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針對非特定語者語音辨識 

使用不同前處理技術之比較 
 
 
 
 
 

研究生： 蕭依娜 指導教授：陳永平 教授 

國立交通大學電機與控制工程學系 

摘要 

 

 本論文針對非特定語者的系統，使用不同特徵粹取技術，透過以單音

素為基礎之非特定語者的語音辨識系統以及以字元為基礎之非特定語者

語音辨識系統的表現優劣來做為比較的依據。這些特徵粹取技術可以被分

為以「語音產生方式」為主以及以「語音感知」為主兩類。第一類包含了

線性預估編碼(LPC)、由線性預估編碼所衍生的倒頻譜係數(LPC-derived 

Cepstrum)以及反射係數(RC)。第二類則包含了梅爾倒頻譜係數(MFCC)以

及感知線性預估(PLP)分析。由架構於非特定語者的實驗結果得知，由語音

感知為主的第二類的辨識率較高於由語音產生方式為主的第一類，其中，

梅爾倒頻譜係數 (MFCC) 在以單音為基礎下，辨識率為 78.3% ，以字元

為基礎下，辨識率為 98.5%；感知線性預估 (PLP) 係數在以單音為基礎

下，辨識率為 78.9% ，以字元為基礎下，辨識率為 98.5%。 
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A Comparison of Different Front-End Techniques for 

Speaker-Independent Speech Recognition 
 

 

Student：Yi-Nuo Hsiao Advisor：Professor Yon-Ping Chen 

Department of Electrical and Control Engineering 
National Chiao Tung University 

ABSTRACT 

 Several parametric representations of the speech signal are compared with regard 

to monophone-based recognition performance and syllable-based recognition 

performance of speaker-independent speech recognition system. The parametric 

representation, namely the feature extraction techniques, evaluated in this thesis can 

be divided into two groups: based on the speech production and based on the speech 

perception. The first group includes the Linear Predictive Coding (LPC), LPC-derived 

Cepstrum (LPCC) and Reflection coefficients (RC). The second group comprises the 

Mel-frequency Cepstral Coefficients (MFCC) and Perceptual Linear Predictive (PLP) 

analysis. From the experimental results, the speech perception group, including 

MFCC (78.3% for monophone-based and 98.5% for syllable-based) and PLP (78.9% 

for monophone-based and 98.5% for syllable-based), are superior to the features 

based on the speech production, including LPC, LPCC and RC, in the 

speaker-independent recognition experiments. 
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Chapter 1  

Introduction 

1.1 Motivation 

Imaging that if we can control the equipments and tools in our surroundings 

through voice command, just like people in the sci-fi movies do, the world will be 

more convenient and fantastic. In many real-world applications, such as toys, cell 

phones, automatic ticket booking, goods ordering, etc and it can be foreseen that there 

will be more and more services provided in the form of speech in the future. The 

speaker-independent (SI) automatic speech recognition is the way to achieve the goal. 

Although the speaker-dependent automatic speech recognition system outperforms the 

speaker-independent automatic speech recognition system in the recognition rate, it is 

infeasible to collect large speech data of the user and then train the models in real 

applications, especially the popular commodities. Hence, the solution of providing 

services for general users is to build a speaker-independent (SI) automatic speech 

recognition system. 

It has been shown that the selection of parametric representations significantly 

affects the recognition results in an isolated-word recognition system [16]. Therefore, 

this thesis focuses on the selection of the best parametric representation of speech data 

for speaker-independent automatic speech recognition. The parametric representation, 

namely the feature extraction techniques, evaluated in this thesis can be divided into 

two groups: based on the speech production and based on the speech perception. The 

first group includes the Linear Predictive Coding (LPC), LPC-derived Cepstrum 

(LPCC) and Reflection coefficients (RC). The second group comprises the 
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Mel-frequency Cepstral Coefficients (MFCC) and Perceptual Linear Predictive (PLP) 

analysis. In general, the speech signal is comprised of the context information and the 

speaker information. The objective of selecting the best features of 

speaker-independent automatic speech recognition is to eliminating the difference 

between speakers and enhancing the difference of phonetic characteristics. Therefore, 

in this thesis, two corpora are employed in the experiment to evaluate the performance 

of different features. 

In recent years, Hidden Markov Model (HMM) has become the most powerful 

and popular speech model used in ASR due to its remarkable ability of characterizing 

the acoustic signals in a mathematically tractable way and better performance 

compared to other methods, such as Neural Network (NN), Dynamic Time Warping 

(DTW). The statistical model HMM plays an important role to model the speech 

signals especially for speech recognition system since the template method is no more 

feasible for large number of users and large vocabulary system. HMM is proceeded 

after the extracting the features from the speech signal where the features means 

MFCCs, LPCs, PLPs, etc. The Hidden Markov Model is employed to model the 

acoustic features in all the experiments in this thesis.  

1.2 Overview 

The chapter of thesis is organized as follows. In chapter 2, the front-end 

techniques of the speech recognition system will be introduced, including the feature 

extraction methods, such as LPC, MFCC and PLP, utilized in this thesis. The chapter 

3 will show the concept of Hidden Markov Model and its training and recognition 

procedure. Then the experimental results and comparison of different features will be 

shown in chapter 4. The experimental conclusion will be given in the last chapter. 



 3

Chapter 2  

Front-End Techniques of Speech Recognition System 

In modern speech recognition systems, the front-end techniques mainly 

includes converting the analog signal to a digital form, extracting important signal 

characteristics such as energy or frequency response, and augmenting perceptual 

meanings of these characteristics, such as human production and hearing. The purpose 

of the front-end processing of the speech signal is to transform a speech waveform 

into a sequence of parameter blocks and to produce a compact and meaningful 

representation of the speech signal. Besides, the front-end techniques can also remove 

the redundancies of the speech and then reduce the computational complexity and 

storage in the training and recognition steps, thus the performance of recognition will 

improve through effective front-end techniques. 

Independent of what the parameter kind extracted later is, there are four simple 

pre-processing steps, including constant bias removing, pre-emphasis, frame blocking, 

and windowing, which are applied prior to performing feature extraction. And these 

steps will be expressed and stated in the following four sections. In addition, three 

common feature extraction methods, Linear Prediction Coding (LPC) [2], Mel 

Frequency Cepstral Coefficient (MFCC) [3], and Perceptual Linear Predictive (PLP) 

Analysis [4], will be described in the last section of this chapter.  

2.1 Constant bias Removing 

The speech waveform probably has a nonzero mean, denoted as DC bias, due to 

the environments, the recording equipments, or the analogous-digital conversion. In 
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order to get better feature vectors, it is necessary to estimate the DC bias and then 

remove it. The DC bias value is estimated by 

 ( )∑
=

=
N

k
bias ks

N
DC

1

1  (2-1) 

where s(k) is the speech signal possessing N samples. Then the signal after removing 

the DC bias, denoted by ( )ks′ , is given 

 ( ) ( ) biasDCksks −=′ ,     Nk ≤≤1  (2-2) 

where N is the total samples of the speech signal. After the process of constant bias 

removing, the pre-emphasis filter is then applied to the speech signal ( )ks′  which is 

stated in the next section. 

2.2 Pre-emphasis 

The purpose of pre-emphasis is to eliminate the effect of glottis while 

producing sound and to compensate the high-frequency parts depressed by the speech 

generation system. Typically, the pre-emphasis is fulfilled with a high-pass filter in a 

form as  

 ( ) 11 −−= µzzP ,        0.9 ≤ µ ≤1.0 (2-3) 

which increases the relative energy of the high-frequency spectrum and introduces a 

zero near µ. In order to cancel a pole near z = 1 due to the glottal effect, the value of µ 

is usually greater than 0.9 and it is set to be µ = 0.97 in this paper. The pole and zero 

of the filter P(z) = 1- 0.97 z−1 are 0 and 0.97 respectively. Furthermore, the frequency 

responses for the pre-emphasis filter with µ = 0.9, 0.97, and 1 are given in Fig 2-1. 

The filter is intended to boost the signal spectrum 20dB per decade approximately [5]. 

Fig.2-2 shows the comparison of the speech signal before and after pre-emphasis.  
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2.3 Frame Blocking 

The objective of frame blocking is to decompose the speech signal into a series 

of overlapping frames. In general, the speech signal changes rapidly in time domain; 

Fig.2- 1  Frequency Response of the pre-emphasis filter 

Fig.2- 2  Speech signal (a) before pre-emphasis and (b) after pre-emphasis 

(a)  

(b)  
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Frame period 

Frame 1 

Frame 2 
Frame 3 

‧‧‧ 

‧‧‧ 

Frame n 

Frame duration

‧‧‧ 

‧‧‧ Feature vectors 

nevertheless, the spectrum changes slowly with time from the viewpoint of the 

frequency domain. Hence, it could be assumed that the spectrum of the speech signal 

is stationary in a short time, and then it is more reasonable to do spectrum analysis 

after blocking the speech signal into frames. There are two parameters should be 

concerned, that is frame duration and frame period, shown in Fig.2-3.  

I. Frame duration 

The frame duration is the length of time (in seconds), usually ranging between 

10 ms ~ 30 ms, over which a set of parameters are valid. If the sampling frequency of 

the waveform is 16 kHz and the frame duration is 25 ms, there are 16 kHz × 25 ms = 

400 samples in one frame. It is noted that the total number of samples in a frame is 

called the frame size. 

II. Frame period 

As shown in Fig.2-3, the frame period is often selected on purpose shorter than 

the frame duration to avoid the characteristics changing too rapidly between two 

successive frames. In other words, there is an overlap with time length equal to the 

difference of frame duration and frame period. 

 

 

 

 

 

 

Fig.2- 3  Frame blocking 
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2.4 Windowing 

After frame blocking, the process of windowing applies to each frame by 

multiplying a Hamming window, shown in Fig.2-4 for N=64, to minimize the 

spectrum distortion and discontinuities. Let the Hamming window be given as    

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛

−
⋅−=

1
2460540
N

ncos..nw π ,   0 ≤ n ≤ N−1 (2-4) 

where N is the window size, chosen the same as the frame size. Then the result of 

windowing process to m-th sample sm(n) can be obtained as 

 ( ) ( ) ( )nwnsns mmw = ,    0 ≤ n ≤ N−1 (2-5) 

Fig.2-5 shows an example of the time domain and frequency response for two 

successive frames, frame m and frame m+1, of the speech signal before and after 

multiplying by a Hamming window. From this figure, the spectrum of smw(n) is 

smoother than the sm(n). It is noted that there is little variation between two 

consecutive frames in their frequency response. 

 

 
Fig.2- 4  Hamming window (a) in time domain and (b) frequency response  

(a) 

(b) 
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Fig.2- 5  Successive frames before and after windowing 

smw(n) 

windowing windowing 

frame m+1 …… 

frame m
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2.5 Feature Extraction Methods 

Feature extraction is the major part of front-end technique for the speech 

recognition system. The purpose of feature extraction is to convert the speech 

waveform to a series of feature vectors for further analysis and processing. Up to now, 

several feasible features have been developed and applied to the speech recognition, 

such as Linear Prediction Coding (LPC), Mel Frequency Cepstral Coefficient 

(MFCC), and Perceptual Linear Predictive (PLP) Analysis, etc. The following 

sections will present all the techniques. 

2.5.1 Linear Prediction Coding (LPC) 

For the past years, Linear Prediction Coding (LPC), also known as 

auto-regressive (AR) modeling, has been regarded as one of the most effective 

techniques for speech analysis. The basic principle of LPC states that the vocal tract 

transfer function can be modeled by an all-pole filter as 

 ( ) ( )
( ) ( )zAzazGU
zSzH p

k

k
k

1

1

1

1

=
−

==

∑
=

−

 (2-6) 

where S(z) is the speech signal, U(z) is the normalized excitation, G is the gain of the 

excitation, and p is the number of poles (or the order of LPC). As for the coefficients 

{a1, a2,…,ap}, they are controlled by the vocal tract characteristics of the sound being 

produced. It is noted that the vocal tract is a non-uniform acoustic tube which extends 

from the glottis to the lips and varies in shape as a function of time. Suppose that 

characteristic of vocal tract changes slowly with time, thus {ak} are assumed to be 

constant in a short time. The speech signal s(n) can be viewed as the output of the 

all-pole filter H(z), which is excited by acoustic sources, either impulse train with 

period P for voiced sound or random noise with a flat spectrum for unvoiced sound, 
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Periodic impulses 

Random noises 

(voiced) 

(unvoiced) G

H(z)=
( )zA
1

S(z) 

glottis vocal tract model

U(z)
P 

P 

shown in Fig.2-6.  

 

 

 

 

From (2-6), the relation between speech signal s(n) and the scaled excitation 

Gu(n) can be rewritten as 

 ( ) ( ) ( )nGuknsans
p

k
k +−= ∑

=1
 (2-7) 

where ( )∑
=

−
p

k
k knsa

1
 is a linear combination of the past p speech samples. In general, 

the prediction value of the speech signal s(n) is defined as  

 ( ) ( )∑
=

−=
p

k
k knsanŝ

1
  (2-8) 

and then the prediction error e(n) could be found as 

 ( ) ( ) ( ) ( ) ( )∑
=

−−=−=
p

k
k knsansnŝnsne

1
  (2-9) 

which is clearly equal to the scaled excitation Gu(n) from (2-7). In other words, the 

prediction error reflects the effect caused by the scaled excitation Gu(n). 

To use the LPC is mainly to determine the coefficients {a1, a2,…,ap} that 

minimizes the square of the prediction error. From (2-9), the mean-square error, called 

the short-term prediction error, is then defined as 

 ( ) ( ) ( )∑ ∑∑
+−

= =

+−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−==

pN

m

p

k
nkn

pN

m
nn kmsamsmeE

1

0

2

1

1

0

2  (2-10) 

where N is the number of samples in a frame. It is commented that the short-term 

Fig.2- 6  Speech production model estimated based on LPC model 
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prediction error is equal to G2 and the notation of sn(m) is defined as 

 ( ) ( ) ( )
⎩
⎨
⎧ −≤≤+

=
otherwise0

10
,

Nm,mwnms
msn    (2-11) 

which means sn(m) is zero outside the window w(m). It can be imaged that In the 

range of m = 0  to m = p − 1 or in the range of m = N  to m = N − 1 + p , the windowed 

signals sn(m) are predicted as ŝn(m) by previous p signals and some of the previous 

signals are equal to zero since sn(m) is zero when m < 0  or m > N − 1 . Therefore, the 

prediction error en(m) is sometimes large at the beginning (m = 0  to m = p − 1 )  or the 

end ( m = N  to m = N − 1 + p )  of the section (m = 0  to m = N − 1 + p ) . 

The minimum of the prediction error can be obtained by differentiating En with 

respect to each ak and setting the result to zero as 

 0=
∂
∂

k

n

a
E ,    p,...,,k 21=   (2-12) 

and then En is replaced by (2-11), the above equation can be rewritten as  

 ( ) ( ) ( ) 0
1

0 1
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−∑ ∑

+−

= =

imskmsâms n

pN

m

p

k
nkn ,    p,...,,i 21=   (2-13) 

where i and k are two independent variables and kâ  are the values of ak for 

k = 1,2,…, p that minimize En. From (2-13), we can further expand the equation as 

 ( ) ( ) ( ) ( )∑ ∑∑
=

+−

=

+−

=

−−=−
p

k

pN

m
nnk

pN

m
nn imskmsâimsms

1

1

0

1

0
, p,...,,i 21=    (2-14) 

where the term ( ) ( )∑
+−

=

−
pN

m
nn imsms

1

0
 and ( ) ( )∑

+−

=

−−
pN

m
nn imskms

1

0
 will be replaced by the 

autocorrelation function rn(i) and rn(i− k) respectively. The autocorrelation function is 

defined as 

 ( ) ( ) ( )∑
+−

=

−−=−
pN

m
nnn imskmskir

1

0
,    p,...,,i 21=     (2-15) 
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where rn(i− k) is equal to rn(k − i ). Hence, it is equivalent to use rn(|i− k|) to replace 

the term ( ) ( )∑
+−

=

−−
pN

m
nn imskms

1

0
 in (2-16). By replacing (2-16) with autocorrelation 

function rn(i) and rn(i− k), we can obtain 

 ( ) ( )irkirâ n

p

k
nk =−∑

=1
,     p,...,,i 21=  (2-16) 

which matrix form is expressed as 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )
( )
( )

( )
( ) ⎥

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−
−−−

−−
−−
−−

−

pr
pr

r
r
r

â
â

â
â
â

rrprprpr
rrprprpr

prprrrr
prprrrr
prprrrr

n

n

n

n

n

p

p

nnnnn

nnnnn

nnnnn

nnnnn

nnnnn

1

3
2
1

01321
10432

34012
23101
12210

1

3

2

1

MM

L

L

MMOMMM

L

L

L

    (2-17) 

which is in the form of Rx = r where R is a Toeplitz matrix, that means the matrix has 

constant entries along its diagonal.  

The Levinson-Durbin recursion is an efficient algorithm to deal with this kind 

of equation, where the matrix R is a Toeplitz matrix and furthermore it is symmetric. 

Hence the Levinson-Durbin recursion is then employed to solve (2-20), and the 

recursion can be divided into three steps, as 

Step 1.  Initialization 

( ) ( )00 nrE = , ( ) 100 =,a  

Step 2.  Iteration ( j
ia  is denoted as a ( i , j ) ) 

for i = 1  to p  { 

( )
( ) ( ) ( )

( )1

11
1

1

−

−−−+
=

∑
−

=

iE

jirij,air
ik

i

j
nn

 

( ) ( )ikii,a =  

for  j = 1  to i − 1  
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( ) ( ) ( ) ( )1ij,iaikij,aij,a −−−−= 1  

( ) ( )( ) ( )11 2 −−= iEikiE  

} 

Step 3. Final Solution 

for j = 1  to p  

( ) ( )pj,aja =  

where the ( )jaâ j =  for j = 1 , 2 , … , p , and the coefficients k ( i )  are called 

reflection coefficients whose value is bounded between 1 and -1. In general, the rn( i )  

is replaced by a normalized form as 

 
( ) ( )

( )0normailizd
n

n
n_ r

irir =    (2-18) 

which will result in identical LPC coefficients (PARCOR) but the recursion will be 

more robust to the problem with arithmetic precision. 

Another problem of LPC is to decide the order p. As p increases, more detailed 

properties of the speech spectrum will be reserved and the prediction errors will be 

lower relatively, but it should be notice when p is beyond some value that some 

irrelevant details will be involved. Therefore, the guideline for choosing the order p is 

given as 

 
( )

,  
unvoiced
voiced

         
5or      4

⎩
⎨
⎧ +

=
s

s

F
F

p  (2-19) 

where Fs is the sampling frequency of the speech in kHz [6]. For example, if the 

speech signal is sampled at 8 kHz, then the order p is can be chosen as 8~13. Another 

rule of thumb is to use one complex pole per kHz plus 2-4 poles [7], hence p is often 

chosen as 10 for the sampling frequency 8 kHz. 
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Historically, LPC is first used directly in the feature extraction process of the 

automatic speech recognition system. LPC is widely used because it is fast and simple. 

In addition, LPC is effective to compute the feature vectors by Levinson-Durbin 

recursion. It is noted that the unvoiced speech has higher error than the voiced speech 

since the LPC model is more accurate for voiced speech. However, the LPC analysis 

approximates power distribution equally well at all frequencies of the analysis band 

which is inconsistent with human hearing because the spectral resolution decreases 

with frequency beyond 800 Hz and hearing is also more sensitive in the middle 

frequency range of the audible spectrum.[11] 

In order to make the LPC more robust, the cepstral processing, which is a kind 

of homomorphic transformation, is then employed to separate the source e(n) from the 

all-pole filter h(n). It is commented that the homomorphic transformation 

( ) ( )( )nxDnx̂ =  is a transformation that converts a convolution  

 ( ) ( ) ( )nhnenx ∗=    (2-20) 

into a sum 

 ( ) ( ) ( )nĥnênx̂ +=    (2-21) 

which is usually used for processing signals that have been combined by convolution. 

It is assumed that a value N can be found such that the cepstrum of the filter ( ) 0≈nĥ  

for n ≥ N and the excitation of ( ) 0≈nê  for n < N. The lifter (“l-i-f-ter” is the inverse 

of the word “f-i-l-ter”) l(n) is used for approximately recovering ( )nê  and ( )nĥ  

from ( )nx̂ . Fig.2-7 shows how to recover h(n) with l(n) given by 

 ( )
⎩
⎨
⎧

≥
<

=
Nn
Nn

nl        
0
1

   (2-22) 
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and the operator D usually uses the logarithmic arithmetic and D-1 use inverse 

Z-transform. In the similar way, the l(n) is given by 

 ( )
⎩
⎨
⎧

<
≥

=
Nn
Nn

nl        
0
1

   (2-23) 

which is utilized for recovering the signal e(n) from x(n). 

In general, the complex cepstrum can be obtained directly from LPC 

coefficients by the formula expressed as 

 ( ) ( )

( )⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

>⎟
⎠
⎞

⎜
⎝
⎛

≤<⎟
⎠
⎞

⎜
⎝
⎛+

=
<

=

∑

∑
−

−=
−

−

=
−

pnakĥ
n
k

pnakĥ
n
ka

nG
n0

nĥ
n

pnk
kn

n

k
knn

1

1

1

0

0ln
0

 (2-24) 

where ĥ (n) is the desired LPC-derived cepstrum coefficients c(n). It is noted that, 

while there are finite number of LPC coefficients, the number of cepstrum is infinite. 

Empirically, the number of cepstrum which is approximately equal to 1.5p is 

sufficient. 

 

 

 

Fig.2- 7  Homomorphic filtering 
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( )nĥ≈ ( )nê≈
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2.5.2 Mel-Frequency Cepstral Coefficients (MFCC) 

The Mel-Frequency Cepstral Coefficients (MFCC) is the most widely used 

feature extraction method for state-of-the-art speech recognition system. The 

conception of MFCC is to use nonlinear frequency scale, which approximates the 

behavior of the auditory system. The scheme of the MFCC processing is shown in 

Fig.2.8, and each step will be described below. 

 

 

 

 

 

 

 

 

 

After the pre-processing steps discussed above, including constant bias 

removing, pre-emphasis, frame blocking, and windowing, are applied to the speech 

signal, the Discrete Fourier Transform (DFT) is then performed to obtain the spectrum 

where DFT is expressed as 

 ( ) ( ) ik/Nj
N

wt eiskS π2
1

0i

−
−

=
∑= ,  Nk <≤0   (2-25) 

where N is the size of DFT chosen the same as the window size. The Fast Fourier 

Transform (FFT) is often adopted to substitute for the DFT for more efficient 

computation. The Mel filter banks will be defined later after making a short 

introduction of the Mel scale. 

Fig.2- 8  Scheme of obtaining Mel-frequency Cepstral Coefficients 
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The Mel scale, is obtained by Stevens and Volkman [8][9], is a perceptual scale 

motivated by nonlinear properties of human hearing and it attempts to mimic the 

human ear in terms of the manner that the frequencies are sensed and resolved. In the 

experiment, the reference frequency was selected as 1 kHz and equaled it with 1000 

mels where a mel is defined as a psychoacoustic unit of measuring for the perceived 

pitch of a tone [10]. The subjects were asked to change the frequency until the pitch 

they perceived was twice the reference, 10 times, half, 1/10, etc. For instance, if the 

frequency they perceived is twice the reference, namely 2 kHz, while the actual 

frequency is 3.5 kHz, the frequency 3.5 kHz is mapping to the Mel frequency twice 

1000 mels, that is, 2000 mels. The formulation of Mel scale is approximated by  

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛ +=

700
12595 10

flogfB   (2-26) 

where B ( f )  is a function for mapping the actual frequency to the Mel frequency, 

shown in Fig.2.9, and the Mel scale frequency is almost linear below 1 kHz and is 

logarithmic above. The Mel filter bank is then designed by placing M triangular filters 

non-uniformly along the frequency axis to simulate the band-pass filters of human 

ears, and the m-th triangular filter is expressed as 

 ( )

( )
( )( )

( ) ( )( ) ( ) ( )
( )( )

( ) ( )( ) ( ) ( )
( )

      

1                              0          

1           
1

1

1           
1

1
1                              0         

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

+>

+≤≤
−+

−+

≤≤−
−−

−−
−<

=

mfk

mfkmf
mfmf

kmf

mfkmf
mfmf

mfk
mfk

kH m
, 

Nk0 <≤ , Mm ≤≤1  (2-27) 

which satisfies ( )∑
=

=
M

m
m kH

1
1  and N is the size of the FFT. The boundary points f (m) 

in the above equation can be calculated by 
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 ( ) ( ) ( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛

+
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

1
1

M
fBfBmfBB

F
Nmf lh

l
s

,   Mm ≤≤1  (2-28) 

where fl and fh is the lowest and highest frequency (Hz) of the filter bank, Fs is the 

sampling frequency of the speech signal and the function B ( f )  is the function to map 

the actual frequency to Mel frequency given in (2-24). The function B-1(b) is the 

inverse of the B( f ) given by 

 ( ) ( )110700 22951 −=− b/bB    (2-29) 

where b is the Mel frequency. It is noted that the boundary points f (m) are uniformly 

spaced in the Mel scale. By replacing B and B-1 in (2-28) by (2-26) and (2-29), the 

equation can be rewritten as  

 ( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
+

⋅
+

⋅=
+

s

1M
m

l

h

s Ff
f

F
fNmf 700

700
700700 l   (2-30) 

which can be used in programming. In general, M is equal to 20 for the speech signal 

with 8 kHz sampling frequency and 24 for 16 kHz sampling frequency. The Mel filter 

banks of the 8 kHz (M = 20) and 16 kHz (M = 24) are shown in Fig.2-10(a) and 

Fig.2-10(b) respectively. The region of spectrum below 1 kHz is processed by more 

filter banks since this region contains more information on the vocal tract such as the 

first formant. The nonlinear filter bank is employed to achieve both frequency and 

time resolution where the narrow band-pass filter at low frequencies enables 

harmonics to be detected and the longer band-pass filter at high frequencies allows for 

higher temporal resolution of bursts. 

The Mel spectrum is derived by multiplied each FFT magnitude coefficient 

with the corresponding filter gain as 
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 ( ) ( ) ( )kHkSkX mtt = ,      1Nk −<≤0       (2-31) 

and the results is accumulated and taken logarithm as 

 ( ) ( )∑
−

=

=
1

0

N

k
tt kXlogmY ,     Mm <≤0  (2-32) 

which is robust to noise and spectral estimation errors. The reason of using the 

magnitude of St(k) is that the information of phase is useless in speech recognition. 

The logarithm operation is utilized to reduce the component amplitudes at every 

frequency and to perform a dynamic compression in order to make the feature 

extraction less sensitive to variations in dynamics where the dynamics means the 

magnitude of the sound. Besides, the logarithm is applied to separate the excitation 

produced by the vocal tract and the filters that represents the vocal tract.  

Since the log-magnitude spectrum Y(m) is real and symmetric, the inverse 

Discrete Fourier Transform (IDFT) is reduced to the Discrete Cosine Transform (DCT) 

and applied to derive the Mel Frequency Cepstral Coefficients ct(i) as 

 ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −= ∑

= 2
12

1
m

M
icosmY

M
ic

M

m
t

π ,     L,,i L1=  (2-33)  

where L is the number of cepstrum coefficients desired and L ≤ M . It is noted that the 

cepstrum is defined in the quefrency domain. The process of DCT successfully 

separates the excitation and the vocal tract, in other words, the low quefrencies, 

namely lower order of cepstrum, represents the slow changes of the envelope of the 

vocal tract and the high quefrencies, namely, higher order of cepstrum represents the 

periodic excitation. In general, 12 MFCCs (L=12) and the energy is adapted where the 

energy term computed by the log of the energy as 

 ( )∑
=

=
N

k
wt ksloge

1

2   (2-34) 

which often referred to as absolute MFCCs, and then the first and second-order 



 20

derivatives of these absolute coefficients are given 

 ( )
( ) ( )( )

∑

∑

=

=
−+ −

= P

p

P

p
ptpt

t

p

icicp
ic

1

2

1

2
∆ ,       L,,i L1=  (2-35) 

and  

 ( )
( ) ( )( )

∑

∑

=

=
−+ −

= P

p

P

p
ptpt

t

p

icicp
ic

1

2

12

2

∆∆
∆ ,    L,,i L1=    (2-36) 

which are useful to cancel the channel effect of the speech. In addition, the derivative 

operation is utilized to obtain the dynamic evolution of the speech signal, that is, the 

temporal information of the feature vector ct(i). If the value of P is too small, the 

dynamic evolution may not be caught; if the value P is too large, the derivatives have 

less meaning since two frames may describe different acoustic phenomena. In practice, 

the order of MFCC is often chosen as 39, including 12 MFCCs ({c(i)}|i=1,2,…,12), 

energy term (et) and their first-order derivatives (∆{c(i)}|i=1,2,…,12, ∆{et}) and 

second-order derivatives (∆2{c(i)}|i=1,2,…,12, ∆2{et}).  

 

 

 

 

 

 

 

 

Fig.2- 9  Frequency Warping according to the Mel scale (a) linear frequency 
scale (b) logarithmic frequency scale 

(a) (b)
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2.5.3 Perceptual Linear Predictive (PLP) Analysis 

The Perceptual Linear Predictive (PLP) analysis is first presented and examined 

by Hermansky in 1990 [4] for analyzing speech. This technique combines several 

engineering approximations of psychophysics of human hearing processes, including 

critical-band spectral resolution, the equal-loudness curve, and the intensity-loudness 

power law. As a result, the PLP analysis is more consistent with the human hearing. In 

addition, the PLP analysis is beneficial for speaker-independent speech recognition 

due to its computational efficiency and yielding a low-dimensional representation of 

Fig.2-10  The Mel filter banks (a) Fs = 8 kHz and (b) Fs =16 kHz 

H2(k) 

(a) 

(b) 

H20(k) H18(k)H1(k) H19(k)……

H24(k) H22(k)H1(k) H2(k) H23(k)……
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speech. The block diagram of the PLP method is shown in Fig.2.11, and each step will 

be described below. [12] 

 

 

 

 

Step I.  Spectral analysis 

The fast Fourier Transform (FFT) is first applied on the windowed speech 

segment (sw(k), for k=1,2,…N) into the frequency domain. The short- term power 

spectrum is expressed as 

( ) ( )( )[ ] ( )( )[ ]22 ImRe ωωω tt SSP +=    (2-37) 

where the real and imaginary components of the short-term speech spectrum are 

squared and added. There is an example in Fig.2-12 which shows the short-term 

speech signal and its power spectrum P(ω).  

 

 

Fig.2-11  Scheme of obtaining Perceptual Linear Predictive coefficeints 
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Step II.  Critical-band analysis 

The power spectrum P(ω) is then warped along the frequency axis ω into the 

Bark scale frequency Ω as 

 ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+⎟
⎠
⎞

⎜
⎝
⎛+= 1
12001200

ln6
2

π
ω

π
ωωΩ    (2-38) 

where ω is the angular frequency in rad/sec, which is shown in Fig.2-13. The resulting 

power spectrum P(Ω) is then convoluted with the simulated critical-band masking 

curve Ψ(Ω) and get the critical-band power spectrum Θ (Ω i ) as 

 ( ) ( ) ( )∑
−=

−=
52

31

.

.
iΩΩΨΩP

Ω

ΩΘ i ,  M,...,,i 21=  (2-39) 

where M is number of Bark filter banks and the critical-band masking curve Ψ(Ω), 

shown in Fig.2-14, is given by,  

Fig.2-12  Short-term speech signal (a) in time domain and (b) power spectrum 

(b) 

(a) 
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  (2-40) 

where Ω is the Bark frequency just mentioned in (2-38). This step is similar to Mel 

filter banks processing of MFCC where the Mel filter banks are replaced by the 

analogous trapezoid Bark filter banks. The step between two banks is constant on the 

Bark scale, and the interval is chosen so that the filter banks must cover the whole 

analysis band. For example, 21 Bark filter banks, which cover from 0-Bark to 

19.7-Bark in 0.985-Bark steps, are employed for analyzing speech signal of 16 kHz 

sampling frequency, shown in Fig.2-15. It is noted that 8 kHz is mapping to 

19.687-Bark and the steps are usually chosen approximately 1-Bark. Fig.2-16 is the 

power spectrum after applying the Bark filter banks (M = 21) to the speech signal in 

Fig.2-12. The Bark filter banks and the Mel filter banks are both allocate more filters 

to the lower frequencies, where the hearing is more sensitive. Sometimes, the Bark 

filter banks are replaced with the Mel filter banks. 

 

 

 

 

 

 

 

 

Fig.2-13  Frequency Warping according to the Bark scale 
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Fig.2-14  Critical-band curve 

Fig.2-15  The Bark filter banks (a) in Bark scale (b) in angular frequency scale 
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Step III.  Equal-loudness pre-emphasis 

In order to compensate the unequal sensitivity of human hearing at different 

frequencies, the sampled power spectrum Θ ( Ω i ) obtained in the (2-39) is then 

pre-emphasis by the simulates equal loudness curve E(ω), expressed as  

 ( ) ( ) ( )ii E ΩΘωΩΞ ⋅= ,    M,...,,i 21=  (2-41) 

where the function E(ω) is given by 

 ( ) ( )
( ) ( ) ( )26692262

462

10589103801036
10856

×+××+××+

×+
=

...
.ωE

ωωω
ωω

  (2-42) 

where E(ω) is a high pass filter. Then the value of the first and last samples are made 

equal to the values of their nearest neighbors, thus Ξ ( Ω i )  begins and ends with two 

equal-valued samples. Fig.2-17 shows the power spectrum after equal-loudness 

pre-emphasis. From the Fig.2-17, the part of higher frequency in Fig.2-16 has been 

well compensated.  

 

 

Fig.2-16  Critical-band power spectrum 
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Step IV.  Intensity-loudness power law 

Since the nonlinear relation between intensity of the sound and its perceived 

loudness, the spectral compression is then utilized by using the power law of hearing 

given by 

 ( ) ( ) 330.
ii ΩΞΩΦ = ,      M,...,,i 21=   (2-43) 

where a cubic root compensation of critical band energies is applied. This step can 

reduce the spectral-amplitude variation of the critical-band spectrum. It is noted that 

the log arithmetic is adopted in the process of MFCC.  

 

 

 

 

 

 

Fig.2-17  Equal loudness pre-emphasis 

Fig.2-18  Intensity-loudness power law 
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Step V.  Autoregressive modeling 

The autocorrelation coefficients rs(n) are not computed in the time domain 

through (2-18) but is obtained as the inverse Fourier transform (IDFT) of the power 

spectrum P(ω) of the signal. The IDFT is better choice than the FFT here since only a 

few autocorrelation values are needed. If the order of the all pole model is equal to p, 

only the first p+1 autocorrelation values are used to solve the Yule-Walker equation. 

Then the standard Durbin-Levinson recursion is employed to compute the PLP 

coefficients.  
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Chapter 3  

Speech Modeling and Recognition 

During the past several years, Hidden Markov Model (HMM) [20][21][22] has 

become the most powerful and popular speech model used in ASR because of its 

wonderful ability of characterizing the speech signal in a mathematically tractable 

way and better performance comparing to other methods. The assumption of the 

HMM is that the data samples can be well characterized as a parametric random 

process, and the parameters of the stochastic process can be estimated in a precise and 

well-defined framework.  

3.1 Introduction 

In a typical HMM based ASR system, the HMM is proceeded after the feature 

extraction. The input of the HMM is the discrete time sequence of feature vectors, 

such as MFCCs, LPCs, etc. These feature vectors are customarily called observations,  

since these feature vectors represent the inforamtion observable from the incoming 

speech utterance. The observation sequence O ={o1, o2, …, oT} is a set of the 

observations from time 1 to time T, where the time t is the frame index. 

An Hidden Markov Model can be used to represnent a word (one, two, three, 

etc) , a syllable (“grand”, “fa”, “ther”, etc), a phone (/b/, /o/, /i/, etc), and so forth. The 

Hidden Markov Model is essentially structured by a state sequence { }Tq,,q,q L21=q  

where { }NS,,S,Sq L21∈t , N is the total number of states and each state is generally 

associated with a multidimensional probability distribution. The states of HMM can 
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be viewed as collections of similar acoustical phenomena in an utterance. The total 

number of state N should be chosen well to represent these phenomena. In general, 

different number of state of HMM would lead to differnet recognition results [12]. 

For a particular state, an observation can be generated according to the 

associated probability distribution. This means that there is not a one-to-one 

correspondence between the observation and the state, and the state sequence cannot 

be determined unanimously by a given oberservation sequence. It is noticed that only 

the observation is visible, not the state. In other words, the model possesses hidden 

states and is named as the “Hidden” Markov Model. 

3.2 Hidden Markov Model 

Formally speaking, a Hidden Markov Model is defined as ( )πBA ,,=Λ , which 

includes the initial state distribution π, state-transition probability distribution A, and 

observation probability distribution B. Each elements will be illustrated respectively 

as follows. 

I. Initial state distribution π 

The initial state distribution is defined as π = {π i}in which 

 ( )ii SqP == 1π ,    Ni ≤≤1   (3-1) 

where π i  is the probability that the initial state q1 of the state sequence 

{ }Tq,,q,q L21=q  is Si. Thus, the summation of the probability of all possible initial 

state is equal to 1, given as 

 121 =+++ Nπππ L   (3-2) 
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II. State-transition probability distibution A 

The state transition probability distribution A  of an N-state HMM can be 

expressed as { aij} or in the form of square matrix 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

NNN

N

N

aaa

aaa
aaa

L

MOMM

L

L

21

22221

11211

N

A  (3-3) 

with constant probability aij 

 ( )iq|jqpa tij === +1t ,     Nji, ≤≤1  (3-4) 

representing the transition probability from state i at time t to state j at time t+1. 

Briefly, the transitions among the states are governed by a set of probabilities aij, 

called the transition probabilities, which are assumed not changing with time. It is 

noticed that the summation of all the probabilities from a particular state at time t to 

itself and the others at time t+1 should be equal to 1, i.e. the summation of all the 

entries in the i-th row is equal to 1, given as 

 121 =+++ iNii aaa L ,     N,...,,i 21=  (3-5) 

For any state sequence { }Tq,,q,q L21=q  where { }Nt S,,S,S L21∈q , the probability 

of q being generated by the HMM is 

 ( )
TT qqqqqq aaa,|P

13221 −
= LiAq ππ  (3-6) 

For example, the transition probability matrix of a three-state HMM can be expressed 

in the form as 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

aaa
aaa
aaa

A  (3-7) 

where 



 32

S1 

S2 

S3 

Time 1 2

a11 S1

S2

S3

a12 

a31 

a13 

a21 
a22 

a23 

a32 

a33 

S1

S2

S3

a11 S1

S2

S3

a12

a31

a13

a21

a22

a23

a32

a33

‧‧‧

‧‧‧

‧‧‧

T-1 T

state 

π1 

π2 

π3 

q2 qTqT-1
q1 

 1321 =++ iii aaa ,     321 ,,i =  (3-8) 

for arbitrary time t. Fig.3-1 shows all the possible paths, labeled with transition 

probabilities between states, from time 1 to T. The structure without any constrain 

imposed on state transitions is called ergodic HMM. It is easy to find that the number 

of all possible paths ( ) 12 −TN  (in this case N = 3 ) would greatly increase as time 

increasing.  

 

 

 

 

 

 

 

 

A left-to-right HMM (namely Bakis model) with the elements of the 

state-transition probability matrix 

 0=ija ,     for ij <  (3-9) 

is adopted in general cases to simplify the model and reduce the computation time. 

The main conception of a left-to-right HMM is that the speech signal varies with time 

from left to right, that is, the acoustic phenomena change sequentially and the first 

state must be S1. There are two general types of left-to-right HMM, shown in Fig.3-2. 

Fig.3-1  Three-state HMM 
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By using a three-state HMM as an example, the transition probability matrix A with 

left-to-right and one-skip constrain, shown in Fig.3-3, can be express as 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

33

2322

131211

00
0

a
aa
aaa

A  (3-10) 

where A is an upper-triangular matrix with 21a = 31a = 32a = 0. Fig.3-4 shows all 

possible paths between states of a three-state left-to-right HMM from time 1 to time T. 

If no skip is allowed, the transition probability matrix A can be express as 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

33

2322

1211

00
0
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a
aa

aa
A  (3-11) 

where the element 13a  in (3-7) is replaced by zero. Similarly, Fig.3-5 shows all 

possible paths between states of a no-skip three-state HMM from time 1 to time T.  

 

 

 

 

 

 

 

 

 

 

Fig.3-2  Four-state left-to-right HMM with (a) one skip and (b) no skip 

Fig.3-3 Typical left-to-right HMM with three states 
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(b) 
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a13

   
a12

a23

S1 S2 S3 
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III. Observation probability distribution B  

Since the state sequence q is not observable, each observation ot can be 

envisioned as being produced with the system in state qt . Assume that the production 

of ot in each possible state Si is stochastic, where i =1, 2,…, N, and is characterized by 

a set of observation probability functions B = {bj(ot)} where  

 ( ) ( )jtttj Sq|Pb == oo ,     N,...,,j 21=  (3-12) 

Fig.3-4  Three-state left-to-right HMM with one skip 

Fig.3-5  Three-state left-to-right HMM with no skip 
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which discribes the probability of the observation ot being produced with respect to 

state j. If the distribution of the observations are continuous and infinite, the finite 

mixture of Gaussian distributions, that is, a weighted sum of M Gaussian distributions 

is used, expressed as 

 ( ) ( )tjmjm

M

m
mjtj ,,wb oΣµo N∑

=

=
1
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( ) ( )
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 (3-13) 

where µ jm and Σ jm indicates the mean vector and the covariance matrix of the m-th 

mixture component in state Sj. The observations are assumed to be independent to 

each other, the covariance matrix can be reduced to a diagonal form Σ jm as 
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or simplified as a vector with L-dimension as 

 ( ) ( ) ( )[ ]Lσσσ jkjkjkjk L21=Σ  (3-15) 

where L is the dimension of the observation ot. The mean vector can be expressed as 

 ( ) ( ) ( )[ ]Ljmjmjmjm µµµ L21=µ  (3-16) 

Then, the observation probability function bj(ot) can be written as 
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As for the weighting coefficient wjk, it must satisfying 

 1
1

=∑
=

M

m
jmw   (3-18) 
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where wjk is non-negative value.  

Fig.3-6 shows that the probabilities of the observations sequence O ={o1, o2, o3, 

o4 } generated by state sequence q = {q1, q2, q3, q4} are bq1
(o1), bq2

(o2), bq3
(o3), bq4

(o4), 

respectively. 

 

 

3.3 Training Procedure 

Given a HMM Λ ={A, B, π} and a set of observations O ={o1, o2,…, oT }, the 

purpose of training the HMMs is to adjust the model parameters so that the likelihood 

( )Λ|OP  is locally maximized by using iterative procedure. The modified k-means 

algorithm [19] and Viterbi algorithm are employed in the process of obtaing initial 

HMMs. The Baum-Welch algorithm (or called the forward-backward algorithm) is 

performed to train the HMMs. Before applying the training algorithm, prepareation 

work of the corpus and HMM is required prior to the trainging procedure as below  

I. A set of speech data and their associated transcriptions should be prepared, and the 

speech data must be transformed to the a series of feature vectors (LPC, RC, 

LPCC, MFCC, PLP, etc).  

Fig.3-6  Scheme of probability of the observations 
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II. The number of states and the number of mixtures in a HMM must be determined, 

according to the degree of variations in the unit. In general, 3~5 states and 6~8 

states are used for representing the English phone and Mardarin Chinese phone, 

respectively. 

It is noted that the features are the the observations of the HMM, and these 

observations and the transcriptions are then utilized to train the HMMs. 

The training procedure can be divided into two manners depending on whether 

the sub-word-level segment information, or called the boundary information, is 

available, that is labeled with boundary manually. If the segment information is 

available, such as Fig.3-7(a), the estimation of the HMM parameter would be easier 

and more precise; otherwise, training with no segment information would cost more 

computation time to re-align the boundary and re-estimate the HMM, in addition, the 

HMM often performs not as good as the one with well-segment information. The 

transcription and boundary condition should be saved in text files, such as the form in 

Fig.3-7(b)(c). 

It is noted that if the speech doesn’t have segment information, it is also 

necessary to get the transcription and save it before training. The block diagram of the 

training procedure is shown in Fig.3-8. The main difference between training the 

HMM with boundary information and training the HMM without boundary 

information is on the processing of creating the initialized HMM. Then, the following 

section will divided into two parts to present the details of creating the initialized 

HMM. 

 

 

 

(a) 
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Fig.3-7  (a) Speech labeled with the boundary and transcription save as text file (b) 
with and (c) without boundary information  

Fig.3-8  Training procedure of the HMM 
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I. Boundary information is available 

The procedure of creating the initialized HMMs is shown in Fig.3-9, Fig 3-10. 

The modified k-means algorithm and the viterbi algorithm are utilized in training 

iteration. On the first iteration, the training data of a specific model are uniformly 

divided into N segments, where N is the number of states of HMM, and the successive 

segments are associated with successive states. Then, the HMM parameters πi and aij 

can be estimated first by 

 
1 at time  nsobservatio ofnumber 

1 at time  statein  nsobservatio ofnumber 
=

=
=

j
jπ  (3-19) 

 
i

jiaij  state from ns transitioofnumber 
 state  to state from ns transitioofnumber 

=  (3-20) 

3.3.1 Midified k-means algorithm 

For continuous-density HMM with M Gaussian mixtures per state, the modified 

k-means [13][14] are used for cluster the observations O into a set of M clusters 

which are associated to the number of mixtures in a state, shown in Fig.3-9. Let the 

i-th cluster of a m-cluster set at the k-th iteration denote as k
im,ω  where i =1,2,…, m  

and k = 1,2,…, k max with kmax being the maximum allowable iteration count. Y(ω) is 

the representive pattern for cluster ω. the number of clusters in the current iteration 

and i is the iteration counter in classification process. The modified k-means 

algorithm is given by  

(i) Set m=1, k=1 and i=1; O=k
im,ω and compute the mean Y(Ο) of the entire 

training set O. 

(ii) Classify the vectors by minimum distance principle. Accumulate the total 
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intracluster distance for each cluster k
im,ω  denoted as k

i∆ . If none of the 

following conditions meet then back to (ii) and k=k+1. 

a. k
im,

k
im, ωω =+1 , for all i=1,2,…,m 

b. k meets the preset maximum allowable number of iterations. 

c. The change in the total accumulated distance is below the preset 

threshold th∆ . 

(iii) Record the mean and the covariance of the m-cluster,. If m is reached the 

number of mixtures M, then stop, else, go to (iv). 

(iv) Split the mean of the cluster that has largest intracluster distance and 

m=m+1, reset k and go to (ii). 

From the modified k-means, the observations are clustered into M groups 

where M is the number of mixtures in a state. The parameters can be estimated by 

j
jmwjm  statein   classified nsobservatio ofnumber 
  statein  cluster in  classified nsobservatio ofnumber 

=
j

jm

N
N

=   (3-21) 

jmjm  statein  cluster in classified nsobservatio  theofmean =µ ∑
=

⋅=
jmN

n
n

jmN 1

1 o  (3-22) 

jmjm  statein  cluster in  classified nsobservatio  theofmatrix  covariance=Σ  

 ( )( )T

1

1
jmn

N

n
mjn

jm

ˆˆ
N

jm

µoµo −−⋅= ∑
=

 (3-23) 

where on (1≤ n ≤ Njm ) is the observations classified in cluster m in state j. Then the 

HMM parameters is all updated. 
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Fig.3-9  The block diagram of creating the initialized HMM 

Fig.3-10  Modified k-means 
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3.3.2 Viterbi Search 

Except for the first estimation of the HMM, the uniform segmentation is 

replaced by Viterbi alignment, viz Viterbi search, which is applied to find the optimal 

state sequence q ={q1, q2,…,qT} where model Λ and the observations sequences 

O ={o1, o2,…, oT } are given. By the Viterbi alignment, each observation will be 

re-align to the state so that the new sate sequence q ={q1, q2,…,qT} maximizes the 

probability of generating the observation sequence O ={o1, o2,…, oT }.  

By taking logarithm of the model parameters, the Viterbi algorithm [14] can be 

impletement with only N2T additions and wihout any multiplications. Define ( )itδ  

be the highest probability along the singal path at time t, expressed as  

 ( )
{ }

( )ΛoooP
q

|,...,,,i,q,q,...,q,qi ttt,q,...,q,qt
t,

21121  max
121

== −= −

δ   (3-24) 

and by induction we can obtain 

 ( ) ( )[ ] ( )11 max ++ = tjijtit baij oδδ  (3-25) 

which is shown in Fig.3-11. 

 

 

 

 

 

 

 

 

Fig.3-11  Maximization the probability of generating the observation sequence 
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The Viterbi algorithm is expressed as follows 

(i) Preprocessing 

 ( )ii
~ ππ log= ,       Ni ≤≤1  (3-26) 

 ( ) ( )( )titi bb~ oo log= ,  Ni ≤≤1 , Tt ≤≤1  (3-27) 

 ( ) ( )jitji aa~ log=o ,   Ni ≤≤1  (3-28) 

(ii) Initialization 

 ( ) ( )( ) ( )111 log oib~~ii~
i +== πδδ ,    Ni ≤≤1  (3-29) 

 ( ) 01 =iψ ,   Ni ≤≤1  (3-30) 

 where the array ψi ( j) is used for backtracking.  

(iii) Recursion  

 ( ) ( )( ) ( )[ ] ijijtNitt b~a~j~jj~ ++==
≤≤

δδδ
1
maxlog ,   Tt ≤≤2 , Nj ≤≤1  (3-31) 

 ( ) ( )[ ]ij1tNit a~iδ~j += −≤≤1
maxargψ ,   Tt ≤≤2 , Nj ≤≤1  (3-32) 

(iv) Termination 

 ( )[ ]i~P~ TNi

* δ
≤≤

=
1
max  (3-33) 

 ( )[ ]i~q TNi

*
T δ

≤≤
=

1
max arg  (3-34) 

(v) Backtracking 

 ( )*
tt

*
t qq 11 ++=ψ ,  12,...,T1,Tt −−=  (3-35) 

From the above, the state sequence q which maximizes *P~ implies an alignment of 

observations with states.  

The above procedures, viterbi alignment, modified k-means and parameter 

estimation, are applied until *P~  converges. After obtaining the initialized HMM, the 

Baum-Welch algorithm and the Viterbi search are then applied to get the first 
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estimation of the HMM. Finally, the Baum-Welch algorithm is performed repeatedly 

to reestimate the HMMs simultaneously. The Baum-Welch algorithm will be 

introduced later. 

II. Boundary information is not available 

In this case, all the HMMs are initialized to be identical and the mean and the 

variance of the all states are set to be eqaul to the global mean and variance. As for the 

initial state distribution π and state-transition probability distribution A, there is no 

information to compute these parameters; hence, the parameters π  and A should be 

set arbitrarily. From the above process, the initialized HMMs are then generated. 

Afterwards, the processes for reestimating HMMs are resemble the reestimated 

processes for boundary information, that is using the Baum-Welch algorithm. After 

reestimating by Baum-Welch algorithm, the Viterbi search is also needed to re-align 

the boundaries of the sub-word. This step is different to the training procedure which 

already have boundary information. The next section will introduce the Baum-Welch 

algorithm employed in the HMM training processing. 

 

3.3.3 Baum-Welch reestimation  

The Baum-Welch algorithm, known as the forward-backward algorithm is the 

core of training HMM. Consider the forward variable αt (i) defined as 

 ( ) ( )Λooo |iq,,...,,Piα ttt == 21   (3-36) 

that means the probability of the state i at time t which having generating the 

observation sequence o1, o2,…, ot given the model Λ, shown in Fig.3-12. The forward 
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variable is obtained inductively by  

Step 1.  Initialization: 

 ( ) ( )11 oii bi πα = ,   Ni ≤≤1  (3-37) 

Step II.  Induction: 

 ( ) ( ) ( )1
1

1 +
=

+ ⎥
⎦

⎤
⎢
⎣

⎡
= ∑ tj

N

i
ijtt baiαj oα ,  Nj ≤≤1 , 11 −≤≤ Tt  (3-38) 

In similar way, the backward variable is defined as 

 ( ) ( )Λooo i,q|,...,,Pi tTttt == ++ 21β  (3-39) 

that represent the probability of the observation sequence from t +1 to the end given 

state i at time t and the model Λ, shown in Fig.3-12. The backward variable is 

obtained inductively by 

Step I.  Initialization: 

 ( ) 1=iTβ ,   Ni ≤≤1  (3-40) 

Step II.  Induction: 

 ( ) ( ) ( ) ijtj

N

j
tt abji 1

1
1 +

=
+∑= oββ ,  Ni ≤≤1 , 12,...,T1,Tt −−=   (3-41) 
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Besides, three variables should be defined, that is ξt ( i , j ) and the posteriori 

probability γt ( i ) and γt ( i , j ). The variable ξt ( i , j ) is defined as 

 ( ) ( )ΛO,|Sq,SqPji, jtitt === +1ξ  (3-42) 

which is the probability of being in state i at time t and state j at time t +1. The 

posteriori probability γt (i) is expressed as 

 ( ) ( ) ( )∑
=

===
N

j
titt ji,,|Sqi

1
ξγ ΛOP  (3-43) 

which is the probability being in state i at time t. The variable γt ( i , j ) is defined as 

 ( ) ( )ΛO,|km,SqPki, titt ===γ  

which represent the probability of being in state i at time t with the k-th mixture 

component accounting for ot.  

The HMM parameter A, π can be re-estimated by using the variables mentioned 

above as 

 1 at time  statein   timesofnumber  expected == tSiiπ ( )i1γ=  (3-44) 
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 kS jjk  mixture and stateat  nsobservatio  theofmean =µ  
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From the statistical viewpoint of estimating HMM by 

Expectation-Maximization (EM) algorithm, the equations for estimating the 

parameters are the same as the equations derived from Baum-Welch algorithm. 

Besides, it has been shown that the likelihood function will converge to a critical 

point after iterations and the Baum-Welch algorithm leads to a local maximum only 

due to the complexity of the likelihood function. 



 48

3.4 Recognition Procedure 

Given the HMMs and the observation sequence O ={o1, o2,… , oT }, the 

recognition stage is to compute the probability P(O|Λ) by using an efficient method, 

forward-backward procedure. This method has been introduced in the training stage. 

Recall the forward variable αt(i) is defined as  

 ( ) ( )Λ|Sq,,...,Pj ittt ==+ ooo 211α  

 ( ) ( )1
1

+
=

⎥
⎦

⎤
⎢
⎣

⎡
= ∑ tj

N

i
ijt baiα o ,   Ni ≤≤1  (3-52) 

and the backward variable βt(i) 
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given the initial conditions 

 ( ) ( )11 oii bi πα = ,   Ni ≤≤1  (3-54) 

 ( ) 1=iTβ ,    Ni ≤≤1  (3-55) 

where N is the number of states. The probability of being in state i at time t is 

expressed as 

 ( ) ( ) ( )iβiα|Sq,P ttit == ΛO  (3-56) 

such as the total probability P(O|Λ) is then obtained by 
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which is employed in the speech recognition stage. 
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Chapter 4  

Experimental Results 

Several speaker-independent recognition experiments are shown in this chapter. 

The effect and performance of different front-end techniques are discussed in the 

experimental results. The corpus will be described in section 4.1. The experiments are 

divided into two parts, including the monophone-based HMM and the syllable-based 

HMM. The experimental results will be shown in section 4.2, and 4.3, respectively. 

4.1 Corpus 

The corpora employed in this thesis are TCC-300 provided by the Associations 

of Computational Linguistics and Chinese Language Processing (ACLCLP) and the 

connected-digits database provided by the Speech Processing Lab of the Department 

Communication Engineering, NCTU. These corpora are introduced as below. 

4.1.1 TCC-300 

In the speaker-independent speech recognition experiments, the TCC-300 

database from the Associations of Computational Linguistics and Chinese Language 

Processing (ACLCLP) was used for monophone-based HMM training. TCC-300 is a 

collection of microphone speech databases produced by National Taiwan University 

(NTU), National Chiao Tung University (NCTU) and National Cheng Kung 

University (NCKU). In this thesis, the training corpus uses the speech databases 

produced by National Chiao Tung University.  

The speech signal is recording under the following conditions, listed in Table 

4-1. The speech is saved in the MAT file format, which is a format for recording the 
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speech waveform in PCM format and, in addition, recording the condition of the 

environment and the speaker in detail by adding extra 4096 bytes file header into the 

PCM.  

Table 4-1  The recording environment of the TCC-300 corpus produced by NCTU 

File Format MAT 

Microphone Computer headsets VR-2560 made by Taiwan Knowles 

Sound card Sound Blaster 16 

Sampling rate 16 kHz 

Sampling format 16 bits 

Speaking style  read 

The database provided by NCTU is comprised of paragraphs spoken by 100 

speakers (50 males and 50 females). Each speaker read 10-12 paragraphs. The articles 

are selected from the balanced corpus of the Academia Sinica and each article 

contains several hundreds of words. These articles are then divided into several 

paragraphs and each paragraph includes no more than 231 words. Table 4-2 shows the 

statistics of the databases 

Table 4-2  The statistics of the database TCC-300 (NCTU) 

 Males Females Total 

Amounts of speakers 50 50 100 

Amounts of syllables 75059 73555 148614 

Amounts of Files 622 616 1238 

Time (hours) 5.98 5.78 11.76 

Maximum words in a paragraph 229 131 - 

Minimum words in a paragraph 41 11 - 
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4.1.2 Connected-digits corpus 

This connected-digits corpus is provided by the Speech Processing Lab of the 

Department Communication Engineering, NCTU. All signals are stored in a format of 

PCM without file header. The recording format of the waveform files is listed in Table 

4-2. The database consists of 3-11 connected digits, such as “011415726”, “79110”, 

“347”, etc, spoken by 100 speakers (50 males and 50 females). The statistics of the 

database is shown in Table 4-4. 

Table 4-3  Recording environment of the connected-digits 

Connected-digits format 

File Format PCM 

Sampling rate 16 kHz 

Sampling format 16 bits 

 

 

Table 4-4  Statistics of the connected-digits database 

 Males Females Total 

Amounts of speakers 50 50 100 

Amounts of Files 500 499 999 

Maximum digits in a file 3 3 - 

Minimum words in a file 11 11 - 
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4.2 Monophone-based Experiment 

The objective of this experiment is to evaluate the performance of different 

features based on monophone HMMs for speaker-independent speech recognition. 

The phonetic transcription SAMPA-T is employed in this thesis and then the 

monophone-based HMMs are then trained, which will states in the section 4.2.1 and 

4.2.2, respectively. The experiment results will be shown in the last section. 

4.2.1 SAMPA-T 

SAMPA-T (Speech Assessment Method Phonetic Alphabet - Taiwan) developed 

by Dr. Chiu-yu Tseng, Research Fellow of Academia Sinica, are employed for 

transcribing the database with a machine readable phonetic transcription [23]. Table 

4-5 and Table 4-6 are the comparison table of 21 consonants and 39 vowels of 

Chinese syllables between SAMPA-T, Chinese phonetic alphabet, and the type of 

pronunciations.  

Table 4-5  The comparison table of 21 consonants of Chinese syllables between 
SAMPA-T and Chinese phonetic alphabets 

Type SAMPA phonetic 
alphabet Type SAMPA phonetic 

alphabet 

b ㄅ dj ㄐ 

p ㄆ tj ㄑ 

d ㄉ dz` ㄗ 

t ㄊ ts` ㄔ 

g ㄍ dz ㄗ 

plosive 

k ㄎ 

affricates 

ts ㄘ 

f ㄈ m ㄇ 

h ㄏ 
nasals 

n ㄋ 

s ㄙ liquid l ㄌ 

s` ㄕ   
sj ㄒ  

fricatives 

Z` ㄖ  
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Table 4-6  Comparison table of 39 vowels of Chinese syllables between SAMPA-T, 
and Chinese phonetic alphabets  

SAMPA phonetic 
alphabet SAMPA phonetic 

alphabet SAMPA phonetic 
alphabet 

@n ㄣ aN ㄤ u@n ㄨㄣ 

i ㄧ @N ㄥ uai ㄨㄞ 

u ㄨ iE ㄧㄝ ua ㄨㄚ 

a ㄚ iai ㄧㄞ uaN ㄨㄤ 

o ㄛ iEn ㄧㄢ uei ㄨㄟ 

e ㄝ ia ㄧㄚ uo ㄨㄛ 

@ ㄜ iaN ㄧㄤ y ㄩ 

@` ㄦ iau ㄧㄠ yE ㄩㄝ 

ai ㄞ in ㄧㄣ yEn ㄩㄢ 

ei ㄟ iN ㄧㄥ yn ㄩㄣ 

au ㄠ iou ㄧㄡ yoN ㄩㄥ 

ou ㄡ uan ㄨㄢ U  

an ㄢ oN ㄨㄥ U`  

p.s. U` is the null vowel for retroflexed vowels and U represents the null vowel for un- 
retroflexed vowels. 

All the wave files should be corresponding to a transcription file. For example, 

a part of paragraph marked with Chinese phonetic alphabets and tones (1, 2,…, 5) are 

given in the database, shown in Table 4-7. Table 4-8 shows the transcriptions of the 

words in Table 4-7 marked with SAMPA-T. For monophone-based HMM training, the 

word-level transcriptions, such as shown in Table 4-8, should be further transferred to 

the phone-level transcriptions, shown in Table 4-9, where the tones are neglected. It is 

noted that the punctuation marks, such as comma and period, are replaced with the 

notation “sil” which means it is silent at this moment in time.  
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Table 4-7  A paragraph marked with Chinese phonetic alphabets 

茶 味 有 苦 、 澀 、 嗆 、 薰 ，  
ㄔㄚˊ ㄨㄟˋ ㄧㄡˊ ㄎㄨˇ 、 ㄙㄜˋ 、 ㄑㄧㄤˋ 、 ㄒㄩㄣ ， 

由 其 中 才 能 品 味 出 茶 味 的 香 、 甘 、 生 津 ， 
ㄧㄡˊ ㄑㄧˊ ㄓㄨㄥ ㄘㄞˊ ㄋㄥˊ ㄆㄧㄣˇ ㄨㄟˋ ㄔㄨ ㄔㄚˊ ㄨㄟˋ ㄉㄜ․ ㄒㄧㄤ 、 ㄍㄢ 、 

ㄕㄥ ㄐㄧㄣ ， 

同 樣 的 ， 人 生 也 是 有 不 同 的 情 緒 ， 
ㄊㄨㄥˊ ㄧㄤˋ ㄉㄜ․ ， ㄖㄣˊ ㄕㄥ ㄧㄝˇ ㄕˋ ㄧㄡˇ ㄅㄨˋ ㄊㄨㄥˊ ㄉㄜ․ ㄑㄧㄥˊ ㄒㄩˋ 

起 起 落 落 ， 
ㄑㄧˊ ㄑㄧˇ ㄌㄨㄛˋ ㄌㄨㄛˋ ， 

不 也 是 由 痛 苦 中 才 能 真 正 體 會 快 樂 是 什 麼 嗎 ？ 
ㄅㄨˋ ㄧㄝˇ ㄕˋ ㄧㄡˊ ㄊㄨㄥˋ ㄎㄨˇ ㄓㄨㄥ ㄘㄞˊ ㄋㄥˊ ㄓㄣ ㄓㄥˋ ㄊㄧˇ ㄏㄨㄟˋ 

ㄎㄨㄞˋ ㄌㄜˋ ㄕˋ ㄕㄜˊ ㄇㄛ․ ㄇㄚ․ ？ 

 

Table 4-8  Word-level transcriptions using SAMPA-T 

ts`a2  uei4  iou2  ku3,  s@4,  tjiaN4,  sjyn1, 
iou2  tji2  dz`oN1  tsai2  n@N2  pin3  uei4  ts`u1  ts`a2  uei4  d@5  sjiaN1,  gan1,  
s`@N1  djin1, 
toN2  iaN4  d@5,  Z`@n2  s`@N1  iE3  s`U`4  iou3  bu4  toN2  d@5  tjiN2  sjy4, 
tji2  tji3  luo4  luo4, 
bu4  iE3  s`U`4  iou2  toN4  ku3  dz`oN1  tsai2  n@N2  dz`@n1  dz`@N4  ti3  huei4  
kuai4  l@4  s`U`4  s`@2  mo5  ma5? 

 

Table 4-9  Phone-level transcriptions using SAMPA-T 

ts`  a  uei  iou  ku  sil  s  @  sp  tj  iaN  sp  sj  yn  sil 
iou  tj  i  dz`  oN  ts  ai  n  @N  p  in  uei  ts`  u  ts`  a  u  ei  d  @  sj  iaN  sil  
g  an  s`  @N  dj  in  sil 
t  oN  iaN    d  @  sil  Z`  @n  s`  @N  iE  s`  U`  iou  b  u  t  oN  d  @  tj  iN  
sj  y  sil 
tj  i  tj  i  l  uo  l  uo  sil 
b  u  iE  s`  U`  iou  t  oN  k  u  dz`  oN  ts  ai  n  @N  dz`  @n  dz`  @N  t  i  
h  uei  k  uai  l  @  s`  U`  s`  @  mo  ma  sil 

 

4.2.2 Monophone-based HMM used on TCC-300 

From the phonetic transcription defined in SAMPA-T, there are 21 consonants 

and 39 vowels of Chinese dialects spoken in Taiwan. Hence, the total number of 

monophone-based HMM is equal to 62, including 21 consonants, 39 vowels, the 

silence model “sil”, and the short pause model “sp” where the “sp” denotes the short 

pause between two words. The number of states of the HMM is defined in Table 4-10 
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and the structure is shown in Fig.4-1. It is noted that the number of states here 

includes 2 null states, called entry and exit node, which cannot produce any 

observations, and the probabilities of staying in the null states is equal to zero. The 

entry and exist node make the HMMs much easier to connect together without 

changing parameters of the HMMs, for example, the word “樂” is a combination of 

the HMM “l” and the HMM “@”, shown in Fig.4-2. 

Besides, the shrot pause model “sp” used here is so called “tee-model” which 

has direct transition from entry to exist node. The silence model has extra transitions 

from states 2 to 4 and from states 4 to 2 in order to make the model more robust by 

allowing individual states to absorb the various impulsive noises in the training data. 

The backward skip allows this to happen without committing the model to transit to 

the following word.  

 

Table 4-10  Definitions of HMM used in monophone-based experiment 

Number of monophone-based HMMs 62 (60 monophones, “sp” and “sil”) 

Number of states of “sp” 3 (first and last state are null state) 

Number of states of consonants 

(includes “sil”) 
5 (first and last state are null state) 

Number of states of vowels 7 (first and last state are null state) 

Number of Gaussian mixtures in a state 5  
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The training database is selected from the TCC-300, where eight folders 

(F_NEWG1−F_NEWG4 and M_NEWG1−M_NEWG4) produced by NCTU are 

employed to train the monophone-based HMMs. The training database comprises of 

517 files spoken by 40 females and 515 files spoken by 40 males. All the MAT files 

should be converted to the wave format prior to training. The Hidden Markov Model 

Tool Kit (HTK) developed by Cambridge University Engineering Department (CUED) 

is employed in this thesis since it provides sophisticated facilities for speech research. 

 

Fig.4-1  HMM structure of (a) sp, (b) sil, (c) consonants and (d) vowels 

Fig.4-2  (a) HMM structure of the word “樂(l@4),” (b) “l” and (c) “@” 

(d) 

(c)(b) (a) 

l @

(a) 

(b) (c)

l@
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4.2.3 Experiments 

The parameters of front-end processing are set as Table 4-11. The features 

adopted in the experiment are listed in Table 4-12. The flow chart of training the 

monophone-based HMMs is shown in Fig. 4-3. At the beginning, only the corpus and 

its corresponding Chinese phonetic alphabets are available. Hence, it is essential to 

transfer the Chinese phonetic alphabets to SAMPA-T before training. It is noted that 

there is no boundary information of the corpus. Here, six features selected in this 

thesis are based on LPC, MFCC, and PLP, which have been introduced in Chapter 2. 

In the process of training, there is no rule that how much times of doing the 

Baum-Welch re-estimation will get best model and consequently it is necessary to test 

and verify the recognition rate to find the best model. 

 

Table 4-11   The parameters of front-end processing 

Sampling frequency  16 kHz 

Pre-emphasis filter 1−0.97z-1 

Hamming window ( ) ⎟
⎠
⎞

⎜
⎝
⎛

−
⋅−=

1
2460540
N

ncos..nw π ,   0 ≤ n ≤ N−1 

Window size 400 samples  (25ms) 

Frame duration 25 ms 

Frame period 10 ms 

Table 4-12   Six different features adopted in this thesis 

 Order Number of 
filter banks Energy ∆ ∆2 

Linear Predictive Coefficients  
(LPC_39) 39 - √ √ √ 

Linear Predictive Coefficients 
(LPC_38) 38 - √ √  

Linear Predictive Reflection 
coefficients (RC) 39 - √ √ √ 

LPC Cepstrum Coefficients 
(LPCC) 39 - √ √ √ 

Mel-Frequency Cepstral 
Coefficients (MFCC) 39 26 √ √ √ 

Perceptual Linear Prediction 
Coefficients (PLP) 39 26 √ √ √ 



 58

 

 

 

 

 

 

 

 

 

 

 

 

 

There is a 3-D view of six features performing on the word “不久” (bu4 djiou3) 

and the variations of the 39-dimensioned (or 38-dimensioned for LPC_38) vectors 

from frame 1 to frame 100 are shown in Fig. 4-4 where time denotes the frame order. 

The highest curve is at the 13-th element of the feature vectors (19-th element for 

LPC_38) since this element is the energy term. 

 

 

 

 

Fig.4-3  Flow chart of training the monophone-based HMMs 

Pre-emphasis

Frame blocking

Hamming window

Corpus

Feature extraction

Model Training Transcriptions 

……

Front-end Processing 

62 HMM models 

b p d U sp sil

(a) (b)
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The monophone-based HMMs are usually employed in Large Vocabulary 

Speech Recognition (LVSR). However, one of the factors which influence the 

recognition rate of the LVSR is the language model. Language model is a statistical 

model which attempts to capture the regularities of natural languages and improve the 

performance by estimating the probability distribution of various linguistic units, such 

as words, sentences, etc. If the recognition task is long paragraphs or articles, 

language model should be trained. Nevertheless, language model is to the key point in 

this thesis. Hence, the connected-digits corpus just mentioned in 4.1.2 is utilized for 

testing the monophone-based HMMs and the HMMs are trained by six different kinds 

Fig.4-4  3-D view of the variations of the feature vectors (a) LPC-38 
(b) LPC_39 (c) RC (d) LPCC (e) MFCC (f) PLP 

(c) (d)

(f)(e) 
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of feature extraction methods where the connected-digits needs only an 

uncomplicated grammar that the sentence are arbitrary permutation of digits. 

 

 

 

 

 

 

 

 

 

 

The experimental results are shown in Table 4-12 and Fig. 4-6. The total 

number of digits, denoted by T , used in this experiment is 8432. There are three 

variables should be concerned in order to compute the recognition rate, that is, the 

number of insertions (I), the number of deletions (D) and the number of substitutions 

(S). For example, the output sentence of the recognition may be  

 i2  @`4  ba1  djiou3  sU4  

while the actual sentence is 

 i2 ba1  liou3  sU4  san1 

Fig.4-5  Flow chart of testing the performance of different features 

Pre-emphasis

Frame blocking

Hamming window

Connected-digits corpus

Feature extraction

Speech Recognition

Transcriptions 
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…

Front-end Processing 

62 HMM models 
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Results analysis

Recognition Rate 
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where “@`4” is an insertion error, “djiou3” is a substitution error and “san1” is an 

deletion error. 

Based on the definition of mentioned the above, the performance of different 

features can be examined through two functions, the Correct (%) and the Accuracy 

(%). The Correct (%) is computed by  

 ( ) 100Correct ×=
T

 S D  T% --
 (4-1) 

and the Accuracy (%) is defined as 

 ( ) 100Accuracy ×=
T

IS D T% ---  (4-2) 

which means that the Accuracy (%) concerns not only the deletion error and the 

substitution error but also the insertion error. Hence, the Accuracy (%) will lower than 

the percent of correct (%). 

Table 4-13   Comparison of the Corr (%) and Acc (%) of different features 

 LPC_38 LPC_39 RC LPCC MFCC PLP 

Number 
of 

iterations 
Corr Acc Corr Acc Corr Acc Corr Acc Corr Acc Corr Acc 

1 73.7 40.1 69.4 38.3 82.0 46.0 87.3 67.1 89.6 67.2 90.0 67.9 
2 75.2 47.5 72.8 47.2 83.7 54.3 88.9 70.8 91.2 72.2 91.6 73.7 
3 76.4 51.3 74.8 49.4 84.0 56.1 89.2 71.6 92.0 74.2 92.2 75.6 
4 77.8 54.1 75.9 50.6 83.7 54.5 89.6 71.5 92.4 74.4 92.9 76.5 
5 78.7 55.9 76.4 52.3 83.6 54.0 89.6 71.8 92.8 75.7 93.2 77.3 
6 79.7 56.6 76.8 53.9 83.6 54.2 89.6 71.7 92.9 76.3 93.3 78.0 
7 80.1 57.3 76.9 54.2 83.6 54.3 89.5 71.9 93.0 77.1 93.4 78.6 
8 80.6 58.2 77.1 54.5 83.7 54.4 89.5 71.9 93.0 77.4 93.4 78.7 
9 81.0 59.0 77.0 54.4 83.9 54.7 89.7 72.1 93.1 77.7 93.4 78.7 

10 81.1 59.1 77.1 54.3 83.9 55.0 89.6 72.1 93.1 78.1 93.4 78.8 
11 81.2 59.2 77.1 54.3 84.1 55.4 89.6 72.1 93.2 78.2 93.3 78.9 
12 81.2 59.2 76.8 54.0 84.2 56.0 89.6 72.2 93.2 78.3 93.2 78.9 
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From the Fig. 4-6(a), the percent of correct is the recognition rate without 

considering the insertion error and the performance of the connected-digits 

speaker-independent recognition based on monophone HMM is  

 PLP > MFCC > LPCC > RC > LPC38 > LPC39 (4-3) 

where the PLP performs better than all the other features from iteration 1 to iteration 

12 of the training. The performance of all the models almost saturates when coming 

up to iteration 12. The maximum percent of correct of PLP appears in iteration 8 of 

training and then decreases when more training iterations are performed. It shows that 

the PLP costs less time than others to reach a better model in the training stage. From 

Fig.4-6  Comparison of the different features (a) Correct (%) (b) Accuracy (%) 
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Fig. 4-6(b), it shows the recognition results when the insertion error is considered. 

The order of the performance is not the same as (4-3) especially for the RC. It infers 

that the RC tends to insert words between two words than other insertion methods.  

Comparisons of the different features through average and the best Correct (%) 

and Accuracy (%) are shown in Fig. 4-7. The order of the performance from the good 

to the bad in this experiment is  

 PLP > MFCC > LPCC > RC > LPC38 > LPC39 (4-4) 

except for the max Accuracy (%) where RC is worse than LPC38, hence, the order of 

the best performance of the six features is 

 PLP > MFCC > LPCC > LPC38 > RC > LPC39 (4-5) 

where PLP still has the best performance than other features in monophone-based 

speaker-independent speech recognition. 

 

 

 

 

 

 

 

 

 

Fig.4-7  Monophone-based HMM experiment (a) Average Correct (%) (b) Average 
Accuracy (%) (c) Max Correct (%) (d) Max Accuracy (%) 
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4.3 Syllable-based Experiments 

The purpose of this experiment is to examine the performance of different 

features while applying to the word-level HMM speaker-independent speech 

recognition. The word-level HMM is feasible when the recognition task is small; 

hence, the connected-digits corpus is employed to train the word-level HMM and then 

utilized to recognize the connected-digits sentences in this thesis. 

4.3.1 Syllable-based HMM used on connected-digits corpus 

The connected-digits sentence is composed of arbitrary combination of the 

digits - “0, 1, 2, 3, 4, 5, 6, 7, 8, or/and 9”. Hence, the total number of word-level 

HMM needed is 12, including 10 digits, the silence model “sil”, and short pause 

model “sp”. The number of states of the HMM is defined in Table 4-14  

The training database is selected from the connected-digits database mentioned 

in 4.1.2, where 800 files, where 400 files are spoken by 40 males and 400 files are 

spoken by 40 females, are selected for training the syllable-based HMMs. The other 

files of the corpus (199 files, 99 files spoken by 10 females and 100 spoken by 10 

males) are adopted for testing the performance of the different features in 

syllable-based HMM speaker-independent speech recognition. 

Table 4-14  Definition of HMM used in syllable-based experiment 

Number of syllable-based HMMs 12 (10 digits, “sp” and “sil”) 

Number of states of HMM 8 (first and last state are null state) 

Number of Gaussian mixtures in a state 4  
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4.3.2 Experiments 

The parameters of front-end processing are set the same as Table 4-11. The 

features adopted in the experiment listed in Table 4-15 which are the same as the 

parameters used in monophone-base experiments. The flow chart of training the 

syllable-based HMMs is shown in Fig. 4-8 where the digits “0, 1, 2, 3, 4, 5, 6, 7, 8, 

and 9” are denotes by “yi, er, san, si, wu, liu, qi, ba, jiu, and ling,” respectively. It is 

noted that the boundary information of the corpus is available. Therefore, the training 

procedure is different with the procedure of experiment in 4.2 which has no boundary 

information and the details of the difference between them have been introduced in 

section 3.3. In practice, the boundary information is beneficial for training HMM, that 

is, the HMM will be trained more precise with the boundary inforamtion. In addition, 

the number of HMMs is less than the HMMs used in previous experiment. The 

recognition results are supposed to be much higher than the results in 4.2.3.  

Fig.4-9 shows the testing procedure of the sullable-based recognition procedure. 

Table 4-16 shows the experiment results of the performance of different features 

performing on the connected-digits speaker-independent recognition. The 

performance of the features is generally in the order from the good to the bad as 

 PLP, MFCC > LPCC > RC > LPC_38 > LPC_39 (4-6) 

where the PLP and MFCC are resemble in maximum ACC(%), which is the major 

guide for judging the performance of the models. 
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Table 4-15   Six different features adopted in this thesis 

 Order Number of 
filter banks Energy ∆ ∆2 

Linear Predictive Coefficients  
(LPC_39) 39 - √ √ √ 

Linear Predictive Coefficients 
(LPC_38) 38 - √ √  

Linear Predictive Reflection 
coefficients (RC) 39 - √ √ √ 

LPC Cepstrum Coefficients 
(LPCC) 39 - √ √ √ 

Mel-Frequency Cepstral 
Coefficients (MFCC) 39 26 √ √ √ 

Perceptual Linear Prediction 
Coefficients (PLP) 39 26 √ √ √ 

Fig.4-8  Flow chart of training the syllable-based HMMs 
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Table 4-16   Comparison of the Corr (%) and Acc (%) of different features 

 LPC_38 LPC_39 RC LPCC MFCC PLP 

Number 
of 

iterations 
Corr Acc Corr Acc Corr Acc Corr Acc Corr Acc Corr Acc 

1 79.7 77.1 80.5 77.6 90.9 89.7 94.3 93.8 96.5 95.9 96.6 96.1 

2 84.0 80.8 83.5 80.3 94.3 92.9 96.6 96.3 98.2 98.0 98.4 98.1 

3 85.0 81.8 84.3 81.2 94.7 93.3 97.1 96.9 98.4 98.2 98.5 98.4 

4 84.8 81.9 84.6 81.6 94.9 93.5 97.2 97.1 98.6 98.4 98.5 98.3 

5 85.2 82.3 84.5 81.4 94.8 93.4 97.3 97.1 98.7 98.5 98.5 98.4 

6 85.2 82.4 84.6 81.6 94.9 93.6 97.2 97.0 98.7 98.5 98.6 98.5 

7 85.3 82.6 84.7 81.7 95.0 93.8 97.2 97.0 98.7 98.5 98.6 98.5 

8 85.3 82.7 84.6 81.6 94.8 93.7 97.3 97.1 98.6 98.5 98.6 98.5 

9 85.4 82.9 84.3 81.2 95.0 93.9 97.3 97.2 98.6 98.5 98.6 98.5 

10 85.6 83.2 84.5 81.3 95.1 93.9 97.2 97.1 98.6 98.5 98.5 98.4 

 
 

Fig.4-9  Flow chart of testing the syllable-based HMMs 
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Comparisons of the different features through average and the best Correct (%) 

and Accuracy (%) are shown in Fig. 4-11. In this case, the PLP and the MFCC are 

both a good choice of the connected-digits speaker-independent recognition due to 

their high recognition rate (Correct (%) and Accuracy (%)). The LPC_38 performs 

better than the LPC_39 since the sampling frequency of the speech is 16 kHz. From 

the guideline of selecting the order of filter p introduced in Chapter 2, the value of p 

should be chosen as 18-20 to represent the characteristic of the filter. Hence, the 

recognition rate of LPC_38 (p=18) is higher than the LPC_39. As for the reflection 

coefficients RC, the performance is much better than the performance of LPC_38. It 

can be inferred that the RC is more suitable for represent the speech signal of 

small-vocabulary speech recognition from the results of the two experiments. 

Fig.4-10  Comparison of the different features (a) Correct (%) (b) Accuracy (%) 
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Fig.4-11  Syllable-based HMM experiment (a) Average Correct (%) (b) Average 
Accuracy (%) (c) Max Correct (%) (d) Max Accuracy (%) 
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Chapter 5  

Conclusions 

A short summary of different features is made as follows. The LPC states that 

the vocal tract transfer function can be modeled by an all-pole filter, and the number 

of coefficients is chosen to be sufficient to represent the vocal tract. The Reflection 

Coefficients (RC) model the reflection rate at each transition when the acoustic waves 

in the vocal tract are partially reflected at the transitions and interfere with waves 

approaching from the back. The LPC-derived Cepstral Coefficient (LPCC) is compact 

parametric representation of representing the spectrum of speech signals which can 

efficiently separate the excitation source from the all-pole filter. The conception of the 

Mel-Frequency Cepstral Coefficients (MFCC) is to use nonlinear frequency scale to 

approximate the behavior of the auditory system. The Perceptual Linear Predictive 

(PLP) analysis combines several engineering approximations of psychophysics of 

human hearing processes, including critical-band spectral resolution, the 

equal-loudness curve, and the intensity-loudness power law. 

The results of the experiments can be explained from the essence of the features. 

In former studies of the feature extraction, such as LPC and RC, the idea is focuses on 

modeling the vocal tract of the human. However, the performance is not satisfied 

especially for multi-users system. Besides, the production model concerns only the 

vocal tract which varies from person to person. From the experimental results, it can 

be infer that the variation of the vocal tract between persons is larger than the 

variation of the ear between persons. From the viewpoint of the human being, the 

general communication is comprised of two types, speech generating and hearing. 

Intuitively, the objective of the speaker-independent speech recognition system is to 
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recognize the speech of different users. Hence, the key point is not who produced the 

speech but what the context was. In this case, the receiving side is more effective than 

the generation sides. Therefore, the features based on the speech perception, such as 

MFCC and PLP, are superior to the features based on the speech production, such as 

LPC, LPCC and RC, in the speaker-independent experiments.  

In this thesis, the performance of different speech features for speaker-independent 

speech recognition system has been evaluated. It is noted that the PLP is not always 

better than MFCC because of the little difference between the recognition rates in the 

experiments in previous chapter, but it can be said that in most of cases the PLP and 

MFCC will perform better than LPC, RC and LPCC in speaker-independent speech 

recognition system. It can be concluded as follows. Firstly, features derived from FFT 

(MFCC, PLP) preserve more phonetic features than those derived form LPC spectrum 

(LPC, LPCC, RC). Secondly, the cepstrum parameters (LPCC) has higher recognition 

rate than LPC and RC. Thirdly, non-linear frequency analysis performs better than 

linear frequency analysis. Fourthly, LPC_38 has better performance than LPC_39. 

Fifthly, PLP provide highest discrimination of phonetics for monophone-based 

speaker-independent SR. In addition, there is a performance comparison table Table 

5-1. From the table, the perceptual model is more effective than production model in 

speaker-independent Speech Recognition system. 

Table 5- 1  Performance Comparison Table 

Monophone-based experiment 

PLP MFCC LPCC RC LPC_38 LPC39 
78.9% 78.3% 72.2% 56.0% 59.2% 54.5% 

Word-based experiment 

PLP MFCC LPCC RC LPC_38 LPC39 
98.5 98.5 97.2 93.9 81.7 83.2 
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Due to the limitation of the corpus and the difficulties of training with large 

amount of database, the experiments are not complete to show the statistics of various 

tasks, for example, the robust test of speech features for speaker-independent speech 

recognition system in different noisy environments is not fulfilled. In addition, the 

environments (echo, channel-effect, noise, etc) and the speakers (speed of speaking, 

gender, age, etc) will both affect the performance of the recognition system in practice. 

It is hard to start from the viewpoint of physiology to improve the features, thus to 

find a suitable feature for a particular task and adding new skills to eliminate the 

influence of environment and speakers are more feasible in the future. 
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