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Abstracts

Feedback control systems where the ‘control loops are closed through a real-time
network are called Networked Control Systems (NCSs). In the NCSs, state feedback must
be transmitted by the network, but it may be jammed in the channel. So it is a matter in
updated delay. Therefore, discussion and analysis of the stability of control systems with
control signals being updated at some moment is an important topic.

In this thesis, we derive several conditions to guarantee stability of NCSs with control
signals being updated in retard according to the Lyapunov Theorem. The maximum range
of time interval to update the control signal to ensure the stability of NCSs is derived. The
transmission error upper bound between two successive transmissions in NCSs with

disturbancesis also obtained. Moreover, the H_ control of NCSsis considered.
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Chapterl

| ntroduction

1.1 Motivation

There are already several network standards designed especially for control applications,
including CAN (Controller area network) [24] for automotive application, BACNet (building
automation and control networks) [25] [15] for building automation applications etc. The
characteristic of a Networked Control System (NCS) is having one or more control loops
closed by serial communication channel. NCSs have the merits of reducing the wires
between components and easier to judgment, etc. However, its stability analysis problem is
different from direct control loop controller. We are interested in the stability analysis of

NCSs.

1.2 Survey on Rélated Work

The defining feature of an NCS is-that signals (reference input, control input, plant
output, etc.) are exchanged using a“network that connects control system components
(sensors, controllers, actuators, etc.). Fig. 1-1 shows a sketch map of a generic NCS structure.

A detailed view of NCSs can be found in [5].

Controller

Control Network ‘ ‘

Sensor Actuator

Industrial Plant

Figure1l-1 A networked control system setup.



There are a lot of issues to discuss in NCSs. A number of related works have explored
the effects of communication constraints on control problems, including the relationship
between practical stability of a dynamical system and the bit-rate available for feedback [21],
and joint communication/control optimization problems [22] [23]. Besides these, in [11], the
authors discuss about the network transmission delay deadlines that guarantee stability via
Razumikhin-type stability theorem. In [9], Wei Zhang, Michael S. Branicky, and Stephen M.
Philips analyze several topics in the network. The dropping network packets which happen
on NCSs there are node failures or message collisions. Although most network protocols are
equipped with transmission-retry mechanisms, they can only retransmit for a limited time.
After this time has expired, the packets are dropped. Furthermore, for real-time feedback
control data such as sensor measures and calculated control signals, it may be advantageous
to discard the old, untransmitted message and transmit a new packet if it becomes available.
In this way, the controller always receives fresh data for control. Normally,
feedback-controlled plants can admit a certain amount of data loss, to compute acceptable

lower bounds on the packet transmissionirate:~Lhis is similar as our target in this thesis.

If the network speed is high and the traffic sparse, the effect of inserting such a network
into the feedback loop is that of creating-a small, randomly varying time delay between the
records and their images. This approach has many.merits. First, the network may be treated
abstractly, and hence the interface between the control system and the network can take place
at a high level of the open systems interconnect (OSI) [16] model, with the associated
benefits of robustness and flexibility. In addition, because the impact on control design
methodology is minor, standard techniques may be applied without considering the network.

This highly desirable approach is supported by several analytic results [17] [18] [19].

Another topics of NCSs is the stability with network -induced delay [9]. There are two

sources of delays from the network: sensor-to-controller 7 and controller-to-actuator z, .

Any controller computational delay can be absorbed into either 7z, or z, without loss of

generality [20]. For fixed control law (time-invariant controllers), the sensor-to-controller
delay and controller-to-actuator delay can be lumped together as 7 =7_+7, for analysis

purposes.

Finally, scheduling for networked control systems are discussed in [5] [6] [9].



1.3 Contribution

e Aim at the influence of the un-real time feedback in NCSs.
e Find out the maximum range of time interval to update the control signal to ensure the

stability of NCSs

e Find out the upper bound of transmission error in NCSs with disturbances, validate it, and
suggest the condition good for using.

e Provide a method to design H_ controller for NCSs.

1.4 Organization of the Thesis

The thesis is organized as follows. In Chap. 1, the related work in Networked Control
Systems (NCSs), and motivations of research are given. In Chap. 2, the definition of NCSs
and the problem we focus on is given. In Chap. 3, several important results for NCSs with no
disturbance are provided. Afterward; they are validated by simulation and analyzed in detail.

In Chap. 4, the error bound of NCSs with:disturbance and a method to design H_ controller

for NCSs are presented.  Finally, conclusions and future works are given in Chap. 5.



Chapter?2
Definitions of
Networked Control Systems

2.1 Introduction to Networked Control Systems

Computer-Control systems started to emerge in the 1950s. At the beginning stage, since
the cubage of the computer was too big, and it required much power, the competency of
using digital computers as control system components was misdoubt. This situation changed
when the Direct Digital Control (DDC) system was developed. DDC placed stress on the
computer, which controlled the process directly. Fig. 2-1 shows a generic DDC system
architecture. In DDC systems, the analog-control instrumentation for the process control was
replaced by a computer. Sensors with analog outputs and actuators with analog inputs were
point-to-point connected with the digital-computer._.Sensing, control signal calculation, and

actuation were all handled by the computer itself.

Plant
/ A \
& \ 4
Sensor 1 g Sensar N g Actuator 1 Actuator N«
\ 4 \ 4
Computer

Fiaure2-1 Direct didital control system.

Because of the evolution of the control system and the fast development of computer
technology, distribution of computing load was required and had become possible. This
system was called the Distributed Control System (DCS), which is illustrated in Fig. 2-2. In a
DCS, several computers connected to a serial network shared the workload. The processing

order of every computer in the system is monitored by operators, and is various aided stations



for data logging and processing optimization.

Plant
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Figure2-2  Distributed control system.

However, the DCS is loosely connected because most of the real-time control data
(sensing, calculation, and actuation) are carried out within their individual process stations.
For only on/off signals, alarm informationyand the:like were more suitable to be transmitted

on the serial network.

In the 1990s, the development. of the microprocessor had a serious impact on the way
which computers ordinary are applied to control entire plants. Furthermore, the advancement
in the technology of ASIC and the cheaper price in silicon so sensors and actuators can be
equipped with network interfaces, and thus Computer-Control Systems become independent
nodes on a real-time control network. The status creates a nice situation for Networked

Control System (NCS), as presented in Fig. 2-3.

In NCS, real-time sensing, actuating and control data are transmitted on the network. In
the other words, the network is the key for sensing, actuating and control data to

co-operation.

Since the limitation of network, the data (sensing, controlled, actuator, etc.) in NCS can
be transmitted once at a time only. Therefore, how to decrease the use for transmitting

information on the network is very important.
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Figure2-3  Networked control systems.

2.2  Problem Description

Networked control systems (NCSs) are being adopted in many application areas for a
number of reasons [16] including their low cost, reduced weight, and power requirements,
simple installation and maintenance, and higher reliability. However, using a network
presents some new analytical challenges because the network imposes a communication
constraint: only one data could be transmitted at.a time. For the limitation of network, if we
decrease the time of each node“to be connected to network, it is efficacy to keep channel of

network from jam-packed.

In general, the data we want to transfer must tie to network in NCSs, so the defect is the
data does not be updated on real time. Ordinarily, the data includes three parts sensing data,
control data, and actuator data. In this thesis, we aim at the “un-real time” sensing data. The
sensing data can be transmitted at switch ‘ON’ only as shown in Fig. 2-4. It means when

S(t) is ‘1, then the states for now could be transferred by the network to update the

feedback controller. Otherwise, the control signal could not be changed.

S(t)
Plant J

\ 4

Controller

Figure2-4  Un-real time feedback.



In our thesis, we assume there is a zero-order-hold in the controller, so when the switch
is ‘OFF’, then the transmitted state will be hold as last state shown in Fig. 2-5. It means that,
X(t)=x(,) as t,<t<t, X(t)=x(t) as t, <t<t,, X(t)=x(t,) as t,<t<t,,etc.

The figure also indicates the signification of the norm of the state error ||e(t)|| = ||X(t) - X(t,)

9

t <t<t,,,.

N

Figure2-5  Signification of x(t,) and |le(t)].

2.3 Preéiminary

Before accessing the topic, we make some preliminary. First, we introduce the Lyapunov

theorem which is an important theorem to verify whether a system is stable.

Theorem 1.  (Lyapunov theorem) [8]
Consider the system X(t) = AX(t), all eigenvalues of A have negative real parts if and only

if for any given positive definite symmetric matrix Q, the Lyapunov equation
A'P+PA=-Q

has a unique symmetric solution P and P is positive definite.



Theorem 2. (Lyapunov theorem for non-autonomous systems) [14]

Stability: If, in a ball B around the equilibrium point 0, there exists a scalar function

\% (x,t) with continuous partial derivatives such that

1. V is positive definite

2. V is negative semi-definite

then the equilibrium point 0 is stable in the sense of Lyapunov.
Next, we represent the Bellman-Gronwall lemma for deriving Lemma 4, and Lemma 5.

Lemma 1. (Bellman-Gronwall lemmal for fixed-inintial-time)

Given A(t) and k(t) non-negative piecewise continuous and differentiable functions of

time t.Ifa function Yy(t) satisfies  y(t)<A(t)+ .[: k(w)y(w)dw, Vt >t >0, then

YO < At )e " ¢ [ G i 15 0.

Lemma 2. (Bellman-Gronwall lemma2 for fixed-final-time)

Given A(t) and K(t) non-negative piecewise continuous functions of time t, with A(t)

differentiable. If a function Yy(t) satisfies Yy(t) < A(t)+ J‘:f k(w)y(w)dw, Vt, >t >0, then

Yt < At yek - [ e aw, vt, 230,

The proofs in detail are given in the Appendix. The general form of Bellman-Gronwall
lemma has been detailed in [7] and [2].

Consider the feedback control system as shown in Fig. 2-6:

X(t) = AX(t)+ BU(t), u(t) = —Kx(t,), te[t,.t,.,) @2-1)
where x(t) e R" is the state of the system, u(t)eR™ is the control input, A and B are

known matrices with proper dimensions, and t, is the time of switch ‘ON’.



A 4
I
»

A

wnl=

A

A

Figure2-6  System x(t) = Ax(t)+ Bu(t), where u(t) = -Kx(t, ),
H denotesa zero-order-hold staae.

Define e(t) = x(t)—x(t,), where t, <t<t,_, . Then we call ||e(t)|| as “transmission

error”. In the following, the Lemma 3 gives a bound on the transmission error. The proof in

detail is given in the Appendix.

Lemma 3. (Transmission:Error Upper Bound) [3]

Thetransmission error e(t) defined'asfx(t)=x(t,)]" is bounded by

A—-BK| 1A Bk

A

between two successive transmissionsat t, and t, ;.

> telt.,t,,)



Chapter3
Networked Control Systemswith No

Disturbance

3.1 System Model
3.1.1 Normal Control Systems

Now we model the NCSs for system with no disturbance first. If there is no network, the

sketch map of this system can be shown as in Fig. 3-1-1.

x(t)

A

K

X(t) ! x(t)

A

v
|

o

A

A

Figure3-1-1  System Xx(t) = Ax(t)+ Bu(t), where u(t) = -Kx(t).

The dynamic equation of the system is as:
X(t) = AX(t) + Bu(t), (3-1)
where Xx(t) e R" is the state of the system, u(t)eR™ is the control, u(t)=-Kx(t),and A

and B are known matrices with proper dimensions. Suppose the original system

(X(t) = AX(t)) has eigenvalues in the right-half-plane, so it is an unstable system. We must
design a state feedback controller such that the system to be stable. For convenience, we

define A= A—BK, and the controlled system can be rewritten as X(t) = (A— BK)x(t)
= AX(t).

From Theorem 1 and 2, if X=0 is a globally exponentially stable equilibrium point of

10



the non-networked system X(t) = AX(t), there exists a unique symmetric positive definite
matrix P to the Lyapunov equation:

AP+ PA=—| (3-2)
Let V(x(t))= X" (t)Px(t) be a Lyapunov function of the non-networked system, then the

closed-loop system satisfies the following inequalities:

x| <V(x) <o

max

x(®)[

is the maximum eigenvalue of P.

Umin

where o, is the minimum eigenvalue of P, and o

max

We have
V(x(t)) = X" (t)Px(t) + X" (t)Px(t)
= X" (1)(ATP + PA)X(t)
=—Xx"(t)x(t)
=—[xoff <0

(3-3)

Therefore, the system (3-1) is stable.

3.1.2 Networked Control Systems

When we connect the feedback channel of sensors to the network, the system (3-1) can

be given as in Fig. 3-1-2. In this case, /u(t)==KX(t,), aste[t,.t,). Thus, it becomes
X(t) = AX(t) — BKX(t, ), te[t.t,,)- (3-4)
Now, we drive a useful form between X(t) and X(t,).
x(t) = e Wx(t, )+ L tk " Bu(s)ds
= MWyt ) - f A9 BKX(t, )ds
= MWyt )+ A (| - eA““k)) BKX(t, )
Define 7 =t-t,, then

X(t) = [eAf + A (1) BK] X(t,) (3-5)

11
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A
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A
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Figure3-1-2  System x(t) = Ax(t)+ Bu(t), where u(t)=-Kx(t, ),
H denotesa zero-order-hold stage.

Now we derive the V(X(t)) of the system (3-4) with V(X(t)) = X (t)Px(t), where P is the
solution of (3-2).
V (X(t)) = X" (t) Px(t )+ X" () Px(t)
= (AX() S BKX(t, ) Px(@)y+ X (t)P(AX(t) - BKx(t,))
= X' (t)CA” P4 PAYx(®)= X (t)(K"B" P+ PBK)X(t)
—X0(t, )K" BTPxX(t) - X' (t)PBKX(t,)

=[x +[x®) ~x(t)] KTBTPx(t)+ X" (t)PBK [x(t) - X(t,)]

= —||x(t)||2 +e’ (H)KTB"Px(t) + X" (t)PBKe(t)

<ol +2]PeK|[xo)Jecv]
If we can get

— x| +2[|PBK[e®)|[x®)] <0, for all x=0 (3-7)

then the system (3-4) is stable according to the Lyapunov theorem.

3.2 Transmission Sability

Combining the goal of control to make system to be stable and reduce the network

usage, to find out the maximum allowable un-updated interval, 7, to ensure the stability of

NCS is our work. The NCSs can be guaranteed to be stable if the control signal is updated in

a period of 7. We call (t,,, —t,) as ‘transmission period’, and the stability of the system

12



under this transmission period as ‘transmission stability’.

Lemma 4. (Transmission Sability of Networ ked Control Systems)

Let Xx=0 be the globally exponentially stable equilibrium point of the non-networked
system X(t) = (A-BK)X(t) with transmission period 7 =0. If the transmission period,
7 (>0), satisfies the following conditions (a) and (b), then the origin in period 7 is also the

globally exponentially stable equilibrium point of the NCS ( X(t) = AX(t) - BKX(t—7) ).

(a) 7=

” A” —InW, where W satisfies the inequality
T

where A= A-BK .

(k]
® wl( K] J

The maximum accepted value of updating period “z is the minimum of maximum of (a) and

(b).

Pr oof.

In order to derive the relation between 1 x(t)-and X(t, ), we fix the final time, t,, and let the
initial time, t, be changeable, i.e., t <t<t <t .
From the system (3-4), we have

x(t) = x(t, )+j: [ Ax(w) — BKX(t, )] dw

Let G=-BKx(t,).Then ||G|<||BK]|[xt,)|-

We can obtain

[x(®)] < Hx(tf )| +G] ¢t -t + j: H”x(w)” dw

(1) k(w)

Set A(t) = Hx(tf )H +||G||(tf —t) and k(w)= ||A|| . Using Lemma 2, we get

Ix(o)] < Act, ek A [ (-I6])" “aw

- Hx(tf )H Ao ”G”J-:f A0 gy

13



-t il € -,
Let t=t,, t, =t, t=t +7, then we have
Ixtol =[x e |Gl @ -1,
It becomes
bt < o+ Bt AT @ .
That is,
(1B A @ —n) frcto] < ety (3-8)
Let r=t—t,. If 1-|BK||A|" (€4 ~1)>0, then (3-8) becomes
dAr

x|

[xctof < ST (3-9)
1= [BK[ A" % -1)
With inequalities (3-9) and Lemma 3, we can drive
A v
)| < éW\ —D)||xt Il HA” éw - x| |.
” ” ”A” ” K ” ”A” 1_” BK””A” (EM\T _1) ” ”
Therefore,
A &
e(t)] < (€% =1 = x| (3-10)
” ” ”A” 1—||BK||||A” (éwr _1) ” ”
Seteet =@~y A hen incquality becomes o<
elect y= - en inequality becomes <y[x@®)|.
'TAllK] & -
From (3-7) and (3-10), we have
(~1+2y||PBK x| <0. (3-11)

Thatis, y< _1 must hold.

2||PBK|

If we summarize the results, the interval 7 must satisfy:

All A 1
(a) (EJW\T_I) HA” <
|AlIBK] € ~1) ~2[PBK]|

) 1-[BK[JAT" € >0

Our goal is to fetch out 7, so rewrite (a)

14



=R -0e <l IAlBK- e )

Ar Ar L g, 1
= A A <oy 1P 3ppar +2||pBK||
Al A
= A g 1A e A oy

let W =", then we get

HA” 2||PBK|| H H) ”PBK””A”” ” 2||PBK||

We can solve it, and get the value of W . After that we can take 7 =

||/’4|

-1
Rewrite (b), it can be &4 < W

[BKlA"

Then we can gain the expectance

N
IINI ( =N }

3.3 Simulation
3.3.1 \ValidatingLemma4

In this section, Lemma 4 is verified by simulatinons. The target of this lemma is getting

the maximum interval time between two updated points. We denote it as 7,,.

The step of verifying is as following. First, we consider some unstable systems. Next we
find the feedback gain, K, by using the Pole-assignment method in order to make all of the

eigenvalues of A—BK lie in the left-half-plane. Finally, we take 7z, found by Lemma 4

to be the interval time of two updated points in these system.

System
The system is X(t)= Ax(t)+ Bu(t), where u(t)=—Kx(t), X(t)eR>' is the state of the
, , 0 15 3 10
system, U(t) € R is the control signal, and A= , B= , X(0)= .
-1.5 0 2 20

15



The poles of matrix A are +1.5i, so it is an oscillating system. When we choose
K =[0.6667 0.5], then eigenvalues of A=A-BK are -2 and —1. The closed-loop
system is stable.

From Lemma 4, we can obtain 7,, is the smallest one of 0.8475s and 0.27s, so we
select 7,,=0.27s for this system.

The feedback state is updated in a period of 0.27 sec. Fig. 3-3-1(a) shows the states of
original system . The meaning of OFF and ON is shown in Fig.3-3(a) and Fig.3-3(b). Fig.
3-3-1(b) shows two kinds of controlled states in system . One of them is real-time control.

The other one is as controller updated in a period of 0.27s. Fig. 3-3-1(c) shows the above
control inputs u(t) = —-Kx(t) and u(t)=-KXx(,).

OFF
| ON OFF 4y OFF .,y

t=0.27s t=,0.54s t=0.81s
Figure 3-3-1. Theswitch.assignment in system

Plant
X(t) = Ax(t) + Bu(t)

Controller
u(t) =—Kx(,)

Zero-Order-Hold

A

Zero-Order-Hold

A

Figure3-3(a) Switch OFF.

Plant
X(t) = Ax(t) + Bu(t)

Controller
u(t) = —Kx(,)

Zero-Order-Hold

A

Zero-Order-Hold «—

Figure3-3(b)  Switch ON.
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State 1

State 2

Time(s)

Figure3-3-1(a) .Original.statesin system

State 1
T
- — - u(t)=-Kx(t)
— u(t)=-Kx(tk) H
-2 | | | | |
0 0.5 1 15 2 2.5 3
State 2

- — - u(t)=-Kx(t)
—— u(t)=-Kx(tk) ||

Time(s)

Figure3-3-1(b) Satesof syssem  under controlled.
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u(t)=-Kx(tk)

- — - u(t)=-Kx(t)
— u(t)=-Kx(tk)

-0 - : .
a20 .

14 ! B

-16 _

.18 | | | \ \
0 0.5 1 1.5 2 2.5 3

Time(s)

Figure 3-3-1 (c) + - \Contr ol input in system

System

The system is X(t) = Ax(t)+ Bu(t), where u(t)=—Kx(t), x(t)e®R> is the state of the

-1 3 3 10
system, U(t) € R is the control signal, and A= , B= , X(0)= .
5 7 2 20

The poles of matrix A are —2.57 and 8.57. When we choose K =[1.296 2.556],
then eigenvalues of A= A-BK are —1, —2. The closed-loop system is stable.

From Lemma 4, we can obtain 7, is the smallest one of 0.2272s and 0.07s, hence
7,,=0.07s for this system.

The feedback state is updated in a period of 0.07 sec. Fig. 3-3-2(a) shows the states of
original system . The meaning of OFF and ON is shown in Fig.3-3(a) and Fig.3-3(b). Fig.

3-3-2(b) shows two kinds of controlled states in system . One of them is real-time control.

The other one is as controller updated in a period of 0.07s. Fig. 3-3-2(c) shows the above
control inputs  u(t) =—-Kx(t) and u(t)=-KXx(,).

18



ON

FF FF
OF Fy\ ©

ON OFF ON

OF F

0.28s

t

t=0.14s t=0.21s

t=0.07s
Figure 3-3-2

The switch assignment in system

State 1

x 10"

10

15

0.5

State 2

x 10¥

1_57777777777L777777777L777777777L777777777l777777777477777777 —|

1.5
Time(s)

0.5

Original statesin system

Figure 3-3-2(a)
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State 1
10 T

40 T

- = - u(t)=-Kx(t)
—— u(t)=-Kx(tk)

0 0.5 1 1.5 2 2.5 3
Time(s)

Figure3-3-2(b):  Sates of system under controlled.

u(t)=-Kx(tk)

0 ‘ —
== - u(t)=-Kx(t)

f — u@)=Kx(tk) |

0L ‘ T - B

20 / e i B

30 _

40 _

=70 | | | | |
0 0.5 1 15 2 2.5 3

Time(s)

Figure3-3-2(c) Control input in system
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System
Now we consider a 4-order system described by

x(t) = AX(t) + Bu(t),

where X(t)eR*™ is the state of the system, U(t)e R is the control signal, and

1 -2 0 3 -1 10
2 -4 3 0 -8 20
= , B = , X(O) — .
03 02 -6 1 2 -5
0 -04 02 1 5 -2

The poles of matrix A are 0.526+0.6023i, —6.37 and -2.6814 . Choosing
K=[0.26 -0.24 —0.015 0.87], then eigenvalues of A=A-BK are -1,-2,-4,-7.
The closed-loop system is stable.

From Lemma 4, we can obtain 7, is the smallest one of 0.3444s and 0.08s, hence

7., =0.08s for this system.

The feedback state is updated in a period.of 0.08 sec. Fig. 3-3-3(a) shows the states of
original system . The meaning of OFF and-ONis shown in Fig.3-3(a) and Fig.3-3(b). Fig.

3-3-3(b) shows two kinds of controlled states in system . One of them is real-time control.

The other one is as controller updated in a period of 0.07s. Fig. 3-3-3(c) shows the above
control inputs u(t) =—-Kx(t) and u(t)=-KX(,).

ON ON ON ON

t=0.08s t=0.16s t=0.24s t=0.32s

| OFF OFF OFF_.  OFF

Figure3-3-3  Theswitch assgnment in system
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State 1 State 2
20

-20

-40

-60

-80

-100
0

State 4

Time(s) Time(s)

Figure 3-3-3(a) I - Original statesin system

State 1 State 2
10 20
- — - u(t)=-Kx(t) - — - u(t)=-Kx(t)
8 — u(t)=-Kx(tk) |] — u(t)=-Kx(tk)

4 6 6
State 3
1
- - - u(t)=-Kx(t)
0 S —— u(t)=-Kx(tk) |
-1
-2
-3
-4
5 : 2
0 2 4 6 0 2 4 6
Time(s) Time(s)

Figure3-3-3(b) Statesof system under controlled.
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u(t)=-Kx(tk)

— - u(t)=-Kx(t)
—— u(t)=-Kx(tk)

3.5

25F

0 | | | ot e e S I
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time(s)

Figure 3-3-3(c) | Control input in system

3.3.2 Remark

The updated interval of each above system is listed Table 3-1.

Table3-1 List of theupdated interval.

System System System
Original poles +1.5i -2.57, 8.57 0.526+0.6023i,—6.37, —2.6814
New poles -1, -2 -1, -2 -1,-2,-4,-7
Updated interval 0.27 sec 0.07 sec 0.08 sec

From system  and system , we can obtain that if the original system is more

unstable (the poles is more positive), then in general the updated interval is shorter. From

system , we can get Lemma 4 also suit to use in high order system.
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Chapter4d
Networked Control Systems

with Disturbance

4.1 System Model
4.1.1 Normal Control Systems

Now we model the NCSs for system with disturbance. If there is no network, the sketch

map of this system can be shown as in Fig. 4-1-1.

) 4
o
>

) 4

wn | —

A

K

X(t)

Figure4-1-1 System x(t) = Ax(t)+ B,w(t)+ B,u(t), where u(t) = -Kx(t).

Consider the system

X(t) = AX(t) + Bw(t) + B,u(t), (4-1)
where Xx(t) e R" is the state of the system, u(t) e R™ is the control signal, w(t) e R" is
the disturbances satisfying ||W(t)|| <p (p isapositive scalar),and A, B, B, are known

matrices with proper dimensions. Suppose the original system ( X(t) = Ax(t) ) has eigenvalues

in the right-half-plane. We must design a state feedback controller such that the system to be

24



stable. For convenience, we define A= A— B,K, which is stable, and the controlled system

can be rewritten as
X(t) = AX(t) + Bw(t) + B,u(t)
=(A-B,K)x(t)+ Bwt) (4-2)
= AX(t) + BwW(t)
The sketch map of this system is shown in Fig. 4-1-1. Now, we want to find the condition of
the system (4-2) to be stable via Theorem1 and Theorem 2. Let V(X(t)) = X" (t)PX(t), where
P is the solution of (3-2). Then,
V(X(1)) = X (t)Px(t) + X" (1) PX(t)
= X' (t)(A"P+ PA)X(t)+ W' (t)BTPx(t)+ X" (t)PBw(t)
=X (t)X(t) + W' (t)B'Px(t) + X" (t)PBw(t)
= x| +Ww" (©)BI Px(t) + X ()PBwW(t)
<=l +20]P8)| o)
We can observe if —||x()|" + 2| BPX®] <03 that is if

[x®> 2] P8,

the system (4-2) converges to neighborhood of origin.

; (4-3)

4.1.2 Networked Control Systems

When we connect the feedback channel of sensors to the network, the system can be
given as in Fig. 4-1-2. Then, u(t)=-Kx(t,) as te[tt,.,). The closed-loop system

becomes

(1) = AX(t) + Bw(t) - B,KX(t,), ast e[t t,,)- (4-4)

where x(t)eR", u(t)e R™, and w(t)e R".
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Bl
- XO) 0 X
> B, 1 -
A -

K :X(tk) H ‘—/

Figure4-1-2 System  x(t) = Ax(t)+ B,w(t)+ B,u(t), where u(t) = -Kx(t, ),
H denotesa zero-order-hold stage.

Let V(x(t))= X" (t)Px(t) be a-Lyapunov function of the networked control system, where
P is the solution of (3-2). For the'system given.in(4-4),
V (x(t)) = X" (t)Px(t) + X (t)Px(t)
= (AX(t) — B,KX(t, ) + BW(t))" Px(t) + X" (t)P(AX(t) — B,KX(t, ) + Bw(t))
= X" (H)(A"P+ PA)X(t) + X" (t)(K"B," P+ PB,K)X(t)
— X" (t )K" B, Px(t) - X" (t)PB,KXx(t, )+ W' (t)B Px(t) + X' (t)PBw(t)
=~ x| +[x®) = x(t)] KB, Px(t)— X" (t)PB,K [x(t) - x(t,)]
+W' (t)B] Px(t) + X" (t)PBwW(t)
= x| +€" (t)KB,TPx(t)— X" (t)PB,Ke(t) + W' (t) B Px(t) + X" (t)PBW(t)
<-[x®f +2[Pe.K|xllet)] + 2|8 Plx®]
It means that the system (4-4) converges to neighborhood of origin, if

~Ix®]+2|PB.Kle)] + 2| o[ |[B P < 0. (4-6)
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4.2  Transmission Error Upper Bound

From now on, the state is not real time feedback, and it would be interesting to find out
how much the error is created. The system we consider here is (4-4), and then we define
e(t) = X(t)—x(t,) where t, <t<t,_,. We call ||e(t)|| as “transmission error”’. Furthermore,

we will derive the upper bound of transmission error in Lemma 5, and we call it as

‘transmission error upper bound’ shown in Fig. 4-2-2.

\

3 4

Figure4-2-1 Signification of x(t) and x(t, ).

............. Transmission error upper bound

— The Norm of actual transmission error

Figure4-2-2  Signification of transmission error and transmission error upper bound.
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Lemma 5.
(Transmission Error Upper Bound of Networked Control Systemswith Distur bances)

The system is X(t) = AX(t) + Bw(t) + B,u(t), where ||W(t)|| < p, and the transmission error,
e(t), defined as e(t) =[x(t)—x(t,)] is bounded by

A
”e(t)”<( 1Al > [AlIxeol +[B]]. teft,t,,)

between two successive transmissions, where A= A-BK, r=t-t,.

Pr oof.

From (4-4), and let A= A—B,K we can derive
&) =X(t) = A(X(1) - X(t,) )+ AX(t,) — B,KX(t,) + Bw(t) = Ae(t) + AX(t,) + BW(t).
Taking the integral on both sides, we have
j &t)dt = j [ As(v)+ Ax(t,) + Bw(v) | dv
Then,
ot) —e(t,) = || [ Aetv) + Ax(t )+ BWD) | dv=Ax(t )it —t,) + [ [Bwv) + Ae(v)] dv

Substituting t=t,, we get e(t, )= Xt )=x(t,)= 0. Therefore,

el <[ JAllxt ) #1BA Jt—to+ [} |Afle] av.

k(v)

A(t)

Let A(t) = [“'&””X(tk)” + ||Bl||p} (t—t,) and k(v)= H;” . Using Lemma 1, hence

N[ M AP EAGY
shere 2= Al 81 Jt ) Then. 26 <[ [t [l ] -t =0- 50

Jeco < [, At + B o] e

_ mex(tﬁﬂ:r [l ] @4

é _
oy Y et
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4.3 Simulation
43.1 ValidatingLemmab

There are two systems chosen in this section for verifying Lemma 5.

System
Consider the following system:

X(1) = AX() +Bw(t) + B,u(t),

where X(t)e R is the state of the system, U(t)e R is the control signal, and

a0 | ! B =| | 0)=| ° d r=0.1
_37’81_11’ 2—_1,X()—0,anz'—.s.

The poles of matrix A are 8.6 and -2.6. The eigenvalues of A= A—BK are —I,
—2 with choosing  u(t) =—Kx(t), where K=[-42 -13.2].

Suppose the disturbance W(t) =sin{20t), as te[0sec,2sec] is shown in Fig. 4-3-1(a). The
system state X(t) is shown in-Fig.'4-3-1(b). The upper bound of ||e(t)|| and actual ||e(t)||

is shown in Fig. 4-3-1(c).
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0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

Noise

W(t) =sin(20t) as te[0sec,2sec]

Figure 4-3-1(b)

Sates of system

30

under controlled.

1 2 4 5 7 8 9 10
Time(s)
Figure4-3-1(a)p= -Noise of system
State 1
4 ‘
3 -
2 -
1 —
0 L L L L | |
0 1 2 4 5 7 8 9 10
State 2
1 ‘
0.5 il
0
-0.5 -
-1 _
-1.5 L L L L L L L
0 1 2 4 5 7 8 9 10
Time(s)



Error
12 T

Error upper bound
10+

TI1_- - - - _— - _—1_
L

Time(s)

Figure4-3-1(c) Error upper bound of system as w(t)=sin(20t).

System
Consider the following system:

X(1) = AX(D) +Bw(t) + B,u(t),

where X(t)e R* is the state of the system, U(t)e R is the control signal, and

A_l.SO |1 B—l 0_0 d 701
=10 osl B'_ll’ 2= | X()—0 and 7=0.1s.

The poles of matrix A are 1.5 and 0.5 . Choosing u(t)=-KXx(t) , where

K= [12 7.5], then the eigenvalues of A= A—BK are —1, —2. Suppose the disturbance
W(t) =10sin(20t), as te[Osec,Zsec] as shown in Fig.4-3-2(a). The system state X(t) is
shown in Fig. 4-3-2(b). The upper bound of ||e(t)|| and actual ||e(t)|| are shown in Fig.
4-3-2(c).
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Noise
10 T

-10 | | | | |
0 1 2 3 4 5

Time(s)

Figure4-3-2(a) - Noise.of system

State 1
2 T

10

'
(o)
T

20 T

10

10+

[&)]

5 | | | | |
0 1 2 3 4 5

Time(s)
Figure4-3-2(b) Satesof system
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under controlled.
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Error
40 |

351 Error upper bound 1
30+
25

20

15

St |

et) .

10

Time(s)

Figure4-3-2(c)  Error upper bound of system as w(t)=10sin(20t).

4.3.2 Remark

Al _ —
We take a view of Lemm 6 Jec)]< € T Dl |Alxt )] +|8] ] When the value of

7 is small, according to the Taylor Expansion, the term d¥ can be rewritten as

1+||A||r+..., and then the upper bound is decided mainly by HAH||X(tk)||+||Bl|| p . However,

the upper bound will become extreme large if 7 is large. At this time, the bound will be

useless.
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44 H_ Control

44.1 Basic H_ Control Concept [13]

For linear system, the system is defined as follows ,

X(t) = AX(t) + Bw(t) + B,u(t)
Z(t)= C] X(t)+ Dl]W(t) + Dlzu(t)
y(t) = sz(t) + DZIW(t) + Dzzu(t)

where Xx(t) e R" is the state of the system, u(t) e R™ is the control, w(t) e R" is the

disturbances with we L*[0,00), z(t)e R is the output vector, Y(t) € Ris the

measurement vector,and A, B, B,, C, D,, D,,, C,, D,,, D,, are known matrices

with proper dimensions. If we can find a positive definite function V(X)= X' (t)Px(t) which
satisfies

V(X(1)) =V (X(0)) + j Z' (t)z(t)dt — j W (Hwit)dt <0

then we can get the results that .[: Z'()z(t)dt <37 J:O W' (t)w(t)dt . Taking derivative on both

sides, we get
V, [Ax(t) + Bw(t) + But)]+z" ()z(t) -y’ 0" (Ho(t) <0.

We can obtain

2XT (H)PAX(t) + 22X (t)PBW(t) + 2X' (t)PB,u(t)

+X' (1)CC,x(t) + X" (1)C D, w(t) + X" (t)C D,,u(t)

+W' (1)D\C x(t) + W' (1)D],D,,\W(t) + W' (t)D;, D, u(t)

+u" (1)D,C x(t) +u" (t)D;,D,,W(t) + u" (t)D/,D,,u(t) — *W' (t)w(t) < 0.
Let the left term of the inequality above is H(t), that is

H(t) = 2x" (H)PAX(t) + 2" (t)PBwW(t) + 2X" (t)PB,u(t) + X' (t)C[C,x(t)
+ X" (H)C D, ,W(t) + X" (1)C D,,u(t) + W' (t)D,,C, x(t)
+W' (t)D/ D, W(t) + W' (t)D\D,,u(t)+u’ (t)D,C,x(t)
+u" (t)D,D,,W(t) +u' (t)D,D,,u(t) — y* W' (t)w(t).

(4-7)

HM) _ ) o H()

=0, =0, we get
OW(t) ou(t)

Consequently, by setting,

aal\;'v((':)) = 2B/ Px(t) +2D/,C,X(t) + 2D}, D, W(t) + 2D}, D,u(t) - 27W' (t) = 0.
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SH (1)

TN 2B] Px(t) + 2D/,C,X(t) + 2D[, D, w(t) + 2D}, D,,u(t) = 0.
u

It can be denoted as

D1T2 DIZ D1T2 D11 |:U(t) } _ _BzT P- D1T2C1 X(t)
DlTlDlz DlTlDll AR, _BITP_ D1T1C1 '

So
. -1
u (t) _ D1T2 Dy, Dsz D, _BzT P- D1T2C1 x(t)
W*(t) DlTlDIZ D1T1D11 _72| _BITP_D1T1C1 .
In order to simplify the results, assume D,, =0, C'D,, =0, DD, =1.Then, we have

u'(t) =—BI Px(t), o' ()= iz B/ PX(t).
y

Replacing to (4-7), we have
H(t) = 2x" (t)PAX(t) + 2X" (t)PBwW(t) + 2X" (1)PB,u(t) + X (t)C C,x(t)

(4-8)
+U" (1)DLCx(1) +u” (Hut) — 7 W' (Hw(t).

Replacing u(t) and W(t) of (4:8) by ui(t).and *w (t), we can get
H(x(t), " (0),U" (1) =X ((ATP+PA+ - PBBP+CIC, - PB,B P)x(t).
e

We obtain the conclusion that only if there exists a positive symmetric matrix P satisfying

ATP+PA+—- PBB'P+C'C,~ PB,BIP <0 (4-9)
¥

if choosing controller u(t)=u'(t) then | "Mzt <y’ jo“’ W' (Hw(t)dt .

0

442 H_ Control of Networked Control Systems

In this section, we derive the condition such that J‘: Z' (t)z(t)dt < 5 J.: w' (Hw(t)dt,

X(1) = AX(t) + Bw(t) + B,u(t,)

, D,=0, C'D,=0, D'D,=1I.
Z(t):CIX(t)+D12U(tk) 11 1 =12 1212

where the system is {
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Lemma 6. (H, Control of Networked Control Systems)

Choosing controller u(t)=-B] Px(t,), if the Norm of transmission error satisfies:

Ain (Q)
A (PB,B; P)

max

Je] < [xo)

where Q is a positive symmetrical matrix, P is the solution of

AP+ PA+%PBIB,TP+C1TC1 —PB,BIP=-Q.

Then, j: Z' (t)z(t)dt < j:’ w' (H)w(t)dt .

Pr oof.

Replacing U’ (t)=-B]Px(t,), @ (t)= Lz B/ Px(t) to (4-8), we can obtain
v

H(x(t), @ (t),u" () = X" (t)(A'P+ F>A+i2 PBB'P+C/C - PB,B]P)x(t)
¥ (4-10)
+x' (YPB, B, P(x(1) —X(t,)) - (x(t) - x(t,))" PB,B; Px(t,).

From (4-9), we set
A'P+PA+ LZ PBB'P+C'C =PBBJP=-Q where Q is a positive matrix.
4

Then (4-10) becomes

H(X(t), @' (1), u" (1) = -X" (HQX()
+X' (1)PB,B] P(x(t) - x(t,)) — (X(t) = X(t, )" PB,B; Px(t,).

If we want to make the the signal J:O Z' (t)z(t)dt < 72j0w W' (t)w(t)dt , then
H(X(t), (t),u’(t)) must be less than zero. Thus
X' (t)PB,B) P(x(t) — X(t,)) — (X(t) = X(t,))" PB,B, Px(t,) < X" (t)Qx(1). (4-11)
Since PB,B]P is a symmetric matrix, and X' (t)PB,B] Pe(t) is a scalar
X' (t)PB,B] Pe(t) = (X' () PB,B] Pe(t))T = €' (t)PB,B] Px(t) .

Therefore, (4-11) can be simplied as
e' (1)PB,B] P( X(t)— X(tk)) < x (HQX(1). (4-12)

> . Ain (Q)
, that is if ||e(t)||£ 7 (PBszTP)”X(t)

max

Soif A, (PB,BIP)|e®)] < A, (Q[x(D)

max

, then
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(4-11) holds. Tt means that j: Z' () z(t)dt < j: W ()w(t)dt .

45 Simulation

A (Q)
Ao (PB,B] P)

max

For convenience, we call of Lemma 6 as "weight”. Now we try to find

out ‘weight’ of the following system.

451 ValidatingLemma6
System

Consider the following system:

X(t) = AX(t) + Bw(t) + Bu(t)
2(t) = C,x(t) + D,u(t)

2

where C'D,, =0, DD, =1, u(t)eR is the control signal, X(t)eR>' is the state of the

t LA s el '] o] 0] o[ 8
m, an = ) 5 ) G, ) = ) = 9
e 3 o) BT 2 W1 0 3 -6

5 0 b 0.6 N o 10 0 10
L= , D, = , choose = Sy =10.
" 71 08 6110 |

Suppose the disturbance signal W(t)=58in20t, as te[Osec,O.7sec] is shown in Fig.

4-5-1(a).
The poles of matrix A are 2.405 and -5.405. Using H_ control approach, we can

obtain the control input signal which makes J-: Z' (tH)z(t)dt <100 J: w' (t)w(t)dt as

u(t) =—B; Px(t,)=[4.53 —8.46]x(t,) . And then we calculate the value of ‘weight’=

—imax/im;é?% P =0.3296.

Fig. 4-5-1(b) shows the original states of system . Fig. 4-5-1(c) shows the states of
controlled system under instantly updated control or updated hold control under the
‘weight’=0.3296 of Lemma 6. The control input signal as updated instantly or as
‘weight’=0.3296 is shown in Fig. 4-5-1(d).

a(t)] < 0.3296] x(t)||, is shown in Fig. 4-5-1(€).

The requirement of Lemma 6,
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Noise

15 2.5

Time(s)

0.5

Noise of system

Figure 4-51(a)

State 1

400

0.5

State 2

400
0

Time(s)

Original statesin system

Figure 4-5-1 (b)
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State 1

- u(t)=-Kx(t)
— u(t)=-Kx(tk) as weight=0.3296 | |

State 2

—— u(t)=-Kx(tk) as weight=0.3296

u(t)=-Kx(t)

25

Figure 4-5-1 (¢)

1
0.5 1 1.5
Time(s)

Sates of system

2.5

under controlled.

20

15+

10+

-10 -

-15+-

20+

- u(t)=-Kx(t)
—— u(t)=-Kx(tk) as weight=0.3296

-25

0.5 1 15
Time(s)

Figure 4-5-1 (d)
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Figure 4-5-1:(¢) | |le{)]<0.3296 | x(t)| in System

System
Consider the following system :

X(t) = AX(t) + Bw(t) + Bu(t)
2(t) = Cx(t) + D, u(t)

2

where C/D,, =0, DD, =1, u(t)eR is the control signal, X(t)eR*" is the state of the
| ) 0 3 1 -1
system, and A= 2 30 , B = 3 , B, = ! , X(O)={ 0 },
03 02 -6 1 -4 2 0
0 -04 02 1 1 0.5
24 77 0 10 0 0 0
24 07 0 { 0.28 } 0 10 0 0
C= , D, = , D, = , choose Q= , y=10.
-12 3.5 0 0.96 0 0 10 O
72 =21 0 0 0 0 10

Suppose the disturbance signal W(t), is defined as in Fig.4-5-2(a).
The poles of matrix A are 0.5259 +0.6023i, —2.6814 and —6.3704. Because two
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of them are in the right-half-plane, it is an unstable system Using H_ control approach, we

can obtain the control input signal which makes _[: Z' (t)z(t)dt <100 I: w' (Hw(t)dt as

uct) =-BJ Px(t,) = [—26.22 3.8 11.56 —10.58] X(t,) . And then we calculate the value of

ﬂ’lnin (Q)
A...(PB,B]P)

max

‘weight’= =0.1027.

Fig. 4-5-2(b) shows the original states of system VII. Fig. 4-5-2(c)(d) shows the states
of controlled system VII under instantly updated control or updated hold control under the
‘weight’=0.1027 of Lemma 6. The control input signal as updated instantly or as
‘weight’=0.1027 is shown in Fig. 4-5-2(€).

The requirement of Lemma 6, e(t)|| <0.1027 ||X(t)

, is shown in Fig. 4-5-2(f).

Noise
50 T

40f .

20 B

10 B

10 4

20 4

401} 4

50 | | | | |
0 1 2 3 4 5 6

Time(s)

Figure4-5-2(a) Noiseof system
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State 2

State 1

State 4

State 3

Time(s)

Original statesin system

Figure 4-5-2(h)

State 1

=-Kx(t)

- u(t)

Kx(tk) H

u(t)

State 2

)
—~ X
R
X X
¥ ¢
Iyl
iy
e
S5 S
,
s ]
|
L L L
o o o o
< A <«

-30

Time(s)

Sate 1,2 of system under controlled.

Figure 4-5-2(c)
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State 3
15 T

- u()=-Kx()
—— u(t)=-Kx(tk)
101 -

15 T

10+~ H

10 | | | | |
0 1 2 3 4 5 6

Time(s)

Figure4-5-2(d):  Sate 3,4 of.system under controlled.

control input
60 T T T
- — - u(t)=-Kx(t)
—— u(t)=-Kx(tk) as weight=0.1027

20+

401}

-60 | | | | | | | | |
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time(s)

Figure4-5-2(e)  Control input in system
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452 Remark

Table4-1 List of the updated times.

System VI System VII
Times of real-time updated 3000 5000
Weight 0.3296 0.1027
Times of updated in Lemma 6 66 152

From Table 4-1, we can conclude that the usage of network is reduced by using the control

method provided in Lemma 6.
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Chapter5

Conclusons and Future Work

51 Conclusions

We investigate the stability of the linear system operating under limited communication.
Using Lyapunov theory, we give a sufficient condition for stability of NCSs. In the system
without disturbances, we really and truly get the maximum time interval of state updating
which still guarantees the stability of the system. In the system with disturbances, we obtain
the upper bound of state error caused by jamming in the network based on the H_ design. It
not only ensures the stability of the controlled system, but also guarantees the closed-loop
system satisfying the L?> —gain requirement. From these results, the time of state to be

feedback will be reduced, so it minimizes the network usage.

52 FutureWork

In the future, we hope to derive other corresponding results for NCSs about that time
delay, scheduling, dropping packets out ete:;Additionally, in this thesis, we only concentrated

on the stability requirements. In future work, we can consider some other performance.
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Appendix

Proof. (Lemmal)
Let z(t)=A(t)+] k(W) y(w)dw, VE2t >0,

Form definition we can obtain z(t) is differentiable and z(t)> y(t). Then we get
2(t) = A(t) + k(t)y(t).
2(t) = A(t) + j: k(W) y(w)dw
= A(t).
Let v(t)=2z(t)—-y(t)>0,
Then we get
2(t) = A1) + k(O y(t)

= A(t) +k®)[z(t) - v(t)]
= k(t)z(t) + A(t) = k(t)w(t).

The state transition matrix is

Ot ,t) = ghtwa

Therefore,
2(t) = O (t,t) z(t) + j t,s)[ A(s)-k(s)(s) | ds.
Since

fq)(t,s)k(s)v(s)dsz 0, Vt>t then it becomes

2(t) <D (t,t z(t)+_|. (t,8)i(s)ds.

J‘:k(w)dw

Substitute O(t,,t)=¢€" . Thus it gives

y(t) < Z(t) < A(t )e +j A(s )e[ Ky V>t >0,
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Proof. (Lemma 2)

Let z(t)=A(t)+ j:‘ k(w) y(w)dw,

Form definition, 2z(t) is differentiable and 2z(t) > y(t) . Then we get

2(t) = A - kO Y(t)
2(t,) = A(t)+ [ k(w)y(w)dw
= At,).
Let v(t)=z(t)—y(t)>0. Then we get
2(t) = A0 -k®)Y(®)

= At) - k[ z(t) - ()]
= —k(t)z(t) + A(t) + k(t)w(t).

The state transition matrix is

[

—k(w)dw '
D(t,t,)=€" :ejt K

Therefore,
2(t) = d(t,t, ) «t, )+j (t.9)[AE+k(S)¥(S) |ds.
Since

I: O (t,sk(s)V(s)ds<0, Vt, >t, weiget

Z2(H) <O(tt, )zt )+j (t,s)A(9)ds.

. " k(w)dw )
Substitute D(t,t,) = e'[‘ "™ Then it becomes

2 < 2(t, ) M [ " i(9)ek ™ ds. This gives

y(t) < z(t) < A(t, )e[‘ k(w)dw _J-ttf /’t(s)e[‘ k(w)dwds’
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Proof. (Lemma 3)

Because of e(t) = x(t)—X(t,)

&) = Ae(t) + Ax(t,).

Taking the integral on both sides,
[ eyt = [ Ae(w)+ Ax(t,) ] dw
t, “ k
= e(t)—elt)= At )t -t)+ [ Aew) dw

Substituting t=t,, we get et )=x(t )—X(t,)=0.

This gives

— t
at)= Ax(t, )(t—t )+ Lk Ae(W) dw.
Taking Norm on both sides, we obtain

le®)] < Hﬂunx(tk)” (t—t )+ j H”e(w)” aw.

At) k(w)
Setting
A0 = | Al xct)] -t
() =[A

Using Lemma 1, we get
o] <t ™+ [ | Al 4w,
Since from setting A(t) = H,&””x(tk)”(t ~1,), we can get

At = AllIxcto] t ~t)
=0.
So

oo < J| [Aflpct & cw

A
_ H(é“”w ~D||xt)-
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