectrum

Step II.  Critical-band analysis
The power spectrum P(®) s then warped along the frequency axis @ into the

Bark scale frequency (2as

2
Q(w)=6In]—2—+ [ @ j+1 (2-38)
12007 12007

where w is the angular frequency in rad/sec, which is shown in Fig.2-13. The resulting
power spectrum P((2) is then convoluted with the simulated critical-band masking
curve ¥(£2) and get the critical-band power spectrum @(£2;) as

25

O(2)= Y PQWY(Q-2), i=12..M (2-39)

0N=-13

where M is number of Bark filter banks and the critical-band masking curve #(£2),

shown in Fig.2-14, is given by,
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0 for Q2<-1.3
103293 for —1.3<0<-0.5

Yi2)=< 1 for -0.5<02<0.5 (2-40)
1071002705 for 0.5<0Q<2.5
0 for 2>25

where (2 is the Bark frequency just mentioned in (2-38). This step is similar to Mel
filter banks processing of MFCC where the Mel filter banks are replaced by the
analogous trapezoid Bark filter banks. The step between two banks is constant on the
Bark scale, and the interval is chosen so that the filter banks must cover the whole
analysis band. For example, 21 Bark filter banks, which cover from 0-Bark to
19.7-Bark in 0.985-Bark steps, are employed for analyzing speech signal of 16 kHz
sampling frequency, shown in Fig.2-15. It is noted that 8 kHz is mapping to
19.687-Bark and the steps are usually chosen‘approximately 1-Bark. Fig.2-16 is the
power spectrum after applying the Bark filter banks (M = 21) to the speech signal in
Fig.2-12. The Bark filter banks:and the Mel filter banks are both allocate more filters
to the lower frequencies, where the hearing is more sensitive. Sometimes, the Bark

filter banks are replaced with the Mel filter banks.

Angular Frequency to Bark Frequency

Bark scale (¢2)

'l 1 Il L 1 1 1 1 1 |
0 0.5 1 15 2 25 3 35 4 45 5
angular frequency (@) (rad/s) w10}

Fig.2-13  Frequency Warping according to the Bark scale
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Fig.2-14 Critical-band curve
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Fig.2-15 The Bark filter banks (a) in Bark scale (b) in angular frequency scale
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Fig.2-16 Critical-band power spectrum

Step III.  Equal-loudness pre-emphasis

In order to compensate the unequal sénsitivity of human hearing at different
frequencies, the sampled power spectrum:- @(.(2;) obtained in the (2-39) is then

pre-emphasis by the simulates equal loudness curve E( ), expressed as

2(2)=E)o(R),  i=12..M (2-41)

L

where the function E(w) is given by

(2 +568x10° )0

Ale)= (& +63x10°] x(e” +0.38x10°)x(* +9.58x10%")

(2-42)

where E(w) is a high pass filter. Then the value of the first and last samples are made
equal to the values of their nearest neighbors, thus Z(£2;) begins and ends with two
equal-valued samples. Fig.2-17 shows the power spectrum after equal-loudness
pre-emphasis. From the Fig.2-17, the part of higher frequency in Fig.2-16 has been

well compensated.
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Fig.2-17 Equal loudness pre-emphasis

Step IV. Intensity-loudness power law

Since the nonlinear relation between jintensity of the sound and its perceived
loudness, the spectral compression 1s-then utilized by using the power law of hearing

given by

o(Q)==(2)%, i=1200M (2-43)

1 1

where a cubic root compensation of critical band energies is applied. This step can
reduce the spectral-amplitude variation of the critical-band spectrum. It is noted that

the log arithmetic is adopted in the process of MFCC.

I I 1 I I I
0 05 1 15 2 25 3 35 4 445 g

0 1 1 1 1

angular frequency (rad/s) w10t

Fig.2-18 Intensity-loudness power law
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Step V.  Autoregressive modeling

The autocorrelation coefficients ry(n) are not computed in the time domain
through (2-18) but is obtained as the inverse Fourier transform (IDFT) of the power
spectrum P(w) of the signal. The IDFT is better choice than the FFT here since only a
few autocorrelation values are needed. If the order of the all pole model is equal to p,
only the first p+1 autocorrelation values are used to solve the Yule-Walker equation.
Then the standard Durbin-Levinson recursion is employed to compute the PLP

coefficients.
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Chapter 3

Speech Modeling and Recognition

During the past several years, Hidden Markov Model (HMM) [20][21][22] has
become the most powerful and popular speech model used in ASR because of its
wonderful ability of characterizing the speech signal in a mathematically tractable
way and better performance comparing to other methods. The assumption of the
HMM is that the data samples can be well characterized as a parametric random
process, and the parameters of the stochastic process can be estimated in a precise and

well-defined framework.

3.1 Introduction

In a typical HMM based ASR system,.the HMM is proceeded after the feature
extraction. The input of the HMM is the discrete time sequence of feature vectors,
such as MFCCs, LPCs, etc. These feature vectors are customarily called observations,
since these feature vectors represent the inforamtion observable from the incoming
speech utterance. The observation sequence O={o,, 0,, ..., 07} is a set of the

observations from time 1 to time 7, where the time ¢ is the frame index.

An Hidden Markov Model can be used to represnent a word (one, two, three,
etc) , a syllable (“grand”, “fa”, “ther”, etc), a phone (/b/, /o/, /i/, etc), and so forth. The
Hidden Markov Model is essentially structured by a state sequence ¢ = {ql,qz,- . -,qT}

where ¢, € {Sl,Sz,---,S N}, N is the total number of states and each state is generally

associated with a multidimensional probability distribution. The states of HMM can
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be viewed as collections of similar acoustical phenomena in an utterance. The total
number of state N should be chosen well to represent these phenomena. In general,

different number of state of HMM would lead to differnet recognition results [12].

For a particular state, an observation can be generated according to the
associated probability distribution. This means that there is not a one-to-one
correspondence between the observation and the state, and the state sequence cannot
be determined unanimously by a given oberservation sequence. It is noticed that only
the observation is visible, not the state. In other words, the model possesses hidden

states and is named as the “Hidden” Markov Model.

3.2 Hidden Markov Maodel

Formally speaking, a Hidden Markov Model is defined as A= (A,B,n), which
includes the initial state distribution 7, state-transition probability distribution 4, and
observation probability distribution B. Each elements will be illustrated respectively

as follows.

1. Initial state distribution 7

The initial state distribution is defined as 7= { 7;} in which
7, =Plg=5), 1<i<N (3-1)

where ; is the probability that the initial state ¢, of the state sequence
q= {6]1:Q2,"',qT} is S;. Thus, the summation of the probability of all possible initial

state is equal to 1, given as

AT, ety =1 (3-2)
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II. State-transition probability distibution A4
The state transition probability distribution 4 of an N-state HMM can be

expressed as { a;} or in the form of square matrix

4y ap Ay
a a oo a
2 dn 2N
A= - T . (3-3)
Ayy dyy 0 Ayy

with constant probability a;
a;=plg.=jlg,=i),  1<ij<N (3-4)

representing the transition probability from state i at time ¢ to state j at time #+1.
Briefly, the transitions among the states are governed by a set of probabilities a;;,
called the transition probabilities, which are assumed not changing with time. It is
noticed that the summation of all the probabilities ftom a particular state at time 7 to
itself and the others at time 7+1 should bé equal to’1, i.e. the summation of all the

entries in the i-th row is equal to 15 given as
a,+a,+-+a, =1, i=12,.,N (3-5)

For any state sequence ¢ = {ql,qz,--.,qT} where ¢, € {Sl,Sz,--.,SN}, the probability

of ¢ being generated by the HMM is

P(q|A,7r)=7r a

i g Clza‘h% aﬁlrflqr

(3-6)

For example, the transition probability matrix of a three-state HMM can be expressed

in the form as

A=|ay ay ay (3-7)

where
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a,+a,+a;=1, i=123 (3-8)

for arbitrary time ¢. Fig.3-1 shows all the possible paths, labeled with transition
probabilities between states, from time 1 to 7. The structure without any constrain
imposed on state transitions is called ergodic HMM. It is easy to find that the number
of all possible paths (N )H (in this case N=3) would greatly increase as time

increasing.

Fig.3-1 Three-state HMM

A left-to-right HMM (namely Bakis model) with the elements of the

state-transition probability matrix
a, =0, for j<i (3-9)

is adopted in general cases to simplify the model and reduce the computation time.
The main conception of a left-to-right HMM is that the speech signal varies with time
from left to right, that is, the acoustic phenomena change sequentially and the first

state must be S;. There are two general types of left-to-right HMM, shown in Fig.3-2.
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By using a three-state HMM as an example, the transition probability matrix 4 with

left-to-right and one-skip constrain, shown in Fig.3-3, can be express as

ay  dyp 4

A= 0 a a 3-10
2 4y
0 0 aj

where A is an upper-triangular matrix with @, =a, =a,,=0. Fig.3-4 shows all

possible paths between states of a three-state left-to-right HMM from time 1 to time 7.

If no skip is allowed, the transition probability matrix 4 can be express as

a, a, 0
A= 0 a,, a, (3-11)
0 0 aj

where the element g, in (3-7) is replaced by, zero. Similarly, Fig.3-5 shows all

possible paths between states of’a no-skip:three-statee HMM from time 1 to time 7.

(a)

Fig.3-2 Four-state left-to-right HMM with (a) one skip and (b) no skip

Fig.3-3 Typical left-to-right HMM with three states
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Fig.3-5 Three-state left-to-right HMM with no skip

II1. Observation probability distribution B

Since the state sequence g is not observable, each observation o, can be

envisioned as being produced with the system in state ¢,. Assume that the production

of 0, in each possible state S; is stochastic, where i=1, 2,..., N, and is characterized by

a set of observation probability functions B = {b/(0,)} where
b(o,)=Plo,1g,=S,),  j=12..N (3-12)
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which discribes the probability of the observation o, being produced with respect to
state j. If the distribution of the observations are continuous and infinite, the finite
mixture of Gaussian distributions, that is, a weighted sum of M Gaussian distributions

is used, expressed as

%exp(—%(ot —H, )TZ‘_/m_l(ot —H,, )) (3-13)

where p,, and 2, indicates the mean vector and the covariance matrix of the m-th
mixture component in state S;. The observations are assumed to be independent to

each other, the covariance matrix can be reduced to a diagonal form 2, as

o) 0o
0 F () ey

PRI A= : s 319
0 0 o, (L)

or simplified as a vector with L-dimension as
2=los) 0,@) o, (L) (3-15)
where L is the dimension of the observation o,. The mean vector can be expressed as

.ujmz[/ujm(l) ;Ujm(2) /ujm(L)] (3-16)

Then, the observation probability function b/(e;) can be written as

bj(ot):ﬁwjm Ll T I:Iexp[—M] (3-17)
(zﬁ)i{najm(z)T

>w, =1 (3-18)
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where wy is non-negative value.
Fig.3-6 shows that the probabilities of the observations sequence O ={o,, 0,, 0;,
0, } generated by state sequence ¢ = {q,, 4», q3, qa} are by (0,), by (0,), by (03), by (0.),

respectively.

&aql(m) @b%(oz) b, (0r) @bqgo»
0, o, ces 0, 0,
Observations time
>

Fig.3-6 Scheme:of probability of the observations

3.3 Training Procedure

Given a HMM A={A, B, x} and a set of observations O={0,, 0,,"**, 0;}, the
purpose of training the HMMs is to adjust the model parameters so that the likelihood
P(O \ A) is locally maximized by using iterative procedure. The modified k-means
algorithm [19] and Viterbi algorithm are employed in the process of obtaing initial
HMMs. The Baum-Welch algorithm (or called the forward-backward algorithm) is
performed to train the HMMs. Before applying the training algorithm, prepareation

work of the corpus and HMM is required prior to the trainging procedure as below

I.  Aset of speech data and their associated transcriptions should be prepared, and the
speech data must be transformed to the a series of feature vectors (LPC, RC,

LPCC, MFCC, PLP, etc).
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II. The number of states and the number of mixtures in a HMM must be determined,
according to the degree of variations in the unit. In general, 3~5 states and 6~8
states are used for representing the English phone and Mardarin Chinese phone,

respectively.

It is noted that the features are the the observations of the HMM, and these

observations and the transcriptions are then utilized to train the HMMs.

The training procedure can be divided into two manners depending on whether
the sub-word-level segment information, or called the boundary information, is
available, that is labeled with boundary manually. If the segment information is
available, such as Fig.3-7(a), the estimation of the HMM parameter would be easier
and more precise; otherwise, training'with no segment information would cost more
computation time to re-align the'boundary and re-estimate the HMM, in addition, the
HMM often performs not as good as the one with: well-segment information. The
transcription and boundary condition should be saved in text files, such as the form in

Fig.3-7(b)(c).

It is noted that if the speech doesn’t have segment information, it is also
necessary to get the transcription and save it before training. The block diagram of the
training procedure is shown in Fig.3-8. The main difference between training the
HMM with boundary information and training the HMM without boundary
information is on the processing of creating the initialized HMM. Then, the following
section will divided into two parts to present the details of creating the initialized
HMM.

(a)

‘I\II‘\UH\‘\I\\ll\sliwlllwu‘zwsl\llw‘Hlll:‘ldu‘Hllusllullllu‘slsnullwu\lﬁlsnllw‘\l\IlT\Sl\IH‘I\II‘slsl]HIlHH‘glsliwl‘\ulllﬁsn ‘”HlllSﬂ

A
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(b)

(©)

060 sil

60 360 yi
360 370 sp
370 600 ling
600 610 sp
620 1050 wu
1050 1150 sil

sil
yi
Sp
ling
Sp

sil

Fig.3-7 (a) Speech labeled with the boundary and transcription save as text file (b)

with and (c) without boundary information

UL

Feature vectors (observations)

With
boundary

information?

Initial HMM with
k-means and Viterbi
alignment (Fig.3-9)

Initial HMM with
global mean and
variance

v

#—

Baum-Welch and
Viterbi alignment to
obtain estimated
HMM

Viterbi search

=

!

Baum-Welch
re-estimation

Baum-Welch
re-estimation

v
Get HMMs

v
Get HMMs

Fig.3-8 Training procedure of the HMM
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I. Boundary information is available

The procedure of creating the initialized HMMs is shown in Fig.3-9, Fig 3-10.
The modified k-means algorithm and the viterbi algorithm are utilized in training
iteration. On the first iteration, the training data of a specific model are uniformly
divided into N segments, where N is the number of states of HMM, and the successive
segments are associated with successive states. Then, the HMM parameters 7; and a;;

can be estimated first by

_ number of observations in state ; at time =1

. , (3-19)
number of observations at time =1

_ number of transitions from state 7 to state j

— - (3-20)
number of transitions from state i

3.3.1 Midified k-means algorithm

For continuous-density HMM with M-Gaussian mixtures per state, the modified
k-means [13][14] are used for clustér the observations O into a set of M clusters

which are associated to the number of mixtures in a state, shown in Fig.3-9. Let the

i-th cluster of a m-cluster set at the k-th iteration denote as a),’f,_i where i=1,2,....m
and k=1,2,..., kmax With kpax being the maximum allowable iteration count. Y(w) is
the representive pattern for cluster . the number of clusters in the current iteration
and i is the iteration counter in classification process. The modified k-means
algorithm is given by
(1) Set m=1, k=1 and i=1; a),f“. = 0 and compute the mean Y(O) of the entire
training set O.

(i) Classify the vectors by minimum distance principle. Accumulate the total
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intracluster distance for each cluster @, denoted as A . If none of the

following conditions meet then back to (ii) and k=k+1.

=o' forall i=12,...,m

m,i?

1
a. o

b. k meets the preset maximum allowable number of iterations.

c. The change in the total accumulated distance is below the preset

threshold 4, .

(ii1)) Record the mean and the covariance of the m-cluster,. If m is reached the

number of mixtures M, then stop, else, go to (iv).
(iv) Split the mean of the cluster that has largest intracluster distance and

m=m+1, reset k and go.to (i1).

From the modified k-means, the-observations are clustered into M groups

where M is the number of mixturés in a state. The'parameters can be estimated by

_ number of observations classified in cluster min state j _ N, (3-21)
" number of observations classified in state j N,
1 &
4, = mean of the observations classifiedin cluster m in state j = N Zon (3-22)
jm n=l1

X', = covariance matrix of the observations classified in cluster m in state j

=

jm

1 . .
m‘ ‘ (on _ﬂijon _ﬂjln )T (3-23)

1l
—_

where 0, (1<n<N,,) is the observations classified in cluster m in state j. Then the

HMM parameters is all updated.
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UL ;

Viterbi alignment

Feature vectors (observations)
A 4

Uniform

Segmentation

Modified k-means

Modified k-means

Update the Model
parameters
Initialize
Parameters
~ “Ipitialized HMM

Fig.3-9 The block gﬁagram of ereating the initialized HMM

[TTTTTITT]
[TTTTTITT]

21}

{os, iz, 213} e
Cluster 3

Fig.3-10 Modified k-means
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3.3.2 Viterbi Search

Except for the first estimation of the HMM, the uniform segmentation is
replaced by Viterbi alignment, viz Viterbi search, which is applied to find the optimal
state sequence ¢={q;, ¢»,...,q7; where model A and the observations sequences
O={0,, 0,,-*, 0;} are given. By the Viterbi alignment, each observation will be
re-align to the state so that the new sate sequence ¢={q;, ¢5,...,gr} maximizes the
probability of generating the observation sequence O={0,, 0,,"**, 0;}.

By taking logarithm of the model parameters, the Viterbi algorithm [14] can be

impletement with only N°T additions and wihout any multiplications. Define 5.(i)

be the highest probability along the singal path at time ¢, expressed as

()= max }P(ql,qz,,...,qt_l,q,=i,ol,02 ,,,,,, 0,| 1) (3-24)

‘I={‘Il g2, i1

and by induction we can obtain

5.,(j) = [max,()a, o, (0,1) (3-25)

which is shown in Fig.3-11.

>

state

b1(0t+1)

bz(0z+1)

b3 (01+ 1)

| | >
4 t+1 time

Fig.3-11 Maximization the probability of generating the observation sequence
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The Viterbi algorithm is expressed as follows

(1) Preprocessing

7, =log(r,), 1<i<N (3-26)
b(0,)=10og(b(0,)), 1<i<N, 1<t<T (3-27)
a,(o)=logla,), 1<i<N (3-28)

(i1) Initialization
5,(i)=10g(5,(i)) =7 +b,(0,), 1<i<N (3-29)
w,()=0, 1<i<N (3-30)
where the array ; () is used for backtracking.

(iii) Recursion

5(j)=10g(s,(j))= max[5.(j)+ @, J¥B,, 2<i<T, 1<j<N (3-31)

ISi<N.

t//t(j)=argmax[gt_1(i)+ 5’1.].], 2<t<F, 1<j<N (3-32)

I<i<N

(iv) Termination

P = max|3, (1) (3-33)
g, =argmax[3, ()] (3-34)

(v) Backtracking
¢ =wala.), t=T-17-2..) (3-35)

From the above, the state sequence ¢ which maximizes P’ implies an alignment of

observations with states.

The above procedures, viterbi alignment, modified k-means and parameter

estimation, are applied until P* converges. After obtaining the initialized HMM, the

Baum-Welch algorithm and the Viterbi search are then applied to get the first
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estimation of the HMM. Finally, the Baum-Welch algorithm is performed repeatedly
to reestimate the HMMs simultaneously. The Baum-Welch algorithm will be

introduced later.

II. Boundary information is not available

In this case, all the HMMs are initialized to be identical and the mean and the
variance of the all states are set to be eqaul to the global mean and variance. As for the
initial state distribution 7 and state-transition probability distribution A, there is no
information to compute these parameters; hence, the parameters z and A should be

set arbitrarily. From the above process, the initialized HMMs are then generated.

Afterwards, the processes for reestimating HMMs are resemble the reestimated
processes for boundary information, thatiis using the Baum-Welch algorithm. After
reestimating by Baum-Welch algorithm, the Viterbi search is also needed to re-align
the boundaries of the sub-word." This-step-is-different to the training procedure which
already have boundary information. The mext section will introduce the Baum-Welch

algorithm employed in the HMM training processing.

3.3.3 Baum-Welch reestimation

The Baum-Welch algorithm, known as the forward-backward algorithm is the

core of training HMM. Consider the forward variable ¢, (i) defined as
a,(i)= Plo,,0,,....0,,q, =i| A) (3-36)
that means the probability of the state i at time ¢ which having generating the

observation sequence 0y, 0,,..., 0, given the model A, shown in Fig.3-12. The forward

44



variable is obtained inductively by
Step 1. Initialization:
ai)=7bl0), 1<i<N (3-37)

Step II.  Induction:

N
aHl(j):{Zal(l’)ay}bj(om), 1<j<N, 1<t<T-1 (3-38)
i=l

In similar way, the backward variable is defined as
Bi)=Plo,,,.0,,,....0, | q,=iA) (3-39)
that represent the probability of the observation sequence from ¢#+1 to the end given
state i at time ¢ and the model A, shown in Fig.3-12. The backward variable is
obtained inductively by
Step I.  Initialization:
B.)=1, 1<i<N (3-40)

Step II.  Induction:

N
B0)=> B.())bloy)a,, LLi<N, t=T-1T-2,.1 (3-41)
j=1

t—1 t t+1

a- /(i) afi) Si) Br+1(0)
Fig.3-12 Forward variable and backward variable
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Besides, three variables should be defined, that is & (7,/) and the posteriori

probability 7, (i) and y(i,j). The variable & (i,/) is defined as
£i.j)=Plg, = S,.4..=5,10.4) (3-42)

which is the probability of being in state i at time ¢ and state j at time ¢+1. The
posteriori probability (i) is expressed as
7.(0)=Plg, AN0A=i§ (3-43)
=
which is the probability being in state i at time 7. The variable y,(i,/) is defined as
7,Gk)=Plg, =S,,m, =k|0,A)
which represent the probability of being in state i at time ¢ with the k-th mixture
component accounting for o,.
The HMM parameter 4, 7 can:be re-estithated by using the variables mentioned

above as

7, = expected number of fimes in state S; at time = 1 = y,(7) (3-44)

expected number of transitions-fromstate S, to state S, < (3-45)
a, = Jo_ = )
Y expected number of transitions from state S, | .

expected number of times in state S; and mixture k

expected number of times in state S,

ZT:% ' in(i,k)

e =l (3-46)

iﬁn k) ;7,(1')

=1 m=

~

u;, = mean of the observations at state S; and mixture &

T
> 7,(i.ko,
e

T

J’z

=1

(3-47)

~

p = covariance matrix of the observations at state S i and mixture k&
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Vi (i’k)(ot —Hy Xot —Hj )T

M~

= =1 - (3-48)
2.7 (k)
where
A P(qt = Si’qu = S_/)O | A) a ( )az/b/( t+1)/8t+l(j)
W oy T Aol
— = Ofvf(l)allbj( t+1)ﬂt+1(j) (3_49)
ZZa y 1 t+1 ﬂt+1( )
y,(i)ZM (3-50)
> e (1)8,()
)’,(j,k)= ;‘z(])ﬁt(f) ijbjk( ) (3-51)

Zat (S)ﬁt (S) kZ:I:Wfkbjk ot

s=1

From  the  statistical . sviewpeint <‘of  estimating @ HMM by
Expectation-Maximization (EM) algorithm; the equations for estimating the
parameters are the same as the equations derived from Baum-Welch algorithm.
Besides, it has been shown that the likelihood function will converge to a critical
point after iterations and the Baum-Welch algorithm leads to a local maximum only

due to the complexity of the likelihood function.
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3.4 Recognition Procedure

Given the HMMs and the observation sequence O={o,, 0,,-:*, 0; }, the

recognition stage is to compute the probability P(O|A) by using an efficient method,
forward-backward procedure. This method has been introduced in the training stage.

Recall the forward variable ¢(7) is defined as

a,.,(j)=P0,.0,...0,.q, = S, | 1)

N
{Zat(l’)%}bj(om), I<i<N (3-52)
i=1
and the backward variable f,(i)

ﬂt(i): P(0t+1’0t+2""’0T |q, = i,A)

N
=> B.(j)bilo,.))a,, 1<i<N (3-53)
Jj=1

given the initial conditions

a,i)=7b(0), “A<i<N (3-54)

B(i)=1 1<i<N (3-55)

where N is the number of states. The probability of being in state i at time ¢ is

expressed as
P(O’Qt =S1' |A)=0Ct(l')ﬂt(l') (3'56)

such as the total probability P(O|A) is then obtained by

N N

P0|A)=Y P(0.q,=S,| A)=) a,i),i) (3-57)

i=1 i=1

which is employed in the speech recognition stage.
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Chapter 4

Experimental Results

Several speaker-independent recognition experiments are shown in this chapter.
The effect and performance of different front-end techniques are discussed in the
experimental results. The corpus will be described in section 4.1. The experiments are
divided into two parts, including the monophone-based HMM and the syllable-based

HMM. The experimental results will be shown in section 4.2, and 4.3, respectively.

4.1 Corpus

The corpora employed in this thesis are TCC-300 provided by the Associations
of Computational Linguistics and Chinese Language Processing (ACLCLP) and the
connected-digits database provided by the-Speech Processing Lab of the Department

Communication Engineering, NCTU. These cotpora are introduced as below.

411 TCC-300

In the speaker-independent speech recognition experiments, the TCC-300
database from the Associations of Computational Linguistics and Chinese Language
Processing (ACLCLP) was used for monophone-based HMM training. TCC-300 is a
collection of microphone speech databases produced by National Taiwan University
(NTU), National Chiao Tung University (NCTU) and National Cheng Kung
University (NCKU). In this thesis, the training corpus uses the speech databases

produced by National Chiao Tung University.

The speech signal is recording under the following conditions, listed in Table

4-1. The speech is saved in the MAT file format, which is a format for recording the
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speech waveform in PCM format and, in addition, recording the condition of the
environment and the speaker in detail by adding extra 4096 bytes file header into the

PCM.

Table 4-1 The recording environment of the TCC-300 corpus produced by NCTU

File Format MAT

Microphone Computer headsets VR-2560 made by Taiwan Knowles
Sound card Sound Blaster 16

Sampling rate 16 kHz

Sampling format 16 bits

Speaking style read

The database provided by NCTU is comprised of paragraphs spoken by 100
speakers (50 males and 50 females). Each speaker read 10-12 paragraphs. The articles
are selected from the balanced: corpus-of the Academia Sinica and each article
contains several hundreds of words:. These articles are then divided into several
paragraphs and each paragraph includes no more than 231 words. Table 4-2 shows the

statistics of the databases

Table 4-2 The statistics of the database TCC-300 (NCTU)

Males Females Total
Amounts of speakers 50 50 100
Amounts of syllables 75059 73555 148614
Amounts of Files 622 616 1238
Time (hours) 5.98 5.78 11.76
Maximum words in a paragraph 229 131 -
Minimum words in a paragraph 41 11 -
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4.1.2 Connected-digits corpus

This connected-digits corpus is provided by the Speech Processing Lab of the
Department Communication Engineering, NCTU. All signals are stored in a format of
PCM without file header. The recording format of the waveform files is listed in Table
4-2. The database consists of 3-11 connected digits, such as “011415726”, “791107,
“347”, etc, spoken by 100 speakers (50 males and 50 females). The statistics of the

database is shown in Table 4-4.

Table 4-3 Recording environment of the connected-digits

Connected-digits format

File Format PCM
Sampling rate 16 kHz
Sampling format 16 bits

Table 4-4  Statistics of the connected-digits database

Males Females Total
Amounts of speakers 50 50 100
Amounts of Files 500 499 999
Maximum digits in a file 3 3 -
Minimum words in a file 11 11 -
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4.2 Monophone-based Experiment

The objective of this experiment is to evaluate the performance of different
features based on monophone HMMSs for speaker-independent speech recognition.
The phonetic transcription SAMPA-T is employed in this thesis and then the
monophone-based HMMs are then trained, which will states in the section 4.2.1 and

4.2.2, respectively. The experiment results will be shown in the last section.

421 SAMPA-T

SAMPA-T (Speech Assessment Method Phonetic Alphabet - Taiwan) developed
by Dr. Chiu-yu Tseng, Research Fellow of Academia Sinica, are employed for
transcribing the database with a maehine readable phonetic transcription [23]. Table
4-5 and Table 4-6 are the comparison table of 21 consonants and 39 vowels of
Chinese syllables between SAMPA-T, Chinese phonetic alphabet, and the type of

pronunciations.

Table 4-5 The comparison table of 21 consonants of Chinese syllables between
SAMPA-T and Chinese phonetic alphabets

phonetic phonetic
Type SAMPA alphabet Type SAMPA alphabet
b ) dj Y
p S t] 4
. d 5 . dz’ T
plosive affricates
t = ts’ 4
g K dz T
k ] ts 5
f C m m
nasals
h . n E
. S L liquid %
fricatives X
S T
Sj T
A

52



Table 4-6 Comparison table of 39 vowels of Chinese syllables between SAMPA-T,
and Chinese phonetic alphabets

p.s. U is the null vowel for retroflexed vowels and U represents the null vowel for un-

retroflexed vowels.

All the wave files should be corresponding to a transcription file. For example,
a part of paragraph marked with Chinese phonetic alphabets and tones (1, 2,..., 5) are
given in the database, shown in Table 4-7. Table 4-8 shows the transcriptions of the
words in Table 4-7 marked with SAMPA-T. For monophone-based HMM training, the
word-level transcriptions, such as shown in Table 4-8, should be further transferred to
the phone-level transcriptions, shown in Table 4-9, where the tones are neglected. It is

noted that the punctuation marks, such as comma and period, are replaced with the

notation “sil” which means it is silent at this moment in time.
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@n L aN x u@n AL
i — @N L uai A5
u X iE —4 ua AY
a Y iai -5 uaN A A
0 < iEn —5 uei AN
e et ia -Y uo AT
@ < iaN — % y u

@ JL iau — 4 yE Ut
ai % in —5 yEn us
ei \ iN —L yn ubL
au b iou = A yoN UL
ou X uan A 5 U

an 5 oN XL u




Table 4-7 A paragraph marked with Chinese phonetic alphabets

Frh i % - @~ A~ &

AY 7 AN =R/ GAV ~ LEN ~ {—%N ~ Tub o

d #H ¢ 4 % FR D FERE -4 v 4R

—R/ =7 WAL $F 7 FL s =5V AN 4R 4Y 7 AN ZEe T—% ~ KT -~
PLY—bH -

- S N G - T

ERL s =N HGE e > O FL —HV PN —XV AN ARL s ZE e {—L 7/ Tuxn
e

{—7 L=V HhATN HhATN >

T EE RN T RN T

AN —HV PN =X/ ARALN GAV WAL $FH /s FL 7 ¥L WL N A=V T ANN
FGAHEN HhEN PN FE/2NTe MY e ?

Table 4-8 Word-level transcriptions using SAMPA-T

ts'a2 ueid iou2 ku3, s@4, tjiaN4, sjynl,

iou2 tji2 dz'oNl tsai2 n@N2 pin3 wueid ts'ul tsa2 uweid d@S5 sjiaNl, ganl,
s'@NI1 djinl,

toN2 iaN4 d@5, Z'@n2 s'@N1 iE3 s'U'4 ioud bud toN2 d@5 tjiN2 sjy4,

ti2 i3 luod luo4,

bu4 iE3 s'U4 iou2 toN4 ku3 dzoNl tsai2 n@N2 dz@nl dz’@N4 ti3 hueid
kuai4 l@4 s'U4 s'@2 mo5 maS?

Table 4-9 Phone-level transcriptions using SAMPA-T

ts a wuei iou ku sil s @ sp .t 1aN “sp§ yn. sil

iou tj i dzZ oN ts ai n @N+p-in uei s u ts° a u ei d @ s iaN sil
g an 55 @N dj in sil

t oN iaN d @ sil Z2 @n s @N iE s U iou b ut oN d @ t iN
sj y sil

g it i 1 uwo 1 uwo sil

b u iE s U iou t oN k u dzZ oN ts ai n @N dz @n dzZ @N t i
h wvei k vai | @ s° U s @ mo ma sil

4.2.2 Monophone-based HMM used on TCC-300

From the phonetic transcription defined in SAMPA-T, there are 21 consonants
and 39 vowels of Chinese dialects spoken in Taiwan. Hence, the total number of
monophone-based HMM is equal to 62, including 21 consonants, 39 vowels, the
silence model “sil”, and the short pause model “sp” where the “sp” denotes the short

pause between two words. The number of states of the HMM is defined in Table 4-10
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and the structure is shown in Fig.4-1. It is noted that the number of states here
includes 2 null states, called entry and exit node, which cannot produce any
observations, and the probabilities of staying in the null states is equal to zero. The
entry and exist node make the HMMs much easier to connect together without
changing parameters of the HMMs, for example, the word “#” is a combination of

the HMM “I” and the HMM “@”, shown in Fig.4-2.

Besides, the shrot pause model “sp” used here is so called “tee-model” which
has direct transition from entry to exist node. The silence model has extra transitions
from states 2 to 4 and from states 4 to 2 in order to make the model more robust by
allowing individual states to absorb the various impulsive noises in the training data.
The backward skip allows this to happen without committing the model to transit to

the following word.

Table 4-10 Definitions of HMM used‘in-monophone-based experiment
Number of monophone-based HMMs 62 (60 monophones, “sp” and “sil”)
Number of states of “Sp” 3 (first and last state are null state)
Number of states of consonants
5 (first and last state are null state)
(includes “sil”)

Number of states of vowels 7 (first and last state are null state)

Number of Gaussian mixtures in a state 5
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- 8,5 8.0.8.00.08

Fig.4-1 HMM structure of (a) sp, (b) sil, (c) consonants and (d) vowels

(a)
O
@
(b) (c)
MRORINE" 4= 8} eReToner
1 @

Fig.4-2 (a) HMM structure of the word “# (1@4), ” (b) “I” and (c) “@”

The training database is selected from the TCC-300, where eight folders
(F NEWGI1-F NEWG4 and M_NEWGI1-M _NEWGH4) produced by NCTU are
employed to train the monophone-based HMMs. The training database comprises of
517 files spoken by 40 females and 515 files spoken by 40 males. All the MAT files
should be converted to the wave format prior to training. The Hidden Markov Model
Tool Kit (HTK) developed by Cambridge University Engineering Department (CUED)

is employed in this thesis since it provides sophisticated facilities for speech research.
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4.2.3 Experiments

The parameters of front-end processing are set as Table 4-11. The features
adopted in the experiment are listed in Table 4-12. The flow chart of training the
monophone-based HMMs is shown in Fig. 4-3. At the beginning, only the corpus and
its corresponding Chinese phonetic alphabets are available. Hence, it is essential to
transfer the Chinese phonetic alphabets to SAMPA-T before training. It is noted that
there is no boundary information of the corpus. Here, six features selected in this
thesis are based on LPC, MFCC, and PLP, which have been introduced in Chapter 2.
In the process of training, there is no rule that how much times of doing the
Baum-Welch re-estimation will get best model and consequently it is necessary to test

and verify the recognition rate to find the best model.

Table 4-11  The parameters of front-end processing

Sampling frequency 16 kHz

Pre-emphasis filter 1-0.972"

Hamming window win)=0.54—0.46- cos( ]2\]7[_” j , 0<n<N-1
Window size 400 samples (25ms)

Frame duration 25 ms

Frame period 10 ms

Table 4-12  Six different features adopted in this thesis

Number of

2
Order filter banks Energy A A

Linear Predictive Coefficients J N N

(LPC_39) 39 -

Linear Predictive Coefficients J J

(LPC 38) 38 -

Linear Predictive Reflection

coefficients (RC) 39 ) v v v

LPC Cepstrum Coefficients

(LPCC) 39 - \ \ \

Mel-Frequency Cepstral

Coefticients (MFCC) 39 26 v v v

Perceptual Linear Prediction

Coefficients (PLP) 39 26 v v v
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Pre-emphasis
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v
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Transcriptions ———— Model Training

62 HMM models

Fig.4-3 Flow chart of training the monophone-based HMMs

There is a 3-D view of six featuresperforming on the word “# A (bu4 djiou3)
and the variations of the 39-dimensioned (or 38-dimensioned for LPC 38) vectors
from frame 1 to frame 100 are shown in Fig. 4-4 where time denotes the frame order.
The highest curve is at the 13-th element of the feature vectors (19-th element for

LPC 38) since this element is the energy term.

LPC 38

LPC_ 39

(a)
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100

MFCC PLP

time 0o time 0o

Fig.4-4 3-D view of the variations of the feature vectors (a) LPC-38
(b) LPC 39 (c) RC (d) LPCC (e) MFCC (f) PLP

The monophone-based HMMs are usually employed in Large Vocabulary
Speech Recognition (LVSR). However, one of the factors which influence the
recognition rate of the LVSR is the language model. Language model is a statistical
model which attempts to capture the regularities of natural languages and improve the
performance by estimating the probability distribution of various linguistic units, such
as words, sentences, etc. If the recognition task is long paragraphs or articles,
language model should be trained. Nevertheless, language model is to the key point in
this thesis. Hence, the connected-digits corpus just mentioned in 4.1.2 is utilized for

testing the monophone-based HMMs and the HMM s are trained by six different kinds
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of feature extraction methods where the connected-digits needs only an

uncomplicated grammar that the sentence are arbitrary permutation of digits.

Connected-digits corpus

Front-end Processing

Pre-emphasis

v

Frame blocking

—

Hamming window

v

Feature extraction

o i e o

62 HMM models

Speech Recognition
Grammar ———P

v

Transcriptions — 3| Regults analysis
of test corpus *

Recognition Rate

Fig.4-5 Flow chart of testing the performance of different features

The experimental results are shown in Table 4-12 and Fig. 4-6. The total
number of digits, denoted by 7', used in this experiment is 8432. There are three
variables should be concerned in order to compute the recognition rate, that is, the
number of insertions (I), the number of deletions (D) and the number of substitutions
(S). For example, the output sentence of the recognition may be

i2 @4 bal djiou3 sU4
while the actual sentence is

12 bal liou3 sU4 sanl
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where “@'4” is an insertion error, “djiou3” is a substitution error and “sanl” is an

deletion error.

Based on the definition of mentioned the above, the performance of different
features can be examined through two functions, the Correct (%) and the Accuracy

(%). The Correct (%) is computed by

T-D-§
i

Correct(%) = 100 (4-1)

and the Accuracy (%) is defined as

T-D-S-1
—X

Accuracy(%) = 100 (4-2)

which means that the Accuracy (%) concerns:not only the deletion error and the
substitution error but also the insertion error. Hence, the Accuracy (%) will lower than

the percent of correct (%).

Table 4-13  Comparison of the Corr (%) and Acc (%) of different features

LPC_38 LPC_39 RC LPCC MFCC PLP
Number
of Corr  Acc | Corr  Acc | Corr Acc | Corr Acc | Corr  Acc | Corr  Acc
iterations
1 73.7 40.1 | 69.4 383 | 82.0 46.0 | 87.3 67.1 | 89.6 672 | 90.0 679
2 752 475728 472 | 837 543|889 708 912 722|916 73.7
3 764 513 | 748 494 | 84.0 56.1 | 89.2 71.6 | 920 742|922 756
4 77.8 54.1 1759 50.6 | 837 545 |89.6 715 924 744|929 765
5 78.7 559 | 764 523|836 540|896 71.8 928 757|932 773
6 79.7 56.6 | 76.8 539 | 83.6 542 |89.6 71.7 929 763|933 78.0
7 80.1 573|769 542 | 83.6 543|895 719 93.0 77.1|934 78.6
8 80.6 582 | 77.1 545|837 544|895 719 93.0 774|934 787
9 81.0 59.0 | 77.0 544 | 839 547 |89.7 721 |93.1 777|934 787
10 81.1 59.1 | 77.1 543 | 839 550 89.6 72.1 931 781 934 788
11 81.2 592 | 77.1 543 | 84.1 554 |89.6 721 932 782|933 789
12 81.2 592 | 76.8 54.0 | 842 56.0 | 89.6 722|932 783|932 789
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Fig.4-6 Comparison of the different features (a) Correct (%) (b) Accuracy (%)

From the Fig. 4-6(a), the percent of correct is the recognition rate without
considering the insertion error and the performance of the connected-digits

speaker-independent recognition based on monophone HMM is
PLP > MFCC > LPCC >RC > LPC38 > LPC39 (4-3)

where the PLP performs better than all the other features from iteration 1 to iteration
12 of the training. The performance of all the models almost saturates when coming
up to iteration 12. The maximum percent of correct of PLP appears in iteration 8 of
training and then decreases when more training iterations are performed. It shows that

the PLP costs less time than others to reach a better model in the training stage. From
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Fig. 4-6(b), it shows the recognition results when the insertion error is considered.
The order of the performance is not the same as (4-3) especially for the RC. It infers

that the RC tends to insert words between two words than other insertion methods.

Comparisons of the different features through average and the best Correct (%)

and Accuracy (%) are shown in Fig. 4-7. The order of the performance from the good

to the bad in this experiment is
PLP > MFCC > LPCC > RC > LPC38 > LPC39 (4-4)

except for the max Accuracy (%) where RC is worse than LPC38, hence, the order of

the best performance of the six features is

PLP > MFCC > LPGC > LPC38%.RC > LPC39 (4-5)

,IJ”“"

where PLP still has the best performance than othé:r features in monophone-based

J

speaker-independent speech recégnitioniw‘ BSE

@ ® .

93.0 93.3

Average Correct (%)
Average Accuracy (%)

LPC 38 LPC 39 RC LPCC MFCC PLP LPC_38 LPC_39 RC LPCC MFCC PLP

(d) 90

~
o

~

8

Max Correct (%)
Max Accuracy (%)

LPC 38 LPC_ 39 RC LPCC MFCC PLP LPC_38 LPC_39 RC LPCC MFCC PLP

Fig.4-7 Monophone-based HMM experiment (a) Average Correct (%) (b) Average
Accuracy (%) (c) Max Correct (%) (d) Max Accuracy (%)
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4.3 Syllable-based Experiments

The purpose of this experiment is to examine the performance of different
features while applying to the word-level HMM speaker-independent speech
recognition. The word-level HMM is feasible when the recognition task is small;
hence, the connected-digits corpus is employed to train the word-level HMM and then

utilized to recognize the connected-digits sentences in this thesis.

4.3.1 Syllable-based HMM used on connected-digits corpus

The connected-digits sentence is composed of arbitrary combination of the
digits - “0, 1, 2, 3, 4, 5, 6, 7, 8, or/and 9”. Hence, the total number of word-level
HMM needed is 12, including 10 digits, the silence model “sil”, and short pause

model “sp”. The number of states of the HMM 1s defined in Table 4-14

The training database is selected from the connected-digits database mentioned
in 4.1.2, where 800 files, where-400-files are-spoken by 40 males and 400 files are
spoken by 40 females, are selected for training the syllable-based HMMs. The other
files of the corpus (199 files, 99 files spoken by 10 females and 100 spoken by 10
males) are adopted for testing the performance of the different features in

syllable-based HMM speaker-independent speech recognition.

Table 4-14  Definition of HMM used in syllable-based experiment

Number of syllable-based HMMs 12 (10 digits, “sp” and “sil”)
Number of states of HMM 8 (first and last state are null state)

Number of Gaussian mixtures in a state 4
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4.3.2 Experiments

The parameters of front-end processing are set the same as Table 4-11. The
features adopted in the experiment listed in Table 4-15 which are the same as the
parameters used in monophone-base experiments. The flow chart of training the
syllable-based HMMs is shown in Fig. 4-8 where the digits “0, 1, 2, 3,4, 5, 6, 7, 8,
and 9” are denotes by “yi, er, san, si, wu, liu, qi, ba, jiu, and ling,” respectively. It is
noted that the boundary information of the corpus is available. Therefore, the training
procedure is different with the procedure of experiment in 4.2 which has no boundary
information and the details of the difference between them have been introduced in
section 3.3. In practice, the boundary information is beneficial for training HMM, that
is, the HMM will be trained more precise with the boundary inforamtion. In addition,
the number of HMMs is less than the HMMs used in previous experiment. The

recognition results are supposed-to.be much higher than the results in 4.2.3.

Fig.4-9 shows the testing procedure-of-the sullable-based recognition procedure.
Table 4-16 shows the experiment results of the performance of different features
performing on the connected-digits speaker-independent recognition. The

performance of the features is generally in the order from the good to the bad as
PLP, MFCC > LPCC >RC > LPC 38> LPC 39 (4-6)

where the PLP and MFCC are resemble in maximum ACC(%), which is the major

guide for judging the performance of the models.
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Table 4-15  Six different features adopted in this thesis

Number of

2
Order filter banks Energy A A

Linear Predictive Coefficients J N N

(LPC_39) 39 -

Linear Predictive Coefficients N N

(LPC 38) 38 -

Linear Predictive Reflection

coefficients (RC) 39 ) v v v

LPC Cepstrum Coefficients

(LPCO) 39 - \ \ \

Mel-Frequency Cepstral

Coefficients (MFCC) 39 26 v v v

Perceptual Linear Prediction 39 26 N N N

Coefficients (PLP)

Connected-digits Corpus
lFront-end Processing

__________________________________

Pre-emphasis

v

Frame blocking

p——

Hamming window

v

Feature extraction

Transcriptions ———p|
Model Training

Boundary |

information ¢
------
~— _

——

12 HMM models

Fig.4-8 Flow chart of training the syllable-based HMMs
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Fig.4-9 Flow chart of testing the syllable-based HMMs

Table 4-16  Comparison of the Corr (%) and Acc (%) of different features
LPC_38 LPC_39 RC LPCC MFCC PLP

Number

of Corr  Acc | Corr Acc | Corr  Acc | Corr  Acc | Corr  Acc | Corr  Acc
iterations

1 79.7 77.1 | 80.5 77.6 {909 89.7| 943 938 965 959 | 96.6 96.1

2 84.0 80.8 | 83.5 80.3 | 943 929 | 96.6 963 | 982 98.0 | 984 98.1

3 85.0 81.8 843 81.2 947 933|971 969 | 984 982 | 98.5 984

4 84.8 819 | 84.6 81.6 | 949 935|972 97.1 | 98.6 984 985 983

5 852 823 | 845 814|948 934|973 97.1 | 987 985|985 984

6 852 824 | 84.6 81.6 | 949 93.6|972 97.0 | 98.7 985|986 985

7 853 82.6 | 84.7 81.7 | 950 938|972 97.0 | 98.7 985 | 98.6 98.5

8 853 82.7 | 84.6 81.6 | 948 937|973 97.1 | 98.6 985 | 98.6 98.5

9 854 829 | 843 81.2 | 950 939|973 972 98.6 985 98.6 985

10 85.6 832|845 813|951 939|972 97.1 | 98.6 985|985 984
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Comparisons of the different features through average and the best Correct (%)

and Accuracy (%) are shown in Fig. 4-11. In this case, the PLP and the MFCC are

both a good choice of the connected-digits speaker-independent recognition due to

their high recognition rate (Correct (%) and Accuracy (%)). The LPC 38 performs

better than the LPC 39 since the sampling frequency of the speech is 16 kHz. From

the guideline of selecting the order of filter p introduced in Chapter 2, the value of p

should be chosen as 18-20 to represent the characteristic of the filter. Hence, the

recognition rate of LPC 38 (p=18) is higher than the LPC 39. As for the reflection

coefficients RC, the performance is much better than the performance of LPC 38. It

can be inferred that the RC is more suitable for represent the speech signal of

small-vocabulary speech recognition from the results of the two experiments.
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Fig.4-11  Syllable-based HMM expérifﬁe'n;t (a) Average Correct (%) (b) Average
Accuracy (%) (c) Max Correct (%) (d) Max Accuracy (%)
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Chapter 5

Conclusions

A short summary of different features is made as follows. The LPC states that
the vocal tract transfer function can be modeled by an all-pole filter, and the number
of coefficients is chosen to be sufficient to represent the vocal tract. The Reflection
Coefficients (RC) model the reflection rate at each transition when the acoustic waves
in the vocal tract are partially reflected at the transitions and interfere with waves
approaching from the back. The LPC-derived Cepstral Coefficient (LPCC) is compact
parametric representation of representing the spectrum of speech signals which can
efficiently separate the excitation source from the all-pole filter. The conception of the
Mel-Frequency Cepstral Coefficients (MECC). 1s to*use nonlinear frequency scale to
approximate the behavior of the auditory system. The Perceptual Linear Predictive
(PLP) analysis combines several: engineering approximations of psychophysics of
human hearing processes, including critical-band spectral resolution, the

equal-loudness curve, and the intensity-loudness power law.

The results of the experiments can be explained from the essence of the features.
In former studies of the feature extraction, such as LPC and RC, the idea is focuses on
modeling the vocal tract of the human. However, the performance is not satisfied
especially for multi-users system. Besides, the production model concerns only the
vocal tract which varies from person to person. From the experimental results, it can
be infer that the variation of the vocal tract between persons is larger than the
variation of the ear between persons. From the viewpoint of the human being, the
general communication is comprised of two types, speech generating and hearing.

Intuitively, the objective of the speaker-independent speech recognition system is to
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recognize the speech of different users. Hence, the key point is not who produced the
speech but what the context was. In this case, the receiving side is more effective than
the generation sides. Therefore, the features based on the speech perception, such as
MFCC and PLP, are superior to the features based on the speech production, such as

LPC, LPCC and RC, in the speaker-independent experiments.

In this thesis, the performance of different speech features for speaker-independent
speech recognition system has been evaluated. It is noted that the PLP is not always
better than MFCC because of the little difference between the recognition rates in the
experiments in previous chapter, but it can be said that in most of cases the PLP and
MFCC will perform better than LPC, RC and LPCC in speaker-independent speech
recognition system. It can be concluded as.follows. Firstly, features derived from FFT
(MFCC, PLP) preserve more phonetic features'than those derived form LPC spectrum
(LPC, LPCC, RC). Secondly, the cepstrum parameters (LPCC) has higher recognition
rate than LPC and RC. Thirdly, non-linear-frequeéncy analysis performs better than
linear frequency analysis. Fourthly, IPCI 38" has better performance than LPC 39.
Fifthly, PLP provide highest discrimination of phonetics for monophone-based
speaker-independent SR. In addition, there is a performance comparison table Table
5-1. From the table, the perceptual model is more effective than production model in

speaker-independent Speech Recognition system.

Table 5-1 Performance Comparison Table
Monophone-based experiment
PLP MFCC LPCC RC LPC 38 LPC39
78.9% 78.3% 72.2% 56.0% 59.2% 54.5%
Word-based experiment
PLP MFCC LPCC RC LPC 38 LPC39
98.5 98.5 97.2 93.9 81.7 83.2
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Due to the limitation of the corpus and the difficulties of training with large
amount of database, the experiments are not complete to show the statistics of various
tasks, for example, the robust test of speech features for speaker-independent speech
recognition system in different noisy environments is not fulfilled. In addition, the
environments (echo, channel-effect, noise, etc) and the speakers (speed of speaking,
gender, age, etc) will both affect the performance of the recognition system in practice.
It is hard to start from the viewpoint of physiology to improve the features, thus to
find a suitable feature for a particular task and adding new skills to eliminate the

influence of environment and speakers are more feasible in the future.
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