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the input signal to produce the time-varying spectrum of the output 
signal. 

VI. CONCLUSIONS 
In this correspondence, we have derived the Wigner distribution 

relation between the two input and output time-varying spectra of 
the linear time-variant system; this mathematical relationship can 
tell us how a time-variant system modifies the time-varying spec- 
trum of the input to determine that of the output, and this result 
will be very useful for time-variant filtering in mixed time-fre- 
quency domain. A linear time-variant digital filtering example is 
used to show the effect of time-variant filtering by using the Wigner 
distribution. 

APPENDIX 

(13) for the linear time-variant system: 
In this appendix, we will derive the new WD relations ( 1  1 )  and 
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Remark: If the definition domain is real, then follow the above 

proof, this relation becomes 
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Recognition of Chinese Diphones 

LING Y .  WEI, JONG P. LEE, AND CHI C. LEE 

Abstract-We have studied recognition of isolated Chinese words 
with more emphasis on diphones. Under the nearly same test condi- 
tions, we obtained speaker-dependent recognition rates as follows: 1) 
76.3 percent for 59 Chinese phonetic units; 2) 95 percent for 40 
monophones; and 3)  99.5 percent for 100 diphones. With three speak- 
ers, the recognition rate of 100 diphones becomes 94 percent. The very 
high recognition rate of diphones is consistent with our experience in 
spoken Chinese, and it points to a new direction toward machine un- 
derstanding of Chinese language in the future. 

I. INTRODUCTION 
According to linguistics, a word should be a unit in the spoken 

language characterized by syntactic and semantic independence and 
integrity [ l ] .  This notion of “word” is generally agreed upon by 
renowned linguists such as Chao Yuen-ren [2]. In the Chinese lan- 
guage, a word may consist of one character, two characters, three 
characters, or more. Since each Chinese character is a monosylla- 
ble, or a monophone to be precise (a Chinese monophone takes one 
of the forms: C, V, CV, and CVN), we shall classify Chinese words 
as monophone, diphone (two monophones in, concatenation and 
with a perspicuous meaning), triphone, quadraphone, etc. Lexical 
statistics [3], [4] show that diphones comprise about two-thirds of 
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all Chinese words. Similar relative proportions are observed in spo- 
ken and written Chinese. The popularity of diphones stems from 
their superiority in a phonetic and semantic union that gives much 
less ambiguity or confusion than monophones. 

In recognition of Mandarin speech, most of the work has been 
concerned with four tones [5]-[7] and subword units [8]-[15]. Some 
excellent results have been obtained in these studies using various 
techniques. Work on recognition of Chinese words is barely begin- 
ning. Lee and Huang used VQ and HMM techniques for connected 
digit recognition [16]. They produced recognition rates such as: 76 
percent for single digits (monophones); 92.7 percent for 2 con- 
nected digits (diphones); 88.5 percent for 3 connected digits (tri- 
phones); and 88.75 percent for 4 connected digits (quadraphones). 
Huang et a l .  had embarked on recognizing 1000 Chinese words of 
which 300 were monophones [ 171. With two well-trained speakers, 
they obtained a recognition rate of 70 percent for monophones and 
95 percent for polyphones (mainly diphones). 

In our project, we aim at recognizing continuous Chinese speech 
of a very large vocabulary. Our strategy is to recognize diphones 
in the very first stage using the simplest possible techniques. De- 
termination of monophones will be next. Because of homonyms, 
monophones will be treated with greater care using syntactic and 
semantic analysis if necessary. Our philosophy is to go easy first 
and face hardship later. The present study is only the first step 
moving in that direction. 

11. METHOD 
A.  Important Parameters for Acoustic Analysis 

1) Frequency range: 0-10 kHz 
2) Sampling frequency: 20 kHz 
3) A/D resolution: 12 bits 
4) Hamming window: 
5 )  Frame rate: 15 ms. 

Spectral analysis and recognition were performed with IBM PC/ 

25.6 ms wide 

AT. 

B. Spectral Energy Ratio Coding (SERC) [18] 
The frequency range (0-10 kHz) of speech sound is divided into 

two groups of bands: 1) the primary bands: A I  = 0-0.4 kHz, A2 
= 0.4-4 kHz, and A 3  = 4-10 kHz; 2) the secondary bands: B1- 
B12 where B10 = 4-6 kHz, B11 = 6-8 kHz, and B12 = 8-10 
kHz. The bands B1-B9 in the 0-4 kHz range are spaced according 
to the critical band scheme or me1 scale [19], [20]. 

Let A 0  be the spectral energy of speech found in the 0-10 kHz 
range, and let the above notations for the various bands also stand 
for the spectral energies in those bands, respectively. Then the 
spectral energy ratio (SERC) is defined by 1181 

i = 1, 2, 3 

j = 1, 2, . . . , 12. 

ai = ( A i / A O )  X 100, (1 )  

bj = ( B j / A O )  X 100, ( 2 )  
The SERC takes the form of AO, a l ,  a2, a3; b l ,  b2, . . . , b12 
where ( a l ,  a2, a 3 )  is called the primary code and ( b l ,  b2, . . . , 
b12) is the secondary code. We can use the primary code for coarse 
classification which can reduce time for screening the database and 
use the secondary code for final recognition. 

C .  Endpoint Detection 
We use the following features of Mandarin speech for endpoint 

detection: 1) short time energy AO; 2) in the short time analysis, 
every Chinese monophone word contains a single peak; and 3) the 
average length of speaking a Chinese monophone is about 360 ms. 
Assume E (  n )  is the energy of frame n. We set a dynamic threshold 
ET as 

ET = (1 /5 )  E ( n )  X FACTOR (3)  rI I 
where the FACTOR is 1.5 in our system. Using AO, ET, and other 
pertinent conditions, we can pick up a special signal from back- 

ground noise. For diphone endpoint detection, we have two meth- 
ods. In Method A ,  we treat a diphone as a monophone. In Method 
B, we take a diphone as composed of two monophones and cut it 
into two parts. 

D. Pattern Matching and Decision Rule 
Calculation of distance measures (City Block) for pattern match- 

ing is very simple. The matching between a test frame ( m )  and a 
reference frame ( n )  is performed in the following two stages. 

1) Coarse matching: 

d ( a )  = c ( a i ( m )  - a i ( n ) (  
I 

where i = 1, 2, 3 and a ’ s ,  the primary codes. 
2) Fine matching: 

d ( b )  = c I b j ( m )  - b j ( n ) /  
I 

( 4 )  

( 5 )  

wherej = I ,  2, 3, . . . , 12 and b’s ,  the secondary codes. 
We do not use DTW, but do use the linear time matching which 

is simpler and better than DTW for small variations of speech pe- 
riods ( k 3 0  percent) [21]. What we do is to match frames from a 
few fixed points ( u k )  in the utterance duration ( T )  such that uI = 
ck T where ck is a constant depending on position and is between 0 
and 1. One set of ck’s  is used for monophones (input and reference) 
and another set for diphones (input and reference). This is equiv- 
alent to linear time alignment and is in  principle not much different 
from DTW in the cases of monophones and diphones. For the 
choices of ck ( u k )  values, we follow the suggestion by Matsuda et 
al. that the points chosen are the optimal points for recognizing 
consonants and vowels in a monosyllable [22]. 

For matching of monophones, the fixed points are set at u I  = 
0.33 T ,  u2 = 0.67 T ,  u, = 0.89 T .  Each is measured from the 
beginning point of the utterance. For matching of diphones with 
Method A, take six fixed points at u I  = 0.17 T (starting point for 
matching), u2 = 0.33 T ,  ug = 0.44 T,  u4 = 0.67 T ,  us = 0.83 T ,  
and u6 = 0.94 T. With Method B, we treat a diphone as two 
monophones. At each point, take 6 frames backward (toward the 
left). Sum 6 corresponding frame distances. The number of 6 frames 
was empirically determined for its duration (90 ms) which was ad- 
equate for feature condensation, thus saving time in computation. 
Then sum distances from all fixed points to get the total distance. 

After the total distance D ( a )  for primary codes has been com- 
puted, we can use it to make screening. The screening rule is very 
simple. First, if D ( a )  exceeds a preset threshold value, there is no 
need to compute D ( b )  for the reference word fetched for matching 
the input word. The former is then removed from the list of can- 
didates. If D ( a )  is lower than the preset threshold, D ( b )  is com- 
puted. The decision rule is to choose the one with the lowest D ( b )  
of all candidates as the final recognition result. 

The two stage matching can save computation time by as much 
as 83 percent if the threshold of D ( a )  is preset to eliminate 80 
percent of words. This indicates the advantage of feature conden- 
sation with a code and linear matching at fixed points. 

111. RESULT 
When listening to Chinese speech, our experience is that the 

degree of intelligibility (hence recognition rate) increases in the 
following order: 1) phonemes, 2) monophones, and 3) diphones. 
In this study, we set out to determine how a machine would respond 
in the listening test. For this purpose, we have to minimize the 
effect of human factor so that only the “machine” plays the dom- 
inant role. In Experiments 1, 2, and 3, a single speaker (JPL) did 
all the talking. Experiment 4 was designed to test the relative mer- 
its of Method A and Method B for recognizing 100 diphones ut- 
tered by three speakers. 

I )  Experiment 1-Recognition of Phonetic Units: There are 59 
phonetic units (21 consonants and 38 vowel-containing units) in  
the Chinese language. JPL spoke twice: once for test and again for 
reference. The recognition rate is 76.3 percent. This low rate is 
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due to the fact that there are two groups of very confusable units: 
1) the fricative group containing 9 units (s, z ,  sh, tz, ch, j ,  ji ,  shi, 
chi); and 2) the nasal group containing 17 units (m, n, an, en, ang, 
eng. ian, in, ing, uan, uen, uang, ueng, iuan, iun, iang, iung). To 
determine which group performs better, we tested the nasal group 
and another group containing other consonants. The recognition 
rate of the nasal group was 83.3 percent and that of the other group 
was 75 percent. This gives us a little consolation because 186 of 
all 416 basic tones are nasals which fortunately are found not to be 
the diehard for recognition. If they were, 44 percent of all Chinese 
words would be troublesome in Mandarin conversation. 

2 )  Experiment 2-Recognition of Monophones: JPL spoke 40 
monophone words 5 times: 2 for test and 3 for reference. The 40 
monophone words were chosen mostly by their high frequency of 
occurrence in daily use. The recognition rate is 95 percent in each 
of two tests. The 40 monophones contain 3 groups of confusable 
words: 1)  9 words each beginning with “s” or “sh,” 2 )  5 words 
each ending with “I,” and 3) 16 words each ending with a nasal. 
Without much drilling in pronunciation by JPL, the recognition 
rate would not reach 95 percent, which is unusually high for 
monophones. 

3)  Experiment 3-Recognition of Diphones: JPL spoke 100 di- 
phones 5 times: 2 for test and 3 for references. These diphones 
were chosen from newspapers based on their frequency of occur- 
rence. The recognition rates are as follows: 

Test 1 Test 2 Average 

Method A 98 percent 97 percent 97.5 percent 
Method B 100 percent 99 percent 99.5 percent 

The fact that Method B (treating a diphone as two monophone 
words) is superior to Method A (treating a diphone as a single word) 
for a well-trained speaker can be explained as follows. One and the 
same speaker uttering a diphone, say X ,  at different times could 
change not only the total duration T (  X )  but also the relative du- 
rations T ( X , )  and T ( X , )  of its components x, and x,. In Method 
A, the 6 matching points u ,  . . . u6 are based on the total duration 
T ( X ) .  When T ( X )  changes, so will be the u’s .  Thus, the u-points 
in a test frame would not linearly match the u-points in the refer- 
ence frame. This suboptimal matching would lead to a greater er- 
ror. In Method B, u , ,  u2,  and uj  are based on T ( X , ) ,  and u4, u5, 
and u6 are based on T(X, ) .  No matter how T ( X , )  and T ( X b )  
change, the u-points will always stay at the same optimal points in 
the test frame and in the reference frame. The matching is therefore 
optimal for the utterance by the same speaker at different times. 
This assures nearly perfect matching in Method B as observed. 

4)  Experiment 4-Recognition of Diphones: Three speakers 
(including JPL) spoke 3 times: 2 for test and 1 for reference (using 
multitemplates, not their average). The results are as follows. 

Method A Test 1 Test 2 Ave . 

Speaker 1 98 percent 92 percent 95 percent 
2 94 percent 96 percent 95 percent 
3 92 percent 92 percent 92 percent 

Total average recognition rate 94 percent 

Method B 
Speaker 1 96  percent 94 percent 95 percent 

2 82 percent 92 percent 87 percent 
3 92 percent 86 percent 89 percent 

Total average recognition rate 90.33 percent 

Here, for multispeakers, Method A gives higher recognition rate 
than Method B, just opposite to that shown in Experiment 3 for a 
single speaker (JPL). Our explanation is as follows. Method B is 
based on monophones. The database contains actually 600 mono- 
phones templates which could form 600 X 600 diphones of which 

only 300 are naturally spoken (by the 3 speakers) and the rest are 
fictitious (i.e., the first monophone spoken by one person and the 
second by another person). The ratio of fictitious to natural di- 
phones is 1200 : 1. Since fictitious diphones are highly confusable, 
the recognition rate by Method B is expected to be lower than that 
by Method A. This does not apply to a single speaker because 
Method B gives better matching than Method A as explained be- 
fore. 

IV. DISCUSSION 
In this study, we have employed some simple methods for rec- 

ognition of Mandarin speech with more emphasis on diphones. The 
primary code was designed for feature condensation. Instead of 
DTW, linear matching was performed at a few fixed points of word 
duration. From each point backward, only six frames were com- 
pared. All these schemes have contributed to considerable saving 
not only in machine time but also in man’s training effort. 

As a matter of interest, we include here a table showing the rec- 
ognition rates of diphones by multispeakers in three different sys- 
tems. 

Recognition 
Systems Speakers Diphones Rate Techniques 

Lee (1  6) 15 100* 92.7 percent LPC, VQ, HMM, 

Huang (17) 3 700* 95 percent LPC, Cepstrum, 

Wei 3 100 94 percent FB (SERC), LM* 

LB* 

NLS*, DTW 

Note: loo*-100 connected 2-digits. 
LB*-Level building 
700*-Including some polyphones other than diphones other than 
diphones. 
NLS*-Nonlinear segmentation 
LM*-Linear matching. 

Further experiments are in progress to test how vocabulary size 
and number of speakers would affect recognition rate. 
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Comments on “A Two-Stage Representation of DFT 
and Its Applications” 

JA-LING WU AND CHAU-YUN HSU 

Abstract-This correspondence contains comments on and several 
corrections to a recently published TRANSACTIONS paper. 

In the above paper,’ Ersoy developed a two-stage representation 
in terms of preprocessing and postprocessing of DFT by vector 
transformation of sines and cosines into new basis functions using 
Mobius inversion of number theory. This comment points out first 
that the inversion Mobius transform pair, (A.3) and (A.4), used’ 
are valid only when f is a positive rational number [ I ,  p. 2081. 
Thus, (A.6) should read 

1 ”  

4 f m = i  m (.=:a ( (:f) x($)) 
Finally, some typing errors’ are listed below. 
1) With the substituting of 1 = m,  n modulo N, (2.3) should read 

XJf) = - c L” c 2x - - 
odd 

and f > 0. Second, (2.11) should read 

n’ = 0, 1, . . . , M, - 1. (2.11) 

This range is very important because it determines the size of the 
circular correlation in the postprocessing matrix equation. The cor- 
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N - l  

(2.3) 
2) The index i used in (2.7) and (2.12) should be replaced by 

3) The term b(4 ,  16) used in the lowest block of (2.13) should 

4) Equation (A.16) should read 

n ’. 

be replaced by b(9 ,  16). 

b ( m l ,  N )  = P ( m l ( l ) ,  N )  - P ( m 2 ( N  - l ) ,  N ) .  (A.16) 
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