國立交通大學

土木工程學系碩士班

碩士論文

垂直橫向等向性材料在半無限空間受三維表面點荷重 作用之位移閉合解探討

Study of the closed form Solutions for Displacements in

an Half Space with Vertical Transversely Isotropy

Subject to Surface 3D Point Loads

研究生:戴文蕙 指導教授:廖志中博士

中華民國九十九年八月

合解探討

Study of the closed form Solutions for Displacements in an Half Space with Vertical Transversely Isotropy Subject to Surface 3D Point Loads

研究生:戴文蕙 指導教授:廖志中博士 Student : Wen-Huei Dai

Advisor: Jyh Jong Liao

國立交通大學

土木工程學系

碩士論文

For the Degree of Master

in

Civil Engineering

August 2010

Hsinchu, Taiwan, Republic of China

中華民國九十九年八月

垂直橫向等向性材料在半無限空間受三維表面點荷重作用之位移閉合解探討
 學生:戴文蕙
 指導教授:廖志中 博士

國立交通大學土木工程學系碩士班

中文摘要

基礎材料受工程結構物作用,常因超額載重及位移變化量而產生破壞,故考 慮現地承受大量載重作用下基礎所引產生之「位移和應力」是有必要的。一般岩 石或土壤若以明顯之地質構造或彈性對稱方向來看,可分為一般異向性、正交性 或橫向等向性材料,這就是「異向性」,其中又以橫向等向性材料最為常見,例 如:單組規則節理岩體、層狀岩體或具有葉理的岩石等都可視為橫向等向性材料。 由於地質構造作用,岩體內不連續面位態並非全為「水平」,故本文依 2009 年胡 廷秉提出對於半無限空間傾斜橫向等向性材料受載之傳統求解偏微分方程方法, 探討半無限空間垂直橫向等向性材料受三维表面點荷重作用的位移閉合解。

本論文主要是先推導在微小變形條件下,根據彈性力學理論,求解由偏微分 方程所組成之控制方程,首先將控制方程透過雙傳立葉轉換轉變為常微分方程, 並配合邊界條件求出傳立葉定義下之半無限空間垂直橫向等向性材料位移解,然 後經由雙傳立葉逆轉換且利用殘數定理積分而得到半無限空間垂直橫向等向性 材料受三維點荷重作用的位移閉合解。最後,藉由範例說明,特別針對殘數定理 積分部份探討半無限空間垂直橫向等向性材料受三維表面點荷重作用之位移閉 合解與受到材料的異向性影響性,並且與2006年 Ding 等人和2009年胡廷秉提 出之半無限水平橫向等向性空間比較相同,因此,本文採用之方法若能完整解出 各殘數積分值,則垂直橫向等向性材料於半無限空間受表面三維點荷重作用之位 移閉合解析解應可合理性的被解出。

關鍵字:半無限空間、垂直橫向等向性材料、雙傳立葉積分轉換、位移閉合解、、 異向性、殘數定理積分。

I

Study of the closed form Solutions for Displacements in an Half

Space with Vertical Transversely Isotropy Subject to Surface

3D Point Loads

Student : Wen-Huei Dai

Advisor : Dr. Jyh- Jong Liao

Abstract

The failure of a foundation in soil/rock is often caused by over loading or large displacements. This fact is particularly important to analyze stresses and displacements when structures impose very large loads on the underlying soil/rock. However, it is also important for understanding the influence of the "anisotropy" of soil/rock on stresses, strains and displacements. Based on the orientation of geological structures or direction of planes of elastic symmetry, Elastic materials can be divided into general anisotropic, orthogonal or transversely isotropic materials. The nature of anisotropy of soils/rocks is caused by depositing via sedimentation over a long period of time, cutting by regular discontinuities, such as cleavages, foliations, stratifications and joints. Anisotropic soils/rocks are commonly modeled as transversely isotropic materials based on the practical engineering considerations. Nevertheless, the inclination of planes of elastic symmetry is not always horizontal, and hence, this thesis extending the approach proposed by Hu (2009) to study the closed form solutions for displacements in an half space with vertical transversely isotropy subjected to a surface 3D point load.

To obtain the closed form solutions, the double Fourier transform was used to reduce the partial differential equations to ordinary differential equations, firstly. Then, the solutions of displacement and stress in Fourier domain can be determineded from the boundary conditions. Finally, the closed form solutions for stresses and displacements in a vertical transversely isotropic half space material subjected to a 3D point load can be obtained using the double inverse Fourier transform and residue theorem. The present closed-form solutions demonstrate that the material anisotropy could affect the displacements and stresses in a vertical transversely isotropy. The illustrative examples show that the calculated displacements in a horizontal transversely isotropic half space are the same/similar as those presented by Hu (2009) and Ding et, al., (2006). Hence, the closed form solutions for stresses and displacements in a vertical transversely isotropic half space are the same/similar as the exactly.

Keywords: Half-space, Vertical transversely isotropic Material, Double Fourier integral transform, displacement closed form solution, anisotropy, residue integral.

誌謝

這兩年多的碩士生涯,說長不算長,說短也不算短,還記得兩年前剛入學時, 在學長、姊的帶領下認識了大地組這個大家庭,永遠忘不了學長、姊 meeting 報 告與老師講解的場景,想到總有一天站在台上報告的人是我時,心情不免緊張起 來,現在的我卻已要畢業了。在這段時間裡我要感謝我的指導教授 廖志中博士 在我求學過程中,指引我、帶領我進入研究最深的領域;教導我如何待人處事、 解決問題;提醒我避免陷入錯誤的迴圈裡並鼓勵我,讓我遇到挫折時又可馬上從 挫折中站起,在此對老師您致上我最崇高的謝意,當初若是沒有您的啟蒙也不會 有現在的我。

此外也非常感謝每次 meeting 時提供寶貴意見的 潘教授以文博士,若是沒 有他的指引方向我也不會更深入的去思考論文研究的真正涵義,潘老師謝謝您! 另外,還有一位一定要感謝的學長 胡廷秉博士,謝謝學長平日的教導與建議, 即使工作再忙、事情再多、人在外出差、假日休假,只要我一通電話,就馬上替 我預留時間,細心又有耐心的替我解決所有問題,讓我對這個研究論文有更深一 步了解。

口試時我要感謝 潘以文博士及遠道而來的 李德河博士、 余騰鐸博士、 壽 克堅博士及 古志生博士, 您們細心斧正並提出寶貴的意見, 使得學生我的論文 趨於嚴謹, 在此致上我萬分的謝意。

兩年的時間過得很快,學到的東西很多也認識很多的朋友,感謝大地組的同 門好夥伴佳諺、黃門壯士秉濬兄、林門找吃飯的 king、想成為無害系女孩的 giga、 愛吃甜食的小千、方門小叮噹的卓民大大、香蕉泡芙女王的洗衣粉、搞笑的威廷 及單門冷笑話王的培旼及閉關的韋恩,謝謝您們為大地組研究室帶來歡笑,並在 我遇到困難時即時伸出援手,真的很謝謝你們這兩年的陪伴與鼓勵,我真的超愛 你們,希望在未來的日子上大家都能夠完成自己的夢想。此外,還要感謝學長姊、 即將升研二的學弟妹及成為研究生新鮮人的學弟妹們,謝謝你們幫忙與打氣,真 的很捨不得你們,未來的日子裡一定要持續保持連絡喔!

另外還要感謝的是在我求學過程中,在社會上體驗的那段時間,幫助過我、 照顧過我、鼓勵過我的前輩,謝謝您們給我帶來我求學中學習不到的經驗與待人 處事,讓我從一個什麼都不懂的人逐漸成熟茁壯,謝謝您們!

最後,感謝我的家人無怨無悔地對我付出並給予我最大的鼓勵,感激父親、 母親含辛茹苦地養育教育我,如此浩瀚的親情,我願花上一輩子的時間來報答您 們;也謝謝我的妹妹與弟弟與我分享生活的喜怒哀樂,使我有向前邁進的動力, 最後謹將此論文獻給在天國的奶奶及外公,我永遠思念您。

中文摘要I
Abstract
誌謝IV
目錄VI
表目錄VIII
圖目錄X
符號說明XII
第一章 緒論1
1.1 研究動機與目的1
1.2 研究方法與流程1
1.3 論文內容
第二章 文獻回顧
21 禤州力學之邊界值求解方法
2.1 库住刀子之远亦值不开刀法
2.2.1 2D 半無限空間積向等向性材料位移及應力之解析解为法8
2.2.2 3D 半無限空間橫向等向性材料位移及應力之解析解方法18
2.3 文獻回顧小結
第三章 研究方法
3.1 横向等向性材料彈性領域之數學基本方程
3.2 傅立葉轉換理論40
3.3 控制方程式之建立42
3.4 一般解中齊次解之特徵根50
第四章 半無限空間垂直橫向等向性材料閉合解推導58
4.1 傅立葉定義域之位移和應力解推導61
4.2 物理定義域之位移和應力解推導71
第五章 計算範例
5.1 位移閉合解計算步驟82
5.2 位移閉合解計算範例說明探討87
第六章 結論與建議

	6.1	結論1	22
	6.2	建議1	23
參考	文	款1	25
附錡	ξA	特徵方程的推導1	27
附錡	ξB	傾斜横向等向性材料之彈性常數 C_{ij} 1	33
附錡	t C	D_{ij} 矩陣的展開表達式1	34
附銷	ξD	水平横向等向材料受載不同岩石舉例之奇異點位置1	36

表目錄

表 2.1 不同岩石之彈性特性表24
表 3.1 材料彈性常數示意表45
表 5.1 垂直橫向等向岩石之彈性模數比範圍表88
表 5.2 垂直橫向等向岩石之彈性常數表
表 5.3 水平橫向等向材料受單位點荷重作用之位移量(岩石 1)與胡廷秉及 Ding 比
較表91
表 5.4 水平橫向等向材料受單位點荷重作用之位移量(岩石 2)與胡廷秉及 Ding 比
較表93
表 5.5 水平橫向等向材料受單位點荷重作用之位移量(岩石 3)與胡廷秉及 Ding 比
較表
表 5.6 水平橫向等向材料受單位點荷重作用之位移量(岩石 4)與胡廷秉及 Ding 比
較表
表 5.7 水平橫向等向材料受單位點荷重作用之位移量(岩石 5)與胡廷秉及 Ding 比
較表
表 5.8 水平橫向等向材料受單位點荷重作用之位移量(岩石 6)與胡廷秉及 Ding 比
較表101
表 5.9 範例說明岩石 4 之 $\frac{C_d^i(\omega)D_{i1}^i(\omega)}{i\omega}$ (<i>i</i> =1~3)方程表108
表 5.10 範例說明岩石 4 之 $\frac{1}{\psi_i(\omega)}$ (i=1~3) 方程表
表 5.11 範例說明岩石 4 之奇異點位置表115
表 5.12 岩石 4 位移 U_x 閉合解型式117
表 5.13 岩石 4 位移 U_y 閉合解型式118
表 5.14 岩石 4 位移 U_z 閉合解型式119

表 5.15 岩石 4 位移閉合解表	
表 5.16 垂直橫向等向性位移解與水平橫向等向性位移解推導過程	星之差異表121
表 A.1 新、舊座標系統間之餘弦角度轉換	

圖目錄

直 1.1 研充流程直	3
圖 2.1 水平橫向等向性材料受垂直載重作用示意圖	8
圖 2.2 水平橫向等向性材料受正切載重作用示意圖	9
圖 2.3 水平橫向等向性材料受垂直三角形載重作用示意圖	.10
圖 2.4 水平橫向等向性材料受正切三角形載重作用示意圖	. 11
圖 2.5 水平橫向等向性料受三角形垂直及正切作用隨深度之應力變化圖	.13
圖 2.6 Bray (1977)線載重作用於半無限空間橫向等向性(傾斜規則節理)岩體圖	14
圖 2.7 由等價橫向等向性材料表示規則節理材料示意圖	.15
圖 2.8 Bray (1977)線載重作用下之傾斜橫向等向性材料應力分佈圖	.16
圖 2.9 Gaziev and Erlikhman (1971)線載重作用傾斜橫向等向性材料應力分佈圖	<u>키</u> -
摘自 Gaziev and Erlikhman (1971)	.17
圖 2.10(a) 深度及岩石異向性影響下之垂直均佈矩形載重 \hat{p}_z 作用的位移圖 (b) 1896)
岩石其向性(E/E')影響下之垂直均佈矩形載重 p_z 作用的應力圖-摘目 Wang and	
岩石 其向性(E/E')影響下之 亚 直均 佈 矩 邦 載 重 P_z 作用 的 應 力 圖 - 摘 目 Wang and Liao (1999), p.131	22
岩石其向性(E/E')影響下之垂直均佈矩形載重 p_z 作用的應力圖-摘目 Wang and Liao (1999), p.131	.22 石
岩石其向性(E/E')影響下之垂直均佈矩形載重 p_z 作用的應力圖-摘自 Wang and Liao (1999), p.131 圖 2.11(c) 岩石異向性(v/v')影響下之垂直均佈矩形載重 \hat{p}_z 作用的應力圖(d)岩 異向性(G/G)影響下之垂直均佈矩形載重 \hat{p}_z 作用的應力圖-摘自 Wang and Liao	.22 石
岩石其向性(E/E')影響下之垂直均佈矩形載重 p_z 作用的應力圖-摘目 Wang and Liao (1999), p.131 圖 2.11(c) 岩石異向性(v/v^2)影響下之垂直均佈矩形載重 \hat{p}_z 作用的應力圖(d)岩 異向性(G/G)影響下之垂直均佈矩形載重 \hat{p}_z 作用的應力圖-摘自 Wang and Liao (1999), p.132	.22 石 23
岩石其向性(E/E')影響下之垂直均佈矩形載重 <i>p</i> z作用的應力圖-摘目 Wang and Liao (1999),p.131 圖 2.11(c) 岩石異向性(v/v')影響下之垂直均佈矩形載重 <i>p̂z</i> 作用的應力圖(d)岩 異向性(G/G)影響下之垂直均佈矩形載重 <i>p̂z</i> 作用的應力圖-摘自 Wang and Liao (1999),p.132 圖 2.12 卡式座標系統下之點荷重施載示意圖	.22 <i>无</i> 23 25
 岩石 其 向性(E/E')影響下之 垂 直均 体 矩 形 載 重 p_z 作 用 的 應 力 圖 - 摘 目 Wang and Liao (1999), p.131. 圖 2.11(c) 岩石 異 向性(v/v')影響下之 垂 直均 佈 矩 形 載 重 p̂_z 作 用 的 應 力 圖(d) 岩 異 向性(G/G)影響下之 垂 直均 佈 矩 形 載 重 p̂_z 作 用 的 應 力 圖 - 摘 自 Wang and Liao (1999), p.132. 圖 2.12 卡式座標系 統下之點 荷 重 施 載示意圖	.22 石 23 25 25
 岩石其向性(E/E')影響下之垂直均佈矩形載重 p_z作用的應力圖-摘目 Wang and Liao (1999), p.131 圖 2.11(c) 岩石異向性(v/v')影響下之垂直均佈矩形載重 p̂_z作用的應力圖(d)岩 異向性(G/G)影響下之垂直均佈矩形載重 p̂_z作用的應力圖-摘自 Wang and Liao (1999), p.132 圖 2.12 卡式座標系統下之點荷重施載示意圖	.22 <i>无</i> 23 25 30
 岩石其向性(E/E')影響下之垂直均佈矩形載重 p_z作用的應力圖-摘目 Wang and Liao (1999),p.131. 圖 2.11(c) 岩石異向性(v/v')影響下之垂直均佈矩形載重 p̂_z作用的應力圖(d)岩 異向性(G/G)影響下之垂直均佈矩形載重 p̂_z作用的應力圖-摘自 Wang and Liao (1999),p.132. 圖 2.12 卡式座標系統下之點荷重施載示意圖. 圖 2.13 圓柱座標系統下之均佈環狀施載示意圖. 圖 2.14 水平橫向等向性材料在半無限空間表面點荷重作用示意圖	.22 石 23 25 30 32
岩名 其向性(E/E')影響下之 垂直均	.22 Æ .23 .25 .25 .30 .32 .33

圖	3.2 半無限水平橫向等向性空間示意圖	44
圖	3.3 水平横向等向空間以 x 旋轉 90 度示意圖	46
圖	3.4 半無限空間垂直橫向等向性材料受載示意圖	50
圖	3.5 Dirac delta 函數定義圖	51
圖	4.1 半無限傾斜橫向等向性受載示意圖	58
圖	4.2 解析解推導流程圖	60
昌	4.3 傅立葉定義域之垂直橫向等向性材料受點荷重示意圖	61
昌	5.1 岩石 1 在點位(-2,1,1)與 Ding 比較圖	
昌	5.2 岩石 1 在點位(2,1,1)與 Ding 比較圖	103
昌	5.3 岩石 2 在點位(-2,1,1)與 Ding 比較圖	
圖	5.4 岩石 2 在點位(2,1,1)與 Ding 比較圖	103
圖	5.5 岩石 3 在點位(-2,1,1)與 Ding 比較圖	
圖	5.6 岩石 3 在點位(2,1,1)與 Ding 比較圖	104
圖	5.7 岩石 4 在點位(-2,1,1)與 Ding 誤差圖	
圖	5.8 岩石 4 在點位(2,1,1)與 Ding 比較圖	104
圖	5.9 岩石 5 在點位(-2,1,1)與 Ding 誤差圖	
圖	5.10 岩石 5 在點位(2,1,1)與 Ding 誤差圖	105
圖	5.11 岩石 6 在點位(-2,1,1)與 Ding 比較圖	
圖	5.12 岩石 6 在點位(2,1,1)與 Ding 比較圖	105
圖	5.13 (a)~(h) 於表 5.4CDF111~CDF313 分母為 0 之點位圖	114

符號說明

c_i (<i>i</i> = 1 ~ 5)	彈性常數
C_{ij} (<i>i</i> , <i>j</i> = 1 ~ 6)	彈性常數
A_1, A_2, A_3	由彈性常數組成之常數
$A_x^i, A_y^i, A_z^i (i=1\sim 6)$	待定係數
C_{d2}^{j} (<i>i</i> =1~3)	特解待定係數
C_{d1}^{j} (<i>i</i> = 1 ~ 3)	齊性解待定係數
C_d^j (<i>i</i> = 1 ~ 3)	通解待定係數
D_{j1}^{j} (j = 1 ~ 3)	矩陣 $[d_{ij}]$ 之餘因子
$d_{ij}(i, j = 1 \sim 3)$	矩陣 $[d_{ij}]$ 之元素
p_i (<i>i</i> = 1 ~ 6)	矩陣[d _{ij}]=0求得之特徵根
i	複數為√-1
l_{ij}	座標轉換矩陣之元素
$\left[q_{ij}\right](i,j\!=\!1\!\sim\!3)$	座標轉換矩陣乘因子
$F_i \ (i=x,y,z)$	徹體力
P_x, P_y, P_z	作用於卡式座標系統上之三維點荷重(N/m ³)
F_x, F_y, F_z	作用於卡式座標系統上之三維微體力
F_{x}, F_{y}, F_{z}	作用於卡式座標系統上之三維徹體力
<i>x</i> , <i>y</i> , <i>z</i>	幾何位置

$E \cdot E' \cdot \upsilon \cdot \upsilon' \cdot G'$	材料彈性常數-楊氏模數、柏松比、剪力模數
(α, β, z)	傅立葉定義域
δ()	單位脈衝函數 Dirac delta function
$\mathcal{E}_{xx}, \mathcal{E}_{yy}, \mathcal{E}_{zz}$	卡式座標系統下之正向應變
$\mathcal{E}_{xx}, \mathcal{E}_{yy}, \mathcal{E}_{zz}$	垂直横向等向空間材料座標系統下之正向應變
$\gamma_{xz}, \gamma_{yz}, \gamma_{xy}$	卡式座標系統下之剪應變
$\gamma_{xz}, \gamma_{yz}, \gamma_{xy}$	垂直横向等向空間材料座標系統下之剪應變
$U_i(x, y, z)$ $(i = x, y, z)$	物理定義域下之位移
$\overline{U}_i(\alpha,\beta,z) \ (i=x,y,z)$	傅立葉定義域下之位移
$\overline{u}_{i(H)}(\alpha,\beta,z) (i=x,y,z)$	傳立葉定義域下之齊性解位移
$\overline{u}_{i(P)}(\alpha,\beta,z) (i=x,y,z)$	傅立葉定義域下之特解位移
$\sigma_{xx}, \sigma_{yy}, \sigma_{zz}$ (x, y, z)	物理定義域下之應力
$\bar{\sigma}_{xx}, \bar{\sigma}_{yy}, \bar{\sigma}_{zz} (\alpha, \beta, z)$	傅立葉定義域下之應力
$\tau_{ij}(x, y, z) (i, j = x, y, z)$	物理定義下之剪應力
$\bar{\sigma}_{_{ii(H)}}(\alpha,\beta,z) \ (i=x,y,z)$	傅立葉定義下之應力齊性解
$\overline{\sigma}_{ii(P)}(\alpha,\beta,z) \ (i=x,y,z)$	傅立葉定義下之應力特解
$\overline{\tau}_{ij}(\alpha,\beta,z)$ $(i,j=x,y,z)$	傅立葉定義下之剪應力
$\overline{\tau}_{ij(H)}(\alpha,\beta,z) \ (i,j=x,y,z)$	傅立葉定義下之剪應力齊性解
$\overline{\tau}_{ij(P)}(\alpha,\beta,z)$ $(i, j = x, y, z)$	傅立葉定義下之剪應力特解
(k, θ_x)	極座標系統

XIII

ϕ	横向等向性平面旋轉角度
ω	角頻率
ρ	材料密度

第一章 緒論

1.1 研究動機與目的

在工程實務上,基礎材料受工程結構物作用,常因超額承載力及位移變化量 而產生破壞,所以工程施作前掌握大量載重作用下所引致的「位移和應力」是有 必要的。然而岩體形成過程中或形成後,存在著「異向性」(Anisotropy)影響因 子,所謂「異向性」是指岩石在不同方向上的材料特性不同。岩石的異向性,若 以明顯地質構造或彈性對稱面組數及方向,可分為一般異向性(General anisotropy)、正交性(Orthotropy)、橫向等向性(Transversely isotropy)或等向性 (Isotropy),其控制岩石材料變形的彈性常數(Elastic constants)分別為21、9、5、 2個。常見的單組規則節理岩體、層狀岩體或具葉理的岩石(如板岩、片岩、頁 岩等)皆可視為橫向等向性材料。故基礎受表面荷重後之位移及應力分佈情形, 利用等向彈性力學原理恐無法加以正確估算,而有必要針對橫向等向性材料之力 學行為(Ex:應力及應變)做深入探討與研究。

由於地質構造作用,岩體內不連續面位態並非全為「水平」且國內外既有文 獻尚未解出傾斜橫向等向性材料半無限空間受三維點荷重作用之位移及應力解 析解,因此,本研究擬針對前述的特例,藉由範例計算說明去探討「垂直橫向等 向性材料在半無限空間受表面三維點荷重作用之位移閉合解」。

1.2 研究方法與流程

(一)研究方法

本研究旨在探討三維表面點荷重作用在垂直橫向等向性材料之位移閉合解。 一般來說,不管是無限空間或是半無限空間的材料,求解所建立之控制方程 (Governing equations)主要是由彈性力學理論之基本方程衍生得到,而基本方程包 括:幾何方程、應變及應力方程及力平衡方程等所組成的偏微分方程,為了簡化 此偏微分方程及方便推導解析解,需透過傅立葉轉換(Fourier transform)及拉普拉 斯轉換(Laplace transform)方法,將複雜的偏微分方程變成容易求解的常微分方 (O.D.E)程或代數方程。本文依胡廷秉 (2009)提出對於半無限傾斜橫向等向空間 之偏微分方程求解的傳統方法,先推導垂直橫向等向性材料在半無限空間受三維 表面點荷重作用的位移及應力解析閉合解,然後藉由範例說明探討「垂直橫向等 向性材料在半無限空間受三維表面點荷重作用之位移閉合解」。

(二)研究流程

本研究首先針對學者提出有關半無限空間橫向等向性材料受載重作用之位 移及應力解析解相關文獻研究整理,並擇一方法-胡廷秉(2009),推導在半無限空 間垂直橫向等向性材料受三維表面點荷重作用之位移及應力閉合解,然後藉由範 例計算說明探討其位移閉合解,以下為本研究流程圖,如圖 1.1 所示:

圖 1.1 研究流程圖

1.3 論文內容

本文共分六章,主要係利用範例說明和分析去探討垂直橫向等向性材料在半 無限空間受三維表面點荷重作用之位移閉合解,其各章之簡介如下:

第一章 緒論

本章介紹本研究之動機與目的、方法,闡述並涵蓋本論文之大觀念及想法。 第二章 文獻回顧

本章針對學者提出有關半無限空間橫向等向性材料受載重作用之位移或應 力 2D 與 3D 解析解方法相關文獻,加以說明介紹並說明其優缺點。

第三章 研究方法

本章說明彈性體之應變位移關係、幾何方程、平衡方程式等基本方程,並介 紹使用之數學方法:傳立葉轉換及拉普拉斯轉換方法原理,然後建立物理定義域 下求解之控制方程,再經由傅立葉轉換得到傅立葉定義域下之控制方程式並找出 在傅立葉定義域下,構成一般解之齊性解(Homogeneous solution)特徵值 (Eigen-value),得到一般解之齊性解表達方程式。

第四章 半無限空間垂直橫向等向性材料閉合解推導

本章將第三章所得之傅立葉定義域下求解之控制方程,此為常微分方程式 (O.D.E),藉由考慮邊界條件(z=0),可直接求垂直橫向等向性材料在半無限空間 之位移及應力解,最後再透過傅立葉逆轉換得到物理定義域之位移及應力解。

第五章 計算範例

本章將推導之解析解採用 Gerrard(1975) and Amadei et al.(1987) 所建議的 $\frac{E}{E}$ 、 $\frac{G}{G}$ 範圍為1至3及 $\frac{v}{v}$ 範圍為0.75至1.5做範例說明並探討位移閉合解 和其受材料異向性影響。

第六章 結論與建議

針對本研究之成果提出結論與建議。

第二章 文獻回顧

本章節主要回顧橫向等向性材料在半無限空間受載重作用所得到位移及應 力解析解。首先,先說明橫向等向性的基本關係及彈性邊界值問題求解的方法, 然後針對半無限範圍(Domain)下分為兩大部分:二維空間(2 Dimension)及三維(3 Dimension)空間,對現有受載重作用之位移和應力解析方法之文獻資料加以說明 及回顧。

2.1 彈性力學之邊界值求解方法

彈性力學理論的基本數學式方程在很多的參考資料裡都可找到,例如: Sneddon (1951)、Timosheko (1970、Poulos and Davis(1974)等人,而組成彈性力 學的基本方程分別為:幾何方程(Geometric equations)、應力與應變關係 (Constitutive equations)、平衡方程(Equilibrium equations)及協調方程(Compatibility equations),在三維卡式座標系統下,以張量表達方式,參考 Sneddon (1951)及 Timosheko (1970),幾何方程又稱為柯西方程(Cauchy equation), u_{ij} 及 u_{ji} 為微小 變形情況下之位移量, $\varepsilon_{i,j}$ 則是應變量,可簡單的表示為:

$$\varepsilon_{ij} = \frac{1}{2} (u_{ij} + u_{ji}) \tag{2.1}$$

參考Sneddon (1951)及Timosheko (1970),在線彈性體之應力和應變關係又稱 為廣義虎克定律,ε_{ij}為應變量,c_{klij}為彈性勁度常數(Elastic stiffness constant)可由 4階張量(fourth-rank tensor)組成,此與材料特性有密切關係,其張量表達方式如 (2.2) 式:

$$\sigma_{kl} = c_{klij} \varepsilon_{ij} \tag{2.2}$$

參考Sneddon (1951)及Timosheko (1970),若考慮材料體內力平衡狀況,可表示為式 (2.3)為平衡方程式,若以位移表示此平衡方程則又稱為納維方程(Navier-equation),其中 F_i 為為徽體力(Body force), $\sigma_{ii,i}$ 為應力偏微分量,若材料作等

速度運動或無加速度,平衡方程式等號右邊則為0:

$$\sigma_{ij,j} + F_i = 0 \left(= \rho \frac{\partial u_i}{\partial t^2}\right)$$
(2.3)

而協調方程(Compatibility equations)又可稱聖維南方程(Saint- Venant' equation)。在求解過程中,未知數大於求解方程,若由位移來表達未知數可得到 相對應變量,但由應變來表達未知數是卻無法正確得到相對的位移量,故需利用 協調方程條件滿足應變連續性,而求得方程式之解。

以上(2.1)式、(2.2)式及(2.3)式三個基本方程之建立在第三章將會有詳細的說明。

彈性力學之邊界值求解方法,舉例來說:式(2.1)可列出6個方程,式(2.2)也 可列出6個方程,而式(2.3)可列出3個方程,由(2.1)式、(2.2)式、(2.3)式可知 總共有15個分別由3個未知數u_i、6個未知數σ_{ij}、6個未知數ε_{ij}所組成基本方程。 為簡化方程式,通常取某一個未知數為組成方程的基本因子,一來這15個方程的 未知數就可降低,二來更方便輕易求解,譬如:選擇u_i這個基本因子當作未知數, 1896 根據(2.1)式及(2.2)式σ_{ij}、ε_{ij}可用u,來表示,所有方程都為u_i的函數。在考慮邊 界條件得到待定係數之值,即可求得精確解之表示式,此法不需使用到協調方程, 求解過程變得較簡易稱為位移求解法。

而依據問題本身所考慮之未知數,在微小應變條件下並考慮邊界條件則可分 為三種求解方法:(1) 位移求解法、(2) 應力求解法、(3)混合求解法。

(1) 位移求解法

利用彈性體上各點的位移作為基本未知數,總共有3個未知數,以位移表示 應變之幾何方程,代入應力應變關係式中,最後求解時代入平衡方程式,則可得 3個到含有3個未知數位移表示的平衡方程式,此方程又稱為Lame Navier方程, 利用3個方程解3個未知數的過程則稱為位移求解法。 (2) 應力求解法

若以應力當作基本未知數,總共有6個未知數,求解時直接代入平衡方程式, 可得到3個含有6個未知數應力表示的平衡方程式,3個方程解6個未知數,無法直 接求得應力解,若要求得位移量更是無法預知,故需加入協調方程,此為應變的 連續性條件,消除應變分量後所得應力協調方程,才能滿足邊界條件,此協調方 程又稱Beltrami-Michell方程,而求解過程則稱為應力求解法。

(3) 混合求解法

顧名思義就是以各點位移分量及各點部份應力分量做為未知數來建立求解的方程,同樣需考慮邊界條件的影響因子,此求解過程稱為混合求解法。

Zou et al. (1944)及Ding et al. (1966)文獻中曾提到使用位移法來求解,而相同 的方法在Hu et al. (2007)及Liao et al.(2008)同樣也可發現求得傾斜橫向等向性材 料於無限空間受三維點荷重作用之位移和應力解析解,根據這些文獻,位移求解 法相對於應力求解法,更容易直接獲得位移和應力解,故本研究選擇位移求解法, 假設位移為未知數所建立的求解方程,來求半無限空間垂直橫向等向材料受三維 表面點荷重作用的位移和應力解析解。

2.2 半無限空間橫向等向性材料位移及應力之解析解方法

橫向等向性材料受載重作用之位移及應力解問題,早在1930年代即有學者 提出,Lekhnitskii (1939a,b)利用複變方法及柯西積分方程去求解當地表為水平或 拋物線承受荷重後,均質(Homogeneous)、異向性(Anisotropy)及線彈性(linearly elastic)半無限空間材料的應力及位移解析解。然而橫向等向性彈性問題求解的方 法包羅萬象,歸納起來可分為3種方法,即數值方法(Numerical method)、實驗 方法(Physical Model method)、解析方法(Analytical method)。而本研究採用解析 方法,目的是在求解半無限空間垂直橫向等向性材料受三維表面點荷重作用之位 移和應力閉合解,到目前為止半無限空間之垂直橫向等向性材料問題尚未有完整 之解析解,本節針對二維空間(2 Dimension)及三維(3 Dimension)空間,地表承受 載重作用下橫向等向性材料位移及應力解析方法相關文獻加以說明回顧。

2.2.1 2D 半無限空間橫向等向性材料位移及應力之解析解方法

本章節就學者已提出在二維(2 Dimension)半無限空間橫向等向性材料受載 重作用下位移及應力解析解說明如下:

De Hrena et al. (1966) 及 Piquer et al.(1966)

De Urena et al. (1966)提出平面變形下水平橫向等向性材料半無限空間表面 受垂直或正切載重時之應力解如圖 2.1 和圖 2.2,其推導方法是由彈性力學基本 方程:(1)位移和應變關係、(2)幾何方程、(3)力平衡方程,所建立之控制方程所 來推導,最後求得在二維卡式座標系統下之水平橫向等向性材料半無限空間表面 受垂直或剪力載重時之正向應力(σ_{xx}、σ_{yy})及剪應力(τ_{yz})解表示如下:

(1) 垂直載重作用下:

圖 2.1 水平橫向等向性材料受垂直載重作用示意圖

摘自 De Hrena et al. (1966), p.314

$$\sigma_{xx} = \frac{p}{\pi} \frac{\sqrt{BC}}{\sqrt{B} - \sqrt{C}} y[\frac{-1}{x^2 + y^2 B} - \frac{1}{x^2 + y^2 C}]$$
(2.4a)

$$\sigma_{yy} = \frac{p}{\pi} \frac{\sqrt{BC}}{\sqrt{B} - \sqrt{C}} y [\frac{B}{x^2 + y^2 B} - \frac{C}{x^2 + y^2 C}]$$
(2.4b)

$$\tau_{xy} = \frac{p}{\pi} \frac{\sqrt{BC}}{\sqrt{B} - \sqrt{C}} x \left[\frac{-1}{x^2 + y^2 B} - \frac{1}{x^2 + y^2 C} \right]$$
(2.4c)

(2) 正切載重作用下:

圖 2.2 水平横向等向性材料受正切載重作用示意圖

摘自 De Hrena et al. (1966), p.314

$$\sigma_{xx} = Rx[\frac{-1}{x^2 + y^2 B} - \frac{C}{x^2 + y^2 C}]$$

$$\sigma_{yy} = Rx[\frac{B}{x^2 + y^2 B} - \frac{C}{x^2 + y^2 C}]$$

$$\tau_{xy} = Ry[\frac{-C}{x^2 + y^2 B} - \frac{B}{x^2 + y^2 C}]$$
(2.5a)
(2.5b)
(2.5b)
(2.5c)

其中 B、C 係數分別表示為:

$$B = \frac{(\lambda + \mu)\rho - \omega(\omega + G')}{\rho G'} + \sqrt{\frac{\left[(\lambda + \mu)\rho - \omega(\omega + G')\right]^2}{\rho^2 G'^2}} - \frac{\lambda + \mu}{\rho}}{\rho}$$

$$C = \frac{(\lambda + \mu)\rho - \omega(\omega + G')}{\rho G'} - \sqrt{\frac{\left[(\lambda + \mu)\rho - \omega(\omega + G')\right]^2}{\rho^2 G'^2}} - \frac{\lambda + \mu}{\rho}}{\rho}$$

$$R = \frac{T}{2\pi} \frac{2\rho C - G'}{(2\omega + G')(\sqrt{B} - \sqrt{C})}$$

$$(2.6)$$

其中,G'為垂直剪力係數,而λ、μ、ω及ρ分別可由材料的彈性常數:水 平楊氏模數(E)、垂直楊氏模數(E')、水平柏松比(υ)、垂直柏松比(υ')所組成, 如下式(2.7)

$$\lambda = \frac{E}{1+\upsilon} \cdot \lambda + \mu = \frac{E - E \upsilon^{2}}{(1+\upsilon)(1-\upsilon - 2\upsilon^{2}\frac{E}{E})} \cdot \omega = \frac{E \upsilon}{1-\upsilon - 2\upsilon^{2}\frac{E}{E}}$$

$$\rho = \frac{E'(1-\upsilon)}{1-\upsilon - 2\upsilon^{2}\frac{E}{E}}$$
(2.7)

Piquer et al. (1966) 延伸 De Urena et al. (1966) 建議之正向應力及剪應力解, 將水平及垂直載重型態透過積分技巧,推導平面變形下水平橫向等向性材料受三 角形分布垂直載重及正切載重作用之正向應力及剪應力解,如圖 2.3 及圖 2.4, 並做一系列參數研究,探討半無限空間橫向等向性材料受「異向度」及「深度」 影響之應力分佈的情況。而求得二維卡式座標系統下之水平橫向等向性材料半無 限空間表面受垂直或剪力三角載重時之正向應力(σ_{xx}、σ_{yy})及剪應力(τ_{yz})解表示 1896

(1) 垂直三角形載重作用下:

圖 2.3 水平横向等向性材料受垂直三角形載重作用示意圖

摘自 Piquer et al. (1966), p.532

$$\frac{\sigma_x}{P} = \frac{1}{\pi} \frac{\sqrt{BC}}{\sqrt{B} - \sqrt{C}} \left[-\frac{xC}{\sqrt{C}} (\tan^{-1} \frac{x}{y\sqrt{C}} - \tan^{-1} \frac{x-1}{y\sqrt{C}}) + C \frac{y}{2} L \frac{x^2 + y^2 C}{(x-1)^2 + y^2 C} + \frac{xB}{\sqrt{B}} (t \ a^{-h} \frac{x}{y\sqrt{B}} - t \ a \ \bar{n}^{1} \frac{x-1}{y\sqrt{B}}) - B \frac{y}{2} L \frac{x^2 + y^2 B}{(x-1)^2 + y^2 B} \right]$$
(2.8a)
$$\frac{\sigma_y}{P} = \frac{1}{\pi} \frac{\sqrt{BC}}{\sqrt{B} - \sqrt{C}} \left[\frac{x}{\sqrt{C}} (\tan^{-1} \frac{x}{y\sqrt{C}} - \tan^{-1} \frac{x-1}{y\sqrt{C}}) - \frac{y}{2} L \frac{x^2 + y^2 C}{(y-1)^2 + y^2 C} - \frac{x}{(y-1)^2 + y^2 C} \right]$$
(2.8b)

$$-\frac{x}{\sqrt{B}}\left(t\,a^{-h}\frac{x}{y\sqrt{B}}-t\,a\,\bar{n}^{l}\frac{x-1}{y\sqrt{B}}\right)+\frac{y}{2}L\frac{x+y}{(x-1)^{2}+y^{2}B}]$$
(2.8b)
$$\frac{\sigma_{xy}}{\sqrt{B}}=\frac{1}{\sqrt{BC}}\left[y\sqrt{C}\left(tan^{-1}\frac{x}{\sqrt{B}}-tan^{-1}\frac{x-1}{\sqrt{B}}\right)+\frac{y}{2}L\frac{x^{2}+y^{2}C}{\sqrt{C}}\right]$$

$$\frac{1}{P} = \frac{1}{\pi} \frac{1}{\sqrt{B} - \sqrt{C}} \left[y\sqrt{C} (\tan \frac{1}{y\sqrt{C}} - \tan \frac{1}{y\sqrt{C}}) + \frac{1}{2}L\frac{1}{(y-1)^2 + y^2C} - y\sqrt{B}(\tan \frac{1}{y\sqrt{B}} - \tan \frac{1}{y\sqrt{B}}) - \frac{x}{2}L\frac{x^2 + y^2B}{(x-1)^2 + y^2B} \right]$$
(2.8c)

圖 2.4 水平横向等向性材料受正切三角形載重作用示意圖

摘自 Piquer et al. (1966), p.532

$$\frac{\sigma_x}{T} = 2R[-yC\sqrt{C}(\tan^{-1}\frac{x}{y\sqrt{C}} - \tan^{-1}\frac{x-1}{y\sqrt{C}}) - \frac{x}{2}CL\frac{x^2 + y^2C}{(x-1)^2 + y^2C} + yB\sqrt{B}(\tan^{-1}\frac{x}{y\sqrt{B}}) - \frac{x}{2}CL\frac{x^2 + y^2C}{(x-1)^2 + y^2C} + yC\sqrt{B}(\tan^{-1}\frac{x}{y\sqrt{B}}) - \frac{x}{2}CL\frac{x}{y\sqrt{B}} + \frac{x}{y\sqrt{B}} + \frac{x}{$$

$$-\operatorname{ta} \bar{\operatorname{n}}^{1} \frac{x-1}{y\sqrt{B}} + \frac{1}{2} BL \frac{x^{2} + y^{2}B}{(x-1)^{2} + y^{2}B}] - 2R(B-C)$$
(2.9a)

$$\frac{\sigma_{y}}{T} = 2R[y\sqrt{C}(\operatorname{tan}^{-1} \frac{x}{y\sqrt{C}} - \operatorname{tan}^{-1} \frac{x-1}{y\sqrt{C}}) + \frac{x}{2}L \frac{x^{2} + y^{2}C}{(x-1)^{2} + y^{2}C} - y\sqrt{B}(\operatorname{tan}^{-1} \frac{x}{y\sqrt{B}}) - \operatorname{tan}^{-1} \frac{x^{2} + y^{2}B}{(x-1)^{2} + y^{2}B}]$$
(2.9b)

$$\frac{\tau_{xy}}{T} = 2R[-\frac{xC}{\sqrt{C}}(\operatorname{tan}^{-1} \frac{x}{y\sqrt{C}} - \operatorname{tan}^{-1} \frac{x-1}{y\sqrt{C}}) + \frac{y}{2}CL \frac{x^{2} + y^{2}C}{(x-1)^{2} + y^{2}C} + \frac{xB}{\sqrt{B}}(\operatorname{tan}^{-1} \frac{x}{y\sqrt{B}}) - \operatorname{tan}^{-1} \frac{x^{2} + y^{2}B}{(x-1)^{2} + y^{2}B}]$$
(2.9c)

其中,L為三角形載重底長範圍,而其它係數均如 (2.6) 式至 (2.7) 式表達。

圖 2.5 水平橫向等向性料受三角形垂直及正切作用隨深度之應力變化圖 摘自 Piquer et al. (1966), p.535

由以上結果, Piquer et al. (1966)歸納出四點結論:

(1) 横向等向性材料受載重作用之應力變化,會受到深度及材料的異向性

(Anisotropy)如楊氏模數比(E/E)、剪力模數(G)等影響。

(2) 半無限空間受載重作用情況下,橫向等向性材料受正切載重作用所產生應力 比均向性(Isotropic)材料小。

(3) 橫向等向性材料受載之應力變化,剪力模數(G)影響力遠比楊氏模數比(E/E) 來得重要,甚至大於楊氏模數比(E/E)。

(4) 横向等向性材料受載之應力變化並受到水平、垂直柏松比(2/1)影響。

Bray (1977)

圖 2.6 Bray (1977)線載重作用於半無限空間橫向等向性(傾斜規則節理)岩體圖

摘自 Goodman (1989),p.358

摘自 Goodman (1989), 圖 2.6 為線載重分別為正交載重 P 及剪力載重 Q,作 用在地表為水平之半無限空間傾斜橫向等向性岩石上,Bray (1977)將此線載重分 成平行於橫向等向性平面之載重 X 及垂直橫向等向性平面之載重 Y,去探討其 受載平面應變下之應力解及分佈情況,他假設由多種不連續面組合成的橫向等向 性材料,可視為等值(Equivalent)、均質之橫向等向性材料如圖 2.7,其在極座標 系統下應力的表達方式為:

圖 2.7 由等價橫向等向性材料表示規則節理材料示意圖

摘自 Goodman (1989),p.197

$$\sigma_{r} = \frac{h}{\pi r} \left(\frac{X \cos \beta + Yg \sin \beta}{(\cos^{2} \beta - g \sin^{2} \beta)^{2} + h^{2} \sin^{2} \beta \cos^{2} \beta} \right)$$
(2.10a)

$$\sigma_{\theta} = 0$$
(2.10b)

$$\tau_{r\theta} = 0$$
(2.10c)

$$\ddagger \Psi :$$

r=點載重點至待量測徑向應力σ,距離

 $\beta = \theta - \alpha$ $g = \sqrt{1 + \frac{E}{(1 - v^2)k_n S}}$ $h = \sqrt{\frac{E}{1 - v^2} (\frac{2(1 + v)}{E} + \frac{1}{k_s S}) + 2(g - \frac{v}{1 - v})}$ (2.11)

圖 2.8 相同結果在 Gaziev and Erlikhman (1971)利用物理模型試驗所畫出的應 力等值圖(圖 2.9),圖 2.9 可以發現不管是利用計算或物理模型試驗,結果幾 乎是相似的,由此可認定 Bray (1977)所提出的 2 維應力解析解的正確性。若對

圖 2.8 Bray (1977)線載重作用下之傾斜橫向等向性材料應力分佈圖

摘自 Goodman (1989),p.360

圖 2.9 Gaziev and Erlikhman (1971)線載重作用傾斜橫向等向性材料應力分佈圖-

2.2.2 3D 半無限空間橫向等向性材料位移及應力之解析解方法

本章節主要介紹學者已提出在三維(3 Dimension)半無限空間橫向等向性材 料受載重作用位移及應力解,其說明如下:

Liao and Wang (1998) 及 Wang and Liao (1999)

Liao and Wang (1998)提出水平橫向等向性材料在半無限空間受點荷重作用 的位移和應力解,此半無限空間的邊界為橫向等向性材料平行於水平表面之表面, 推導的方法是由彈性力學基本方程:(1)位移和應變關係、(2)幾何方程、(3)力平 衡方程,在圓柱座標系統下所建立的控制方程來推導,並透過傅立葉及漢克轉換 及逆轉換(Fourier and Hankel transform & Inverse transform)技巧而導出位移和應 力解,如 (2.12a) 式至 (2.12i) 式。

$$U_{r} = U_{r}^{'} + \frac{(P_{r}\cos\theta + P_{\theta}\sin\theta)}{4\pi} [-T_{1}(\frac{z_{a}R_{a}^{*}}{r^{2}R_{a}}) + T_{2}(\frac{z_{b}R_{b}^{*}}{r^{2}R_{b}}) + T_{3}(\frac{z_{c}R_{c}^{*}}{r^{2}R_{c}}) - T_{4}(\frac{z_{d}R_{d}^{*}}{r^{2}R_{d}}) + \frac{1}{u_{3}A_{44}}(\frac{R_{e}^{*}}{r^{2}})] - \frac{P_{z}}{4\pi} \{m_{1}[T_{1}(\frac{R_{a}^{*}}{rR_{a}}) - T_{3}(\frac{R_{c}^{*}}{rR_{c}})] - m_{2}[T_{2}(\frac{R_{b}^{*}}{rR_{b}}) - T_{4}(\frac{R_{d}^{*}}{rR_{d}})]\}$$
(2.12a)
$$U_{\theta} = U_{\theta}^{'} + \frac{(P_{r}\sin\theta - P_{\theta}\cos\theta)}{4\pi} [T_{1}(\frac{R_{a}^{*}}{r^{2}}) - T_{2}(\frac{R_{b}^{*}}{r^{2}}) - T_{3}(\frac{R_{c}^{*}}{r^{2}}) + T_{4}(\frac{R_{d}^{*}}{r^{2}}) - \frac{1}{u_{3}A_{44}}(\frac{z_{e}R_{e}^{*}}{r^{2}R_{e}})]$$
(2.12b)

$$U_{z} = U_{z}^{'} + \frac{(P_{r}\cos\theta + P_{\theta}\sin\theta)}{4\pi} [m_{1}(\frac{R_{a}^{*}}{rR_{a}}) - T_{2}(\frac{R_{b}^{*}}{rR_{b}})] - m_{2}[T_{3}(\frac{R_{c}^{*}}{rR_{c}}) - T_{4}(\frac{R_{d}^{*}}{rR_{d}})]\}$$
$$- \frac{P_{z}}{4\pi} \{m_{1}[T_{1}m_{1}(\frac{1}{R_{a}}) - T_{2}m_{2}(\frac{1}{R_{b}})] - m_{2}[T_{3}m_{1}(\frac{1}{R_{c}}) - T_{4}m_{2}(\frac{1}{R_{d}})]\}$$
(2.12c)

$$\sigma_{rr} = \sigma_{rr}^{'} - \frac{P_r \cos \theta + P_{\theta} \sin \theta}{4\pi} \{ T_1[(A_{11} - u_1 m_1 A_{13})(\frac{r}{R_a^3}) - 2A_{66}(\frac{R_a^{*2}}{r^3 R_a})] - T_2[(A_{11} - u_1 m_1 A_{13})(\frac{r}{R_b^3}) - 2A_{66}(\frac{R_a^{*2}}{r^3 R_a})] - T_2[(A_{11} - u_1 m_1 A_{13})(\frac{r}{R_b^3})] - 2A_{66}(\frac{R_a^{*2}}{r^3 R_a})] - T_2[(A_{11} - u_2 m_2 A_{13})(\frac{r}{R_b^3}) - 2A_{66}(\frac{R_a^{*2}}{r^3 R_c})] + T_4[(A_{11} - u_2 m_2 A_{13})(\frac{r}{R_a^3}) - 2A_{66}(\frac{R_a^{*2}}{r^3 R_a})] - 2u_3(\frac{R_e^{*2}}{r^3 R_e})] + \frac{P_z}{4\pi} \{T_1 m_1[(A_{11} - u_1 m_1 A_{13})(\frac{z_a}{R_a^3}) - 2A_{66}(\frac{R_a^{*}}{r^2 R_a})] - T_2 m_2[(A_{11} - u_1 m_1 A_{13})(\frac{z_b}{R_b^3}) - 2A_{66}(\frac{R_b^{*}}{r^2 R_b})] - T_3 m_1[(A_{11} - u_2 m_2 A_{13})(\frac{z_c}{R_c^3}) - 2A_{66}(\frac{R_a^{*}}{r^2 R_a})] - 2A_{66}(\frac{R_a^{*}}{r^2 R_a})] - 2A_{66}(\frac{R_a^{*}}{r^2 R_a})] - T_3 m_1[(A_{11} - u_2 m_2 A_{13})(\frac{z_c}{R_c^3}) - 2A_{66}(\frac{R_a^{*}}{r^2 R_a})] - 2A_{66}(\frac{R_$$

$$\begin{aligned} \sigma_{\theta\theta} &= \sigma_{\theta\theta}^{'} - \frac{P_r \cos \theta + P_{\theta} \sin \theta}{4\pi} \{ T_1 [(A_{11} - u_1 m_1 A_{13})(\frac{r}{R_a^3}) - 2A_{66}(\frac{R_a^{*2}}{r^3 R_a})] - T_2 [(A_{11} - u_1 m_1 A_{13})(\frac{r}{R_b^3}) - 2A_{66}(\frac{2z_c R_c^{*2}}{r^3 R_c})] - T_2 [(A_{11} - u_1 m_1 A_{13})(\frac{r}{R_b^3})] - 2A_{66}(\frac{2z_c R_c^{*2}}{r^3 R_c}) - \frac{z_c^2}{r R_c^3})] \\ &+ T_4 [(A_{11} - u_2 m_2 A_{13})(\frac{r}{R_d^3}) - 2A_{66}(\frac{2z_d R_d^{*2}}{r^3 R_d}) - \frac{z_d^2}{r R_d^3})] - 2u_3(\frac{1}{r R_e} - \frac{2R_e^*}{r^3})] + \frac{P_z}{4\pi} \{T_1 m_1 \\ [(A_{11} - 2A_{66} - u_1 m_1 A_{13})(\frac{z_a}{R_a^3}) + 2A_{66}(\frac{R_a^*}{r^2 R_a})] - T_2 m_2 [(A_{11} - 2A_{66} - u_1 m_1 A_{13})(\frac{z_b}{R_b^3})] \\ &+ 2A_{66}(\frac{R_b^*}{r^2 R_b})] - T_3 m_1 [(A_{11} - 2A_{66} - u_2 m_2 A_{13})(\frac{z_c}{R_c^3}) + 2A_{66}(\frac{R_a^*}{r^2 R_a})] \\ &= [(A_{11} - 2A_{66} - u_2 m_2 A_{13})(\frac{z_d}{R_d^3}) + 2A_{66}(\frac{R_a^*}{r^2 R_a})] \\ &= (A_{11} - 2A_{66} - u_2 m_2 A_{13})(\frac{z_d}{R_d^3}) + 2A_{66}(\frac{R_a^*}{r^2 R_a})] \\ &= (A_{11} - 2A_{66} - u_2 m_2 A_{13})(\frac{z_d}{R_d^3}) + 2A_{66}(\frac{R_a^*}{r^2 R_a})] \\ &= (A_{11} - 2A_{66} - u_2 m_2 A_{13})(\frac{z_d}{R_d^3}) + 2A_{66}(\frac{R_a^*}{r^2 R_d})] \\ &= (A_{11} - 2A_{66} - u_2 m_2 A_{13})(\frac{z_d}{R_d^3}) + 2A_{66}(\frac{R_a^*}{r^2 R_d})] \\ &= (A_{11} - 2A_{66} - u_2 m_2 A_{13})(\frac{z_d}{R_d^3}) + 2A_{66}(\frac{R_a^*}{r^2 R_d})] \\ &= (A_{11} - 2A_{66} - u_2 m_2 A_{13})(\frac{z_d}{R_d^3}) + 2A_{66}(\frac{R_d^*}{r^2 R_d})] \\ &= (A_{11} - A_{66} - u_2 m_2 A_{13})(\frac{z_d}{R_d^3}) + 2A_{66}(\frac{R_d^*}{r^2 R_d})] \\ &= (A_{11} - A_{66} - u_2 m_2 A_{13})(\frac{z_d}{R_d^3}) + 2A_{66}(\frac{R_d^*}{r^2 R_d})] \\ &= (A_{11} - A_{66} - u_2 m_2 A_{13})(\frac{z_d}{R_d^3}) + 2A_{66}(\frac{R_d^*}{r^2 R_d})] \\ &= (A_{11} - A_{66} - u_2 m_2 A_{13})(\frac{z_d}{R_d^3}) + 2A_{66}(\frac{R_d^*}{r^2 R_d})] \\ &= (A_{11} - A_{66} - u_2 m_2 A_{13})(\frac{z_d}{R_d^3}) + 2A_{66}(\frac{R_d^*}{r^2 R_d})] \\ &= (A_{11} - A_{66} - u_2 m_2 A_{13})(\frac{z_d}{R_d^3}) + 2A_{66}(\frac{R_d^*}{r^2 R_d})] \\ &= (A_{11} - A_{66} - u_2 m_2 A_{13})(\frac{z_d}{R_d^3}) + 2A_{66}(\frac{R_d^*}{r^2 R_d})] \\ &= (A_{11} - A_{11} - A_{12} - A_{12} - A_{12} - A_{12} - A_{12} - A_{12} - A_{12}$$

$$\sigma_{zz} = \sigma_{zz} - \frac{P_r \cos\theta + P_\theta \sin\theta}{4\pi} \{ (A_{13} - u_1 m_1 A_{33}) [T_1(\frac{r}{R_a^3}) - T_2(\frac{r}{R_b^3})] - (A_{13} - u_2 m_2 A_{33}) \}$$

$$[T_{3}(\frac{r}{R_{c}^{3}}) - T_{4}(\frac{r}{R_{d}^{3}})] + \frac{P_{z}}{4\pi} \{ (A_{13} - u_{1}m_{1}A_{33})[T_{1}m_{1}(\frac{z_{a}}{R_{a}^{3}}) - T_{2}m_{2}(\frac{z_{b}}{R_{b}^{3}})] - (A_{13} - u_{2}m_{2}A_{33})[T_{3}m_{1}(\frac{z_{e}}{R_{e}^{3}}) - T_{4}m_{2}(\frac{z_{d}}{R_{d}^{3}})] - (A_{13} - u_{2}m_{2}A_{33})[T_{3}m_{1}(\frac{z_{e}}{R_{e}^{3}}) - T_{4}m_{2}(\frac{z_{d}}{R_{d}^{3}})] - (Z_{12}f)$$

$$\tau_{r\theta} = \tau_{r\theta}^{'} - \frac{P_{r}\sin\theta - P_{\theta}\cos\theta}{4\pi} [2T_{1}A_{66}(-\frac{1}{rR_{d}} + \frac{2z_{a}R_{a}}{r^{3}R_{a}}) - 2T_{2}A_{66}(-\frac{1}{rR_{b}} + \frac{2z_{b}R_{b}^{*}}{r^{3}R_{b}}) - 2T_{3}A_{66}(-\frac{1}{rR_{c}} + \frac{2z_{c}R_{c}^{*}}{r^{3}R_{c}}) + 2T_{4}A_{66}(-\frac{1}{rR_{d}} + \frac{2z_{d}R_{d}^{*}}{r^{3}R_{d}}) + u_{3}(-\frac{R_{e}^{*}}{r^{3}} + \frac{3z_{e}R_{e}^{*}}{r^{3}R_{e}} - \frac{z_{e}^{*}}{rR_{e}^{*}})]$$

$$(2.12g)$$

$$\tau_{\theta z} = \tau_{\theta z} - \frac{P_r \sin \theta - P_\theta \cos \theta}{4\pi} [(u_1 + m_1) A_{44} [T_1(\frac{R_a^*}{r^2 R_a}) - T_2(\frac{R_b^*}{r^2 R_b})] - (u_2 + m_2) A_{44} [T_3(\frac{R_c^*}{r^2 R_c}) - T_4(\frac{R_d^*}{r^2 R_d})] + (\frac{R_e^*}{r^2 R_e} - \frac{z_e}{R_e^3})]$$
(2.12h)

$$\tau_{rz} = \tau_{rz}' + \frac{P_r \cos\theta + P_\theta \sin\theta}{4\pi} \{ (u_1 + m_1) A_{44} [T_1(-\frac{R_a^*}{r^2 R_a} + \frac{z_a}{R_a^3}) - T_2(-\frac{R_b^*}{r^2 R_b} + \frac{z_b}{R_b^3})] - (u_2 + m_2) \\ A_{44} [T_3(-\frac{R_c^*}{r^2 R_c} + \frac{z_c}{R_c^3}) - T_4(-\frac{R_d^*}{r^2 R_d} + \frac{z_d}{R_d^3})] - \frac{R_e^*}{r^2 R_e} \} + \frac{P_z}{4\pi} A_{44} \{ (u_1 + m_1) [T_1 m_1(\frac{r}{R_a^3}) - T_2 m_2(\frac{r}{R_b^3})] - (u_2 + m_2) [T_3 m_1(\frac{r}{R_c^3}) - T_4 m_2(\frac{r}{R_d^3})] \}$$

$$(2.12i)$$

其中, U'_r 、 U'_{θ} 、 U'_z 、 σ_{rr} 、 $\sigma_{\theta\theta}$ 、 σ_{zz} 、 $\sigma_{r\theta}$ 、 σ_{\thetaz} 、 σ_{rz} 為無限空間橫向

等向性材料位移及應力解, $(P_r \times P_{\theta} \times P_z)$ 為半無限空間橫向等向性材料之受載點 荷重,而 $R_a \times R_b \times R_c \mathcal{Q} R_a^* \times R_b^* \times R_c^*$ 分別與量測位移及應力點位 $(\mathbf{r} \times \theta \times \mathbf{z})$ 和 $u_1 \times u_2 \times u_3$ 有關,係數 $T_1 \times T_2 \times T_3$ 和 $u_1 \times u_2 \times u_3$ 則為材料彈性常數 A_{ij} (i,j=1~6)所 組成。

當簡化為均質(Homogeneous)、線彈性 (Linear elastic)及等向(Isotropic)時可 發現與 Mindlin 及 Boussinesq 所提出之等向性解相同。在工程實務中,這些方程 可用在計算彈性領域下單一承載樁的位移和應力量,也可利用疊加原理去分析計 算任何由單一承載樁組合的樁基礎之位移和應力解,有了這樣的概念,則可延伸 求解水平橫向等向性材料在半無限空間受不同形式載重作用所產生的位移和應 力閉合解。

於是在1999年Wang and Liao 延伸Liao and Wang (1998)提出水平橫向等向 性材料在半無限空間受非對稱載重作用的位移和應力閉合解,載重型態可分為有 限線載重(Finite line loads)及非對稱載重(Asymmetric loads),包括:均佈矩形、線 性矩形及三角形載重等,透過漢克與傳立葉轉換及逆轉換,重新推導圓柱座標系 統下橫向等向性半無限空間受點荷重作用之位移及應力解,並透過點荷重積分技 巧延伸求解有限線載重及非對稱載重之位移及應力解,當橫向等向性材料簡化為 均質(Homogeneous)、線彈性 (Linear elastic)及等向(Isotropic)時可發現結果顯示 都是正確的。此外作者還提出可能的影響因子分別為:待測點埋設深度(Buried depth)、載重型態和材料的種類及異向性(Anisotropy)等。最後,將這些解析解作 參數研究,總共可歸納出4點結論:

(1) 隨者垂直表面之載重增加而平行於載重方向之變位也跟著增加,如圖 2.10(a)

- (2) 横向等向性材料受載重作用會受到深度變化影響,如圖 2.10 和圖 2.11。
- (3) 横向等向性岩體受均佈或線性矩形載重之垂直位移會隨著楊氏模數比

E/E'(v/v'=G/G=1)增加和剪力模數比 G/G (E/E'=v/v'=1)增加而增加,而 v/v' (E/E'=G/G'=1).的影響相當小並不隨之改變,如圖 2.10 和圖 2.11。
(4) 平面應變(2D domain)條件下所求之位移和應力解會比由三維空間條件下 (3D domain)求得之位移和應力解還要大。

圖 2.10(a) 深度及岩石異向性影響下之垂直均佈矩形載重 \hat{p}_z 作用的位移圖 (b) 岩石異向性(E/E')影響下之垂直均佈矩形載重 \hat{p}_z 作用

的應力圖-摘自 Wang and Liao (1999), p.131

圖 2.11(c) 岩石異向性(v/v')影響下之垂直均佈矩形載重 \hat{p}_z 作用的應力圖(d)岩石異向性(G/G)影響下之垂直均佈矩形載重 \hat{p}_z 作用的應力圖-摘自 Wang and Liao (1999), p.132

圖 2.9 及圖 2.10 之岩石 1 至岩石 7 彈性特性採用 Gerrard(1975) and Amadei et al.(1987) 建議,如表 2.1 所示:

表 2.1 不同岩石之彈性特性表

岩石種類	E/E	υ/υ'	$G/G^{'}$
Rock 1 Isotropic	1.0	1.0	1.0
Rock 2 Transversely isotropic	2.0	1.0	1.0
Rock 3 Transversely isotropic	3.0	1.0	1.0
Rock 4 Transversely isotropic	1.0	0.75	1.0
Rock 5 Transversely isotropic	1.0	1.5	1.0
Rock 6 Transversely isotropic	1.0	1.0	2.0
Rock 7 Transversely isotropic	1.0	1.0	3.0
E			

採用 Gerrard(1975) and Amadei et al.(1987)

Liew and Ding et al. (2001)

Liew and Ding et al. (2001)利用勢能函數(Potential function)推導水平橫向等 向性材料在半無限空間(範圍: z≥0和z≤0,上下材料特性不同)交接處受點荷 重作用彈性領域範圍之位移解,並將點荷重透過橢圓積分延伸作用在橫向等向性 材料半無限空間上交接處導出均佈環性載重之位移解,而這些解可適用於無限空 間或透過簡化適用於半無限空間。

圖 2.13 圓柱座標系統下之均佈環狀施載示意圖

本文成功的顯示半無限空間兩種不同特性之水平橫向等向性材料交接處受 點荷重作用(卡式座標系統)及環形載重(圓柱座標系統呈現)作用,利用勢能函數 積分求解位移,如圖 2.14 和圖 2.13,這些解獲得主要考慮在範圍 z ≥ 0 及 z ≤ 0 不同特徵值型式(S_1 , S_2 , S_1 , S_2)條件下,其包括有 2 種類型: $S_1 = S_2$, $S_1 \neq S_2$ 及 $S_1 = S_2'$, $S_1 \neq S_2'$,其中, $S_1 = S_2$, $S_1 \neq S_2$ 為範圍 z ≥ 0 之水平橫向等向性材料 組成一般解之特徵值, $S_1 = S_2$ 為重根情況; $mS_1 = S_2'$, $S_1 \neq S_2'$ 則是範圍 z ≤ 0 之水平橫向等向性材料組成一般解之特徵值, $S_1 = S_2'$ 為重根情況,以下就針對 半無限空間兩種不同特性之水平橫向等向性材料交接處受不同型式點荷重作用 所產生之位移解作介紹。在卡式座標系統下,橫向等向性材料受載作用之位移一 般解,因材料特徵值不同($S_1 \neq S_2$ 和 $S_1 = S_2$)两一般解表示型式也會有所不同,其 表式方式如下所示: (1) 當 $S_1 \neq S_2$ 時

$$u = \sum_{i=1}^{2} \frac{\partial \psi_{i}}{\partial x} - \frac{\partial \psi_{0}}{\partial y} \quad v = \sum_{i=1}^{2} \frac{\partial \psi_{i}}{\partial y} + \frac{\partial \psi_{0}}{\partial x} \quad w = \sum_{i=1}^{2} \alpha_{i} \frac{\partial \psi_{i}}{\partial z_{i}}$$
(2.13a)

(2) 當 S₁ = S₂ 時

$$u = \frac{\partial \psi_1}{\partial x} + z_1 \frac{\partial \psi_2}{\partial x} - \frac{\partial \psi_0}{\partial y} \quad v = \frac{\partial \psi_1}{\partial y} + z_1 \frac{\partial \psi_2}{\partial x} - \frac{\partial \psi_0}{\partial y} \quad v = \alpha_i (\frac{\partial \psi_1}{\partial z_i} + z_1 \frac{\partial \psi_2}{\partial z_1}) - \alpha_3 \psi_2 \quad (2.13b)$$

其中, ψ_i 為組合位移之勢能函數(potential function),滿足二階偏微分方程

$$\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z_{i}}\right)\psi_{i} = 0 \quad (i=0,1,2) \land \alpha_{i} = \frac{c_{11} - c_{44}s_{i}^{2}}{(c_{13} + c_{44})s_{i}} \quad (i=1,2) \land \alpha_{3} = \frac{c_{11} + c_{44}s_{1}^{2}}{(c_{13} + c_{44})s_{1}} \quad (2.14)$$

為推導水平橫向等向性材料在半無限空間(範圍: z≥0和z≤0)受點荷重作

用彈性領域範圍之位移解, Liew and Ding et al. (2001)將點荷重施載情形分為二大 部分:(1) 點荷重(Point force) P 垂直作用在(z=h)横向等向性平面,(2) 點荷重 (Point force) T 作在横向等向性平面 x 方向分別求解,如圖 2.12,列出 4 種組合 類型,去探討其受載之位移型式:(A) $S_1 \neq S_2$ and $S_1' \neq S_2'$ 、(B) $S_1 \neq S_2$ and $S_1' = S_2'$ 、(C) $S_1 = S_2$ and $S_1' \neq S_2'$ 、(D) $S_1 = S_2$ and $S_1' = S_2'$,其所代表之勢能 函數(Potential function),如 (2.15) 式至 (2.22) 式:

(1) 點荷重(Point force) P 垂直作用在(z=h)横向等向性平面之勢能函數:

1、種類 A: $S_1 \neq S_2$ and $S_1 \neq S_2$

 $z \ge 0 : \psi_{0} = 0 \cdot \psi_{i} = A_{i}Sign(z-h)\ln(\overline{R}_{ii} + s_{i} | z-h |) + \sum_{j=i}^{2} A_{ij}\ln(R_{ij} + z_{ij}) \quad (i=1,2)$ $z \le 0 : \psi_{0} = 0 \cdot \psi_{i} = \sum_{j=1}^{2} A_{1j}\ln(R_{ij} - z_{ij}) \quad (i=1,2)$ $2 \cdot 4 \pm \Re B: S_{1} \neq S_{2} \quad \text{and} \quad S_{1} = S_{2} \quad 1896$ $z \ge 0 : \psi_{0} = 0 \cdot \psi_{i} = A_{i}Sign(z-h)\ln(\overline{R}_{ii} + s_{i} | z-h |) + \sum_{j=i}^{2} A_{ij}\ln(R_{ij} + z_{ij}) \quad (i=1,2)$

$$z \leq 0 : \psi_0' = 0 \cdot \psi_1' = \sum_{j=1}^2 C_{1j} \ln(R_{1j} - z_{1j}) \cdot \psi_2' = \sum_{j=1}^2 \frac{C_{2j}}{R_{1j}} \quad (i=1,2)$$
(2.16)

3、種類 C: $S_1 = S_2$ and $S'_1 \neq S'_2$

$$z \ge 0 : \psi_1 = Sign(z-h)C_1 \ln(R_{11} + s_1 | z-h |) + C_{11} \ln(R_{11} + z_{11}) + \frac{C_{12}}{R_{11}} \cdot \psi_0 = 0$$

$$\psi_{2} = C_{2} \frac{1}{\overline{R}_{11}} + \frac{C_{21}}{R_{11}} + \frac{C_{22} z_{11}}{R_{11}^{3}}$$

$$z \leq 0 : \psi_{0}' = 0 \cdot \psi_{i}' = H_{i1}' \ln(R_{il}' - z_{il}') + \frac{H_{i2}'}{R_{i1}'} \quad (i=1,2)$$

$$(2.17)$$

4、種類 D: $S_1 = S_2$ and $S_1' = S_2'$

$$z \ge 0 : \psi_1 = Sign(z-h)C_1 \ln(R_{11} + s_1 | z-h |) + C_{11} \ln(R_{11} + z_{11}) + \frac{C_{12}}{R_{11}} \cdot \psi_0 = 0$$

$$\psi_{2} = C_{2} \frac{1}{\overline{R}_{11}} + \frac{C_{21}}{R_{11}} + \frac{C_{22}z_{11}}{R_{11}^{3}}$$

$$z \leq 0 : \psi_{0}' = 0 \cdot \psi_{1}' = K_{11}' \ln(R_{11}' - z_{22}') + \frac{K_{12}'}{R_{11}'} + \frac{K_{12}'}{R_{11}'} \cdot \psi_{2}' = \frac{K_{21}'}{R_{11}'} + \frac{K_{22}'z_{11}'}{R_{11}^{3}} \qquad (2.18)$$

$$\Psi_{1} \neq \Phi = 0 \cdot \psi_{1}' = K_{11}' \ln(R_{11}' - z_{22}') + \frac{K_{12}'}{R_{11}'} + \frac{K_{12}'}{R_{11}'} \cdot \psi_{2}' = \frac{K_{21}'}{R_{11}'} + \frac{K_{22}'z_{11}'}{R_{11}'} \quad (2.18)$$

(2) 點荷重(Point force) T 作用在横向等向性平面 x 方向之勢能函數:

1、種類 A:
$$S_1 \neq S_2$$
 and $S_1 \neq S_2$

$$z \ge 0 : \psi_{0} = \frac{D_{0}y}{\overline{R}_{00} + s_{0} | z - h |} + \frac{D_{00}y}{R_{00} + z_{00}} \cdot \psi_{i} = \frac{D_{i}x}{\overline{R}_{ii} + s_{i} | z - h |} + \sum_{j=1}^{2} \frac{D_{ij}x}{R_{ij} + z_{ij}}$$
(i=1,2)
$$z \le 0 : \psi_{0}' = \frac{L_{00}y}{R_{00} + z_{00}} \cdot \psi_{i}' = \frac{L_{ij}x}{R_{ij} + z_{ij}}$$
(i=1,2)
$$2 \cdot \Re B: S_{1} \neq S_{2} \text{ and } S_{1}' = S_{2}'$$
(2.19)
$$z \ge 0 : \psi_{i} = \frac{D_{i}x}{\overline{R}_{ii} + s_{i} | z - h |} + \sum_{j=1}^{2} \frac{D_{ij}x}{R_{ij} + z_{ij}}$$
(i=1,2)

$$z \leq 0: \psi_{0} = \frac{N_{00}y}{R_{00} + z_{00}} \cdot \psi_{1} = \frac{N_{1j}x}{R_{1j} + z_{1j}} \cdot \psi_{2} = \frac{N_{2j}x}{R_{1j}(R_{1j} - z_{1j})} \quad (i=1,2)$$
(2.20)

3、種類 C: $S_1 = S_2$ and $S'_1 \neq S'_2$

$$z \ge 0 : \psi_0 = \frac{G_0 y}{\overline{R}_{00} + s_0 | z - h|} + \frac{G_{00} y}{R_{00} + z_{00}} : \psi_1 = \frac{G_1 x}{\overline{R}_{11} + \overline{z}_{11}} + \frac{G_{11} x}{R_{11} + z_{11}} + \frac{G_{12} x}{\overline{R}_{11} (R_{11} + z_{11})} :$$

$$\psi_{2} = Sign(z-h)\frac{G_{2}x}{\overline{R}_{11}(\overline{R}_{11}+\overline{z}_{11})} + \frac{G_{12}x}{R_{11}(R_{11}+z_{11})} + \frac{G_{22}x}{R^{3}_{11}}$$

$$z \leq 0 : \psi_{0} = \frac{S_{00} y}{R_{00} + z_{00}} \cdot \psi_{i} = \frac{S_{i1} x}{R_{i1} - z_{i1}} + \frac{S_{i2} x}{R_{i1} - z_{i1}} \quad (i=1,2)$$
(2.21)

4、種類 D: $S_1 = S_2$ and $S_1 = S_2'$

$$z \ge 0 : \psi_0 = \frac{G_0 y}{\overline{R}_{00} + s_0 | z - h |} + \frac{G_{00} y}{R_{00} + z_{00}} \cdot \psi_1 = \frac{G_1 x}{\overline{R}_{11} + \overline{z}_{11}} + \frac{G_{11} x}{R_{11} + z_{11}} + \frac{G_{12} x}{\overline{R}_{11} (R_{11} + z_{11})}$$

$$\psi_2 = Sign(z-h)\frac{G_2 x}{\overline{R}_{11}(\overline{R}_{11}+\overline{z}_{11})} + \frac{G_{12} x}{R_{11}(R_{11}+z_{11})} + \frac{G_{22} x}{R_{11}^3}$$
(2.22)

 $z \le 0: \psi_0' = \frac{\pi_{00}'y}{R_{00} + z_{00}'}, \psi_1' = \frac{\pi_{11}'x}{R_{11}' - z_{11}'} + \frac{\pi_{12}'x}{R_{11}'(R_{11}' - z_{11}')}, \psi_2' = \frac{\pi_{21}'x}{R_{11}'(R_{11}' - z_{11}')} + \frac{\pi_{22}'x}{R_{11}'(R_{11}' - z_{11}')} + \frac{\pi_{22}'x}{R_{11}'(R_{11}' - z_{11}')}, \psi_2' = \frac{\pi_{21}'x}{R_{11}'(R_{11}' - z_{11}')} + \frac{\pi_{22}'x}{R_{11}'(R_{11}' - z_{11}')}$ 其中, $A_{ij}, C_{ij}, D_{ij}, D_{ij}$, M_{ij} , 為待定係數,將以上範圍z ≥ 0 及z ≤ 0式(2.15) $\Xi(2.18)$ 及式(2.19)至式(2.22) 之勢能函數,利用力平衡原則及邊界條件連續性求 出各待定係數值,然後代入式(2.13a)及式(2.13b)則可求得四種不同特徵值組合 $(S_1 \neq S_2 \text{ and } S_1' \neq S_2', S_1 \neq S_2 \text{ and } S_1' = S_2', S_1 = S_2 \text{ and } S_1' \neq S_2', S_1 = S_2$ and $S_1' = S_2'$)於範圍z ≥ 0 及z ≤ 0式之半無限空間位移解。求解過程雖為半無限空間解, 但實際上還是由無限空間的概念來求解各範圍z ≥ 0 及z ≤ 0之位移,若假設範圍z ≥ 0 及z ≤ 0其中一個不存在時,隨者力平衡方程及邊界條件也會跟著改變,將所 求之待定係數代入式(2.13a)及式(2.13b)得之半無限空間位移解是否正確,還需透 過簡化過程與現有學者驗證才能確定其準確性、

Ding et al.(2006)

圖 2.14 水平横向等向性材料在半無限空間表面點荷重作用示意圖

Ding et al. (2006), p.107

在水平横向等向半無限空間材料當等向面(isotropic plane)平行邊界表面時, 如圖 2.14, Ding et al.(2006)利用卡式座標系統(x、y、z)並且讓 xy 平面與半無限 空間表面重合,點荷重作用浩著 z 軸向材料中心(取 z>0),而提出點荷重垂直與 正切作用(平行 x 軸及平行 y 軸)在水平横向等向性材料半無限空間表面之位移解 析解。

首先,假設有一任意點荷重作用在原點,為求得受載重作用之位移解析解, Ding et al.提出可將此問題分成3個小部分(1) 垂直點荷重作用在半無限空間表之 z 軸正向,(2)正切點荷重作用在半無限空間 x 軸向,(3)正切點荷重作用在半無限 空間 y 軸向,最後再利用疊加原理得到所需位移解析解,以下為 Ding et al.(2006) 所提出受到(1)垂直點荷重作用在半無限空間表之 z 軸正向及(2)正切點荷重作用 在水平橫向等向半無限空間 x 軸向之三維位移解析形式,如(2.23a)-(2.23c)式,而 (3)受正切點荷重作用在半無限空間 y 軸向之解,則可利用 x 來取代 y 和 y 取代-x 得到。

30

$$U_{x} = \left\{ \frac{s_{3}T}{2\pi c_{66}} \left(\frac{1}{R_{3}^{*}} - \frac{y^{2}}{R_{3}R_{3}^{*2}} \right) + \frac{c_{33}T}{2\pi c_{11}(c_{11}c_{33} - c_{13}^{2})} \left(\tilde{u} - x^{2}\tilde{v} \right) \right\} \vec{i} + \frac{Px}{2\pi (c_{11}c_{33} - c_{13}^{2})R_{1}R_{1}^{*}R_{2}R_{2}^{*}} \\ \times \left\{ c_{11} \left(z^{2} - \frac{r^{2}}{s_{1}s_{2}} + \frac{s_{1} + s_{2}}{R_{1} + R_{2}} z^{3} \right) + c_{13} \left[r^{2} + z^{2} \left(s_{1}^{2} + s_{1}s_{2} \right) \right] + z(s_{1} + s_{2}) \\ \times \frac{(s_{1}^{2} + s_{2}^{2})r^{2} + (s_{1}^{4} + s_{1}^{2}s_{2}^{2} + s_{2}^{4})z^{2}}{s_{1}^{2}R_{1} + s_{1}^{2}R_{2}} \right] \vec{k}$$

(2.23a)

$$U_{y} = \{\frac{s_{3}T}{2\pi c_{66}} \frac{xy}{R_{3}R_{3}^{*2}} - \frac{c_{33}Txy}{2\pi c_{11}(c_{11}c_{33} - c_{13}^{2})} \tilde{v}]\vec{i} + \{\frac{y}{x}u\}\vec{k}$$
(2.23b)

$$U_{z} = \{\frac{Tx}{2\pi s_{1}s_{2}(c_{11}c_{33} - c_{13}^{2})}\}\vec{i} + \{\frac{(s_{1} + s_{2})P}{2\pi s_{1}s_{2}(c_{11}c_{33} - c_{13}^{2})R_{1}R_{2}} \times [c_{11}\frac{(s_{1}^{2} + s_{2}^{2})r^{2} + (s_{1}^{4} + s_{1}^{2}s_{2}^{2} + s_{2}^{4})z^{2}}{s_{1}^{2}R_{1} + s_{2}^{2}R_{2}} + c_{13}\frac{s_{1}^{2}s_{2}^{2}z^{2}}{R_{1} + R_{2}}]\}\vec{k}$$
(2.23c)

其中, T和P分別為正切(平行 x 軸)及垂直於半無限空間表面的點荷重,

$$\tilde{u}$$
、 \tilde{v} 、 \tilde{w} 如(2.24a)、(2.24b)、(2.24c)式所示:

$$\tilde{u} = \frac{1}{R_1^* R_2^*} \{c_{11}s_1s_2z + \frac{c_{11}(s_1+s_2)[(s_1^2+s_2^2)p^2+s_1^2s_2^2z^2]}{s_1^2 R_2 + s_2^2 R_{11896}} = c_{13}s_1^2 s_2^2 z\}$$
(2.24a)

$$\tilde{v} = \frac{1}{R_1 R_2 R_1^{*2} R_2^{*2}} \{2c_{11}s_1s_2z(r^2 - s_1s_2z^2) - c_{13}s_1^2 s_2^2 r^4 z^2 - s_1^4 s_2^4 z^6 - c_{11}(s_1 + s_2)[\frac{s_1^2 s_2^2 z^4}{R_1 + R_2} - \frac{(s_1^2 + s_2^2)r^6 + 3s_1^2 s_2^2 r^4 z^2 - s_1^4 s_2^4 z^6}{s_1^2 R_2^3 + s_2^2 R_1^3}] - 2c_{13}s_1^2 s_2^2 z[r^2 + (s_1^2 + s_1s_2 + s_2^2)z^2] - c_{13}(s_1 + s_2)s_1^2 s_2^2 z - (s_1^4 + s_1^2 s_2^2 + s_2^4)z^4 - (s_1^2 + s_2^2)z^2 - (s_1^4 + s_1^2 s_2^2 + s_2^4)z^4 - (s_1^2 + s_1^2 s_2^2 + s_2^4)z^2 - (s_1^4 + s_1^2 s_2^2 + s_2^4)z^4 - (s_1^2 + s_1^2 s_2^2 + s_2^4)z^4 - (s_1^2 + s_1^2 s_1^2 + s_2^2 R_1^2 + s_2^2)r^2 - (s_1^4 + s_1^2 s_2^2 + s_2^4)z^4 - (s_1^2 + s_1^2 s_2^2 + s_2^4)z^2 - (s_1^2 + s_1^2 s_2^2 + s_2^4)z^4 - (s_1^2 + s_1^2 s_1^2 + s_2^2 s_2^2 + s_2^4)z^4 - (s_1^2 + s_1^2 s_1^2 + s_2^2 s_1^2 + s_2^4)z^4 - (s_1^2 + s_1^2 s_1^2 + s_2^2 s_1^2 + s_2^4)z^4 - (s_1^2 + s_1^2 s_1^2 + s_2^2 s_1^2 + s_2^4)z^4 - (s_1^2 + s_2^2 s_1^2 + s_2^2 s_1^2 + s_2^4)z^4 - (s_1^2 + s_1^2 s_1^2 + s_2^2 s_1^2 + s_2^4)z^4 - (s_1^2 + s_2^2 s_1^2 + s_2^2 s_1^2 + s_2^4)z^4 - (s_1^2 + s_2^2 s_1^2 + s_2^2 s_1^2 + s_2^4)z^4 - (s_1^2 + s_2^2 s_1^2 + s_2^2 s_1^2 + s_2^4)z^4 - (s_1^2 + s_2^2 s_1^2 + s_2^2 s_1^2 + s_2^4)z^4 - (s_1^2 + s_2^2 s_1^2 + s_2^2 s_1^2 + s_2^4)z^4 - (s_1^2 + s_2^2 s_1^2 + s_2^2 s_1^2 + s_2^4)z^4 - (s_1^2 + s_2^2 s_1^2 + s_2^2 s_1^2 + s_2^4)z^4 - (s_1^2 + s_2^2 s_1^2 + s_2^2 s_1^2 + s_2^4)z^4 - (s_1^2 + s_2^2 s_1^2 + s_2^2 s_1^2 + s_2^4)z^4 - (s_1^2 + s_2^2 s_1^2 + s_2^2 + s_2^4)z^4 - (s_1^2 + s_2^2 s_1^2 + s_2^2 + s_2^4)z^4 - (s_1^2 + s_2^2 + s_2^2 + s_2^2 + s_2^4)z^4 - (s_1^2 + s_2^2 + s_2^2 + s_2^2 + s_2^4)z^4 - (s_1^2 + s_2^2 + s_2^2 + s_2^4 + s_2^2 + s_2^2 + s_2^4)z^4 - (s_1^2 + s_2^2 + s_2^2 + s_2^4 + s_2^2 + s_2^2 + s_2^4)z^4 - (s_1^2 + s_2^2 + s_2^2 + s_2^2 + s_2^4 + s_2^2 + s_2^2 + s_2$$

$$\widetilde{w} = \frac{1}{R_1 R_2 R_1^* R_2^*} \{ -c_{11} [r^2 + (s_1^2 + s_1 s_2 + s_2^2) z^2] \\ -c_{11} (s_1 + s_2) z \frac{(s_1^2 + s_2^2) r^2 + (s_1^4 + s_1^2 s_2^2 + s_2^4) z^2}{s_1^2 R_1 + s_2^2 R_2} \\ + 2s_1 s_2 c_{13} [r^2 - s_1 s_2 z^2 - \frac{(s_1 + s_2) s_1 s_2 z^3}{R_1 + R_2}] \}$$
(2.24c)

圖 2.15 傾斜橫向等向性材料在半無限空間承受三維點荷重作用示意圖 修改自胡廷秉(2009), p.18

胡廷秉 (2009)探討傾斜橫向等向性材料在無限或半無限空間承受三維點荷 重之三向度位移與應力的基本解,如圖 2.15,而求解的控制方程是由運動或力平 衡方程組成之偏微分方程式 (Partial Differential Equations)所構成,求解偏微分 方程是非常複雜,作者先將偏微分方程式透過二維傅立業轉換(Double Fourier transform)轉換為常微分方程式(Ordinary Differential Equations)並提出三種方法 來求此偏微分方程而獲得無限空間與半無限空間的應力及位移解析解,以下針對 半無限空間領域求解方法作說明:

(1)直接求解法

在半無限空間中由雙傅立葉轉換所得之非齊常微分方程式的解分別由齊性 解(Homogeneous Solution)及特解(Particular Solution)組成,可直接利用待定係數 法及分離變數法求解受點荷重後之非齊性微分方程式(Non-homogeneous O.D.E),最後經由雙傳立業逆轉換(Inverse Double Fourier transforms),可將作 用在半無限空間傾斜的橫向等向性材料三維點荷重之應力及位移閉合解析解求 出。

(2)劃分空間法

將半無限空間區劃分為兩個區域:虛擬空間0<z<0⁺)及區域1(0⁺<z< +∞),如圖 2.16,在區域1之力平衡方程式因右邊無作用力,故可視為齊性方 程式,接著分別考量半無限空間中區域1及虛擬空間的組合邊界值條件,即可 將作用在傾斜的橫向等向性材料三維點荷重的應力及位移閉合解析解求出,此 方法與方法一相似,但求解過程更為簡易。

(3) 代數方程法

將在半無限空間由雙傅立葉轉換所得之非齊性微分方程式,再次進行拉普 拉斯轉換則可得到多項式代數方程式,則可求得此拉普拉斯轉換域之半無限空 間位移解及應力解,接著透過進行拉普拉斯逆轉換(Laplace inverse transforms) 及雙傅立葉逆轉換,最後導出作用在傾斜橫向等向性材料三維點荷重的位移及 應力閉合解析解。

不管是使用直接求解法、劃分空間法或代數方程法,都可發現在半無限空間(z>0,區域1)傾斜橫向等向性材料受三維點荷重作用最後推導之應力及位移 閉合解都相同,以下 (2.25a)式至 (2.25i)式為半無限空間傾斜橫向等向性材料 受三維點荷重作用之位移及應力閉合解型式:

$$u_{x}(x, y, z) = -\frac{1}{2\pi} \oint_{C} \frac{1}{i\omega} \{ C_{d}^{1}(\omega) D_{11}^{1}(\omega) \frac{\psi_{4}(\omega)}{\psi_{7}(\omega)} + C_{d}^{2}(\omega) D_{11}^{2}(\omega) \frac{\psi_{5}(\omega)}{\psi_{8}(\omega)} + C_{d}^{3}(\omega) D_{11}^{3}(\omega) \frac{\psi_{6}(\omega)}{\psi_{9}(\omega)} \} d\omega$$
(2.25a)

$$u_{y}(x, y, z) = -\frac{1}{2\pi} \oint_{C} \frac{1}{i\omega} \{ C_{d}^{1}(\omega) D_{21}^{1}(\omega) \frac{\psi_{4}(\omega)}{\psi_{7}(\omega)} + C_{d}^{2}(\omega) D_{21}^{2}(\omega) \frac{\psi_{5}(\omega)}{\psi_{8}(\omega)} + C_{d}^{3}(\omega) D_{21}^{3}(\omega) \frac{\psi_{6}(\omega)}{\psi_{9}(\omega)} \} d\omega$$
(2.25b)

$$u_{z}(x, y, z) = -\frac{1}{2\pi} \oint_{C} \frac{1}{i\omega} \{ C_{d}^{1}(\omega) D_{31}^{1}(\omega) \frac{\psi_{4}(\omega)}{\psi_{7}(\omega)} + C_{d}^{2}(\omega) D_{31}^{2}(\omega) \frac{\psi_{5}(\omega)}{\psi_{8}(\omega)} + C_{d}^{3}(\omega) D_{31}^{3}(\omega) \frac{\psi_{6}(\omega)}{\psi_{9}(\omega)} \} d\omega$$
(2.25c)

$$\sigma_{xx}(x, y, z) = \frac{1}{2\pi} \oint_{C} \frac{1}{i\omega} \{ C_{d}^{1}(\omega) \overline{\sigma}_{xx}^{1}(\omega) (\frac{\psi_{4}(\omega)}{\psi_{7}(\omega)})^{2} + C_{d}^{2}(\omega) \overline{\sigma}_{xx}^{2}(\omega) (\frac{\psi_{5}(\omega)}{\psi_{8}(\omega)})^{2} + C_{d}^{3}(\omega) \overline{\sigma}_{xx}^{3}(\omega) (\frac{\psi_{6}(\omega)}{\psi_{7}(\omega)})^{2} \} d\omega$$

$$(2.25d)$$

$$\sigma_{yy}(x, y, z) = \frac{1}{2\pi} \oint_{C} \frac{1}{i\omega} \{ C_{d}^{1}(\omega) \overline{\sigma}_{yy}^{1}(\omega) (\frac{\psi_{4}(\omega)}{\psi_{7}(\omega)})^{2} + C_{d}^{2}(\omega) \overline{\sigma}_{yy}^{2}(\omega) (\frac{\psi_{5}(\omega)}{\psi_{8}(\omega)})^{2} + C_{d}^{3}(\omega) \overline{\sigma}_{yy}^{3}(\omega) (\frac{\psi_{6}(\omega)}{\psi_{9}(\omega)})^{2} \} d\omega$$

$$(2.25e)$$

$$\sigma_{zz}(x, y, z) = \frac{1}{2\pi} \oint_{C} \frac{1}{i\omega} \{ C_{d}^{1}(\omega) \overline{\sigma}_{zz}^{1}(\omega) (\frac{\psi_{4}(\omega)}{\psi_{7}(\omega)})^{2} + C_{d}^{2}(\omega) \overline{\sigma}_{zz}^{2}(\omega) (\frac{\psi_{5}(\omega)}{\psi_{8}(\omega)})^{2} + C_{d}^{3}(\omega) \overline{\sigma}_{zz}^{3}(\omega) (\frac{\psi_{6}(\omega)}{\psi_{9}(\omega)})^{2} \} d\omega$$

$$(2.25f)$$

$$\tau_{yz}(x, y, z) = \frac{1}{2\pi} \oint_{C} \frac{1}{i\omega} \{ C_{d}^{1}(\omega) \overline{\tau}_{yz}^{1}(\omega) (\frac{\psi_{4}(\omega)}{\psi_{7}(\omega)})^{2} + C_{d}^{2}(\omega) \overline{\tau}_{yz}^{2}(\omega) (\frac{\psi_{5}(\omega)}{\psi_{8}(\omega)})^{2} + C_{d}^{3}(\omega) \overline{\tau}_{yz}^{3}(\omega) (\frac{\psi_{6}(\omega)}{\psi_{9}(\omega)})^{2} \} d\omega$$
(2.25g)

$$\tau_{zx}(x, y, z) = \frac{1}{2\pi} \oint_{C} \frac{1}{i\omega} \{ C_{d}^{1}(\omega) \overline{\tau}_{zx}^{1}(\omega) (\frac{\psi_{4}(\omega)}{\psi_{7}(\omega)})^{2} + C_{d}^{2}(\omega) \overline{\tau}_{zx}^{2}(\omega) (\frac{\psi_{5}(\omega)}{\psi_{8}(\omega)})^{2} + C_{d}^{3}(\omega) \overline{\tau}_{zx}^{3}(\omega) (\frac{\psi_{6}(\omega)}{\psi_{9}(\omega)})^{2} \} d\omega$$

$$(2.25h)$$

$$\tau_{xy}(x, y, z) = \frac{1}{2\pi} \oint_{C} \frac{1}{i\omega} \{ C_d^1(\omega) \overline{\tau}_{xy}^1(\omega) (\frac{\psi_4(\omega)}{\psi_7(\omega)})^2 + C_d^2(\omega) \overline{\tau}_{xy}^2(\omega) (\frac{\psi_5(\omega)}{\psi_8(\omega)})^2 + C_d^3(\omega) \overline{\tau}_{xy}^3(\omega) (\frac{\psi_6(\omega)}{\psi_9(\omega)})^2 \} d\omega$$

$$(2.25i)$$

其中, $\psi_{7}(\omega) = \psi_{1}(\omega) \times \psi_{4}(\omega)$)、 $\psi_{8}(\omega) = \psi_{2}(\omega) \times \psi_{5}(\omega)$

$$\psi_{9}(\omega) = \psi_{3}(\omega) \times \psi_{6}(\omega)$$

(2.25a) 式至 (2.25i) 式之一般解表示式,需透過應用數學軟體將奇點 (Singular Point)位置找出,然後利用殘數定理(Residue theorem integral)積分,才 能得到所需之位移及應力閉合解析解。對於無限空間傾斜橫向等向性材料部分, 位移和應力閉合解非常容易求得,但對於半無限空間傾斜橫向等向性材料部分, 在計算求解過程,若直接考慮傾斜半無限空間下受載推導位移和應力解,(2.25a) 式-(2.25i) 式是無法直接積分出來,因為組成之方程過於太龐大難以化簡,難以 得知奇點之型式,故胡廷秉 (2009)只提出半無限空間部分傾斜橫向等向性材料 (水平)承受三維點荷重作用之三向度位移與應力閉合解析解,而傾斜半無限空間 部分尚未得到完整結果。

(2.26)

2.3 文獻回顧小結

有關橫向等向性材料在半無限空間受載作用所得到位移及應力解析解問題, 在 2D 半無限空間,從學者 De Hrena et al. (1966)及 Piquer et al.(1966)文獻中可得 知 「水平橫向等向性材料半無限空間表面受垂直、剪力載重或三角形垂直、正 切載重作用時之正向應力(σ_{xx} 、 σ_{yy})及剪應力(τ_{yz})」解型式;類似的議題在 1977 年 Bray 利用等值概念去探討規則節理之岩體(視為傾斜橫向等向性材料)受水平 及垂直載重作用之應力分佈情況,此推導結果和 1971 年 Gaziev and Erlikhman 利 用物理模型試驗所畫出的應力等值圖相似。從這些學者所提出結果可觀察出橫向 等向性材料受載重作用之位移及應力變化情況受到深度及材料的異向性 (Anisotropy)影響,其中異向性又以楊氏模數比(E'_E')和剪力模數G'影響較大, 考慮這些影響因子,就可以將此結果廣泛應用於工程設計上(例如:估計基礎受 載之位移和應力變化)。由於二維半無限空間幾乎是在處理平面應變的問題,求 得之位移和應力結果若與三維空間比較往往會高估,而且求解過程考慮因素不多, 簡化結果造成無法廣泛應用。

在三維空間範圍下,Liao and Wang (1998)提出水平橫向等向性材料在半無限 空間受荷重作用之位移和應力解並於 1999 年延伸點荷重型式提出水平橫向等向 性材料在半無限空間受非對稱載重作用的位移和應力閉合解,簡化後與二維半無 限空間學者推導結果相同,同樣可觀察出橫向等向性材料受載重作用會受到深度 及型式影響,而異向性對橫向等向性岩體來說,會隨者楊氏模數 E/E'(v/v)=G/G=1) 增加和剪力模數比 G/G(E/E'=v/v)=1)增加而增加其位移和應力量。2001 年 Liew and Ding et al.利用勢能函數(Potential function)推導水平橫向等向性材料在半無 限空間(範圍: $z \ge 0$ 和 $z \le 0$,上下材料特性不同)交接處受點荷重作用彈性領域 範圍之位移解。2006 年 Ding et al.提出點荷重分別垂直與正切作用(平行 x 軸及平 行 y 軸)在水平橫向等向性材料半無限空間表面之位移解析解。

直到2009年胡廷秉探討傾斜橫向等向性材料在無限或半無限空間承受三維 點荷重之三向度位移與應力的閉合解析解,胡廷秉(2009)利用彈性力學原理並結 合數學轉換技巧將整個求解過程簡化,目前已提出半無限空間傾斜(水平)橫向等 向性材料承受三維點荷重作用之三向度位移與應力閉合解部分結果。為延續此求 解精神與目的,本研究主要先利用胡廷秉(2009)所提出求解 O.D.E.之傳統方法求 解「半無限空間垂直橫向等向性材料受三維表面點荷重作用之位移和應力閉合 解」,然後舉範例計算說明,特別針對殘數定理積分析、探討位移閉合解與受材 料異向性影響程度。本論文提供此研究結果(垂直橫向等向之位移閉合解)探討, 未來若與水平結果結合分析,期望可延伸進一步求得半無限空間傾斜部分受載之 位移和應力閉合解。

36

第三章 研究方法

本文為探討垂直橫向等向性材料在半無限空間受三維表面點荷重作用下的 位移閉合解。在微小變形條件下,根據彈性力學理論,控制方程是由位移和應變 關係式、幾何方程及平衡方程所組合成的偏微分方程(P.D.E)推導得到,本文採用 胡廷秉(2009)提出對半無限空間求解偏微分方程-傳統方法,首先將控制方程經由 雙傅立葉轉換(Double Fourier transform)轉變為常微分方程(O.D.E),並且配合邊 界條件求出傅立葉定義域之半無限空間垂直橫向等向性材料的位移和應力解,然 後將所得傅立葉定義域的位移及應力解型式,透過雙傅立葉逆轉換及殘數積分技 巧得到最終物理定義域的位移及應力解型式,透過雙傅立葉逆轉換及殘數積分技 巧得到最終物理定義域的位移及應力解型式,透過雙傅立葉逆轉換及殘數積分技 巧得到最終物理定義域的位移及應力解型式,透過雙傳立葉逆轉換及殘數積分技

3.1 横向等向性材料彈性領域之數學基本方程

橫向等向性材料彈性問題的基本方程是從彈性力學理論衍生而來,而彈性力 學理論的基本數學式方程在很多的參考資料裡都可尋求,例如: Sneddon (1951)、 Timosheko (1970)、Poulos and Davis(1974)等,而彈性力學的基本方程又包括:應 力及應變關係、幾何方程、平衡方程、協調方程這四種基本方程,以下就分別來 介紹此四種基本方程:

在卡式座標系統下,線彈性材料的應力及應變關係可用廣義的虎克定律表示 為 (3.1) 式,左式 i、j=x、y、z;中間 i、j、k、l=1~6;右式 k、l=x、y、z: $\sigma_{ij} = c_{ijkl} \varepsilon_{kl}$ (3.1)

 σ_{ij} 為應力量, ε_{kl} 為應變量, c_{ijkl} 為彈性勁度常數(Elastic stiffness constants), 由 4 階張量(fourth-rank tensor)形態所組成,與材料的特性有關,總共為 81 個彈 性常數,其中 c_{ijkl} = c_{jikl} = c_{jilk} 相互不獨立,故此彈性常數可簡化為 36 個,如 (3.2a) 式所示:

$$\begin{vmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{yz} \\ \tau_{zx} \\ \tau_{xy} \end{vmatrix} = \begin{vmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{36} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{46} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{56} \\ C_{61} & C_{62} & C_{63} & C_{64} & C_{65} & C_{66} \end{vmatrix} \begin{vmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{xy} \end{vmatrix}$$
(3.2a)

根據材料彈性對稱面組數及排列方式,線彈性材料又可分為一般異向性 (General anisotropy)、正交性(Orthotropy)、橫向等向性(Transverse isotropy)以及均 向性(Isotropy)材料。一般來說,異向性岩石(3.2a)通常可簡化由正交性或橫向等 向性材料所組成。所謂正交性材料是由三組彈性對稱平面互相垂直所組成,沿著 此三軸的力學特性為相同,其彈性常數之數目為9;橫向等向性材料有一個對稱 旋轉軸,垂直此軸的平面材料特性都相同,此為橫向等向性不面,而由此平面所 組合成的材料則稱為橫向等向性材料,彈性常數之數目為5;至於均向性材料, 因不具有方向性,在任何方向的力學性質及材料特性為一致,彈性常數之數目可 簡化為2。而本文為之半無限空間垂直橫向等向性材料受點荷重作用之位移及應 力解型式,若為水平橫向等向材料,會因對稱面組數及排列方式,總共可由6個 獨立的彈性常數所組合成(含有5個材料參數: E、E、U、U、G'),相對於 (3.2a) 式,它可表示為 (3.2b) 式:

$$\begin{bmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \sigma_{zz} \\ \tau_{yz} \\ \tau_{zx} \\ \tau_{xy} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{13} & 0 & 0 & 0 \\ C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{yz} \\ \gamma_{zx} \end{bmatrix}$$
(3.2b)

其中, $C_{14} = C_{15} = C_{16} = C_{24} = C_{25} = C_{26} = C_{34} = C_{35} = C_{36} = C_{41} = C_{42} = C_{43}$

$$= C_{45} = C_{46} = C_{51} = C_{52} = C_{53} = C_{54} = C_{56} = C_{61} = C_{62} = C_{63} = C_{64} = C_{65} = 0$$

 $C_{21} = C_{12} \cdot C_{22} = C_{11} \cdot C_{23} = C_{31} = C_{32} = C_{13} \cdot C_{55} = C_{44} \cdot C_{12} = C_{11} - 2C_{66}$, 其它詳細 說明如第三章 3.2 節。

而幾何方程則為位移及應變表示方式,同樣地,假設在微小變形條件下,其 組成型態為(3.3)式, ε_{ll} 為應變量, γ_{kl} 為剪應變量, u_i 為位移量 $(k, l = x \cdot y \cdot z)$:

$$\left[\varepsilon_{xx} \\ \varepsilon_{yy} \\ \varepsilon_{zz} \\ \gamma_{yz} \\ \gamma_{yz} \\ \gamma_{yz} \\ \gamma_{yx} \\ \gamma_{xy} \end{bmatrix}^{= \left[\begin{array}{c} \frac{\partial u_x}{\partial x} \\ \frac{\partial u_y}{\partial y} \\ \frac{\partial u_z}{\partial z} \\ \frac{\partial u_z}{\partial z} \\ \frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \\ \frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \\ \frac{\partial u_y}{\partial x} + \frac{\partial u_z}{\partial y} \\ \frac{\partial u_y}{\partial y} \\ \frac{\partial u_y}{\partial y} \\ \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial y} \\ \frac{\partial u$$

積所受到徽體力(Body force),本文 F_x 、 F_y 、 F_z 分別代表沿著座標 x、y、z 軸三個方向單位體積的點荷重:

$$\begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{zx} \\ \tau_{xy} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{yz} & \sigma_{zz} \end{bmatrix} \begin{bmatrix} \partial / \partial x \\ \partial / \partial y \\ \partial / \partial z \end{bmatrix} + \begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.4)

協調方程式(compalibility equation)則為符合變形連續性,即應變協調性,其可表達為 (3.5) 式:

$$\begin{bmatrix} 2\frac{\partial^{2}\varepsilon_{xx}}{\partial y\partial z} \\ 2\frac{\partial^{2}\varepsilon_{yy}}{\partial x\partial z} \\ 2\frac{\partial^{2}\varepsilon_{zy}}{\partial x\partial z} \\ 2\frac{\partial^{2}\varepsilon_{zz}}{\partial x\partial y} \\ \frac{\partial^{2}\varepsilon_{zz}}{\partial x\partial y} \\ \frac{\partial^{2}r_{yz}}{\partial y\partial z} \\ \frac{\partial^{2}r_{xz}}{\partial x\partial z} \\ \frac{\partial^{2}r_{xz}}{\partial x\partial y} \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x}\left(-\frac{\partial\gamma_{yz}}{\partial x} + \frac{\partial\gamma_{zx}}{\partial y} + \frac{\partial\gamma_{xy}}{\partial z}\right) \\ \frac{\partial}{\partial z}\left(\frac{\partial\gamma_{yz}}{\partial x} + \frac{\partial\gamma_{zx}}{\partial y} - \frac{\partial\gamma_{xy}}{\partial z}\right) \\ \frac{\partial\varepsilon_{xy}}{\partial z^{2}} + \frac{\partial\varepsilon_{zz}}{\partial y^{2}} \\ \frac{\partial\varepsilon_{xx}}{\partial z^{2}} + \frac{\partial\varepsilon_{zz}}{\partial x^{2}} \\ \frac{\partial\varepsilon_{xx}}{\partial y^{2}} + \frac{\partial\varepsilon_{zz}}{\partial x^{2}} \\ \frac{\partial\varepsilon_{xx}}{\partial y^{2}} + \frac{\partial\varepsilon_{zz}}{\partial x^{2}} \\ \frac{\partial\varepsilon_{xy}}{\partial x^{2}} + \frac{\partial\varepsilon_{yy}}{\partial x^{2}} \end{bmatrix}$$

(3.5)

3.2 傅立葉轉換理論

為推導有限範圍之應力及位移解,除了使用參數變異法(Variation of parameters)直接求解偏微分方程,也可用特徵值所組成之勢能函數(Potential function)來求解。但若考慮無限範圍(Full space)及半無限範圍(Half space),使用 以上兩種求解方法是不易達到簡化目的,反而使得求解過程更為複雜困難。因此 可透過積分轉換技巧,將此方程式簡化為低階的方程,而積分轉換技巧又可包括 傳立葉轉換(Fourier transform)、拉普拉斯轉換(Laplace transform)、漢克轉換 (Hankel transform)及梅林轉換(Mellin 轉換)等等,本文依據胡廷秉(2009)求解半無 限傾斜向等向空間的偏微分方程所提出的傳立葉轉換方法,來推導半無限空間垂 直橫向等向性材料的位移及應力閉合解。在半無限空間範圍內透過這些積分技巧, 我們可以將垂直橫向等向性材料受載作用所建立求解控制方程簡化。一般來說在 半無限空間材料,控制方程都為偏微分方程(P.D.E),透過傅立葉轉換可將偏微分 方程轉變為常微分方程(O.D.E),而常微分方程在數學求解過程中,配合邊界條 件將變得非常容易求得,以下就數學定義下之傅立葉轉換理論加以簡單說明:

傳立葉轉換是假設有一個以 t 為變數之函數 $u_i(t)$,將此函數乘上 $e^{-i\omega t}$,然後

對 t 做積分,積分範圍從負無限大(-∞)至正無限大(∞),最終的結果可以ω為變 數之函數 $U_i(\omega)$ (或 F $\{u_i(t)\}$)來表示,這種由時間域轉變頻率域的過程則稱為傅 立葉轉換,其表式方式如 (3.6a) 式所示,參考 Sneddon (1951):

$$U_i(\omega) = \frac{1}{\sqrt{2}} \int_{-\infty}^{\infty} u_i(t) e^{-i\omega t} dt$$
(3.6a)

傳立葉轉換能將滿足一定條件的某個函數表示成三角函數,如:正弦或餘弦 函數或是其積分的線性組合。採用傳立葉轉換可以將複雜的方程式轉變為簡單的 方程,如:偏微分方程可以轉化為常微方程或是代數方程來求解。簡單來說,傳 立葉轉換是一個簡化方程的數學方法,將一個領域函數轉變為另外一個領域函數, 常見為時間領域轉為頻率領域。若在不違背物理原理條件下,應用於本研究,傳 立葉轉換可以相同型式表達,舉例來說: $u_i(x)$ 為位移 x 之函數, $U_i(\alpha)$ 為 $u_i(x)$ 對 做傳立葉轉換到 α 定義域的結果,其表達為 (3.6b) 式: $U_i(\alpha) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u_i(x) e^{-i\alpha x} dx$ (3.6b) 相對地, $\overline{u}_i(x)$ 為 $\overline{U}_i(\alpha)$ 逆轉換結果,其傳立葉逆轉換,則可用以下方式表達, 如式(3.7)

$$u_i(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} U_i(\alpha) e^{i\alpha x} dx$$
(3.7)

1 次微分傅立葉轉換:
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{du_i(x)}{dx} e^{-i\alpha x} dx = i\alpha U_i(\alpha)$$
 (3.8)

2 次微分傅立葉轉換:
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{d^2 u_i(x)}{dx^2} e^{-i\alpha x} dx = (i\alpha)^2 U_i(\alpha)$$
(3.9)

另外,單一變數之傳立葉轉換函數理論可延伸為多維變數之傳立葉轉換函數, 舉例來說: $U_i(\alpha, \beta)$ 為 $u_i(x, y)$ 做二維傳立葉轉換,其表示方式如 (3.10) 式:

$$U_{i}(\alpha,\beta) = \frac{1}{2\pi} \int_{-\infty-\infty}^{\infty} \int_{-\infty-\infty}^{\infty} u_{i}(x,y) e^{-i(\alpha x + \beta y)} d\alpha d\beta$$
(3.10)

其推導過程為有一個含有2個獨立變數 X、y 之函數 u_i(x, y),先對 X 做傅立 葉轉換結果為 (3.11) 式:

$$U_i(\alpha, y) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u_i(x, y) e^{-i\alpha x} dx$$
(3.11)

然後將(3-11)結果對 y 在做一次傅立葉轉換,則為式(3.12)所示:

Fourier inverse transform),依據前面推導方法,同樣可以得到 $U_i(\alpha, \beta)$ 作雙傅立葉逆轉換表示式,如(3.13)式所示:

$$u_{i}(x,y) = \frac{1}{2\pi} \int_{-\infty-\infty}^{\infty} U_{i}(\alpha,\beta) e^{i(\alpha x + \beta y)} d\alpha d\beta$$
(3.13)

綜合以上所述方法,則可延伸至推導多維變數之傳立葉轉換與逆轉換表示方式。

3.3 控制方程式之建立

本研究根據彈性力學理論之位移分析方法並使用胡廷秉(2009)提出求解之 傳統方法透過雙傅立葉轉換及逆轉換(Double Fourier transform & Inverse transform)、待定係數法(Undetermined coefficients)、參數變異法(Variation of parameters)及殘數定理積分(Residue theorem integral)等技巧,推導垂直橫向等向 性材料在半無限空間受表面點荷重作用之位移和應力閉合解,其主要控制方程式 由位移及應變、廣義虎克定律及力平衡三個關係式所組成。假設在微小變形半無 限空間領域,使用三維卡式座標系統(3D Cartesian coordinates system),三個座標 軸符合右手定則之為正定義如圖 3.1 所示,其整個控制方程建立的推導過程如下 所示:

若令水平橫向等向性材料上座標系統同於卡式座標系統定義,有一旋轉 z 軸, 繞著 z 軸旋轉所產生的 x-y 平面皆為均質、材料特性相同的平面,這種由 x 軸與 y 軸向所組成的平面則稱為橫向等向性平面,如圖 3.2,其應力和應變關係可用 廣義的虎克定律(Hooke's law)來表示:

圖 3.2 半無限水平橫向等向性空間示意圖

式(3.15)最左邊之 $\sigma_{x'x'}$ 、 $\sigma_{y'y'}$ 、 $\sigma_{z'z'}$ 為正向應力(Normal stress), $\tau_{y'z'}$ 、 $\tau_{z'x'}$ 、 $\tau_{x'y'}$ 為剪應力(Shear stress); (3.15) 式最右邊之 $\varepsilon_{x'x'}$ 、 $\varepsilon_{y'y'}$ 、 $\varepsilon_{z'z'}$ 為正向應變 (Normal strain), $\gamma_{y'z'}$ 、 $\gamma_{z'x'}$ 、 $\gamma_{x'y'}$ 為剪應變(Shear strain), 而(3.15) 式中間之彈 性常數矩陣比對 (3.2b) 式可由6個獨立的彈性常數組成,其中 c_1 、 c_2 、 c_3 、 c_4 、

$$c_{1} = \frac{E(1 - \frac{E}{E})v^{2}}{(1 + v)(1 - v - \frac{2E}{E})v^{2}}$$
(3.16a)

$$c_{2} = \frac{E'(1-\upsilon)}{1-\upsilon - \frac{2E}{E'}{\upsilon'}^{2}}$$
(3.16b)

$$c_{3} = \frac{E\upsilon' + G'(1 - \upsilon - \frac{2E}{E'}\upsilon'^{2})}{1 - \upsilon - \frac{2E}{E'}\upsilon'^{2}}$$
(3.16c)

$$c_4 = \frac{E}{2(1+\nu)}$$
 (3.16d)

 $c_{5} = G'$

(3.16e) 這5個獨立的材料彈性常數原理說明,如 1:

本文擬推導垂直橫向等向性材料半無限空間受表面點三維荷重之位移及應 力彈性解析閉合解,在前述座標系統下的彈性常數將經轉換為9個彈性常數,本 文假設廣義座標系統(即物理定義座標系統 Co-ordinate system)由 x、y、z 軸所組 成,材料座標系統由 x、y、z 軸所組成,其中 x'y 面為橫向等向平面(Plane of transverse isotropy),而垂直橫向等向性材料則定義為 x'y 面平行 x、z 平面,如 圖 3.3 所示:

圖 3.3 水平横向等向空間以 x 旋轉 90 度示意圖

圖 3.3 為圖 2.14 由水平橫向等向空間以 x 旋轉 90 度得, 即 x = x 與 $\phi = 90^{\circ}$,

在卡式座標系統上旋轉後的彈性常數,可由 Lekhnitskii (1981)得知如下式:

$$C_{ij} = \sum_{m'=1}^{6} \sum_{n'=1}^{6} c_{m'n'} q_{im'} q_{jn'} (j, j=1\sim6)$$
(3.17)

其中:

$$\left[q_{ij} \right] = \begin{bmatrix} l_{11}^2 & l_{12}^2 & l_{13}^2 & l_{12}l_{13} & l_{13}l_{11} & l_{12}l_{11} \\ l_{21}^2 & l_{22}^2 & l_{23}^2 & l_{23}l_{22} & l_{23}l_{21} & l_{22}l_{21} \\ l_{31}^2 & l_{32}^2 & l_{33}^2 & l_{33}l_{32} & l_{33}l_{31} & l_{32}l_{31} \\ 2l_{31}l_{21} & 2l_{32}l_{22} & 2l_{33}l_{23} & l_{33}l_{22} + l_{32}l_{23} & l_{33}l_{21} + l_{31}l_{23} & l_{31}l_{22} + l_{32}l_{21} \\ 2l_{31}l_{11} & 2l_{32}l_{12} & 2l_{33}l_{13} & l_{33}l_{12} + l_{32}l_{13} & l_{33}l_{11} + l_{31}l_{13} & l_{31}l_{12} + l_{32}l_{11} \\ 2l_{21}l_{11} & 2l_{12}l_{22} & 2l_{13}l_{23} & l_{13}l_{22} + l_{12}l_{23} & l_{13}l_{21} + l_{11}l_{23} & l_{11}l_{22} + l_{12}l_{21} \end{bmatrix}$$
 (3.18a)

向等向性材料的在原座標系統的彈性常數,如圖 3.2,經由座標轉換,傾斜橫向 等向性材料彈性常數如(3.19a),當 $\phi = 90^{\circ}$ 時為所需之垂直橫向等向性材料受載的 彈性常數表示方式如 (3.19b)式所示:

$$\begin{bmatrix} C \end{bmatrix}_{xyz,\phi} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & 0 & 0 \\ C_{21} & C_{22} & C_{23} & C_{24} & 0 & 0 \\ C_{31} & C_{32} & C_{33} & C_{34} & 0 & 0 \\ C_{41} & C_{42} & C_{43} & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & C_{56} \\ 0 & 0 & 0 & 0 & C_{65} & C_{66} \end{bmatrix}$$
(3.19a)

$$\begin{bmatrix} C \end{bmatrix}_{xyz,\phi=90^{\circ}} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{21} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{31} & C_{32} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{bmatrix}$$
 (3.19b)

其中, [C]_{xyz, \u03c6} 可參照附錄 B 說明, 而 [C]_{xyz, \u03c6=90}。矩陣為垂直橫向等向性材料各 個彈性常數, 分別為 (3.20a) 式至(3.20g) 式:

$$C_{11} = C_{33} = c_1 \tag{3.20a}$$

$$C_{12} = C_{21} = C_{23} = C_{32} = c_3 - c_5 \tag{3.20b}$$

$$C_{13} = C_{31} = c_1 - 2c_4 \tag{3.20c}$$

$$C_{22} = c_2 \tag{3.20d}$$

$$C_{44} = C_{66} = c_5$$
 (3.20e)
 $C_{cc} = c_4$ (3.20c)

$$c_{55} = c_4$$
 (3.20f)

$$C_{14} = C_{15} = C_{16} = C_{24} = C_{25} = C_{26} = C_{34} = C_{35} = C_{36} = C_{41} = C_{42}$$

= $C_{43} = C_{45} = C_{46} = C_{51} = C_{52} = C_{53} = C_{54} = C_{56} = C_{61} = C_{62}$
= $C_{63} = C_{64} = C_{65} = 0$ (3.20g)

其中, c₁、c₂、c₃、c₄、c₅為5個材料彈性常數E、E'、U、U'、G'所組成,如 (3.16a)至(3.16e)式所示。

將 $(3.20a) \sim (3.20g)$ 代入(3.19)式,然後連同(3.14)代入(3.02b),可得到由位移 所組成的垂直橫向等向性材料受載之正向應力及剪應力,其表達如(3.21a)至(3.21g)式,而位移量則由 $U_x \sim U_y \sim U_z$ 表示,為一實數:

$$\sigma_{xx} = c_1 \frac{\partial U_x}{\partial x} + (c_3 - c_5) \frac{\partial U_y}{\partial y} + (c_1 - 2c_4) \frac{\partial U_z}{\partial z}$$
(3.21a)

$$\sigma_{yy} = (c_3 - c_5) \frac{\partial U_x}{\partial x} + c_2 \frac{\partial U_y}{\partial y} + (c_3 - c_5) \frac{\partial U_z}{\partial z}$$
(3.21b)

$$\sigma_{zz} = (c_1 - 2c_4)\frac{\partial U_x}{\partial x} + (c_3 - c_5)\frac{\partial U_y}{\partial y} + c_1\frac{\partial U_z}{\partial z}$$
(3.21c)

$$\tau_{yz} = c_5 \left(\frac{\partial U_y}{\partial z} + \frac{\partial U_z}{\partial y}\right)$$
(3.21d)

$$\tau_{zx} = c_4 \left(\frac{\partial U_x}{\partial z} + \frac{\partial U_z}{\partial x}\right)$$
(3.21e)

$$\tau_{xy} = c_5 \left(\frac{\partial U_x}{\partial y} + \frac{\partial U_y}{\partial x}\right)$$
(3.21f)

而力平衡方程式表示方式如 (3.22) 式:

$$\begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{zx} \\ \tau_{xy} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{yz} & \sigma_{zz} \end{bmatrix} \begin{bmatrix} \partial/\partial x \\ \partial/\partial y \\ \partial/\partial z \end{bmatrix} + \begin{bmatrix} F_x \\ F_y \\ F_z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.22) (3.22)

其中, F_x 、 F_y 、 F_z 分別為沿著垂直橫向等向性材料之定義座標系統之 x、y、 z 軸三個方向之單位體積點荷重為 P_x 、 P_y 、 P_z ,以下章節以點荷重(單位:1/體積)稱作,如圖 3.4:

圖 3.4 半無限空間垂直橫向等向性材料受載示意圖

將 (3.21a)至(3.21f) 式代入平衡方程 (3.22) 式,重新組合整理後可得到在 物理定義域下垂直橫向等向性材料之平衡方程式,這個方程為求解中的主要控制 方程式,又稱為 Navier-Cauchy 方程,表示如 (3.23a)至 (3.23c) 式:

$$c_{1}\frac{\partial^{2}U_{x}}{\partial x^{2}} + c_{5}\frac{\partial^{2}U_{x}}{\partial y^{2}} + c_{4}\frac{\partial^{2}U_{x}}{\partial z^{2}} + c_{3}\frac{\partial^{2}U_{y}}{\partial x\partial y} + (c_{1} - c_{4})\frac{\partial^{2}U_{z}}{\partial x\partial z} = -F_{x}$$
(3.23a)

$$c_{3}\frac{\partial^{2}U_{x}}{\partial x\partial y} + c_{5}\frac{\partial^{2}U_{y}}{\partial x^{2}} + c_{2}\frac{\partial^{2}U_{y}}{\partial y^{2}} + c_{5}\frac{\partial^{2}U_{y}}{\partial z^{2}} + c_{3}\frac{\partial^{2}U_{z}}{\partial y\partial z} = -F_{y}$$
(3.23b)

$$(c_{1}-c_{y})\frac{\partial^{2}U_{x}}{\partial x\partial z}+c_{z}\frac{\partial^{2}U_{y}}{\partial y\partial z}+c_{z}\frac{\partial^{2}U_{z}}{\partial x^{2}}+c_{z}\frac{\partial^{2}U_{z}}{\partial y^{2}}+c_{z}\frac{\partial^{2}U_{z}}{\partial z^{2}}+c_{z}\frac{\partial^{2}U_{z}}{\partial z^{2}}=-F_{z}$$
(3.23c)

3.4 一般解中齊次解之特徵根

本文之半無限空間垂直橫向等向性材料受表面三維點荷重作用,其點荷重作 用型態定義為直接作用在某一點位,假設此代表在某一個時間點有一個脈衝,其 它時間則為零,則採用 Eringen and Suhubi (1975)和 Rahman (1995)兩位學者建議 之集中點荷重於 $x \cdot y \cdot z$ 軸方向表示方式 $F_j = P_j \delta(x) \delta(y) \delta(z) e^{i \varpi t}$ (j = x, y, z),當 集中點荷重不受時間影響為靜態問題時(t=0),則點荷重 $F_x \cdot F_y \cdot F_z$ 可呈現如 (3.24a)至(3.24c)式所示:

 $F_x = P_x \delta(x)\delta(y)\delta(z) \tag{3.24a}$

 $F_{y} = P_{y}\delta(x)\delta(y)\delta(z)$ (3.24b)

$$F_{z} = P_{z}\delta(x)\delta(y)\delta(z)$$
(3.24c)

其中,δ()為 Dirac delta 函數, Dirac Delta 函數又稱為單位脈衝函數,通常 用δ表示。它的定義舉例來說:有一δ(t-h)函數,橫坐標左範圍為h,右範圍為 h+ε,縱座標為 $\frac{1}{\varepsilon}$,除了範圍[h,h+ε]內,其超過範圍[h,h+ε]任何點的值都為零, 當 ε 趨近於 0,縱座標值則趨近於無限大(∞),如圖 3.5,而在整個定義域上的積 分等於 1,其表示方式如(3.25)式:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x) \delta(y) dx dy = 1$$
(3.25)

將 (3.24a) 式至 (3.24c) 式代入力平衡方程式(3.23a)至(3.23c),並透過雙傳 立葉轉換(Double Fourier Transform),將複雜的偏微分方程(P.D.E)化簡為常微分 方程(O.D.E),以下為控制方程中(3.23a)至(3.23c)各部分經由傳立葉轉換結果,如 (3.26a) 式至 (3.26j) 式, i=x、y、z:

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} U_i(x, y, z) e^{-i(\alpha x + \beta y)} dx dy = \overline{u}_i(\alpha, \beta, z)$$
(3.26a)

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial U_i(x, y, z)}{\partial x} e^{-i(\alpha x + \beta y)} dx dy = i\alpha \overline{u}_i(\alpha, \beta, z)$$
(3.26b)

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial U_i(x, y, z)}{\partial y} e^{-i(\alpha x + \beta y)} dx dy = i\beta \overline{u}_i(\alpha, \beta, z)$$
(3.26c)

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial U_i(x, y, z)}{\partial z} e^{-i(\alpha x + \beta y)} dx dy = \frac{-d \,\overline{u}_i(\alpha, \beta, z)}{dz}$$
(3.26d)

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial^2 U_i(x, y, z)}{\partial x^2} e^{-i(\alpha x + \beta y)} dx dy = -\alpha^2 \overline{u}_i(\alpha, \beta, z)$$
(3.26e)

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial^2 U_i(x, y, z)}{\partial y^2} e^{-i(\alpha x + \beta y)} dx dy = -\beta^2 \overline{u}_i(\alpha, \beta, z)$$
(3.26f)

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial^2 U_i(x, y, z)}{\partial z^2} e^{-i(\alpha x + \beta y)} dx dy = \frac{d u_i(\alpha, \beta, z)}{dz}$$
(3.26g)

$$\frac{1}{2\pi} \int_{-\infty-\infty}^{\infty} \prod_{x=0}^{\infty} P_x \delta(x) \delta(y) \delta(z) e^{-i(\alpha x + \beta y)} dx dy = \frac{P_x}{2\pi} \delta(z)$$
(3.26h)

$$\frac{1}{2\pi} \int_{-\infty-\infty}^{\infty} P_{y} \delta(x) \delta(y) \delta(z) e^{-i(\alpha x + \beta y)} dx dy = \frac{P_{y}}{2\pi} \delta(z)$$
(3.26i)

$$\frac{1}{2\pi} \int_{-\infty-\infty}^{\infty} P_z \delta(x) \delta(y) \delta(z) e^{-i(\alpha x + \beta y)} dx dy = \frac{P_z}{2\pi} \delta(z)$$
(3.26j)

然後將式(3.26a)至 (3.26j) 式代入控制方程 (3.23a)至(3.23c) 式,當 z≠0 時, 其傅立葉定義域下之平衡方程式可表達如 (3.27a) 式至 (3.27c) 式所示,此為常 微分方程(O.D.E.):

$$(-\alpha^2 c_1 - \beta^2 c_5 + c_4 \frac{d^2}{dz^2})\overline{u}_x(\alpha, \beta, z) - \alpha\beta c_3\overline{u}_y(\alpha, \beta, z) - i\alpha(c_1 - c_4)\frac{d}{dz}\overline{u}_z(\alpha, \beta, z) = -\frac{P_x}{2\pi}\delta(z)$$
(3.27a)

$$-\alpha\beta c_{3}\overline{u}_{x}(\alpha,\beta,z) - (\alpha^{2}c_{5} + \beta^{2}c_{2} - c_{5}\frac{d^{2}}{dz^{2}})\overline{u}_{y}(\alpha,\beta,z) - i\beta c_{3}\frac{d}{dz}\overline{u}_{z}(\alpha,\beta,z) = -\frac{P_{y}}{2\pi}\delta(z)$$
(3.27b)

$$-i\alpha(c_1 - c_4)\frac{d}{dz}\overline{u}_x(\alpha, \beta, z) - i\beta c_3\frac{d}{dz}\overline{u}_y(\alpha, \beta, z) - (\alpha^2 c_4 + \beta^2 c_5 - c_1\frac{d^2}{dz^2})\overline{u}_z(\alpha, \beta, z) = -\frac{P_z}{2\pi}\delta(z)$$
(3.27c)

同樣地,將(3.26a) 至(3.26r) 轉換方程式代入 (3.21a)至(3.21f) 應力方程式, 則可得到應力在傅立葉定義域下表示為 (3.28a) 至(3.28f) 式:

$$\overline{\sigma}_{xx}(\alpha,\beta,z) = i\alpha c_1 \overline{u}_x(\alpha,\beta,z) + i\beta (c_3 - c_5)\overline{u}_y(\alpha,\beta,z) - (c_1 - 2c_4) \frac{d\overline{u}_z(\alpha,\beta,z)}{dz}$$

$$\overline{\sigma}_{yy}(\alpha,\beta,z) = i\alpha(c_3 - c_5)\overline{u}_x(\alpha,\beta,z) + i\beta c_2\overline{u}_y(\alpha,\beta,z) - (c_3 - c_5)\frac{d\overline{u}_z(\alpha,\beta,z)}{dz}$$
(3.28b)
$$\overline{\sigma}_{zz}(\alpha,\beta,z) = i\alpha(c_1 - 2c_4)\overline{u}_x(\alpha,\beta,z) + i\beta(c_3 - c_5)\overline{u}_y(\alpha,\beta,z) - c_1\frac{d\overline{u}_z(\alpha,\beta,z)}{dz}$$
(3.28c)
$$\overline{\tau}_{yz}(\alpha,\beta,z) = -c_5(\frac{d\overline{u}_y(\alpha,\beta,z)}{dz} - i\beta\overline{u}_z(\alpha,\beta,z))$$
(3.28d)

$$\bar{\tau}_{zx} = -c_4 \left(\frac{d\bar{u}_x(\alpha, \beta, z)}{dz} - i\alpha\bar{u}_z(\alpha, \beta, z)\right)$$
(3.28e)

$$\bar{\tau}_{xy} = ic_5(\beta \bar{u}_x(\alpha, \beta, z) + \alpha \bar{u}_y(\alpha, \beta, z))$$
(3.28f)

為求解此常微分方程(O.D.E.) 形態之平衡方程,首先將 (3.28a)至 (3.28f) 式 用矩陣方式呈現則可表達為 (3.29) 式:

$$\begin{bmatrix} d_{ij}(\alpha,\beta,z) \end{bmatrix} \begin{bmatrix} \overline{u}_{x}(\alpha,\beta,z) \\ \overline{u}_{y}(\alpha,\beta,z) \\ \overline{u}_{z}(\alpha,\beta,z) \end{bmatrix} = \begin{bmatrix} -\frac{P_{x}}{2\pi}\delta(z) \\ -\frac{P_{y}}{2\pi}\delta(z) \\ -\frac{P_{z}}{2\pi}\delta(z) \end{bmatrix}$$
$$= \begin{bmatrix} \alpha^{2}c_{1} + \beta^{2}c_{5} - c_{4}\frac{d^{2}}{dz^{2}} & \alpha\beta c_{3} & i\alpha(c_{1} - c_{4})\frac{d}{dz} \\ \alpha\beta c_{3} & \alpha^{2}c_{5} + \beta^{2}c_{2} - c_{5}\frac{d^{2}}{dz^{2}} & i\beta c_{3}\frac{d}{dz} \\ i\alpha(c_{1} - c_{4})\frac{d}{dz} & i\beta c_{3}\frac{d}{dz} & \alpha^{2}c_{4} + \beta^{2}c_{5} - c_{1}\frac{d^{2}}{dz^{2}} \end{bmatrix} \begin{bmatrix} \overline{u}_{x}(\alpha,\beta,z) \\ \overline{u}_{y}(\alpha,\beta,z) \\ \overline{u}_{z}(\alpha,\beta,z) \end{bmatrix} = \begin{bmatrix} \frac{P_{x}}{2\pi}\delta(z) \\ \frac{P_{y}}{2\pi}\delta(z) \\ \frac{P_{z}}{2\pi}\delta(z) \\ \frac{P_{z}}{2\pi}\delta(z) \end{bmatrix}$$
(3.29)

將 $\bar{u}_i(\alpha,\beta,z)$ 用指數型式來表示,則令 $\bar{u}_i(\alpha,\beta,z) = Q_i e^{pz}, Q_i$ 為一常數而 P_j 為 一複數(含實數),而 $i = x \cdot y \cdot z$,然後分別對此做一、二次微分可得到 (3.30a) 式 及 (3.30b) 式:

$$\frac{d\overline{u}_{i}(\alpha,\beta,z)}{dz} = Q_{i}pe^{pz}$$

$$\frac{d^{2}\overline{u}_{i}(\alpha,\beta,z)}{dz^{2}} = Q_{i}(p)^{2}e^{pz}$$
(3.30a)
(3.30b)

為求線性常微分方程(O.D.E)的一般解之齊次解,首先將 (3.30a)至(3.30b)式 代入(3.29)矩陣式獲得 (3.31)式,其中在傅立葉定義域指數型式之矩陣[d_{ij}]表示 分別如下(3.32a)至(3.32f):

$$\begin{bmatrix} d_{11}(\alpha,\beta,p) & d_{12}(\alpha,\beta,p) & d_{13}(\alpha,\beta,p) \\ d_{21}(\alpha,\beta,p) & d_{22}(\alpha,\beta,p) & d_{23}(\alpha,\beta,p) \\ d_{31}(\alpha,\beta,p) & d_{32}(\alpha,\beta,p) & d_{33}(\alpha,\beta,p) \end{bmatrix} \begin{bmatrix} \mathsf{Q}_{i}e^{pz} \\ \mathsf{Q}_{i}e^{pz} \\ \mathsf{Q}_{i}e^{pz} \end{bmatrix} = \begin{bmatrix} \frac{\mathsf{P}_{x}}{2\pi}\delta(z) \\ \frac{\mathsf{P}_{y}}{2\pi}\delta(z) \\ \frac{\mathsf{P}_{z}}{2\pi}\delta(z) \end{bmatrix}$$
(3.31)

$$d_{11}(\alpha,\beta,p) = \alpha^2 c_1 + \beta^2 c_5 - c_4 p^2$$
(3.32a)

$$d_{12}(\alpha,\beta,p) = d_{21}(\alpha,\beta,p) = \alpha\beta c_3$$
(3.32b)

$$d_{13}(\alpha,\beta,p) = d_{31}(\alpha,\beta,p) = i\alpha(c_4 - c_1)p$$
(3.32c)

$$d_{22}(\alpha,\beta,p) = \alpha^2 c_5 + \beta^2 c_2 - c_5 p^2$$
(3.32d)

$$d_{23}(\alpha, \beta, p) = d_{32}(\alpha, \beta, p) = -i\beta \ c_3 p \tag{3.32e}$$

$$d_{33}(\alpha,\beta,p) = \alpha^2 c_4 + \beta^2 c_5 - c_1 p^2$$
(3.32f)

線性常微分方程(O.D.E)的一般解的形式是由齊次解(Homogeneous solution) 與特解(Particular solution)所構成,而一般解中之齊次解求解過程是假設先矩陣方 程(3.31)右式 $\frac{P_x}{2\pi}\delta(z)$ 、 $\frac{P_y}{2\pi}\delta(z)$ 、 $\frac{P_z}{2\pi}\delta(z)$ 為0,則可表達為 (3.33)式:

$$\begin{bmatrix} d_{11}(\alpha,\beta,p) & d_{12}(\alpha,\beta,p) & d_{13}(\alpha,\beta,p) \\ d_{21}(\alpha,\beta,p) & d_{22}(\alpha,\beta,p) & d_{23}(\alpha,\beta,p) \end{bmatrix} \begin{bmatrix} e^{pz} \\ e^{pz} \\ e^{pz} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.33)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.33)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.34)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.35)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.35)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.36)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.36)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.37)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.38)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(3.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(4.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(5.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(7.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(7.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(7.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(7.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(7.39)

$$E = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(7.39)

$$E$$

能满足右式為0情況,故在此令 Det[d_{ij}]為0有解:

$$\det\left[d_{ij}(\alpha,\beta,p)\right] = \begin{bmatrix} d_{11}(\alpha,\beta,p) & d_{12}(\alpha,\beta,p) & d_{13}(\alpha,\beta,p) \\ d_{21}(\alpha,\beta,p) & d_{22}(\alpha,\beta,p) & d_{23}(\alpha,\beta,p) \\ d_{31}(\alpha,\beta,p) & d_{32}(\alpha,\beta,p) & d_{33}(\alpha,\beta,p) \end{bmatrix}$$
$$= c_2 c_5^2 \prod_{i=1}^3 A_i \{-(p)^2 + \alpha^2\} + \beta^2 = 0 \quad (j=1\sim6)$$
(3.34)

式(3.34)為特徵方程,總共可解出六個特徵根,這六個特徵根則為組成位移一般 解中之齊次解,此特徵根的表示分別如下(3.35a)至(3.35f)式,其詳細推導過程 參照附錄A:

$$p_1 = \frac{-\sqrt{A_1(\beta^2 + \alpha^2 A_1)}}{A_1}$$
(3.35a)

$$p_2 = \frac{-\sqrt{A_2(\beta^2 + \alpha^2 A_2)}}{A_2}$$
(3.35b)

$$p_3 = \frac{-\sqrt{A_3(\beta^2 + \alpha^2 A_3)}}{A_3}$$
(3.35c)

$$p_4 = \frac{\sqrt{A_1(\beta^2 + \alpha^2 A_1)}}{A_1}$$
(3.35d)

$$p_5 = \frac{\sqrt{A_2(\beta^2 + \alpha^2 A_2)}}{A_2}$$
(3.35e)

$$p_{6} = \frac{\sqrt{A_{3}(\beta^{2} + \alpha^{2}A_{3})}}{A_{3}}$$
(3.35f)

其中
$$p_1 \cdot p_2 \cdot p_3$$
為負範圍, $p_4 \cdot p_5 \cdot p_6$ 為正範圍, 而係數 $A_1 \cdot A_2 \cdot A_3$ 表
示如下:
 $A_1 = \frac{c_4}{c_5}$ (3.36a)

$$A_{2} = \frac{1}{2} \left[\frac{c_{5}^{2} + c_{1}c_{2} - c_{3}^{2}}{c_{2}c_{5}} + \left\{ \left(\frac{c_{5}^{2} + c_{1}c_{2} - c_{3}^{2}}{c_{2}c_{5}} \right)^{2} - 4\frac{c_{1}}{c_{2}} \right\}^{\frac{1}{2}} \right]$$
(3.36b)

$$A_{2} = \frac{1}{2} \left[\frac{c_{5}^{2} + c_{1}c_{2} - c_{3}^{2}}{c_{2}c_{5}} - \left\{ \left(\frac{c_{5}^{2} + c_{1}c_{2} - c_{3}^{2}}{c_{2}c_{5}} \right)^{2} - 4\frac{c_{1}}{c_{2}} \right\}^{\frac{1}{2}} \right]$$
(3.36c)

將(3.30a)及(3.30b)式代入(3.28a)~(3.28f)式且 $e^{pz} = \overline{u}_i(\alpha, \beta, z)$,則在傅立葉定義 域下應力之另外表示方式如(3.38a) 式至(3.38f) 式: $\overline{\sigma}_{xx}(\alpha, \beta, z) = i (\alpha c_1 \overline{u}_x(\alpha, \beta, z) + \beta (c_3 - c_5) \overline{u}_y(\alpha, \beta, z)) - (c_1 - 2c_4) \overline{u}_z(\alpha, \beta, z) p$ (3.37a)
$$\overline{\sigma}_{yy}(\alpha,\beta,z) = i \left(\alpha(c_3 - c_5)\overline{u}_x(\alpha,\beta,z) + \beta c_2 \overline{u}_y(\alpha,\beta,z)\right) - (c_3 - c_5)\overline{u}_z(\alpha,\beta,z)p \quad (3.37b)$$

$$\overline{\sigma}_{zz}(\alpha,\beta,z) = i \left(\alpha(c_1 - 2c_4)\overline{\mu}_x(\alpha,\beta,z) + \beta(c_3 - c_5)\overline{\mu}_y(\alpha,\beta,z)\right) - c_1\overline{\mu}_z(\alpha,\beta,z)p \quad (3.37c)$$

$$\bar{\tau}_{yz}(\alpha,\beta,z) = -c_5(\bar{u}_y(\alpha,\beta,z)u_j - i\beta\bar{u}_z(\alpha,\beta,z))$$
(3.37d)

$$\bar{\tau}_{zx} = -c_4(\bar{u}_x(\alpha, \beta, z)p - i\alpha\bar{u}_z(\alpha, \beta, z))$$
(3.37e)

$$\bar{\tau}_{xy} = ic_5(\beta \bar{u}_x(\alpha, \beta, z) + \alpha \bar{u}_y(\alpha, \beta, z))$$
(3.37f)

第四章 半無限空間垂直橫向等向性材料閉合解推導

本章依據胡廷秉 (2009)求解半無限傾斜橫向等向性之位移及應力之傳統方 法,將橫向等向性平面繞著 x 軸(即 x=x')旋轉 90 度(\$\$\phi\$=90\$),如圖 4.1:

修改自胡廷秉 (2009),p.18

旨在推導垂直橫向等向性材料半無限空間受表面三維點荷重作用的位移和 應力閉合解,並說明其推導過程。控制方程是由位移和應變關係式、幾何方程及 平衡方程所組合成的偏微分方程,再經由雙傳立葉轉換(Double Fourier transform) 轉變為常微分方程(O.D.E),配合邊界條件則可推導出半無限空間垂直橫向等向 性材料於傳立葉定義域下的位移和應力一般解型式,此一般解分別可由齊性解 (Homogeneous solution)及特解(Particular solution)所組成,其中,齊性解可由第 三章之 3.1 節特徵根組成並利用待定係數法(Undetermined coefficients method)求 得,而特解(Particular solution)則可使用 Hildebrand (1976) 提出之參數變異法 (Variation of parameters method)求得。最後將所得之半無限空間垂直橫向等向性 材料於傅立葉定義域下之位移和應力一般解型式經由雙傅立葉逆轉換並透過殘 數定理積分(Residue integral)得到最終物理定義域之位移及應力解析閉合解,圖 4.2為求解垂直橫向等向性材料半無限空間受表面三維點荷重作用的位移和應力 解析閉合解之流程圖,詳細推導過程如下各節說明。

圖 4.2 解析解推導流程圖

4.1 傅立葉定義域之位移和應力解推導

為推導半無限空間垂直橫向等向性材料受點荷重作用位移和應力閉合解,可 使用待定係數法(Undetermined coefficients method)及參數變異法(Variation of parameters method)分別求解。在傳立葉定義域下,一般來說位移 $\overline{U}_x(\alpha,\beta,z)$ 、 $\overline{U}_y(\alpha,\beta,z)$ 、 $\overline{U}_z(\alpha,\beta,z)$ 之一般解可由齊性解(Homogeneous solution)和特解 (Particular solution)所組成,齊性解由第三章 3.3 節之特徵根所組成,如(3.35a) ~(3.35f)式,在半無限空間(z>0 domain)垂直橫向等向性材料受表面三維點荷重作 用,如圖 4.3:

圖 4.3 傅立葉定義域之垂直橫向等向性材料受點荷重示意圖

修改自胡廷秉 (2009),p.18

則位移之齊性解以待定係數法求解則可表示如下:

$$\overline{u}_{x(H)}(\alpha,\beta,z) = A_x^1 e^{p_1 z} + A_x^2 e^{p_2 z} + A_x^3 e^{p_3 z} + A_x^4 e^{p_4 z} + A_x^5 e^{p_5 z} + A_x^6 e^{p_6 z}$$
(4.1a)

$$\overline{u}_{y(H)}(\alpha,\beta,z) = A_y^1 e^{p_1 z} + A_y^2 e^{p_2 z} + A_y^3 e^{p_3 z} + A_y^4 e^{p_4 z} + A_y^5 e^{p_5 z} + A_y^6 e^{p_6 z}$$
(4.1b)

$$\overline{u}_{z(H)}(\alpha,\beta,z) = A_z^1 e^{p_1 z} + A_z^2 e^{p_2 z} + A_z^3 e^{p_3 z} + A_z^4 e^{p_4 z} + A_z^5 e^{p_5 z} + A_z^6 e^{p_6 z}$$
(4.1c)

其中 A_i^j (j=1~6, i=x、y、z)為待定係數, $p_1 \ p_2 \ p_3$ 為負範圍,如(3.36a) 式, $p_4 \ p_5 \ p_6$ 為正範圍,如(3.36b)式。當 z 趨近無限大時, $u_{x(H)}(\alpha,\beta,z)$ 、 $u_{y(H)}(\alpha,\beta,z) \ u_{z(H)}(\alpha,\beta,z)$ 應趨近於0,故由正範圍之特徵根 $p_4 \ p_5 \ p_6$ 所 組合之位移齊次解無法收斂,為了滿足此解(z→∞, $u_{x(H)}(\alpha,\beta,z) \ u_{y(H)}(\alpha,\beta,z)$ 、 $u_{z(H)}(\alpha,\beta,z)$ 應趨近於0)條件,因此令 $A_x^4 = A_x^5 = A_x^6 = 0 \ A_y^4 = A_y^5 = A_y^6 = 0$ 、 $A_z^4 = A_z^5 = A_z^6 = 0$,則位移之齊性解可表示為:

$$\overline{u}_{x(H)}(\alpha,\beta,z) = A_x^1 e^{p_1 z} + A_x^2 e^{p_2 z} + A_x^3 e^{p_3 z}$$
(4.2a)

$$\overline{u}_{y(H)}(\alpha,\beta,z) = A_y^1 e^{p_1 z} + A_y^2 e^{p_2 z} + A_y^3 e^{p_3 z}$$
(4.2b)

$$\overline{u}_{z(H)}(\alpha,\beta,z) = A_z^1 e^{p_1 z} + A_z^2 e^{p_2 z} + A_z^3 e^{p_3 z}$$
(4.2c)

此待定係數 A_i^j (j=1~6, i=x、y、z)在無法直接求得情況下,此假設齊性解表 示的係數有以下關係,如式(4.3),此關係假設原因為,舉例來說:假設 A = C×D, A:未知、C 未知、D 已知, 欲知 A 之大小,由 C 來代替,經由求解過程條件相 互比較,則可得 C 之大小,即可得到 A:

$$\frac{A_x^j}{D_{11}^j(\alpha,\beta,p_j)} = \frac{A_y^j}{D_{21}^j(\alpha,\beta,p_j)} = \frac{A_z^j}{D_{31}^j(\alpha,\beta,p_j)} = C_{d1}^j \quad (j=1\sim3)$$
(4.3)

其中, D_{i1}^{i} (i=1~3) 是由 (3.32a)-(33.2f) 式矩陣[d_{ij}]之餘因子(Cofactor)所 組成的二階行列式,展開之值可參照附錄 C,而 (4.2a)式至(4.2c)式用(4.3)式取代, 則位移之齊性解可表示成:

$$\overline{u}_{x(H)}(\alpha,\beta,z) = C_{d1}^{1} D_{11}^{1} e^{p_{1}z} + C_{d1}^{2} D_{11}^{2} e^{p_{2}z} + C_{d1}^{3} D_{11}^{3} e^{p_{3}z}$$
(4.4a)

$$\overline{u}_{y(H)}(\alpha,\beta,z) = C_{d1}^{1} D_{21}^{1} e^{p_{1}z} + C_{d1}^{2} D_{21}^{2} e^{p_{2}z} + C_{d1}^{3} D_{21}^{3} e^{p_{3}z}$$
(4.4b)

$$\overline{u}_{z(H)}(\alpha,\beta,z) = C_{d1}^{1} D_{31}^{1} e^{p_{1}z} + C_{d1}^{2} D_{31}^{2} e^{p_{2}z} + C_{d1}^{3} D_{31}^{3} e^{p_{3}z}$$
(4.4c)

而位移特解同樣可透過位移齊性解表示方式來表示且當 z 趨近無限大時,
$$u_{x(p)}(\alpha, \beta, z) \cdot u_{y(p)}(\alpha, \beta, z) \cdot u_{z(p)}(\alpha, \beta, z)$$
應趨近於 0,故由正範圍之特徵根 P_4 、
 $P_5 \cdot P_6$ 所組合之位移特解無法收斂 $(B_x^4 = B_x^5 = B_x^6 = 0 \cdot B_y^4 = B_y^5 = B_y^6 = 0$ 、

$$B_z^4 = B_z^5 = B_z^6 = 0$$
),則位移特解也可表示如(4.5a)~(4.6c)式:

$$\overline{u}_{x(p)}(\alpha,\beta,z) = B_x^1 e^{p_1 z} + B_x^2 e^{p_2 z} + B_x^3 e^{p_3 z}$$
(4.5a)

$$\overline{u}_{y(p)}(\alpha,\beta,z) = B_{y}^{1}e^{p_{1}z} + B_{y}^{2}e^{p_{2}z} + B_{y}^{3}e^{p_{3}z}$$
(4.5b)

$$\overline{u}_{z(p)}(\alpha,\beta,z) = B_z^1 e^{p_1 z} + B_z^2 e^{p_2 z} + B_z^3 e^{p_3 z}$$
(4.5c)

其中,係數 B_x^j 、 B_y^j 、 B_z^j (j=1~3)可由 Hildebrand (1976)所提出之參數變異法

(Variation of parameters)求得,而B^j,B^j,B^j,各項表示為:

$$B_{x}^{j} = \frac{P_{x}D_{11}(p_{j}) + P_{y}D_{12}(p_{j}) + P_{z}D_{13}(p_{j})}{2\pi m_{t}\overline{U}_{j}} \tag{4.6a}$$
$$B_{y}^{j} = \frac{P_{x}D_{21}(p_{j}) + P_{y}D_{22}(p_{j}) + P_{z}D_{23}(p_{j})}{2\pi m_{t}\overline{U}_{j}} \tag{4.6b}$$

$$B_{z}^{j} = \frac{P_{x}D_{31}(p_{j}) + P_{y}D_{32}(p_{j}) + P_{z}D_{33}(p_{j})}{2\pi m_{t}\overline{U}_{j}}$$
(4.6c)

其中,
$$m_t = c_2 c_5^2 A_1 A_2 A_3$$
、 $\overline{U}_j(\alpha, \beta) = \frac{\partial [(p-u_1)(p-u_2)(p-u_3)(p-u_4)(p-u_5)(p-u_6)]}{\partial p}$ $(p = p_j)$,

在此同樣假設
$$\frac{B_x^j}{D_{11}^j(\alpha,\beta,p_j)} = \frac{B_y^j}{D_{21}^j(\alpha,\beta,p_j)} = \frac{B_z^j}{D_{31}^j(\alpha,\beta,p_j)} = C_{d2}^j$$
(j=1~3)滿足此關

係且透過 Hildebrand (1976)所提出之參數變異法(Variation of parameters)求得之 $B_x^j \cdot B_y^j \cdot B_z^j$ 相互印證,然後綜合式(4.4a)至(4.4c)和方程式(4.5a)至(4.5c),位移一 般解表示方式為齊性解加上特解可表示為(4.7a)~(4.7c)式:

$$\overline{U}_{x}(\alpha,\beta,z) = C_{d1}^{1}D_{11}^{1}e^{p_{1}z} + C_{d1}^{2}D_{11}^{2}e^{p_{2}z} + C_{d1}^{3}D_{11}^{3}e^{p_{3}z} + B_{x}^{1}e^{p_{1}z} + B_{x}^{2}e^{p_{2}z} + B_{x}^{3}e^{p_{3}z}$$
(4.7a)

$$U_{y}(\alpha,\beta,z) = C_{d1}^{1}D_{21}^{1}e^{p_{1}z} + C_{d1}^{2}D_{21}^{2}e^{p_{2}z} + C_{d1}^{3}D_{21}^{3}e^{p_{3}z} + B_{y}^{1}e^{p_{1}z} + B_{y}^{2}e^{p_{2}z} + B_{y}^{3}e^{p_{3}z}$$
(4.7b)

$$U_{z}(\alpha,\beta,z) = C_{d1}^{1}D_{31}^{1}e^{p_{1}z} + C_{d1}^{2}D_{31}^{2}e^{p_{2}z} + C_{d1}^{3}D_{31}^{3}e^{p_{3}z} + B_{z}^{1}e^{p_{1}z} + B_{z}^{2}e^{p_{2}z} + B_{z}^{3}e^{p_{3}z}$$
(4.7c)

已知應力為彈性勁度常數乘上應變組合的函數,方程(4.7a)-(4.7c)代入應力方 程式(3.38a)~(3.38f),在 z>0 範圍下,同樣應力一般解表式方式也是由通解和特 解所組合成,(4.8a)至(4.8f)則為應力之齊性解表示方式為:

$$\overline{\sigma}_{xx(H)}(\alpha,\beta,z) = \sum_{j=1}^{3} [i(\alpha c_1 C_{d1}^j D_{11}^j + \beta (c_3 - c_5) C_{d1}^j D_{21}^j) - (c_1 - 2c_4) C_{d1}^j D_{31}^j p_j] e^{p_j z} \quad (4.8a)$$

$$\overline{\sigma}_{yy(H)}(\alpha,\beta,z) = \sum_{j=1}^{3} [i(\alpha(c_3 - c_5)C_{d1}^{j}D_{11}^{j} + \beta c_2C_{d1}^{j}D_{21}^{j}) - (c_3 - c_5)C_{d1}^{j}D_{31}^{j}p_j]e^{p_j z} \quad (4.8b)$$

$$\overline{\sigma}_{zz(H)}(\alpha,\beta,z) = \sum_{j=1}^{3} [i(\alpha(c_1 - 2c_4)C_{d1}^j D_{11}^j + \beta(c_3 - c_5)C_{d1}^j D_{21}^j) - c_1 C_{d1}^j D_{31}^j p_j] e^{p_j z} \quad (4.8c)$$

$$\overline{\tau}_{y_{z(H)}}(\alpha,\beta,z) = \sum_{j=1}^{3} [i\beta c_{5}C_{d1}^{j}D_{31}^{j} - c_{5}C_{d1}^{j}D_{21}^{j}p_{j}]e^{p_{j}z}$$
(4.8d)

$$\overline{\tau}_{zx(H)} = \sum_{j=1}^{3} [i\alpha c_4 C_{d1}^j D_{31}^j - c_4 C_{d1}^j D_{11}^j p_j] e^{p_j z}$$
(4.8e)

$$\overline{\tau}_{xy(H)} = \sum_{j=1}^{3} [i(\beta c_5 C_{d1}^j D_{11}^j + \alpha c_5 C_{d1}^j D_{21}^j)] e^{p_j z}$$
(4.8f)

其應力之特解又如(4.9a)至(4.9f)所示:

$$\bar{\sigma}_{xx(P)}(\alpha,\beta,z) = \sum_{j=1}^{3} [i(\alpha c_1 B_x^j + \beta (c_3 - c_5) B_y^j) - (c_1 - 2c_4) B_z^j p_j] e^{p_j z}$$
(4.9a)

$$\bar{\sigma}_{yy(P)}(\alpha,\beta,z) = \sum_{j=1}^{3} [i(\alpha(c_3 - c_5)B_x^j + \beta c_2 B_y^j) - (c_3 - c_5)B_z^j p_j]e^{p_j z}$$
(4.9b)

$$\overline{\sigma}_{zz(P)}(\alpha,\beta,z) = \sum_{j=1}^{3} [i(\alpha(c_1 - 2c_4)B_x^j + \beta(c_3 - c_5)B_y^j) - c_1B_z^j p_j]e^{p_j z}$$
(4.9c)

$$\overline{\tau}_{yz(P)}(\alpha,\beta,z) = \sum_{j=1}^{3} [i\beta c_5 B_z^j - c_5 B_y^j p_j] e^{p_j z}$$
(4.9d)

$$\overline{\tau}_{zx(P)} = \sum_{j=1}^{3} [i\alpha c_4 B_z^j - c_4 B_x^j p_j] e^{p_j z}$$
(4.9e)

$$\overline{\tau}_{xy(P)} = \sum_{j=1}^{3} [i(\beta c_5 B_x^j + \alpha c_5 B_y^j)] e^{p_j z}$$
(4.9f)

為求解此待定係數考慮邊界條件在,當 z=0 時,即δ(z=0)為1,則可得到物理定義域下滿足三個之邊界平衡之方程式為:

$$\tau_{zx}(x, y, 0) = P_x \delta(x) \delta(y) \tag{4.10a}$$

 $\tau_{zy}(x, y, 0) = P_y \delta(x)\delta(y) \tag{4.10b}$

$$\sigma_{zz}(x, y, 0) = P_z \delta(x) \delta(y)$$
(4.10c)

然後將上式(4.10a)-(4.10c)經由雙傳立葉轉換則可得

$$\overline{\tau}_{zx}(\alpha,\beta,0) = \frac{P_x}{2\pi}$$

$$\overline{\tau}_{zy}(\alpha,\beta,0) = \frac{P_y}{2\pi}$$
(4.11a)
(4.11b)

$$\bar{\sigma}_{zz}(\alpha,\beta,0) = \frac{P_z}{2\pi}$$
(4.11c)

已知一般解可由齊性解和特解所組合,故(4.11a)至(4.11c) 三個邊界平衡之 方程式又可其簡易表示為(4.12a)~(4.12c)三式:

$$\overline{\tau}_{zx(H)}(\alpha,\beta,0) + \overline{\tau}_{zx(P)}(\alpha,\beta,0) = \frac{P_x}{2\pi}$$
(4.12a)

$$\overline{\tau}_{zy(H)}(\alpha,\beta,0) + \overline{\tau}_{zy(P)}(\alpha,\beta,0) = \frac{P_y}{2\pi}$$
(4.12b)

$$\bar{\sigma}_{zz(H)}(\alpha,\beta,0) + \bar{\sigma}_{zz(P)}(\alpha,\beta,0) = \frac{P_z}{2\pi}$$
(4.12c)

其中應力齊性解(4.8c)至(4.8e)以矩陣型式表示可為:
$$\begin{bmatrix} \bar{\tau}_{zx(H)}(\alpha,\beta,0) \\ \bar{\tau}_{zy(H)}(\alpha,\beta,0) \\ \bar{\tau}_{zz(H)}(\alpha,\beta,0) \end{bmatrix} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} C_{d1}^1 \\ C_{d1}^2 \\ C_{d1}^2 \end{bmatrix}$$

而右式[f_{ij}]矩陣內各元素 (elements) 內容如(4.13a)至(4.13i)式所示:

$$f_{11} = c_4 (i\alpha D_{31}^1 - D_{11}^1 p_1)$$
(4.13a)

$$f_{12} = c_4 (i\alpha D_{31}^2 - D_{11}^2 p_2)$$
(4.13b)

$$f_{13} = c_4 (i\alpha D_{31}^3 - D_{11}^3 p_3)$$
(4.13c)

$$f_{21} = i\beta c_5 D_{31}^1 - c_5 D_{21}^1 p_1 \tag{4.13d}$$

$$f_{22} = i\beta c_5 D_{31}^2 - c_5 D_{21}^2 p_2 \tag{4.13e}$$

$$f_{23} = i\beta c_5 D_{31}^3 - c_5 D_{21}^3 p_3 \tag{4.13f}$$

$$f_{31} = i(\alpha(c_1 - 2c_4)D_{11}^1 + \beta(c_3 - c_5)D_{21}^1) - c_1D_{31}^1p_1$$
(4.13g)

$$f_{32} = i(\alpha(c_1 - 2c_4)D_{11}^2 + \beta(c_3 - c_5)D_{21}^2) - c_1D_{31}^2p_2$$
(4.13h)

$$f_{33} = -i(\alpha(c_1 - 2c_4)D_{11}^3 + \beta(c_3 - c_5)D_{21}^3) - c_1D_{31}^3p_3$$

$$(4.13i)$$

$$1896$$

$$\bar{\tau}_{z_{3}(H)}(\alpha,\beta,0) = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} C_{d_2}^1 \\ C_{d_2}^1 \\ C_{d_2}^1 \\ C_{d_2}^1 \end{bmatrix}$$

然後將矩陣型式之齊性解與特解用矩陣來表示,則(4.12a)至(4.12c)式可表達為:

$$\begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} C_{d1}^{1} \\ C_{d1}^{2} \\ C_{d1}^{3} \\ d_{1} \end{bmatrix} + \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} C_{d1}^{1} \\ C_{d2}^{2} \\ C_{d2}^{2} \\ C_{d2}^{3} \end{bmatrix} = \frac{1}{2\pi} \begin{bmatrix} P_{x} \\ P_{y} \\ P_{z} \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} C_{d1}^{1} + C_{d2}^{2} \\ C_{d1}^{2} + C_{d2}^{2} \\ C_{d1}^{2} + C_{d2}^{2} \\ C_{d1}^{3} + C_{d2}^{2} \end{bmatrix} = \frac{1}{2\pi} \begin{bmatrix} P_{x} \\ P_{y} \\ P_{z} \end{bmatrix}$$
(4.14)

為配合求解(4.14)之待定係數
$$C_{d1}^{1}$$
與 C_{d2}^{2} 再假設 $\frac{1}{2\pi}\begin{bmatrix}P_{x}\\P_{y}\\P_{z}\end{bmatrix} = \begin{bmatrix}f_{11} & f_{12} & f_{13}\\f_{21} & f_{22} & f_{23}\\f_{31} & f_{32} & f_{33}\end{bmatrix}\begin{bmatrix}C_{d}^{1}\\C_{d}^{2}\\C_{d}^{3}\end{bmatrix}$ 滿足

此情況,而(4.14)式則可寫成

$$\begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} C_{d1}^1 + C_{d2}^2 \\ C_{d1}^2 + C_{d2}^2 \\ C_{d1}^3 + C_{d2}^2 \end{bmatrix} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} C_d^1 \\ C_d^2 \\ C_d^3 \end{bmatrix}$$
(4.15)

由上式(4.15)得知 C_d^j 、 C_{d1}^j 、 C_{d2}^j (j=1~3)有(4.16a)至式(4.16c)關係如下:

$$C_d^1 = C_{d1}^1 + C_{d2}^1 \tag{4.16a}$$

$$C_d^2 = C_{d1}^2 + C_{d2}^2 \tag{4.16b}$$

$$C_d^3 = C_{d1}^3 + C_{d2}^3 \tag{4.16c}$$

最後,將(4.16a)~(4.16c)式代入(4.7a)~(4.7c)方程中及 \mathbf{B}_{x}^{j} 、 \mathbf{B}_{y}^{j} 、 \mathbf{B}_{z}^{j} 以

 C_{d}^{j} 、 C_{d1}^{j} 、 C_{d2}^{j} (j=1~3)取代, 簡化後的位移一般解表示為: (j=1~3)

$$\begin{split} &\overline{U}_{x}(\alpha,\beta,z) \\ &= C_{d2}^{1}D_{11}^{1}e^{p_{1}z} + C_{d2}^{2}D_{11}^{2}e^{p_{2}z} + C_{d2}^{3}D_{11}^{3}e^{p_{3}z} + B_{x}^{1}e^{p_{1}z} + B_{x}^{2}e^{p_{2}z} + B_{x}^{3}e^{p_{3}z} \\ &= (C_{d}^{1} - C_{d2}^{1})D_{11}^{1}e^{p_{1}z} + (C_{d}^{2} - C_{d2}^{2})D_{11}^{2}e^{p_{2}z} + (C_{d}^{3} - C_{d2}^{3})D_{11}^{3}e^{p_{3}z} + C_{d2}^{1}D_{11}^{1}e^{p_{1}z} + C_{d2}^{2}D_{11}^{2}e^{p_{2}z} + C_{d2}^{3})D_{11}^{3}e^{p_{3}z} \\ &= C_{d}^{1}D_{11}^{1}e^{p_{1}z} + C_{d}^{2}D_{11}^{2}e^{p_{2}z} + C_{d}^{3}D_{11}^{3}e^{p_{3}z} \end{split}$$

$$\end{split} \tag{4.17a}$$

$$\begin{split} \overline{U}_{y}(\alpha,\beta,z) \\ &= C_{d2}^{1}D_{21}^{1}e^{p_{1}z} + C_{d2}^{2}D_{21}^{2}e^{p_{2}z} + C_{d2}^{3}D_{21}^{3}e^{p_{3}z} + B_{y}^{1}e^{p_{1}z} + B_{y}^{2}e^{p_{2}z} + B_{y}^{3}e^{p_{3}z} \\ &= (C_{d}^{1} - C_{d2}^{1})D_{21}^{1}e^{p_{1}z} + (C_{d}^{2} - C_{d2}^{2})D_{21}^{2}e^{p_{2}z} + (C_{d}^{3} - C_{d2}^{3})D_{21}^{3}e^{p_{3}z} + C_{d2}^{1}D_{21}^{1}e^{p_{1}z} + C_{d2}^{2}D_{21}^{2}e^{p_{2}z} + C_{d2}^{3}D_{21}^{3}e^{p_{3}z} \\ &= (C_{d}^{1} - C_{d2}^{1})D_{21}^{1}e^{p_{1}z} + (C_{d}^{2} - C_{d2}^{2})D_{21}^{2}e^{p_{2}z} + (C_{d}^{3} - C_{d2}^{3})D_{21}^{3}e^{p_{3}z} + C_{d2}^{1}D_{21}^{1}e^{p_{1}z} + C_{d2}^{2}D_{21}^{2}e^{p_{2}z} + C_{d2}^{3}D_{21}^{3}e^{p_{3}z} \\ &= (C_{d}^{1} - C_{d2}^{1})D_{21}^{1}e^{p_{1}z} + (C_{d}^{2} - C_{d2}^{2})D_{21}^{2}e^{p_{2}z} + (C_{d}^{3} - C_{d2}^{3})D_{21}^{3}e^{p_{3}z} + C_{d2}^{1}D_{21}^{1}e^{p_{1}z} + C_{d2}^{2}D_{21}^{2}e^{p_{2}z} + C_{d2}^{3}D_{21}^{3}e^{p_{3}z} \\ &= C_{d}^{1}D_{21}^{1}e^{p_{1}z} + C_{d}^{2}D_{21}^{2}e^{p_{2}z} + C_{d}^{3}D_{21}^{3}e^{p_{3}z} \end{aligned}$$

(4.17c)

$$U_{z}(\alpha,\beta,z) = C_{d2}^{1}D_{31}^{1}e^{p_{1}z} + C_{d2}^{2}D_{31}^{2}e^{p_{2}z} + C_{d2}^{3}D_{31}^{3}e^{p_{3}z} + B_{z}^{1}e^{p_{1}z} + B_{z}^{2}e^{p_{2}z} + B_{z}^{3}e^{p_{3}z} = (C_{d}^{1} - C_{d2}^{1})D_{31}^{1}e^{p_{1}z} + (C_{d}^{2} - C_{d2}^{2})D_{31}^{2}e^{p_{2}z} + (C_{d}^{3} - C_{d2}^{3})D_{31}^{3}e^{p_{3}z} + C_{d2}^{1}D_{31}^{1}e^{p_{1}z} + C_{d2}^{2}D_{31}^{2}e^{p_{2}z} + C_{d2}^{3}D_{31}^{3}e^{p_{3}z} = C_{d}^{1}D_{31}^{1}e^{p_{1}z} + C_{d}^{2}D_{31}^{2}e^{p_{2}z} + C_{d}^{3}D_{31}^{3}e^{p_{3}z}$$

其中
$$C_d^1$$
、 C_d^2 、 C_d^3 可由 $\frac{1}{2\pi}\begin{bmatrix} P_x \\ P_y \\ P_z \end{bmatrix} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \begin{bmatrix} C_d^1 \\ C_d^2 \\ C_d^3 \end{bmatrix}$ 得知如下(4.18a)至(4.18c)式:

$$C_{d}^{1} = \frac{Det[F_{1}]}{Det[f_{ij}]} = \frac{\begin{vmatrix} \frac{P_{c}}{2\pi} & f_{12} & f_{13} \\ \frac{P_{c}}{2\pi} & f_{22} & f_{23} \\ \frac{P_{c}}{2\pi} & f_{22} & f_{33} \end{vmatrix}}{\begin{vmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{vmatrix}}$$
(4.18a)
$$C_{d}^{2} = \frac{Det[F_{2}]}{Det[f_{ij}]} = \frac{\begin{vmatrix} f_{11} & \frac{P_{c}}{2\pi} & f_{13} \\ f_{21} & \frac{P_{c}}{2\pi} & f_{23} \\ f_{31} & \frac{P_{c}}{2\pi} & f_{33} \\ \frac{f_{11}}{f_{21}} & \frac{P_{c}}{2\pi} & f_{33} \\ \frac{f_{11}}{f_{22}} & f_{22} \\ f_{31} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{vmatrix}}{\begin{vmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{vmatrix}}$$
(4.18b)
$$C_{d}^{3} = \frac{Det[F_{3}]}{Det[f_{ij}]} = \frac{\begin{vmatrix} f_{11} & f_{12} & \frac{P_{c}}{2\pi} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & \frac{P_{c}}{2\pi} \\ f_{31} & f_{32} & f_{33} \end{vmatrix}$$
(4.18c)

而應力一般解表示方式為齊性解加上特解、與位移一般解表示方式相同,將 (4.8a)~(4.8f)式與(4.9a)~(4.9f)代入方程(4.12a)~(4.12c),然後再將(4.16a)~(4.16c) $C_d^1 = C_{d1}^1 + C_{d2}^1 \ \ C_d^2 = C_{d1}^2 + C_{d2}^2 \ \ C_d^3 = C_{d1}^3 + C_{d2}^3$ 代入且 $B_x^j \ B_y^j \ B_z^j$ 以 $C_d^j \ C_{d1}^j \ C_{d2}^j (j=1~3)$ 表示,則應力之一般解表示如(4.19a)至(4.19f)式所示:

$$\begin{split} \bar{\sigma}_{xx}(\alpha,\beta,z) \\ &= \sum_{j=1}^{3} [i(\alpha c_{1}(C_{d}^{j}-C_{d2}^{j})D_{11}^{j}+\beta(c_{3}-c_{5})(C_{d}^{j}-C_{d2}^{j})D_{21}^{j})-(c_{1}-2c_{4})(C_{d}^{j}-C_{d2}^{j})D_{31}^{j}p_{j}]e^{p_{j}z} \\ &+ \sum_{j=1}^{3} [i(\alpha c_{1}C_{d2}^{j}D_{11}^{j}+\beta(c_{3}-c_{5})C_{d2}^{j}D_{21}^{j})-(c_{1}-2c_{4})C_{d2}^{j}D_{31}^{j}p_{j}]e^{p_{j}z} \\ &= \sum_{j=1}^{3} [i(\alpha c_{1}C_{d}^{j}D_{11}^{j}+\beta(c_{3}-c_{5})C_{d}^{j}D_{21}^{j})-(c_{1}-2c_{4})C_{d}^{j}D_{31}^{j}p_{j}]e^{p_{j}z} \\ &= C_{d}^{1}\bar{\sigma}_{xx}^{1}e^{p_{1}z}+C_{d}^{2}\bar{\sigma}_{xx}^{2}e^{p_{2}z}+C_{d}^{3}\bar{\sigma}_{xx}^{3}e^{p_{3}z} \\ & \not{\sharp}, \psi, \ \bar{\sigma}_{xx}^{j} = i(\alpha c_{1}D_{11}^{j}+\beta(c_{3}-c_{5})D_{21}^{j})-(c_{1}-2c_{4})D_{31}^{j}p_{j} \ (j=1\sim3) \end{split}$$
(4.19a)

$$\begin{split} \overline{\sigma}_{yy}(\alpha,\beta,z) \\ &= \sum_{j=1}^{3} [i(\alpha(c_{3}-c_{5})(C_{d}^{j}-C_{d2}^{j})D_{11}^{j} + \beta c_{2}(C_{d}^{j}-C_{d2}^{j})D_{21}^{j}) - (c_{3}-c_{5})(C_{d}^{j}-C_{d2}^{j})D_{31}^{j}p_{j}]e^{p_{j}z} \\ &+ \sum_{j=1}^{3} [i(\alpha(c_{3}-c_{5})C_{d2}^{j}D_{11}^{j} + \beta c_{2}C_{d2}^{j}D_{21}^{j}) - (c_{3}-c_{5})C_{d2}^{j}D_{31}^{j}p_{j}]e^{p_{j}z} \\ &= \sum_{j=1}^{3} [i(\alpha(c_{3}-c_{5})C_{d}^{j}D_{11}^{j} + \beta c_{2}C_{d}^{j}D_{21}^{j}) - (c_{3}-c_{5})C_{d}^{j}D_{31}^{j}p_{j}]e^{p_{j}z} \\ &= C_{d}^{1}\overline{\sigma}_{yy}^{1}e^{p_{1}z} + C_{d}^{2}\overline{\sigma}_{yy}^{2}e^{p_{2}z} + C_{d}^{3}\overline{\sigma}_{yy}^{3}e^{p_{3}z} \\ & \nexists \psi \ , \ \overline{\sigma}_{yy}^{j} = i(\alpha(c_{3}-c_{5})D_{11}^{j} + \beta c_{2}D_{21}^{j}) - (c_{3}-c_{5})D_{31}^{j}p_{j} \ (j=1\sim3) \end{split}$$
(4.19b)

$$\begin{split} \bar{\sigma}_{zz}(\alpha,\beta,z) \\ &= \sum_{j=1}^{3} [i(\alpha(c_{1}-2c_{4})(C_{d}^{j}-C_{d1}^{j})D_{11}^{j} + \beta(c_{3}-c_{5})(C_{d}^{j}-C_{d1}^{j})D_{21}^{j}) - c_{1}(C_{d}^{j}-C_{d1}^{j})D_{31}^{j}p_{j}]e^{p_{j}z} \\ &+ \sum_{j=1}^{3} [i(\alpha(c_{1}-2c_{4})C_{d1}^{j}D_{11}^{j} + \beta(c_{3}-c_{5})C_{d1}^{j}D_{21}^{j}) - c_{1}C_{d1}^{j}D_{31}^{j}p_{j}]e^{p_{j}z} \\ &= \sum_{j=1}^{3} [i(\alpha(c_{1}-2c_{4})C_{d}^{j}D_{11}^{j} + \beta(c_{3}-c_{5})C_{d}^{i}D_{21}^{j}) - c_{1}C_{d}^{j}D_{31}^{j}p_{j}]e^{p_{j}z} \\ &= C_{d}^{1}\bar{\sigma}_{zz}^{1}e^{p_{1}z} + C_{d}^{2}\bar{\sigma}_{zz}^{2}e^{p_{2}z} + C_{d}^{3}\bar{\sigma}_{zz}^{3}e^{p_{3}z} \end{split}$$

$$\pm \psi \cdot \bar{\sigma}_{zz}^{j} = i(\alpha(c_{1}-2c_{4})D_{11}^{j} + \beta(c_{3}-c_{5})D_{21}^{j}) - c_{1}D_{31}^{j}p_{j} \quad (j=1 \sim 3) \qquad (4.19c) \end{split}$$

$$\begin{aligned} \bar{\tau}_{yz}(\alpha,\beta,z) \\ &= \sum_{j=1}^{3} [i\beta c_{5}(C_{d}^{j}-C_{d1}^{j})D_{31}^{j}-c_{5}(C_{d}^{j}-C_{d1}^{j})D_{21}^{j}p_{j}]e^{p_{j}z} + \sum_{j=1}^{3} [i\beta c_{5}C_{d1}^{j}D_{31}^{j}-c_{5}C_{d1}^{j}D_{21}^{j}p_{j}]e^{p_{j}z} \\ &= \sum_{j=1}^{3} [i\beta c_{5}C_{d}^{j}D_{31}^{j}-c_{5}C_{d}^{j}D_{21}^{j}p_{j}]e^{p_{j}z} \\ &= C_{d}^{1}\bar{\tau}_{yz}^{1}e^{p_{1}z} + C_{d}^{2}\bar{\tau}_{yz}^{2}e^{p_{2}z} + C_{d}^{3}\bar{\tau}_{yz}^{3}e^{p_{3}z} \\ & \not{\pm} \psi \ , \ \bar{\tau}_{yz}^{j} = i\beta c_{5}D_{31}^{j}-c_{5}D_{21}^{j}p_{j} \quad (j=1\sim3) \end{aligned}$$
(4.19d)

$$\begin{aligned} \bar{\tau}_{zx} \\ &= \sum_{j=1}^{3} [i\alpha c_4 (C_d^j - C_{d1}^j) D_{31}^j - c_4 (C_d^j - C_{d1}^j) D_{11}^j p_j] e^{p_j z} + \sum_{j=1}^{3} [ic_4 C_{d1}^j D_{31}^j - C_{55} C_{d1}^j D_{11}^j p_j] e^{p_j z} \\ &= \sum_{j=1}^{3} [i\alpha c_4 C_d^j D_{31}^j - c_4 C_d^j D_{11}^j p_j] e^{p_j z} \\ &= C_d^1 \bar{\tau}_{zx}^1 e^{p_1 z} + C_d^2 \bar{\tau}_{zx}^2 e^{p_2 z} + C_d^3 \bar{\tau}_{zx}^3 e^{p_3 z} \\ \notin \psi \ , \ \bar{\tau}_{zx}^j = i\alpha c_4 D_{31}^j - c_4 D_{11}^j p_j \ (j = 1 \sim 3) \end{aligned}$$
(4.19e)

$$\overline{\tau}_{xy} = \sum_{j=1}^{3} [i(\beta c_{5}(C_{d}^{j} - C_{d1}^{j})D_{11}^{j} + \alpha c_{5}(C_{d}^{j} - C_{d1}^{j})D_{21}^{j})]e^{p_{j}z} + \sum_{j=1}^{3} [i(\beta c_{5}C_{d1}^{j}D_{11}^{j} + \alpha c_{5}C_{d1}^{j}D_{21}^{j})]e^{p_{j}z} = \sum_{j=1}^{3} [i(\beta c_{5}C_{d}^{j}D_{11}^{j} + \alpha c_{5}C_{d}^{j}D_{21}^{j})]e^{p_{j}z} = C_{d}^{1}\overline{\tau}_{xy}^{1}e^{p_{1}z} + C_{d}^{2}\overline{\tau}_{xy}^{2}e^{p_{2}z} + C_{d}^{3}\overline{\tau}_{xy}^{3}e^{p_{3}z}$$

$$\ddagger \psi \cdot \overline{\tau}_{xy}^{j} = i(\beta c_{5}D_{11}^{j} + \alpha c_{5}D_{21}^{j}) \qquad (j=1-3)^{0} \qquad (4.19f)$$

4.2 物理定義域之位移和應力解推導

由4.1節可得到半無限空間垂直橫向等向性材料受三維表面點荷重作用傅立 葉定義域之位移和應力解,將傅立葉定義域之位移解(4.17a)~(4.17c)及應力解 (4.19a)~(4.19f),經由傅立葉逆轉換即可得到物理定義域(圖4.4)之位移和應力一 般式表達式:

$$U_{x}(x, y, z) = \frac{1}{2\pi} \int_{-\infty-\infty}^{\infty} \{C_{d}^{1} D_{11}^{1} e^{i(\alpha x + \beta y) + p_{1}z} + C_{d}^{2} D_{11}^{2} e^{i(\alpha x + \beta y) + p_{2}z} + C_{d}^{3} D_{11}^{3} e^{i(\alpha x + \beta y) + p_{3}z} \} d\alpha d\beta$$
(4.20a)

$$U_{y}(x, y, z) = \frac{1}{2\pi} \int_{-\infty-\infty}^{\infty} \{C_{d}^{1} D_{21}^{1} e^{i(\alpha x + \beta y) + p_{1}z} + C_{d}^{2} D_{21}^{2} e^{i(\alpha x + \beta y) + p_{2}z} + C_{d}^{3} D_{21}^{3} e^{i(\alpha x + \beta y) + p_{3}z} \} d\alpha d\beta$$

(4.20b)

$$U_{z}(x, y, z) = \frac{1}{2\pi} \int_{-\infty-\infty}^{\infty} \{C_{d}^{1} D_{31}^{1} e^{i(\alpha x + \beta y) + p_{1} z} + C_{d}^{2} D_{31}^{2} e^{i(\alpha x + \beta y) + p_{2} z} + C_{d}^{3} D_{31}^{3} e^{i(\alpha x + \beta y) + p_{3} z} \} d\alpha d\beta$$

(4.20c)

(4.21a)

$$\sigma_{xx}(x, y, z) = \frac{1}{2\pi} \int_{-\infty-\infty}^{\infty} \{C_d^1 \overline{\sigma}_{xx}^1 e^{i(\alpha x + \beta y) + p_1 z} + C_d^2 \overline{\sigma}_{xx}^2 e^{i(\alpha x + \beta y) + p_2 z} + C_d^3 \overline{\sigma}_{xx}^3 e^{i(\alpha x + \beta y) + p_3 z} \} d\alpha d\beta$$

$$\sigma_{yy}(x, y, z) = \frac{1}{2\pi} \int_{-\infty-\infty}^{\infty} \left\{ C_d^1 \overline{\sigma}_{yy}^1 e^{i(\alpha x + \beta y) + p_1 z} + C_d^2 \overline{\sigma}_{yy}^2 e^{i(\alpha x + \beta y) + p_2 z} + C_d^3 \overline{\sigma}_{yy}^3 e^{i(\alpha x + \beta y) + p_3 z} \right\} d\alpha d\beta$$

(4.21b)

$$\sigma_{zz}(x, y, z) = \frac{1}{2\pi} \int_{-\infty-\infty}^{\infty} \{C_d^1 \overline{\sigma}_{zz}^1 e^{i(\alpha x + \beta y) + p_1 z} + C_d^2 \overline{\sigma}_{zz}^2 e^{i(\alpha x + \beta y) + p_2 z} + C_d^3 \overline{\sigma}_{zz}^3 e^{i(\alpha x + \beta y) + p_3 z} \} d\alpha d\beta$$

$$\tau_{yz}(x, y, z) = \frac{1}{2\pi} \int_{-\infty-\infty}^{\infty} \{C_d^1 \overline{\tau}_{yz}^1 e^{i(\alpha x + \beta y) + p_1 z} + C_d^2 \overline{\tau}_{yz}^2 e^{i(\alpha x + \beta y) + p_2 z} + C_d^3 \overline{\tau}_{yz}^3 e^{i(\alpha x + \beta y) + p_3 z} \} d\alpha d\beta$$

$$\tau_{zx}(x, y, z) = \frac{1}{2\pi} \int_{-\infty-\infty}^{\infty} \{C_d^1 \overline{\tau}_{zx}^1 e^{i(\alpha x + \beta y) + p_1 z} + C_d^2 \overline{\tau}_{zx}^2 e^{i(\alpha x + \beta y) + p_2 z} + C_d^3 \overline{\tau}_{zx}^3 e^{i(\alpha x + \beta y) + p_3 z} \} d\alpha d\beta$$

$$(4.21d)$$

$$\tau_{zx}(x, y, z) = \frac{1}{2\pi} \int_{-\infty-\infty}^{\infty} \{C_d^1 \overline{\tau}_{zx}^1 e^{i(\alpha x + \beta y) + p_1 z} + C_d^2 \overline{\tau}_{zx}^2 e^{i(\alpha x + \beta y) + p_2 z} + C_d^3 \overline{\tau}_{zx}^3 e^{i(\alpha x + \beta y) + p_3 z} \} d\alpha d\beta$$

(4.21e)

$$\tau_{xy}(x, y, z) = \frac{1}{2\pi} \int_{-\infty-\infty}^{\infty} \{C_d^1 \bar{\tau}_{xy}^1 e^{i(\alpha x + \beta y) + p_1 z} + C_d^2 \bar{\tau}_{xy}^2 e^{i(\alpha x + \beta y) + p_2 z} + C_d^3 \bar{\tau}_{xy}^3 e^{i(\alpha x + \beta y) + p_3 z} \} d\alpha d\beta$$

(4.21f)

式(4.20a)~(4.20c)及式(4.21a)~(4.21f)為垂直橫向等向性材料位移和應力一般 解型式,為簡化此積分方程,需透過座標轉換將傅立葉定義座標系統(α, β)轉變 為由 K 和 θ_x 組成之極座標系統(Polar coordinate system),而 K 的範圍由 0 至正無 限大, θ_x 則由 0 至 2 π ,其 α 和 β 與 k 和 θ_x 的關係如下:

圖 4.5 極座標系統α β與k θ_x 的關係示意圖 $\alpha = k \times \cos \theta_{1}$ (4.22a) $\beta = k \times \sin \theta_{x}$ (4.22b) $\beta = k \times \sin \theta_{x}$ (4.23b) $\beta = k \times \sin \theta_{x$

$$D_{11}^{j}(k,\theta_{x}) = k^{4} D_{11}^{j}(\theta_{x})$$
(4.23a)

 $D_{21}^{j}(k,\theta_{x}) = k^{4} D_{21}^{j}(\theta_{x})$ (4.23b)

 $D_{31}^{j}(k,\theta_{x}) = k^{4} D_{31}^{j}(\theta_{x})$ (4.23c)

$$C_d^j(k,\theta_x) = k^{-5} C_d^j(\theta_x)$$
(4.23d)

$$\overline{\sigma}_{xx}^{j}(k,\theta_{x}) = k^{5}\overline{\sigma}_{xx}^{j}(\theta_{x})$$
(4.23e)

$$\overline{\sigma}_{yy}^{j}(k,\theta_{x}) = k^{5}\overline{\sigma}_{yy}^{j}(\theta_{x})$$
(4.23f)

$$\overline{\sigma}_{zz}^{j}(k,\theta_{x}) = k^{5}\overline{\sigma}_{zz}^{j}(\theta_{x}) \tag{4.23g}$$

$$\bar{\tau}_{yz}^{j}(k,\theta_{x}) = k^{5} \bar{\tau}_{yz}^{j}(\theta_{x})$$
(4.23h)

$$\bar{\tau}_{zx}^{j}(k,\theta_{x}) = k^{5}\bar{\tau}_{zx}^{j}(\theta_{x})$$
(4.23i)

$$\bar{\tau}_{xy}^{\,j}(k,\theta_x) = k^5 \bar{\tau}_{xy}^{\,j}(\theta_x) \tag{4.23j}$$

$$i(\alpha x + \beta y) + p_j z = k \times \psi_j(\theta_x)$$
(4.23k)

其中, $d\alpha d\beta$ 轉換至 $dk d\theta_x$, 可透過Jacobian 矩陣, Jacobian 矩陣為從一個座標系統轉換為另一個座標系統之乘因子, $d\alpha d\beta$ 表達方式如(4.24a)式, Jacobian 矩陣, 在此用J來表示, 如(4.24b)式, 則最後可得到 $d\alpha d\beta$ 轉換至 $dk d\theta_x$ 如(4.24c)式:

$$d\alpha d\beta = |J| dk d\theta_x \tag{4.24a}$$

$$\left|J\right| = \left|\frac{\partial(\alpha,\beta)}{\partial(k,\theta_x)}\right| = \left|\frac{\partial\alpha}{\partial k} \quad \frac{\partial\alpha}{\partial \theta_x}\right| = \left|\cos\theta_x \quad -k\sin\theta_x\right| = k$$
(4.24b)
$$\sin\theta_x \quad k\cos\theta_x = k$$

$$d\alpha d\beta = kdkd\theta_x \tag{4.24c}$$

將以上(4.23a)至(4.23k)與(4.24a)至(4.24c)式結果代回物理定義域之位移 (4.20a)~(4.20c)式及應力(4.21a)~(4.21f)式後可得只含有 k 及θ_x所組成之位移及應 力表達方式,如 (4.25a)~(4.25c)式及(4.26a)~(4.26f)所示:

$$U_{x}(x, y, z) = \frac{1}{2\pi} \int_{0}^{2\pi\infty} \{k^{-5}C_{d}^{1}(\theta_{x})k^{4}D_{11}^{1}(\theta_{x})e^{k\times\psi_{1}(\theta_{x})} + k^{-5}C_{d}^{2}(\theta_{x})k^{4}D_{11}^{2}(\theta_{x})e^{k\times\psi_{2}(\theta_{x})} + k^{-5}C_{d}^{3}(\theta_{x})k^{4}D_{11}^{3}(\theta_{x})e^{k\times\psi_{3}(\theta_{x})}\}kdkd\theta_{x}$$

(4.25b)

$$U_{y}(x, y, z) = \frac{1}{2\pi} \int_{0}^{2\pi\infty} \{k^{-5}C_{d}^{1}(\theta_{x})k^{4}D_{21}^{1}(\theta_{x})e^{k\times\psi_{1}(\theta_{x})} + k^{-5}C_{d}^{2}(\theta_{x})k^{4}D_{21}^{2}(\theta_{x})e^{k\times\psi_{2}(\theta_{x})} + k^{-5}C_{d}^{3}(\theta_{x})k^{4}D_{21}^{3}(\theta_{x})e^{k\times\psi_{3}(\theta_{x})}\}kdkd\theta_{x}$$

 $U_{z}(x, y, z) = \frac{1}{2\pi} \int_{0}^{2\pi\infty} \int_{0}^{2\pi\infty} \{k^{-5}C_{d}^{1}(\theta_{x})k^{4}D_{31}^{1}(\theta_{x})e^{k\times\psi_{1}(\theta_{x})} + k^{-5}C_{d}^{2}(\theta_{x})k^{5}D_{31}^{4}(\theta_{x})e^{k\times\psi_{2}(\theta_{x})} + k^{-5}C_{d}^{3}(\theta_{x})k^{4}D_{31}^{3}(\theta_{x})e^{k\times\psi_{3}(\theta_{x})}\}kdkd\theta_{x}$

$$(4.25c)$$

$$\sigma_{xx}(x, y, z) = \frac{1}{2\pi} \int_{0}^{2\pi\infty} \{k^{-5}C_{d}^{1}(\theta_{x})k^{5}\overline{\sigma}_{xx}(\theta_{x})e^{k\times\psi_{1}(\theta_{x})} + C_{d}^{2}(\theta_{x})\overline{\sigma}_{xx}^{2}(\theta_{x})e^{k\times\psi_{2}(\theta_{x})} + C_{d}^{3}(\theta_{x})\overline{\sigma}_{xx}^{3}(\theta_{x})e^{k\times\psi_{3}(\theta_{x})}\}kdkd\theta_{x}$$

$$(4.26a)$$

$$\sigma_{yy}(x, y, z) = \frac{1}{2\pi} \int_{0}^{2\pi\infty} \{k^{-5}C_{d}^{1}(\theta_{x})k^{5}\overline{\sigma}_{yy}^{1}(\theta_{x})e^{k\times\psi_{1}(\theta_{x})} + k^{-5}C_{d}^{2}(\theta_{x})k^{5}\overline{\sigma}_{yy}^{2}(\theta_{x})e^{k\times\psi_{2}(\theta_{x})} + k^{-5}C_{d}^{3}(\theta_{x})k^{5}\overline{\sigma}_{yy}^{3}(\theta_{x})e^{k\times\psi_{3}(\theta_{x})}\}kdkd\theta_{x}$$

$$\sigma_{zz}(x, y, z) = \frac{1}{2\pi} \int_{0}^{2\pi\infty} \{C_d^1(\theta_x)\overline{\sigma}_{zz}^1(\theta_x)e^{k\times\psi_1(\theta_x)} + C_d^2(\theta_x)\overline{\sigma}_{zz}^2(\theta_x)e^{k\times\psi_2(\theta_x)} + C_d^3(\theta_x)\overline{\sigma}_{zz}^3(\theta_x)e^{k\times\psi_3(\theta_3)}\}kdkd\theta_x$$

$$(4.26c)$$

$$\tau_{yz}(x, y, z) = \frac{1}{2\pi} \int_{0}^{2\pi\infty} \{k^{-5}C_d^1(\theta_x)k^5\bar{\tau}_{yz}^1(\theta_x)e^{k\times\psi_1(\theta_x)} + k^{-5}C_d^2(\theta_x)\bar{\tau}_{yz}^2k^5(\theta_x)e^{k\times\psi_2(\theta_x)} + k^{-5}C_d^3(\theta_x)k^5\bar{\tau}_{yz}^3(\theta_x)e^{k\times\psi_3(\theta_x)}\}kdkd\theta_x$$

(4.26d)

$$\tau_{zx}(x, y, z) = \frac{1}{2\pi} \int_{0}^{2\pi\infty} \{k^{-5}C_d^1(\theta_x)k^5\bar{\tau}_{zx}^1(\theta_x)e^{k\times\psi_1(\theta_x)} + k^{-5}C_d^2(\theta_x)k^5\bar{\tau}_{zx}^2(\theta_x)e^{k\times\psi_2(\theta_x)} + k^{-5}C_d^3(\theta_x)k^5\bar{\tau}_{zx}^3(\theta_x)e^{k\times\psi_3(\theta_x)}\}kdkd\theta_x$$

(4.26e)

$$\tau_{xy}(x, y, z) = \frac{1}{2\pi} \int_{0}^{2\pi\infty} \{k^{-5}C_d^1(\theta_x)k^5 \bar{\tau}_{xy}^1(\theta_x)e^{k \times \psi_1(\theta_x)} + k^{-5}C_d^2(\theta_x)k^5 \bar{\tau}_{xy}^2(\theta_x)e^{k \times \psi_2(\theta_x)} + k^{-5}C_d^3(\theta_x)k^5 \bar{\tau}_{xy}^3(\theta_x)e^{k \times \psi_3(\theta_x)}\}kdkd\theta_x$$

(4.26f)

將上式(4.25a)~(4.25c)及(4.26a)~(4.26f)化簡後先對對 k 積分,範圍從 0 至正 無限大(∞),此屬瑕積分型式,其符合瑕積分中積分的範圍則是無窮邊界(∞), 觀察位移方程(4.29a)~(4.29c)式與 k 有闢的積分函數為 $e^{k \times \psi_j(\theta_x)}$ (j=1~3),其積分型 式可寫成 $\int_{0}^{\infty} e^{k \times \psi_{j}(\theta_{x})} dk = \lim_{t \to \infty} \int_{0}^{t} e^{k \times \psi_{j}(\theta_{x})} dk = \lim_{t \to \infty} \left[\frac{1}{\psi_{j}(\theta_{x})} e^{k \times \psi_{j}(\theta_{x})} \right]_{0}^{t}$,已知 $k \times \psi_j(\theta_x) = i(\alpha x + \beta y) + u_j z$, u_j 為負範圍, z 為無限大(∞), $\alpha x + \beta y$ 為一 $sin heta_x \cos heta_x$ 有限值,故整體 $\psi_j(heta_x)$ 為負無限大(- ∞),得知 $e^{-\infty}$ 趨近於0則 $\int_{0}^{\infty} e^{k \times \psi_{j}(\theta_{x})} dk = \lim_{t \to \infty} \left[\frac{1}{\psi_{j}(\theta_{x})} \left[e^{t \times \left[-\psi_{j}(\theta_{x}) \right]} - e^{0} \right] = \frac{1}{\psi_{j}(\theta_{x})} \left(\frac{1}{e^{\infty}} - 1 \right) = \frac{1}{\psi_{j}(\theta_{x})} \left(0 - 1 \right) = \frac{-1}{\psi_{j}(\theta_{x})}$ 而應力(4.30a)~(4.39cf) 與 k 有關的積分函數為 $ke^{k \times \psi_j(\theta_x)}$ (j=1~3),同樣屬於瑕積分 定義,其積分型式可寫成 $\int_0^\infty k e^{k \times \psi_j(\theta_x)} dk = \lim_{t \to \infty} \int_0^t k e^{k \times \psi_j(\theta_x)} dk = \lim_{t \to \infty} \left[\int_0^t \frac{k}{\psi_j(\theta_x)} de^{k \times \psi_j(\theta_x)} \right]$ $=\lim_{t\to\infty}\left[\frac{k}{\psi_{i}(\theta_{x})}e^{k\times\psi_{j}(\theta_{x})}-\frac{1}{\psi_{i}(\theta_{x})}\int_{0}^{t}e^{k\times\psi_{j}(\theta_{x})}dk\right]=\lim_{t\to\infty}\left[\frac{ke^{k\times\psi_{j}(\theta_{x})}}{\psi_{i}(\theta_{x})}-\frac{1}{\psi_{i}(\theta_{x})}\int_{0}^{t}e^{k\times\psi_{j}(\theta_{x})}dk\right]$ $-\lim_{t\to\infty}\left[\frac{1}{\psi_{i}(\theta_{x})}\int_{0}^{t}e^{k\times\psi_{i}(\theta_{x})}dk\right] \cdot \mathbf{b}\int_{0}^{\infty}e^{k\times\psi_{i}(\theta_{x})}dk = \frac{-1}{\psi_{i}(\theta_{x})} \text{ I} \text{ I}$ 最後總整理的位移和應力積分結果,如式(4.27a)~(3.27c)和式(3.28a)~(3.28f)所

$$U_{x}(x, y, z) = -\frac{1}{2\pi} \int_{0}^{2\pi} \{C_{d}^{1}(\theta_{x})D_{11}^{1}(\theta_{x})\frac{1}{\psi_{1}(\theta_{x})} + C_{d}^{2}(\theta_{x})D_{11}^{2}(\theta_{x})\frac{1}{\psi_{2}(\theta_{x})} + C_{d}^{3}(\theta_{x})D_{11}^{3}(\theta_{x})\frac{1}{\psi_{2}(\theta_{x})}\}d\theta_{x}$$

$$(4.27a)$$

示:

$$U_{y}(x, y, z) = -\frac{1}{2\pi} \int_{0}^{2\pi} \{C_{d}^{1}(\theta_{x})D_{21}^{1}(\theta_{x})\frac{1}{\psi_{1}(\theta_{x})} + C_{d}^{2}(\theta_{x})D_{21}^{2}(\theta_{x})\frac{1}{\psi_{2}(\theta_{x})} + C_{d}^{3}(\theta_{x})D_{21}^{3}(\theta_{x})\frac{1}{\psi_{2}(\theta_{x})}\}d\theta_{x}$$
(4.27b)

$$U_{z}(x, y, z) = -\frac{1}{2\pi} \int_{0}^{2\pi} \{C_{d}^{1}(\theta_{x})D_{31}^{1}(\theta_{x})\frac{1}{\psi_{1}(\theta_{x})} + C_{d}^{2}(\theta_{x})D_{31}^{2}(\theta_{x})\frac{1}{\psi_{2}(\theta_{x})} + C_{d}^{3}(\theta_{x})D_{31}^{2}(\theta_{x})\frac{1}{\psi_{2}(\theta_{x})} + C_{d}^{3}(\theta_{x})D_{31}^{2}(\theta_{x})\frac{1}{\psi_{2}(\theta_{x})} \} d\theta$$
(4.27c)

$$= C_{d}(\theta_{x})D_{31}(\theta_{x})\frac{1}{\psi_{3}(\theta_{x})}d\theta_{x}$$

$$\sigma_{xx}(x, y, z) = \frac{1}{2\pi} \int_{0}^{2\pi} \{C_{d}^{1}(\theta_{x})\overline{\sigma}_{xx}^{1}(\theta_{x})(\frac{1}{\psi_{1}(\theta_{x})})^{2} + C_{d}^{2}(\theta_{x})\overline{\sigma}_{xx}^{2}(\theta_{x})(\frac{1}{\psi_{2}(\theta_{x})})^{2}$$

$$+ C_{d}^{3}(\theta_{x})\overline{\sigma}_{xx}^{3}(\theta_{x})(\frac{1}{\psi_{1}(\theta_{x})})^{2}\}d\theta, \qquad (4.28a)$$

$$\sigma_{yy}(x, y, z) = \frac{1}{2\pi} \int_{0}^{2\pi} \{C_{d}^{1}(\theta_{x})\overline{\sigma}_{yy}^{1}(\theta_{x})(\frac{1}{\psi_{1}(\theta_{x})})^{2} + C_{d}^{2}(\theta_{x})\overline{\sigma}_{yy}^{2}(\theta_{x})(\frac{1}{\psi_{2}(\theta_{x})})^{2} + C_{d}^{3}(\theta_{x})\overline{\sigma}_{yy}^{3}(\theta_{x})(\frac{1}{\psi_{3}(\theta_{x})})^{2}\}d\theta_{xgg6}$$
(4.28b)

$$\sigma_{zz}(x, y, z) = \frac{1}{2\pi} \int_{0}^{2\pi} \{C_{d}^{1}(\theta_{x})\overline{\sigma}_{zz}^{1}(\theta_{x})(\frac{1}{\psi_{1}(\theta_{x})})^{2} + C_{d}^{2}(\theta_{x})\overline{\sigma}_{zz}^{2}(\theta_{x})(\frac{1}{\psi_{2}(\theta_{x})})^{2} + C_{d}^{3}(\theta_{x})\overline{\sigma}_{zz}^{3}(\theta_{x})(\frac{1}{\psi_{3}(\theta_{x})})^{2}\}d\theta_{x}$$

$$(4.28c)$$

$$\tau_{yz}(x, y, z) = \frac{1}{2\pi} \int_{0}^{2\pi} \{C_{d}^{1}(\theta_{x})\bar{\tau}_{yz}^{1}(\theta_{x})(\frac{1}{\psi_{1}(\theta_{x})})^{2} + C_{d}^{2}(\theta_{x})\bar{\tau}_{yz}^{2}(\theta_{x})(\frac{1}{\psi_{2}(\theta_{x})})^{2} + C_{d}^{3}(\theta_{x})\bar{\tau}_{yz}^{3}(\theta_{x})(\frac{1}{\psi_{3}(\theta_{x})})^{2}\}d\theta_{x}$$

$$(4.28d)$$

$$\tau_{zx}(x, y, z) = \frac{1}{2\pi} \int_{0}^{2\pi} \{C_{d}^{1}(\theta_{x})\bar{\tau}_{zx}^{1}(\theta_{x})(\frac{1}{\psi_{1}(\theta_{x})})^{2} + C_{d}^{2}(\theta_{x})\bar{\tau}_{zx}^{2}(\theta_{x})(\frac{1}{\psi_{2}(\theta_{x})})^{2} + C_{d}^{3}(\theta_{x})\bar{\tau}_{zx}^{3}(\theta_{x})(\frac{1}{\psi_{1}(\theta_{x})})^{2}\}d\theta_{x}$$
(4.28e)

$$\tau_{xy}(x, y, z) = \frac{1}{2\pi} \int_{0}^{2\pi} \{ C_{d}^{1}(\theta_{x}) \overline{\tau}_{xy}^{1}(\theta_{x}) (\frac{1}{\psi_{1}(\theta_{x})})^{2} + C_{d}^{2}(\theta_{x}) \overline{\tau}_{xy}^{2}(\theta_{x}) (\frac{1}{\psi_{2}(\theta_{x})})^{2} + C_{d}^{3}(\theta_{x}) \overline{\tau}_{xy}^{3}(\theta_{x}) (\frac{1}{\psi_{3}(\theta_{x})})^{2} \} d\theta_{x}$$

$$(4.28f)$$

由(4.13a)~(4.13i)代入(4.18a)~(4.18c)得知
$$C_d^j$$
($j=1~3$)、(4.19a)~(4.19f)之

$$\begin{split} \overline{\sigma}_{ii}^{j}(i=x,y,z,j=1-3) & (4.23k) \geq \psi_{j}(j=1-3) \text{ 組合得知}, (4.27a)-(4.27c) \\ \pi \\ (4.28a)-(4.28f) 式為實複數函數組合之積分方程,然後透過殘數定理(Residue theorem)則可將複變函數之線積分轉換為殘數的計算。針對含有 sin <math>\theta_{x}$$
與 cos θ_{x} 有 理函數的積分,首先令 $\omega = e^{i\theta_{x}}$,則 sin θ_{x} 與 cos θ_{x} 可分別表示為 sin $\theta_{x} = \frac{\omega^{2}-1}{2\omega i}$, cos $\theta_{x} = \frac{\omega^{2}+1}{2\omega}$,若對 $\omega = e^{i\theta_{x}}$ 微分則為 $d\theta_{x} = \frac{d\omega}{i\omega}$,將這些結果全部代入 (4.27a)-(4.27c) 式和(4.28a)-(4.28f) 式,位移及應力閉合解形式表達式可重新表 達如(4.29a)-(4.29c)和(4.30a)-(4.30f)式所示:

$$U_{x}(x, y, z) = -\frac{1}{2\pi} \oint_{C} \frac{1}{i\omega} \{C_{d}^{1}(\omega) D_{11}^{1}(\omega) + C_{d}^{2}(\omega) D_{11}^{2}(\omega) \frac{1}{\psi_{2}(\omega)} + C_{d}^{3}(\omega) D_{11}^{3}(\omega) \frac{1}{\psi_{3}(\omega)} \} d\omega$$

$$U_{y}(x, y, z) = -\frac{1}{2\pi} \oint_{C} \frac{1}{i\omega} \{C_{d}^{1}(\omega) D_{21}^{1}(\omega) \frac{1}{\psi_{1}(\omega)} + C_{d}^{2}(\omega) D_{21}^{2}(\omega) \frac{1}{\psi_{2}(\omega)}$$

$$(4.29a)$$

$$(4.29b)$$

$$+C_{d}^{3}(\omega)D_{21}^{3}(\omega)\frac{1}{\psi_{3}(\omega)}\}d\omega$$

$$U_{z}(x, y, z) = -\frac{1}{2\pi}\oint_{C} \frac{1}{i\omega}\{C_{d}^{1}(\omega)D_{31}^{1}(\omega)\frac{1}{\psi_{1}(\omega)} + C_{d}^{2}(\omega)D_{31}^{2}(\omega)\frac{1}{\psi_{2}(\omega)}$$

$$+C_{d}^{3}(\omega)D_{31}^{3}(\omega)\frac{1}{\psi_{3}(\omega)}\}d\omega$$
(4.29c)

$$\sigma_{xx}(x, y, z) = \frac{1}{2\pi} \oint_{C} \frac{1}{i\omega} \{ C_{d}^{1}(\omega) \overline{\sigma}_{xx}^{1}(\omega) (\frac{1}{\psi_{1}(\omega)})^{2} + C_{d}^{2}(\omega) \overline{\sigma}_{xx}^{2}(\omega) (\frac{1}{\psi_{2}(\omega)})^{2} + C_{d}^{3}(\omega) \overline{\sigma}_{xx}^{3}(\omega) (\frac{1}{\psi_{3}(\omega)})^{2} \} d\omega$$
(4.30a)

$$\sigma_{yy}(x, y, z) = \frac{1}{2\pi} \oint_{C} \frac{1}{i\omega} \{ C_{d}^{1}(\omega) \overline{\sigma}_{yy}^{1}(\omega) (\frac{1}{\psi_{1}(\omega)})^{2} + C_{d}^{2}(\omega) \overline{\sigma}_{yy}^{2}(\omega) (\frac{1}{\psi_{2}(\omega)})^{2} + C_{d}^{3}(\omega) \overline{\sigma}_{yy}^{3}(\omega) (\frac{1}{\psi_{3}(\omega)})^{2} \} d\omega$$

$$(4.30b)$$

$$\sigma_{zz}(x, y, z) = \frac{1}{2\pi} \oint_{C} \frac{1}{i\omega} \{ C_{d}^{1}(\omega) \overline{\sigma}_{zz}^{1}(\omega) (\frac{1}{\psi_{1}(\omega)})^{2} + C_{d}^{2}(\omega) \overline{\sigma}_{zz}^{2}(\omega) (\frac{1}{\psi_{2}(\omega)})^{2} + C_{d}^{3}(\omega) \overline{\sigma}_{zz}^{3}(\omega) (\frac{1}{\psi_{3}(\omega)})^{2} \} d\omega$$

$$\tau_{yz}(x, y, z) = \frac{1}{2\pi} \oint_{C} \frac{1}{i\omega} \{ C_{d}^{1}(\omega) \overline{\tau}_{yz}^{1}(\omega) (\frac{1}{\psi_{1}(\omega)})^{2} + C_{d}^{2}(\omega) \overline{\tau}_{yz}^{2}(\omega) (\frac{1}{\psi_{2}(\omega)})^{2} + C_{d}^{3}(\omega) \overline{\tau}_{yz}^{3}(\omega) (\frac{1}{\psi_{3}(\omega)})^{2} \} d\omega$$

$$(4.30c)$$

$$+ C_{d}^{3}(\omega) \overline{\tau}_{yz}^{3}(\omega) (\frac{1}{\psi_{3}(\omega)})^{2} \} d\omega$$

$$(4.30d)$$

$$\tau_{zx}(x, y, z) = \frac{1}{2\pi} \oint_{C} \frac{1}{i\omega} \{ C_{d}^{1}(\omega) \bar{\tau}_{zx}^{1}(\omega) (\frac{1}{\psi_{1}(\omega)})^{2} + C_{d}^{2}(\omega) \bar{\tau}_{zx}^{2}(\omega) (\frac{1}{\psi_{2}(\omega)})^{2} + C_{d}^{3}(\omega) \bar{\tau}_{zx}^{3}(\omega) (\frac{1}{\psi_{3}(\omega)})^{2} \} d\omega$$
(4.30e)

$$\tau_{xy}(x, y, z) = \frac{1}{2\pi} \oint_{C} \frac{1}{i\omega} \{ C_{d}^{1}(\omega) \bar{\tau}_{xy}^{1}(\omega) (\frac{1}{\psi_{1}(\omega)})^{2} + C_{d}^{2}(\omega) \bar{\tau}_{xy}^{2}(\omega) (\frac{1}{\psi_{2}(\omega)})^{2} + C_{d}^{3}(\omega) \bar{\tau}_{xy}^{3}(\omega) (\frac{1}{\psi_{3}(\omega)})^{2} \} d\omega$$
(4.30f)

(4.29a)~(4.29c)和(4.30a)~(4.30f) 式為寶複數積分轉換成複變函數對曲線 c: | ω |=1 之線積分,其中 c 為圓心於圓點,半徑為1 之單位圓且其方向為逆時針方 向,當這些含有 ω 變數之函數沿著| ω |=1進行線積分時, θ_x 角度恰由0變化至2 π , 若令(4.30a)式之複變函數 $\frac{1}{i\omega} \{C_d^1(\omega)D_{11}^1(\omega)\frac{1}{\psi_1(\omega)} + C_d^2(\omega)D_{11}^2(\omega)\frac{1}{\psi_2(\omega)} + C_d^3(\omega)D_{11}^3(\omega)\frac{1}{\psi_3(\omega)}\}$ 為之 $\frac{1}{i\omega}C_d^1(\omega)D_{11}^1(\omega)\frac{1}{\psi_1(\omega)}$ 為 $\overline{u}_{xj}(\omega)$, (j=1-3)則(4.29b)~(4.29c)及(4.30a)~(4.30f)類似令 法,由殘數定理線積分轉換為殘數計算如(4.31a)~(3.31c)和(3.32a)~(3.32f)式,此 為垂直橫向等向性材料在半無限空間受三維表面點荷重作用之位移及應力閉合 解析解如下:

$$U_{x}(x, y, z) = -\frac{1}{2\pi} \oint_{C} [\bar{u}_{x1}(\omega) + \bar{u}_{x2}(\omega) + \bar{u}_{x3}(\omega)] d\omega \qquad (4.31a)$$
$$= -i(\sum_{g=1}^{n} \operatorname{Res}_{\omega = \omega_{g}} [\bar{u}_{x1}(\omega)] + \sum_{g=1}^{n} \operatorname{Res}_{\omega = \omega_{g}} [\bar{u}_{x2}(\omega)] + \sum_{g=1}^{n} \operatorname{Res}_{\omega = \omega_{g}} [\bar{u}_{x3}(\omega)])$$
$$U_{x}(x, y, z) = -\frac{1}{2\pi} \int_{C} \bar{u}_{x1}(\omega) + \bar{u}_{x2}(\omega) + \bar{u}_{x3}(\omega)] d\omega \qquad (4.31a)$$

$$U_{y}(x, y, z) = -\frac{1}{2\pi} \oint_{C} \overline{u}_{y1}(\omega) + \overline{u}_{y2}(\omega) + \overline{u}_{y3}(\omega)] d\omega$$
(4.31b)

$$= -i(\sum_{g=1}^{n} \operatorname{Res}_{\omega=\omega_{g}} [\overline{u}_{y1}(\omega)] + \sum_{g=1}^{n} \operatorname{Res}_{\omega=\omega_{g}} [\overline{u}_{y2}(\omega)] + \sum_{g=1}^{n} \operatorname{Res}_{\omega=\omega_{g}} [\overline{u}_{y3}(\omega)])$$

$$U_{z}(x, y, z) = -\frac{1}{2\pi} \oint_{C} \overline{u}_{z1}(\omega) + \overline{u}_{z2}(\omega) + \overline{u}_{z3}(\omega)] d\omega$$
(4.31c)

$$= -i(\sum_{g=1}^{n} \operatorname{Res}_{\omega=\omega_{g}} [\overline{u}_{z1}(\omega)] + \sum_{g=1}^{n} \operatorname{Res}_{\omega=\omega_{g}} [\overline{u}_{z2}(\omega)] + \sum_{g=1}^{n} \operatorname{Res}_{\omega=\omega_{g}} [\overline{u}_{z3}(\omega)])$$

$$\sigma_{xx}(x, y, z) = \frac{1}{2\pi} \oint_{C} [\overline{\sigma}_{xx1}(\omega) + \overline{\sigma}_{xx2}(\omega) + \overline{\sigma}_{xx3}(\omega)] d\omega \qquad (4.32a)$$

$$= i(\sum_{g=1}^{n} \operatorname{Res}_{\omega=\omega_{g}} [\overline{\sigma}_{xx1}(\omega)] + \sum_{g=1}^{n} \operatorname{Res}_{\omega=\omega_{g}} [\overline{\sigma}_{xx2}(\omega)] + \sum_{g=1}^{n} \operatorname{Res}_{\omega=\omega_{g}} [\overline{\sigma}_{xx3}(\omega)]$$

$$\sigma_{yy}(x, y, z) = \frac{1}{2\pi} \oint_{C} [\overline{\sigma}_{yy1}(\omega) + \overline{\sigma}_{yy2}(\omega) + \overline{\sigma}_{yy3}(\omega)] d\omega \qquad (4.32b)$$

$$(4.32b)$$

$$=i(\sum_{g=1}^{n} \underset{\omega=\omega_{g}}{\operatorname{Res}} [\overline{\sigma}_{yy1}(\omega)] + \sum_{g=1}^{n} \underset{\omega=\omega_{g}}{\operatorname{Res}} [\overline{\sigma}_{yy2}(\omega)] + \sum_{g=1}^{n} \underset{\omega=\omega_{g}}{\operatorname{Res}} [\overline{\sigma}_{yy3}(\omega)]$$

$$\sigma_{zz}(x, y, z) = \frac{1}{2\pi} \oint_C \left[\overline{\sigma}_{zz1}(\omega) + \overline{\sigma}_{zz2}(\omega) + \overline{\sigma}_{zz3}(\omega) \right] d\omega$$
(4.32c)

$$=i(\sum_{g=1}^{n}\operatorname{Res}_{\omega=\omega_{g}}[\overline{\sigma}_{zz1}(\omega)]+\sum_{g=1}^{n}\operatorname{Res}_{\omega=\omega_{g}}[\overline{\sigma}_{zz2}(\omega)]+\sum_{g=1}^{n}\operatorname{Res}_{\omega=\omega_{g}}[\overline{\sigma}_{zz3}(\omega)]$$

$$\tau_{yz}(x, y, z) = \frac{1}{2\pi} \oint_{C} [\bar{\tau}_{yz1}(\omega) + \bar{\tau}_{yz2}(\omega) + \bar{\tau}_{yz3}(\omega)] d\omega \qquad (4.32d)$$
$$= i \left(\sum_{g=1}^{n} \underset{\omega = \omega_{g}}{\operatorname{Res}} [\bar{\tau}_{yz1}(\omega)] + \sum_{g=1}^{n} \underset{\omega = \omega_{g}}{\operatorname{Res}} [\bar{\tau}_{yz2}(\omega)] + \sum_{g=1}^{n} \underset{\omega = \omega_{g}}{\operatorname{Res}} [\bar{\tau}_{yz3}(\omega)] \right)$$

$$\tau_{zx}(x, y, z) = \frac{1}{2\pi} \oint_C \left[\overline{\tau}_{zx1}(\omega) + \overline{\tau}_{zx2}(\omega) + \overline{\tau}_{zx3}(\omega) \right] d\omega \qquad (4.32e)$$

$$= i \left(\sum_{g=1}^n \operatorname{Res}_{\omega = \omega_g} \left[\overline{\tau}_{yx1}(\omega) \right] + \sum_{g=1}^n \operatorname{Res}_{\omega = \omega_g} \left[\overline{\tau}_{yx2}(\omega) \right] + \sum_{g=1}^n \operatorname{Res}_{\omega = \omega_g} \left[\overline{\tau}_{yx3}(\omega) \right] \right)$$

$$\tau_{xy}(x, y, z) = \frac{1}{2\pi} \oint_C \left[\overline{\tau}_{xy1}(\omega) + \overline{\tau}_{xy2}(\omega) + \overline{\tau}_{xy3}(\omega) \right] d\omega \qquad (4.32f)$$

$$= i \left(\sum_{g=1}^n \operatorname{Res}_{\omega = \omega_g} \left[\overline{\tau}_{xy1}(\omega) \right] + \sum_{g=1}^n \operatorname{Res}_{\omega = \omega_g} \left[\overline{\tau}_{xy2}(\omega) \right] + \sum_{g=1}^n \operatorname{Res}_{\omega = \omega_g} \left[\overline{\tau}_{xy3}(\omega) \right] \right)$$

第五章 計算範例

本章利用數學軟體 Mathematica 7 (2008)針對第四章所推導之半無限空間垂 直橫向等向性材料受三維點荷重作用的位移閉合解,進行符號運算。第5.2 節先 以簡化為水平橫向部份與胡廷秉(2009)及 Dinget al.(2006)比較,然後以範例計算 說明垂直橫向等向性半無限空間受表面三維點荷重下位移解並探討其位移閉合 解及受材料異向性影響,詳細過程如下各節。

5.1 位移閉合解計算步驟

第四章之式(4.31a)~(4.31c)和式(4.32a)~(4.32f)為垂直橫向等向性材料半無限 空間受三維表面點荷重作用的位移和應力閉合解。為處理此閉合積分,針對位移 閉合解為計算範例說明,必須找出此方程式分母為0不可解析之位置,而此不可 解析之點為則稱為奇異點(Singular point),將找出之奇異點位置,則可將 (4.29a)~(4.29c)和(4.30a)~(4.30f)式利用殘艱定理去做殘數計算。在此根據 (4.31a)-(4.31c)及(4.32a)~(4.32f)式考慮當 $\overline{u}_{y}(\omega), \overline{u}_{yi}(\omega), \overline{u}_{zi}(\omega), \overline{\sigma}_{xxi}(\omega), \overline{\sigma}_{yyi}(\omega),$ $\overline{\sigma}_{zzi}(\omega), \overline{\tau}_{yzi}(\omega), \overline{\tau}_{zxi}(\omega), \overline{\tau}_{xyi}(\omega)(i=1~3)分母為0不可解析之情況,會有2處$ $出現分母為0情況,故在此分為2部分處理:第一部分為<math>C_d^j(\omega)D_{i1}^i(\omega)(i,j=1~3)$ 奇異點,第二部分為 $\frac{1}{\psi_i(\omega)}(i=1~3)$ 奇異點,如(4.23k)式,最後再相乘並檢核奇異 點位置,其呈現結果如下:

(一) 第一部分:處理C^j_d(ω)Dⁱ_{i1}(ω)奇異點所在位置,為達簡化目的,將式
(4.29a)~(4.29c)和式(4.30a)~(4.30f)中之C^j_d(ω)Dⁱ_{i1}(ω) (i、j=1~3)各項單獨挑出化簡, 其形式如(5.1a)至(5.1i) 式所示,而化簡步驟為將(5.1a)至(5.1i)式拆為三步驟:一、 分子、二、分母、三、分子除分母,最後再統整找出式(4.29a)~(4.29c)和式
(4.30a)~(4.30f)各項之奇異點。

$$C_{d}^{1}(\omega)D_{1}^{1}(\omega) = \frac{\begin{vmatrix} P_{1}D_{11}^{1} & f_{12} & f_{13} \\ P_{1}D_{11}^{1} & f_{22} & f_{23} \\ P_{1}D_{11}^{1} & f_{22} & f_{23} \\ P_{1}D_{11}^{1} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{21} & f_{22} & f_{23} \\ f_{21} & \frac{P_{1}D_{11}^{2}}{2\pi} & f_{13} \\ f_{21} & \frac{P_{2}D_{11}^{2}}{2\pi} & f_{23} \\ f_{31} & f_{32} & f_{33} \\ f$$

$$C_{q}^{2}(\omega)D_{21}^{2} = \frac{\begin{vmatrix} f_{11} & \frac{P_{x}}{2\pi} & f_{13} \\ F_{21} & \frac{P_{y}}{2\pi} & f_{32} \\ f_{21} & \frac{P_{y}}{2\pi} & f_{33} \\ f_{21} & \frac{P_{y}}{2\pi} & f_{33} \\ \hline f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \\ \hline f_{31} & \frac{P_{y}}{2\pi} & f_{33} \\ \hline f_{31} & f_{32} & f_{33} \\ \hline f$$

$$C_{d}^{3}(\omega)D_{31}^{3} = \frac{\begin{pmatrix} f_{11} & f_{12} & \frac{P_{x} D_{31}^{3}}{2\pi} \\ f_{21} & f_{22} & \frac{P_{y} D_{31}^{3}}{2\pi} \\ f_{31} & f_{32} & \frac{P_{z} D_{31}^{3}}{2\pi} \\ \hline \begin{pmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \\ \end{pmatrix}}$$
(5.1i)

(二)、第二部分:處理
$$\frac{1}{\psi_i(\omega)}$$
 (i=1~3)奇異點所在位置,其中 $\psi_i(\omega)$ 是由 $\psi_i(\theta_x)$

轉換而來,將定義之
$$\sin \theta_x = \frac{\omega^2 - 1}{2\omega i} \cdot \cos \theta_x = \frac{\omega^2 + 1}{2\omega}$$
代入式(4.23k)

$$\begin{split} \psi_{i}(\theta_{x}) &= i \, (\cos \theta_{x} \, x + \sin \theta_{x} \, y) - z \sqrt{\sin \theta_{x}^{2} + A_{i} \cos \theta_{x}^{2}} \, (i=1\sim3) \, , \, \text{ 簡 } L \, \& \, \mathbb{R} \, \mathbb{P} \, \mathbb{P}$$

$$\psi_{2}(\omega) = \frac{(y \ (-1+\omega^{2})+ix(1+\omega^{2}))A_{2}-z\omega\sqrt{A_{2}(-(-1+\omega^{2})^{2}+(1+\omega^{2})^{2}A_{2})}}{2 \ \omega A_{2}}$$
(5.2b)

$$\psi_{3}(\omega) = \frac{(y \ (-1+\omega^{2})+ix(1+\omega^{2}))A_{3}-z\omega\sqrt{A_{3}(-(-1+\omega^{2})^{2}+(1+\omega^{2})^{2}A_{3})}}{2 \ \omega A_{3}}$$
(5.2c)

其中, A_1 、 A_2 、 A_3 如(3.36a)-(3.36c) 所示。

 $\psi_i(\omega)(i=1-3)$ 為分母之 ω 函數,為讓此容易因式分解,分子分母各乘上共軛 複數 $\psi_j(\omega) = i (\alpha x + \beta y) + u_j z$ (j=4~6),如下式(5.3a)-(5.3c):

$$\psi_4(\omega) = \frac{(y \ (-1+\omega^2) + ix(1+\omega^2))A_1 + z\omega\sqrt{A_1(-(-1+\omega^2)^2 + (1+\omega^2)^2A_1)}}{2 \ \omega \ A_1}$$
(5.3a)

$$\psi_5(\omega) = \frac{(y \ (-1+\omega^2) + ix(1+\omega^2))A_2 + z\omega\sqrt{A_2(-(-1+\omega^2)^2 + (1+\omega^2)^2A_2)}}{2 \ \omega A_2}$$
(5.3b)

$$\psi_{6}(\omega) = \frac{(y \ (-1+\omega^{2})+ix(1+\omega^{2}))A_{3}+z\omega\sqrt{A_{3}(-(-1+\omega^{2})^{2}+(1+\omega^{2})^{2}A_{3})}}{2 \ \omega A_{3}}$$
(5.3c)

展開後之
$$\psi_i(\omega) \times \psi_j(\omega)$$
 (i=1~3、j=4~6)為由 ω 所組成之函數且令
 $\psi_i(\omega) \times \psi_j(\omega)$ 為 $\psi_k(\omega)$ (k=7~9)如(5.4a)至(5.4c)式:

$$\psi_{7}(\omega) = \frac{1}{4\omega^{2}A_{1}} (z^{2}(1-A_{1}) - A_{1}(x+iy)^{2} - 2(A_{1}(x^{2}+y^{2}+z^{2})+z^{2})\omega^{2} - (A_{1}((x-iy)^{2}+z^{2})-z^{2})\omega^{4})$$
(5.4a)

$$\psi_{8}(\omega) = \frac{1}{4\omega^{2}A_{2}} (z^{2}(1-A_{2}) - A_{2}(x+iy)^{2} - 2(A_{2}(x^{2}+y^{2}+z^{2})+z^{2})\omega^{2}$$

$$-(A_{2}((x-iy)^{2}+z^{2}) - z^{2})\omega^{4}) \qquad (5.4b)$$

$$\psi_{9}(\omega) = \frac{1}{4\omega^{2}A_{3}} (z^{2}(1-A_{2}) - A_{3}(x+iy)^{2} - 2(A_{3}(x^{2}+y^{2}+z^{2})+z^{2})\omega^{2}$$

$$-(A_{3}((x-iy)^{2}+z^{2}) - z^{2})\omega^{4}) \qquad 1896 \qquad (5.4c)$$

將(5.4a)-(5.4c)直接對 $\psi_k(\omega)$ (k=7~9)作因式分解,其結果如(5.5a)至(5.5c)式所示:

$$\psi_{7}(\omega) = \frac{1}{4\omega A_{1}} (\eta_{11} + \eta_{21}\omega^{2} + \eta_{31}\omega^{4}) = \frac{\eta_{31}}{4\omega A_{1}} (\omega^{2} - \alpha_{1}^{2})(\omega^{2} - \beta_{1}^{2})$$
(5.5a)

$$\psi_8(\omega) = \frac{1}{4\omega A_2} (\eta_{12} + \eta_{22}\omega^2 + \eta_{32}\omega^4) = \frac{\eta_{32}}{4\omega A_2} (\omega^2 - \alpha_2^2)(\omega^2 - \beta_2^2)$$
(5.5b)

$$\psi_{9}(\omega) = \frac{1}{4\omega A_{3}}(\eta_{13} + \eta_{23}\omega^{2} + \eta_{33}\omega^{4}) = \frac{\eta_{33}}{4\omega A_{3}}(\omega^{2} - \alpha_{3}^{2})(\omega^{2} - \beta_{3}^{2})$$
(5.5c)

其中,
$$\eta_{1j}$$
、 η_{2j} 、 η_{3j} 、 α_j^2 和 β_j^2 (j=1~3)分別如(5.6a)-(5.6c)式和(5.7a)-(5.7b)

所示:

$$\eta_{1j} = z^2 (1 - A_j) - A_j (x + iy)^2$$
(5.6a)

$$\eta_{2i} = -2(A_i(x^2 + y^2 + z^2) + z^2)$$
(5.6b)

$$\eta_{3j} = -(A_j((x - iy)^2 + z^2) - z^2)$$
(5.6c)

$$\alpha_j^2 = \sqrt{\frac{-\eta_{2j} - \sqrt{(\eta_{2j})^2 - 4\eta_{1j}\eta_{3j}}}{2\eta_{1j}}}$$
(5.7a)

$$\beta_j^2 = \sqrt{\frac{-\eta_{2j} + \sqrt{(\eta_{2j})^2 - 4\eta_{1j}\eta_{3j}}}{2\eta_{1j}}}$$
(5.7b)

綜合第一部分及第二部分,將(5.1a)至(5.1i)式結果乘上
$$\frac{\psi_j(\omega)}{\psi_k(\omega)}$$
 (j=4~6、k=7~9)

結果,統整化簡後找出(4.29a)-(3.29c)及(3.30a)-(3.30f)式各項 $C_d^j(\omega)D_{i1}^i(\omega)\frac{\psi_i(\omega)}{\psi_k(\omega)}$ (i、 j=1~3、k=7~9)奇點位置,則可依據殘數定理(Residue theorem)作殘數計算而得到 半無限空間垂直橫向等向性材料受表面三維點荷重作用的位移閉合解。為延伸計 算應力閉合解,若不直接利用前述求解步驟求解,也可透過所得三維方向之位移 $U_x(x,y,z) 、 U_y(x,y,z) 及 U_z(x,y,z) 分別對x、y、z 微分而得到,如第三章 3.2$ 節(3.21a)至(3.21f)式。

5.2 位移閉合解計算範例說明探討

本節為本論文重點所在,為探討半無限空間垂直橫向等向性材料受表面三維 點荷重作用之位移閉合解,依據 5.1 節的求解步驟,對於橫向等向性岩石彈性常 數比範圍,可採用 Gerrard(1975) and Amadei et al.(1987)所建議的楊氏模數比 $\frac{E}{E}$ 及剪力模數比 $\frac{G}{G}$ 範圍從1至3;柏松比 $\frac{v}{v}$ 範圍從0.75至1.5,特別探討垂直橫 向等向性材料承受表面三維點荷重作用於殘數定理積分部份之位移閉合解及受 材料異向性影響程度,最後簡化為水平情況與胡廷秉(2009)與 Ding et al.(2006)半 無限水平橫向等向結果比較,間接驗證其位移閉合解之合理性。 首先根據 Gerrard(1975) and Amadei et al.(1987)所建議的楊氏模數比 $\frac{E}{E}$ 、剪 力模數比及柏松比比例 $\frac{v}{v}$ 範圍內,在此列出7種不同彈性參數比之垂直橫向等 向岩石材料,如下表 5.1 所示:

岩石類型	楊氏模數比 <u></u> E	剪力模數比 $\frac{G}{G}$	柏松比比例 $\frac{v}{v}$
岩石 1	2.0	1.0	1.0
岩石 2	3.0	1.0	1.0
岩石3	1.0	0.75	1.0
岩石 4	1.0	1.5	1.0
岩石 5	1.0	1.0	2.0
岩石 6	1.0	1.0	3.0

表 5.1 垂直横向等向岩石之彈性模數比範圍表

若假設E = 50GPa、v = 0.25代入第三章 3.3 節之(3.16a)至(3.16e)式中,可得 各垂直橫向等向岩石之彈性常數 $c_1 \sim c_5$ (單位、GPa),而表 5.2 之岩石類型內(數 字,數字,數字)分別代表($\frac{E}{E}, \frac{G}{G}, \frac{v}{v}$)比數,如表 5.2 所示:

岩石類型/彈性常數	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄	<i>C</i> ₅
岩石1 (2,1,1)	70.00	37.50	45.00	20.00	20.00
岩石 2 (3,1,1)	86.67	33.33	53.33	20.00	20.00
岩石 3 (1,0.75,1)	67.37	71.05	51.58	20.00	20.00
岩石4 (1,1.5,1)	56.00	54.00	32.00	20.00	20.00
岩石5 (1,1,2)	60.00	60.00	30.00	20.00	10.00
岩石6 (1,1,3)	60.00	60.00	26.67	20.00	6.67

表 5.2 垂直横向等向岩石之彈性常數表

將表 5.2 不同垂直橫向等向性岩石之彈性常數值代入推導出的位移閉合解, 並藉由數學軟體 Mathematica® 7 (2008)且依據 5.1 節所述求解步驟進行運算,其 求解結果分為(一)水平位移部分及(二)垂直部分結果呈現如下:

▶ 水平位移部分

水平横向等向性材料分別受到表面單位點荷重(單位體積之荷重)

 $P_x = P_y = P_z = 1$ 作(單位: N/m³)用在原點(0,0,0),此水平橫向等向性材料 Gerrard(1975) and Amadei et al.(1987)所建議彈性常數範圍,其組合之基本 5 個彈性常數如同表 5.3 垂直橫向等向岩石彈性常數表分為 7 種,計算其(x,y,z) 於(-2,1,1)、(-1,1,1)、(1,1,1)、(2,1,1)、(3,1,1)及(1,1,2)的位移(單位:m)結果 與 Ding et al.(2006)和胡廷秉(2009)比較分別如表 5.3a-5.3f 所示。

以分析表 5.3a 岩石 1($\frac{E}{E} = 2$, $\frac{G}{G} = 1$, $\frac{v}{v} = 1$)為例和胡廷秉(2009)比較, 一單位力 Px 作用下,以計算幾何位置(-2,1,1)為例,可得 Ux 方向為 0.30681cm; Py 可得 Ux 作用下,方向為-0.045988cm,與胡廷秉(2009)比較差一負號,相 同地 Px 和 Py 作用下所產生的 Uy 方向位移也有此情況產生,而 Pz 作用下之 Ux 和 Uz 卻為相同符號;若看 Px 和 Py 作用之 Uz 方向位移則為相同符號, Pz 作用之 Uz 方向差一負號,探討原因為與胡廷秉(2009)不同所導致,於本 研究中如圖 4.4 所定義,受力方向與座標軸方向同向;於胡廷秉(2009)研究中 定義 Px 和 Py 受力方向與座標軸方向相反,但 Pz 受力方向又與座標軸方向 相同所致。若排除座標軸定義不同,其所顯示的結果與胡廷秉(2009)結果比 較完全相同。

以分析表 5.3a 和圖 5.1~5.12 岩石 $1(\frac{E}{E} = 2, \frac{G}{G} = 1, \frac{v}{v} = 1)$,計算幾何 位置(-2,1,1)、(2,1,1)為例與 Ding et al.(2006)比較,所得位移閉合解正負號相 同,能確定其座標系統與受力方向定義相同。然於 Ding et al.(2006)求解過程 是以勢能函數表示位移推導,本研究是由彈性力學微小變形理論為出發點求 解,卻可得到在受到 Px、Py、Pz 分別作用下,計算所之位移結果幾乎相同, 故可間接證明本文採用之方法對垂直橫向等向部分為可行的。

又從表5.3至表5.8可明顯發現水平橫向等向性材料受載重作用所得之位 移量分別受到(1)材料的異向性(Anistropy)、(2)待測幾何位置(x,y,z)及深度、(3) 載重大小及形式等影響。

(1)材料的異向性(Anistropy):表 5.3a-5.3e 為 6 種不同材料特性:

 $\frac{E}{E} = 2.0 \cdot 3.0 \left(\frac{G}{G} = \frac{\upsilon}{\upsilon} = 1.0\right)$ 的岩石 1 及岩石 2 , $\frac{G}{G} = 0.75 \cdot 1.5 \left(\frac{E}{E} = \frac{\upsilon}{\upsilon} = 1.0\right)$ 的岩石 3 及岩石 4 , $\frac{\upsilon}{\upsilon} = 2.0 \cdot 3.0 \left(\frac{E}{E} = \frac{G}{G} = 1.0\right)$ 的岩石 5 和岩石 6 受點荷重作 用時之位移變化量 , 可得知材料的異向性影響位移量 , 若由圖 5.1 至圖 5.12 同樣可看出此結果。

(2)待測幾何位置(x,y,z)及深度:觀察水平受載位移結果或胡廷秉(2009) 水平結果,當待測幾何位置相同時,其位移結果會受到材料的異向性影響有 明顯的不同結果。當已知三維點荷重作用在原點位置(0,0,0),觀察位移的增 量及減量則可得知水平受載之位移量受待測幾何位置(x,y,z)及深度影響。從待 測幾何位置(-2,1,1)、(-1,1,1)、(1,1,1)到(2,1,1)可看得出,在原點往正軸方 向,x=1,2,3 變化時和原點往負軸方向,x=-1,-2,-3 變化時,水平三軸向位移(U_x 、 U_y 、 U_z)會隨著減少;此外,若z軸往正軸向變化z=1,2,3時,也可觀察出越 遠離受載位置,水平位移量會逐漸減少,故待測幾何位置(x,y,z)及深度也是其 中一個影響因子。

(3)載重大小及形式等影響:由推導的閉合解析解形式,轉換為半無限水 平橫向等向空間,若改受載的大小(Px、Py、Pz不再為單位點荷重)及形式(延 伸為線性或矩形變化)會影響最後水平位移結果,受載的大小則可由表 5.3 至 表 5.8 改變 Px、Py、Pz 之大小所得之位移量得知。

較	表
TX.	N

<i>岩石</i> 類型	幾何 位置 (x,y,z)	水平部份				胡廷秉(2009)			Ding(2006)		
			P_x	0.0030681		P_x	-0.0030681		P_x	0.00313648	
		U_x	P_y	-0.00045988	U _x	P_y	0.00045988	U_x	P_y	-0.000459942	
			P_z	-0.000365943		P_z	-0.000365943		P_z	-0.000365943	
	(-2,1,1)		P_x	-0.00045988		P_x	0.00045988		P_x	-0.000459942	
		U_y	P_y	0.00237828	Uy	P_y	-0.00237828	U_y	P_y	0.00244656	
			P_z	0.000182972		P_z	0.000182972		P_z	0.000182972	
			P_{x}	-0.00129763	U_z	P_x	-0.00129763	U_z	P_x	-0.00112648	
		U_z	P_y	0.000648814		P_y	0.000648814		P_y	0.000563241	
			P_z	0.00379342		P_z	-0.0037 9342		P_z	0.00379342	
			P_x	0.00360796		P_x	-0.00360796		P_x	0.00375693	
		U_x	P_y	-0.000720123	U_x	P_y	0.000720123	U_x	P_y	-0.000720587	
			P_z	-0.000746982		P_z	-0.000746982		P_z	-0.000746982	
			P_{x}	-0.000720123		P_x	0.000720123	Uy	P_x	-0.000720587	
	(-1,1,1)	U_y	P_y	0.00360796	U_y	P_y	-0.00360796		P_y	0.00375693	
			P_z	0.000746982		P_z	0.000746982		P_z	0.000746982	
			P_x	-0.00147952	E	P_x	-0.00147952		P_x	-0.00149556	
		Uz	P_y	0.00147952	Uz	P_y	0.00147952	Uz	P_y	0.00149556	
			P_z	0.00582659		P_z	-0.00582659		P_z	0.00582659	
	(1,1,1)	U_x	P_x	0.00360796		P_{x}	-0.00360796		P_x	0.00375693	
щ			P_y	0.000720123		P_y	-0.000720123	U_x	P_y	0.000720587	
石			P_z	0.000746982		P_z	0.000746982		P_z	0.000746982	
			P_r	0.000720123		P_r	-0.000720123	Uy	P_r	0.000720587	
		Uy	P_y	0.00360796	U_y	P_y	-0.00360796		P_y	0.00375693	
			P_z	0.000746982		P_z	0.000746982		P_z	0.000746982	
		Uz	P_x	0.00147952		P_x	0.00147952	U _z	P_x	0.00149556	
			P_{v}	0.00147952	U_z	P_{v}	0.00147952		P_{v}	0.00149556	
			P_z	0.00582659		P_z	-0.00582659		P_z	0.00582659	
		U _x	P_x	0.0030681	U _x	P_x	-0.0030681	U _x	P_{x}	0.00313648	
			P_y	0.00045988		P_y	-0.00045988		P_y	0.000459942	
			P_z	0.000365943		P_z	0.000365943		P_z	0.000365943	
		Uy	P_x	0.00045988	Uy	P_x	-0.00045988	Uy	P_{x}	0.000459942	
	(2,1,1)		P_y	0.00237828		P_y	-0.00237828		P_y	0.00244656	
			P_z	0.000182972		P_z	0.000182972		P_z	0.000182972	
			P_x	0.00129763		P_x	0.00129763	U_z	P_{x}	0.00112648	
		Uz	P_y	0.000648814	Uz	P_y	0.000648814		P_y	0.000563241	
			P_z	0.00379342		P_z	-0.00379342		P_z	0.00379342	
	(1,1,2)	U _x	P_x	0.00219301		P_x	-0.00219301	U _x	P_x	0.00232018	
			P_y	0.000244786	U_x	P_y	-0.000244786		P_y	0.000232217	
			P_z	0.000509969		P_z	0.000509969		P_z	0.000509969	
		U_y	P_x	0.000244786	11	P_x	-0.000244786	11	P_x	0.000232217	
			P_{v}	0.00219301	U_y	P_{ν}	-0.00219301	Uy	P_{v}	0.00232018	

			P_z	0.000509969		P_z	0.000509969		P_z	0.000509969
			P_x	0.000724921	Uz	P_x	0.000724921		P_x	0.000824985
		U_z	P_y	0.000724921		P_y	0.000724921	U_z	P_y	0.000824985
			P_z	0.00431309		P_z	-0.00431309		P_z	0.00431309
		U _x	P_x	0.00152224	U _x	P_x	-0.00152224	U _x	P_x	0.00162423
			P_y	9.21993E-05		P_y	-9.21993E-05		P_y	8.65536E-05
			P_z	0.000278282		P_z	0.000278282		P_z	0.000278282
	(1,1,3)	Uy	P_x	9.21993E-05	Uy	P_x	-9.21993E-05	Uy	P_x	8.65536E-05
[]			P_y	0.00152224		P_y	-0.00152224		P_y	0.00162423
			P_z	0.000278282		P_z	0.000278282		P_z	0.000278282
		Uz	P_{x}	0.000369375	Uz	P_x	0.000369375	Uz	P_{x}	0.000432167
			P_y	0.000369375		P_y	0.000369375		P_y	0.000432167
			P_z	0.00313507		P_z	-0.00313507		P_z	0.00313507

表 5.4 水平橫向等向材料受單位點荷重作用之位移量(岩石 2)與胡廷秉及 Ding 比

葝	表
エム	~~~

<i>岩石</i> 類型	幾何 位置 (x,y,z)	水平部份				胡拜	€秉(2009)	Ding(2006)		
			P_x	0.00309206		P_{x}	-0.00309198		P_{x}	0.00319948
		U_x	P_y	-0.000511528	U_x	P_y	0.00051154	U_x	P_y	-0.000514063
			P_z	-0.000667319		P_z	-0.000667257		P_z	-0.000667319
			P_x	-0.000511528		P_x	0.00051154		P_x	-0.000514052
	(-2,1,1)	U_y	P_y	0.00232477	U_y	P_y	-0.00232467	U_y	P_y	0.00242829
			P_z	0.000333659		P_z	0.000333629		P_z	0.000333659
			P_x	-0.00145318		P_x	-0.00145313		P_x	-0.00121745
		U_z	P_y	0.00072659	U_z	P_y	0.000726566	U_z	P_y	0.000608737
		-	P_z	0.00447093	2	P_z	-0.00447097		P_z	0.00447093
			P_x	0.00353997		P_x	-0.00353984		P_x	0.00378044
		U_x	P_y	-0.000804893	U_x	P_y	0.000804863	U_x	P_y	-0.000826459
			P_z	-0.00109007		P_z	-0.00108995		P_z	-0.00109007
			P_x	-0.000804893		P_x	0.000804863		P_x	-0.000826499
	(-1,1,1)	U_y	P_y	0.00353997	U_y	P_y	-0.00353984	U_y	P_y	0.00378026
		-	P_z	0.00109007		P_z	0.00108995		P_z	0.00109007
	Uz		P_{x}	-0.0016356	1 E D	P_x	-0.00163548		P_{x}	-0.0017119
		U_z	P_y	0.0016356	U_{z}	P_y	0.00163548	U_z	P_y	0.00171179
			P_z	0.00680803		P_z	-0.006808		P_z	0.00680803
			P_x	0.00353997	31	P_x	-0.00353984		P_x	0.00378044
岩		U_x	P_y	0.000804893	U_x	P_y	-0.000804863	U_x	P_{y}	0.000826459
石			P_z	0.00109007		P_z	0.00108995		P_z	0.00109007
2			P_x	0.000804893		P_x	-0.000804863		P_x	0.000826499
	(1,1,1)	U_y	P_y	0.00353997	U_y	P_y	-0.00353984	U_y	P_y	0.00378026
			P_z	0.00109007		P_z	0.00108995		P_z	0.00109007
			P_x	0.0016356		P_{x}	0.00163548		P_{x}	0.0017119
		U_z	P_y	0.0016356	U_z	P_y	0.00163548	U_z	P_y	0.00171179
			P_z	0.00680803		P_z	-0.006808		P_z	0.00680803
			P_x	0.00309206		P_{x}	-0.00309198		P_{x}	0.00319948
		U_x	P_y	0.000511528	U_x	P_y	-0.00051154	U_x	P_y	0.000514063
			P_z	0.000667319		P_z	0.000667257		P_z	0.000667319
			P_x	0.000511528		P_x	-0.00051154		P_x	0.000514052
	(2,1,1)	U_y	P_y	0.00232477	U_y	P_y	-0.00232467	U_y	P_y	0.00242829
			P_z	0.000333659		P_z	0.000333629		P_z	0.000333659
			P_x	0.00145318		P_{x}	0.00145313		P_{x}	0.00121745
	Uz	U_z	P_y	0.00072659	U_z	P_y	0.000726566	U_z	P_y	0.000608737
		P_z	0.00447093		P_z	-0.00447097		P_z	0.00447093	
			P_{χ}	0.00208734		P_{χ}	-0.0020873		P_{χ}	0.00219268
	(1,1,2) $U_x = U_x$	P_y	0.00024/28/	U_x	P_y	-0.000247271	U_{χ}	P_y	0.000102118	
			0.0003/9204		P _Z	0.0003/9134		P_Z	0.0005/9204	
		Γ_{χ} P	0.000247287	11	P_{χ}	-0.000247271	п	P_{χ}	0.000102218	
		v_y	P P	0.00203734	0 _y	P P	0.000579134	v_y	P P	0.000579204

		P_x	0.000686117		P_x	0.000686061		P_x	0.000841006
	U_z	P_y	0.000686117	U_z	P_y	0.000686061	U_z	P_y	0.000840919
		P_z	0.00459336		P_z	-0.00459334		P_z	0.00459336
		P_x	0.00144832		P_x	-0.00144831		P_x	0.00158119
	U_x	P_y	8.92058E-05	U_x	P_y	-8.92004E-05	U_x	P_y	8.04222E-05
		P_z	0.000288979		P_z	0.000288947		P_z	0.000288979
		P_{x}	8.92058E-05		P_x	-8.92004E-05		P_{x}	8.04266E-05
(1,1,3)	U_y	P_y	0.00144832	U_y	P_y	-0.00144831	U_y	P_y	0.00158115
		P_z	0.000288979		P_z	0.000288947		P_z	0.000288979
		P_{x}	0.000325943		P_x	0.00032592		P_x	0.000413457
	U_z	P_y	0.000325943	U_z	P_y	0.00032592	U_z	P_y	0.000413416
		P_z	0.00319158		P_z	-0.00319158		P_z	0.00319158

表 5.5 水平横向等向材料受單位點荷重作用之位移量(岩石 3)與胡廷秉及 Ding 比

葝	表
エム	~~~

<i>岩石</i> 類型	幾何 位 <u>置</u> (x,y,z)	水平部份				胡좌	€秉(2009)	Ding(2006)			
			P_x	0.0029916		P_x	-0.0029916		P_x	0.00303505	
		U_x	P_y	-0.000421979	U_x	P_y	0.000421979	U_x	P_y	-0.000420984	
			P_z	-0.000186724		P_z	-0.000186724		P_z	-0.000186724	
			P_x	-0.000421979		P_x	0.000421979		P_x	-0.000420979	
	(-2,1,1)	U_y	P_y	0.00235863	U_y	P_y	-0.00235863	U_y	P_y	0.00240358	
			P_z	9.33619E-05		P_z	9.33619E-05		P_z	9.33619E-05	
			P_x	-0.00094505		P_x	-0.00094505		P_x	-0.000804008	
		U_z	P_y	0.000472525	U_z	P_y	0.000472525	U_z	P_y	0.00040201	
			P_z	0.00256806		P_z	-0.00256806		P_z	0.00256806	
			P_x	0.00359324		P_{x}	-0.00359324		P_x	0.00368958	
		U_x	P_y	-0.000646961	U_x	P_y	0.000646961	U_x	P_y	-0.000639343	
			P_z	-0.000472256		P_z	-0.000472256		P_z	-0.000472256	
	(-1,1,1) U _y		P_x	-0.000646961		P_x	0.000646961		P_x	-0.000639332	
		U_y	P_y	0.00359324	U_y	P_y	-0.00359324	U_y	P_y	0.00368958	
			P_z	0.000472256		P_z	0.000472256		P_z	0.000472256	
	Uz		P_x	-0.0011482	ES	P_x	-0.0011482		P_x	-0.00111832	
		U_z	P_y	0.0011482	U_z	P_y	0.0011482	U_z	P_y	0.00111834	
			P_z	0.00402915		P_z	-0.00402915		P_z	0.00402915	
			P_x	0.00359324	18	P_x	-0.00359324		P_x	0.00368958	
史		U _x	P_y	0.000646961	U_x	P_y	-0.00064696	U_x	P_y	0.000639343	
ムム			P_z	0.000472256		P_z	0.000472256		P_z	0.000472256	
3		Uy	P_x	0.000646961	U _y	P_x	-0.000646961		P_x	0.000639332	
	(1,1,1)		P_y	0.00359324		P_y	-0.00359324	U_y	P_y	0.00368958	
			P_z	0.000472256		P_z	0.000472256		P_z	0.000472256	
			P_x	0.0011482		P_{x}	0.0011482		P_{x}	0.00111832	
		U_z	P_y	0.0011482	U_z	P_y	0.0011482	U_z	P_y	0.00111834	
			P_z	0.00402915		P_z	-0.00402915		P_z	0.00402915	
			P_x	0.0029916		P_{x}	-0.0029916		P_{x}	0.00303505	
		U_x	P_y	0.000421979	U_x	P_y	-0.00042198	U_x	P_y	0.000420984	
			P_z	0.000186724		P_z	0.000186724		P_z	0.000186724	
			P_x	0.000421979		P_x	-0.000421979		P_x	0.000420979	
	(2,1,1)	U_y	P_y	0.00235863	U_y	P_y	-0.00235863	U_y	P_y	0.00240358	
			P_z	9.33619E-05		P_z	9.33619E-05		P_z	9.33619E-05	
			P_x	0.00094505		P_x	0.00094505		P_x	0.000804008	
		U_z	P_y	0.000472525	U_z	P_y	0.000472525	U_z	P_y	0.00040201	
	$(1,1,2) \qquad \begin{array}{c} U_z \\ U_x \\ U_y \end{array}$		P_z	0.00256806		P_z	-0.00256806		P_z	0.00256806	
			P_x	0.00225249		P_x	-0.00225249		P_x	0.00234198	
		P_y	0.000247842	U_x	P_y	-0.00024784	U_x	P_y	0.000224954		
			P_z	0.000433514		P_z	0.000433514	1	P_z	0.000433514	
		.	$\tilde{P_r}$	0.000247842		$\tilde{P_r}$	-0.000247842		P_r	0.000224951	
		U_y	P_{ν}	0.00225249	U_y	P_{v}	-0.00225249	U_y	$\tilde{P_{v}}$	0.00234197	

		P_z	0.000433514		P_z	0.000433514		P_z	0.000433514
		P_x	0.000719514		P_x	0.000719514		P_x	0.000780111
	U_z	P_y	0.000719514	U_z	P_y	0.000719514	U_z	P_y	0.000780119
		P_z	0.0033976		P_z	-0.0033976		P_z	0.0033976
		P_x	0.00156367		P_x	-0.00156367		P_{x}	0.00164465
	U_x	P_y	0.00010161	U_x	P_y	-0.00010161	U_x	P_y	0.000089809
		P_z	0.000273553		P_z	0.000273553		P_z	0.000273553
		P_x	0.00010161		P_x	-0.00010161		P_x	8.98088E-05
(1,1,3)	U_y	P_y	0.00156367	U_y	P_y	-0.00156367	U_y	P_y	0.00164464
		P_z	0.000273553		P_z	0.000273553		P_z	0.000273553
		P_x	0.000419341		P_{x}	0.000419341		P_{x}	0.000466705
	U_z	P_y	0.000419341	U_z	P_y	0.000419341	U_z	P_y	0.000466703
		P_z	0.00268231		P_z	-0.00268231		P_z	0.00268231

較表

<i>岩石</i> 類型	幾何 位置 (x,y,z)	水平部份				胡拜	毛秉(2009)	Ding(2006)			
			P_{x}	0.00302762		P_x	-0.00302762		P_x	0.00304882	
		U_x	P_y	-0.00038867	U_x	P_y	0.00038867	U_x	P_y	-0.000387889	
			P_z	4.45854E-05		P_z	4.45854E-05		P_z	4.45854E-05	
			P_x	-0.00038867		P_{x}	0.00038867		P_x	-0.000387889	
	(-2,1,1)	U_y	P_y	0.00244462	U_y	P_y	-0.00244462	U_y	P_y	0.00246698	
			P_z	-2.22927E-05		P_z	-2.22927E-05		P_z	-2.22927E-05	
			P_x	-0.00106716		P_x	-0.00106716		P_x	-0.00100359	
		U_z	P_y	0.000533581	U_z	P_y	0.000533581	U_z	P_y	0.000501794	
			P_z	0.00281966		P_z	-0.00281966		P_z	0.00281966	
			P_x	0.00367758		P_x	-0.00367758		P_x	0.00372294	
	U_x	U_x	P_y	-0.000578541	U_x	P_y	0.000578541	U_x	P_y	-0.000573216	
			P_z	-0.000217824		P _z	-0.000217824		P_z	-0.000217824	
			P_x	-0.000578541		P_x	0.000578541		P_x	-0.000573216	
	(-1,1,1)	U_y	P_y	0.00367758	U_{y}	P_y	-0.00367758	U_y	P_y	0.00372294	
			P_z	0.000217824		P_z	0.000217824		P_z	0.000217824	
		P_x	-0.00121394		P_x	-0.00121394		P_x	-0.00120315		
		U_z	P_y	0.00121394	U_z	P_{y}	0.00121394	U_z	P_y	0.00120315	
			P_z	0.00435499		P_z	-0.00435499		P_z	0.00435499	
岩			P_x	0.00367758	U _x	P_x	-0.00367758		P_x	0.00372294	
石		U_x	P_y	0.000578541		P_y	-0.000578541	U_x	P_y	0.000573216	
4			P_z	0.000217824		P_z	0.000217824		P_z	0.000217824	
		Uy	P_x	0.000578541	Uy	P_x	-0.000578541		P_x	0.000573216	
	(1,1,1)		P_y	0.00367758		U_y	U_y	P_y	-0.00367758	U_y	P_y
			P_z	0.000217824		P_z	0.000217824		P_z	0.000217824	
			P_x	0.00121394		P_x	0.00121394		P_x	0.00120315	
		U_z	P_y	0.00121394	U_z	P_y	0.00121394	U_z	P_y	0.00120315	
			P_z	0.00435499		P_z	-0.00435499		P_z	0.00435499	
			P_x	0.00302762		P_x	-0.00302762		P_x	0.00304882	
		U_x	P_y	0.00038867	U_x	P_y	-0.00038867	U_x	P_y	0.000387889	
			P_z	-4.45854E-05		P_z	-4.45854E-05		P_z	-4.45854E-05	
			P_x	0.00038867		P_{x}	-0.00038867		P_{x}	0.000387889	
	(2,1,1)	U_y	P_y	0.00244462	U_y	P_y	-0.00244462	U_y	P_y	0.00246698	
			P_z	-2.22927E-05		P_z	-2.22927E-05		P_z	-2.22927E-05	
			P_x	0.00106716		P_x	0.00106716		P_x	0.00100359	
		U_z	P_y	0.000533581	U_z	P_y	0.000533581	U_z	P_y	0.000501794	
			P_z	0.00281966		P_z	-0.00281966		P_z	0.00281966	
		P_x	0.00234668		P_x	-0.00234668		P_x	0.00238857		
	(1,1,2)	U_x	P_y	0.000212816	U_x	P_y	-0.000212816	U_x	P_y	0.00020117	
			P_{z}	0.000283247		P_{z}	0.000283247		P_{z}	0.000283247	

		P_x	0.000212816		P_x	-0.000212816		P_x	0.00020117
	U_y	P_y	0.00234668	U_y	P_y	-0.00234668	U_y	P_y	0.00238857
		P_z	0.000283247		P_z	0.000283247		P_z	0.000283247
		P_x	0.000727698		P_x	0.000727698		P_x	0.000756213
	U_z	P_y	0.000727698	Uz	P_y	0.000727698	U_z	P_y	0.000756213
		P_z	0.00361911		P_z	-0.00361911		P_z	0.00361911
		P_x	0.00165062		P_x	-0.00165062		P_x	0.00168881
	U_x	P_y	8.69199E-05	U _x	P_y	-8.69199E-05	U_x	P_y	8.09651E-05
		P_z	0.000189766		P_z	0.000189766		P_z	0.000189766
		P_x	8.69199E-05		P_x	-8.69199E-05		P_x	8.09651E-05
(1,1,3)	U_y	P_y	0.00165062	U_y	P_y	-0.00165062	U_y	P_y	0.00168881
		P_z	0.000189766		P_z	0.000189766		P_z	0.000189766
		P_x	0.000425632		P_x	0.000425632		P_x	0.000447831
U	U_z	P_y	0.000425632	U_z	P_y	0.000425632	U_z	P_y	0.000447831
		P_z	0.00286673		P_z	-0.00286673		P_z	0.00286673

表 5.7 水平橫向等向材料受單位點荷重作用之位移量(岩石 5)與胡廷秉及 Ding 比

藃	夫
ŦX	x

岩石 類型	幾何 位置 (x,y,z)		水平部份				廷秉(2009)	Ding(2006)																												
			P_x	0.00363966		P_x	-0.00363966		P_x	0.00366592																										
		U_x	P_y	-0.000421653	U_x	P_y	0.000421653	U_x	P_y	-0.000418024																										
			P_z	-0.000161525		P_z	-0.000161525		P_z	-0.000161525																										
			P_x	-0.000421653		P_x	0.000421653		P_x	-0.000418024																										
	(-2,1,1)	U_y	P_y	0.00300718	U_y	P_y	-0.00300718	U_y	P_y	0.00303889																										
			P_z	8.07624E-05		P_z	8.07624E-05		P_z	8.07624E-05																										
			P_x	-0.00104209		P_x	-0.00104209		P_x	-0.000972397																										
		U_z	P_y	0.000521043	U_z	P_y	0.000521043	U_z	P_y	0.000486198																										
			P_z	0.00348508		P_z	-0.00348508		P_z	0.00348508																										
			P_x	0.00419039		P_x	-0.00419039		P_x	0.00424299																										
		U_x	P_y	-0.000500387	U_x	P_y	0.000500387	U_x	P_y	-0.000482488																										
			P_z	-0.000382183		P_z	-0.000382183		P_z	-0.000382183																										
		U_{y}	P_x	-0.000500387		P_x	0.000500387		P_x	-0.000483206																										
	(-1,1,1)		P_y	0.00419039	U _y ES	P_y	-0.00419039	U_y	P_y	0.00424119																										
			P_z	0.000382183		P_z	0.000382183		P_z	0.000382183																										
	Uz		P_x	-0.00122922		P_x	-0.00122922		P_x	-0.00121889																										
		U_z	P_y	0.00122922	U_z	P_{y}	0.00122922	U_z	P_y	0.0012135																										
			P_z	0.00544737	18	P_{z}	-0.00544737		P_z	0.00544737																										
			P_x	0.00419039		P_x	-0.00419039		P_x	0.00424299																										
岩		U_x	P_y	0.000500387	U_x	P_y	-0.000500387	U_x	P_y	0.000482488																										
<i>1</i> -			P_z	0.000382183		P_z	0.000382183		P_z	0.000382183																										
5			P_x	0.000500387		P_x	-0.000500387		P_x	0.000483206																										
	(1,1,1)	U_y	P_y	0.00419039	U_y	P_y	-0.00419039	U_y	P_y	0.00424119																										
			P_z	0.000382183		P_z	0.000382183		P_z	0.000382183																										
			P_x	0.00122922		P_x	0.00122922		P_x	0.00121889																										
		U_z	P_y	0.00122922	U_z	P_y	0.00122922	U_z	P_y	0.0012135																										
			P_z	0.00544737		P_z	-0.00544737		P_z	0.00544737																										
			P_x	0.00363966		P_x	-0.00363966		P_x	0.00366592																										
		U_x	P_y	0.000421653	U_x	P_y	-0.000421653	U_x	P_y	0.00041779																										
			P_z	0.000161525		P_z	0.000161525		P_z	0.000161525																										
			P_x	0.000421653		P_x	-0.000421653		P_x	0.000418024																										
	(2,1,1)	U_y	P_y	0.00300718	U_y	P_y	-0.00300718	U_y	P_y	0.00303747																										
			P_z	8.07624E-05		P_z	8.07624E-05		P_z	8.07624E-05																										
	Uz	P_x	0.00104209		P_x	0.00104209		P_x	0.000972397																											
		P_y	0.000521043	U_z	P_y	0.000521043	U_z	P_y	0.000484067																											
		P_z	0.00348508		P_z	-0.00348508		P_z	0.00348508																											
		(1,1,2) U _x	P_x	0.0024611		P_x	-0.0024611		P_x	0.00251239																										
	$(1 \ 1 \ 2)$		P_y	0.000158195	U_{r}	U_{r}	U_x	U_x	U_{r}	U_x	U_x	U_x	U_x	U_x	U_x	U_x	U_x	U_x	U_x	U_x	U_x	U_x	U_x	U_x	U_x	U_x	U_x	U_x	U_{x}	U_x	U_x	P_y	-0.000158195	U_x	P_y	0.000136498
	(1,1,2)		P_z	0.000368662		P_z	0.000368662		P_z	0.000368662																										
		U_{γ}	Pr	0.000158195	U_{γ}	P_{r}	-0.000158195	U_{γ}	P_{x}	0.000136756																										

		P_y	0.0024611		P_y	-0.0024611		P_y	0.00251193
		P_z	0.000368662		P_z	0.000368662		P_z	0.000368662
		P_x	0.000860777		P_x	0.000860777		P_x	0.000891428
	U_z	P_y	0.000860777	U_z	P_y	0.000860777	U_z	P_y	0.000889009
		P_z	0.00489379		P_z	-0.00489379		P_z	0.00489379
		P_{x}	0.00167733		P_{x}	-0.00167733		P_{x}	0.00172727
	U_x	P_y	6.81456E-05	U_x	P_y	-6.81456E-05	U_x	P_y	5.59783E-05
		P_z	0.000262581		P_z	0.000262581		P_z	0.000262581
		P_x	6.81456E-05		P_x	-6.81456E-05		P_x	5.60449E-05
(1,1,3)	U_y	P_y	0.00167733	U_y	P_y	-0.00167733	U_y	P_y	0.00172714
		P_z	0.000262581		P_z	0.000262581		P_z	0.000262581
		P_x	0.000575619		P_x	0.000575619		P_{x}	0.000602134
	U_z	P_y	0.000575619	U_z	P_y	0.000575619	U_z	P_y	0.000601553
		P_z	0.004191		P_z	-0.004191		P_z	0.004191

葝	表
エス	1

<i>岩石</i> 類型	幾何 位置 (x,y,z)	水平部份			胡廷秉(2009)			Ding(2006)		
			P_x	0.0039945		P_x	-0.0039945		P_x	0.00401562
		U_x	P_y	-0.000399749	U_x	P_y	0.000399749	U _x	P_y	-0.000393962
			P_z	-0.000210732		P_z	-0.000210732		P_z	-0.000210732
			P_x	-0.000399749		P_x	0.000399749		P_x	-0.000394124
	(-2,1,1)	Uy	P_y	0.00339487	U_y	P_y	-0.00339487	U_y	P_y	0.00342258
			P_z	0.000105366		P_z	0.000105366		P_z	0.000105366
			P_x	-0.00106017	Uz	P_{x}	-0.00106017	Uz	P_x	-0.00100668
		U_z	P_y	0.000530087		P_y	0.000530087		P_y	0.000501049
		2	P_z	0.00411607		P_z	-0.00411607		P_z	0.00411607
			P_x	0.00447732	U _x	P_{x}	-0.00447732	U _x	P_x	0.00452058
		U_x	P_y	-0.000417117		P_y	0.000417117		P_y	-0.000395456
			P_z	-0.00040058		P_{z}	-0.00040058		P_z	-0.00040058
	(-1,1,1)		P_x	-0.000417117	Uy ES	P_x	0.000417117	Uy	P_{x}	-0.000395911
		U_y	P_y	0.00447732		P_y	-0.00447732		P_y	0.00451861
			P_z	0.00040058		P_z	0.00040058		P_z	0.00040058
		Uz	P_x	-0.00125654	U_z	P_x	-0.00125654	U_z	P_x	-0.00124969
			P_y	0.00125654		P_{y}	0.00125654		P_y	0.00124404
			P_z	0.00644957		P_z	-0.00644957		P_z	0.00644957
岩	(1,1,1)	U _x	P_x	0.00447732		P_x	-0.00447732		P_x	0.00452058
石			P_y	0.000417117	U_x	P_y	-0.000417117	U_x	P_y	0.000395456
U			P_z	0.00040058		P_z	0.00040058		P_z	0.00040058
		Uy	P_x	0.000417117	Uy	P_x	-0.000417117	Uy	P_x	0.000395911
			P_y	0.00447732		P_y	-0.00447732		P_y	0.00451861
			P_z	0.00040058		P_z	0.00040058		P_z	0.00040058
		Uz	P_x	0.00125654	Uz	P_x	0.00125654	Uz	P_x	0.00124969
			P_y	0.00125654		P_y	0.00125654		P_y	0.00124404
			P_z	0.00644957		P_z	-0.00644957		P_z	0.00644957
	(2,1,1)	U_x	P_x	0.0039945		P_x	-0.0039945	U_x	P_x	0.00401562
			P_y	0.000399749	U_x	P_y	-0.000399749		P_y	0.000393962
		Uy	P_z	0.000210732		P_z	0.000210732	Uy	P_z	0.000210732
			P_{χ}	0.000399749	U_y	P_{χ}	-0.000399749		P_{χ}	0.000394124
			P_y	0.00339487		P_y	-0.00339487		P_y	0.00342258
		Uz	P_Z	0.000105300	Uz	P_Z	0.000105300	Uz	P_Z	0.000103300
			P_{χ}	0.00100017		P_{χ}	0.00100017		P_{χ}	0.00100008
			г _у р	0.000330087		P P	0.000330087		Г _у р	0.000301049
	(1 1 2)	U _x	Γ _Z D	0.00411007		Γ _Z D	-0.00411007		Γ _Z D	0.00411007
			P_{χ}	0.00232703	IJ	P_{χ}	-0.00232703	π	P_{χ}	0.00237133
	(1,1,2)		P	0.000376866	O_{χ}	P	0.000376866	O_X	P	0.000376866

		P_x	0.00012568		P_{x}	-0.00012568		P_{x}	0.000103492
	Uy	P_y	0.00252765	U _y	P_y	-0.00252765	U_y	P_y	0.0025714
		P_z	0.000376866		P_z	0.000376866		P_z	0.000376866
	Uz	P_x	0.000940514	Uz	P_x	0.000940514		P_{x}	0.000964275
		P_y	0.000940514		P_y	0.000940514	Uz	P_y	0.000961222
		P_z	0.00597417		P_z	-0.00597417		P_z	0.00597417
(1,1,3)	U _x	P_x	0.00170578	U _x	P_x	-0.00170578	U _x	P_x	0.00175013
		P_y	5.79916E-05		P_y	-5.79916E-05		P_y	4.43849E-05
		P_z	0.000283404		P_z	0.000283404		P_z	0.000283404
	Uy	P_x	5.79916E-05		P_x	-5.79916E-05	Uy	P_{x}	4.44554E-05
		P_y	0.00170578	U_y	P_y	-0.00170578		P_y	0.00174994
		P_z	0.000283404		P_z	0.000283404		P_z	0.000283404
	Uz	P_x	0.000676091		P_x	0.000676091	U _z	P_{x}	0.000697856
		P_y	0.000676091	U,	P_y	0.000676091		P_y	0.000696677
		P_z	0.00532009	- Z	P_z	-0.00532009		P_z	0.00532009

圖 5.3 岩石 2 在點位(-2,1,1)與 Ding 比較圖

圖 5.4 岩石 2 在點位(2,1,1)與 Ding 比較圖

圖 5.7 岩石 4 在點位(-2,1,1)與 Ding 誤差圖

圖 5.8 岩石 4 在點位(2,1,1)與 Ding 比較圖

圖 5.11 岩石 6 在點位(-2,1,1)與 Ding 比較圖

圖 5.12 岩石 6 在點位(2,1,1)與 Ding 比較圖

以上為半無限空間水平橫向等向性材料單位點荷重作用在原點之位移閉合 解,選取的材料範圍是採 Gerrard(1975) and Amadei et al.(1987) 建議彈性常數範 圍,分別對計算點位(x,y,z)在(-2,1,1)、(-1,1,1)、(1,1,1)、(2,1,1)、(3,1,1)、(1,1,2) 及(1,1,3)位置做分析,首先將第四章所提之位移解型式(4.31a)-(431c)式經由簡化 結果變為水平橫向等向情況,然後帶入已知參數,如:彈性常數、計算幾何位置、 點荷重 Px、Py、Pz...等等,整理出只含有ω函數之方程式,然後依據本章 5.1 節所提出之的第一部分及的第二部分處理步驟,找出所有可能使分母等於零的奇 異點位置,而各岩石之奇異點位置如附錄 D(水平部份),最後則利用殘數定理作 殘數計算可得知水平橫向等向性材料受載重作用所得之位移量分別受到(1)材料 的異向性、(2)待測幾何位置及深度、(3)載重大小及形式等影響。其位移結果與 胡廷秉(2009)與 Ding et al.(2006)比較,若排除座標系統與受力方向定義不同與胡 廷秉(2009)結果為完全相同,而由誤差計算得知與 Ding et al.(2006)比較結果非常 相近。

本研究所建立求解的程式,是直接將推的方程符號型式輸入到數學軟體 (Mathematica 7),將已知參數代入(如:彈性常數、計算幾何位置、點荷重 Px、 Py、Pz...等等),逐一化簡方程,直到找出方程之奇異點位置,最終在利用殘數 定理積分,而得到位移閉合解析解,如表 5.3 至表 5.8 所示。與胡廷秉(2009)求 解過程差異點為胡廷秉(2009)是先經由整理、分析、簡化而得到水平位移解型式, 然後在代入已知材料彈性常數,直接得到位移閉合解。就本研究利用的方法,其 算出的水平位移結果與胡廷秉(2009)比較完全相同,與 Ding et al.(2006)結果也非 常相近。若進一步想求應力結果,除了可由本文所推導之應力解型式得知,也可 由已知位移結果就可由第三章之(3.2b)及(3.3)式分別得到各個應力解。

本文水平位移解求解過程,使用相同的求解方法,差異點在於求解過程的順 序不同,原因在於對半無限空間垂直部份,以目前無法經由整理、分析、簡化得 到垂直位移解型式的情況,由本文水平位移求解順序結果可間接驗證,若採用本 方法,先將已知材料彈性常數代入,逐一化簡方程,可初步得知特殊範例之半無 限垂直橫向等向位移解型式,**未來只要能找到奇異點位置就可利用殘數定理積分**, 此方法是可行的,以下就來說明垂直部分結果。

106

▶ 垂直部分結果結果

垂直横向等向性材料受到表面三維點荷重分別作用在原點,此垂直横向等向 性材料彈性常數範圍如表 5.1,組合之基本 5 個彈性常數如表 5.3 分為 7 種。根 據第四章 4.2 節之(4.36a)-(4.36c)式及(4.37a)-(4.37f)式位移和應力閉合解型式於此 選擇岩石 4($\frac{E}{E'}$ =1, $\frac{G}{G'}$ =1.5, $\frac{\upsilon}{\upsilon}$ =1)為範例說明 (c_1 =56, c_2 =54, c_3 =32, c_4 =20, c_5 =20),首先依照 5.1 節第一部分及第二部分 所列步驟,利用 Mathematica 7 軟體純整化簡,第一步驟為先計算第四章之 (4.34a)-(4.34c)式,此尚未乘上 $\frac{1}{\psi_i(\omega)}$ (i=1~3),並各別乘上 $\frac{1}{i\omega}$ 之值化簡後,令 $\frac{C_d^1(\omega)D_{11}^1(\omega)}{i\omega}$ 以符號 CDF111 表示、 $\frac{C_d^2(\omega)D_{11}^2(\omega)}{i\omega}$ 以符號 CDF112 表示…以此類 推,如以下表 5.9 若此部分方程乘上 $\frac{1}{\psi_i(\omega)}$ (i=1~3)則相當於第四章之 (4.31a)~(4.31c)之 $\overline{u}_{x1}(\omega)$ 、 $\overline{u}_{x2}(\omega)$ 、以此類推:

	岩石 4
方程	方程式型式
CDF111	$-\left(25\left(-\frac{7 \pm (1+14 \omega^2+\omega^4) \sqrt{20-\frac{2 (1+\omega^4)}{\omega^2}} (3 (-1+\omega^2) \mathbb{P}_x-2 \pm (1+\omega^2) \mathbb{P}_y\right)}{\omega}-\frac{1}{\omega}\right)$
	$\frac{\pm (1 - 10 \omega^2 + \omega^4) \sqrt{644 + \frac{70 (1+\omega^4)}{\omega^2}} (3 (-1 + \omega^2) \mathbf{P}_x - 4 \pm (1 + \omega^2) \mathbf{P}_y)}{\omega} - \frac{\omega}{6 \sqrt{46 + \frac{5}{\omega^2} + 5 \omega^2}} \left(-1 + \omega^4\right) \sqrt{70 - \frac{7 (1 + \omega^4)}{\omega^2}} \mathbf{P}_z\right) \right) / (1 + \omega^4) 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$
	$\left(2\pi\left(-1+\omega^{2}\right)\left(3000\left(1+\omega^{2}\right)^{2}\sqrt{46+\frac{5}{\omega^{2}}+5\omega^{2}}\sqrt{70-\frac{7\left(1+\omega^{4}\right)}{\omega^{2}}}-\frac{1}{\omega^{2}}\frac{1}{25\sqrt{2}}\left(-\sqrt{7}\sqrt{46+\frac{5}{\omega^{2}}+5\omega^{2}}\left(1-10\omega^{2}+\omega^{4}\right)^{2}+7\left(1+14\omega^{2}+\omega^{4}\right)^{2}\sqrt{10-\frac{1+\omega^{4}}{\omega^{2}}}\right)\right)\right)$
CDF112	$-\left(175 \pm (1+\omega^{2}) \left(4 \omega^{2} (1+\omega^{2}) \sqrt{20 - \frac{2(1+\omega^{4})}{\omega^{2}}} \left(3 (-1+\omega^{2}) \mathbf{P}_{\mathbf{x}} - 2 \pm (1+\omega^{2}) \mathbf{P}_{\mathbf{y}}\right) + 2 (1-10 \omega^{2} + \omega^{4}) ((-1+\omega^{4}) \mathbf{P}_{\mathbf{x}} - \pm (1+6 \omega^{2} + \omega^{4}) \mathbf{P}_{\mathbf{y}}) - \pm \omega (-1+\omega^{2}) (1+14 \omega^{2} + \omega^{4}) \sqrt{20 - \frac{2(1+\omega^{4})}{\omega^{2}}} \mathbf{P}_{\mathbf{z}}\right)\right) / \left(2 \pi \omega^{3} (-1+\omega^{2}) \left(1+14 \omega^{2} + \omega^{4}\right) \sqrt{20 - \frac{2(1+\omega^{4})}{\omega^{2}}} - \frac{1}{\omega^{2}} 125 \sqrt{2} \left(-\sqrt{7} \sqrt{46 + \frac{5}{\omega^{2}} + 5 \omega^{2}} (1-10 \omega^{2} + \omega^{4})^{2} + 7 (1+14 \omega^{2} + \omega^{4})^{2} \sqrt{10 - \frac{1+\omega^{4}}{\omega^{2}}}\right)\right)\right)$

表 5.9 範例說明岩石 4 之 $\frac{C_d^i(\omega)D_{i_1}^i(\omega)}{i\omega}$ (*i*=1~3) 方程表

$$CDF211 \qquad - \left[25 \pm (1 + \omega^{2}) \left[-4 \omega^{2} (1 + \omega^{2}) \sqrt{644 + \frac{70 (1 + \omega^{4})}{\omega^{2}}} (3 (-1 + \omega^{2}) F_{x} - 4 \pm (1 + \omega^{2}) F_{y}) + 14 (1 + 14 \omega^{2} + \omega^{4}) ((-1 + \omega^{4}) F_{x} - 4 (1 + 6 \omega^{2} + \omega^{4}) F_{y}) - \frac{14 (1 + 14 \omega^{2} + \omega^{4}) ((-1 + \omega^{4}) F_{x} - 4 (1 + 6 \omega^{2} + \omega^{4}) F_{y}) - \frac{14 \omega (-1 + \omega^{2}) (1 - 10 \omega^{2} + \omega^{4}) \sqrt{644 + \frac{70 (1 + \omega^{4})}{\omega^{2}}} F_{x}} \right] \right] /$$

$$CDF113 \qquad \left[4 \pi \omega^{3} (-1 + \omega^{2}) \left[4 \pi \omega^{3} (-1 + \omega^{2}) \left[4 \pi \omega^{3} (-1 + \omega^{2}) \sqrt{46 + \frac{5}{\omega^{2}} + 5 \omega^{2}} \sqrt{70 - \frac{7 (1 + \omega^{4})}{\omega^{2}}} - \frac{1}{\omega^{2}} \frac{1}{25 \sqrt{2}} \left[-\sqrt{7} \sqrt{46 + \frac{5}{\omega^{2}} + 5 \omega^{2}} (1 - 10 \omega^{2} + \omega^{4})^{2} + 7 (1 + 14 \omega^{2} + \omega^{4})^{2} \sqrt{10 - \frac{1 + \omega^{4}}{\omega^{2}}} \right] \right] \right] \right]$$

$$CDF211 \qquad 0$$

$$CDF211 \qquad 0$$

$$CDF212 \qquad - \left[175 \pm \left[-2 \pm (-1 + \omega^{4}) \left[1 + \omega^{4} + \omega^{2} \left[-10 + 6 \sqrt{20 - \frac{2 (1 + \omega^{4})}{\omega^{2}}} \right] \right] F_{x} - \frac{2 \left[1 + \omega^{3} + \omega^{2} \left[-4 + 4 \sqrt{20 - \frac{2 (1 + \omega^{4})}{\omega^{2}}} \right] \right] F_{x} - \frac{2 \left[1 + \omega^{3} + \omega^{2} \left[-4 + 4 \sqrt{20 - \frac{2 (1 + \omega^{4})}{\omega^{2}}} \right] \right] F_{x} - (-1 + \omega) (1 + 14 \omega^{2} + \omega^{4}) \sqrt{20 - \frac{2 (1 + \omega^{4})}{\omega^{2}}} F_{x} \right] \right] / \left[4 \pi \omega^{3} \left[5000 (1 + \omega^{2})^{2} \sqrt{46 + \frac{5}{\omega^{2}} + 5 \omega^{2}} \sqrt{70 - \frac{7 (1 + \omega)}{\omega^{2}}} - \frac{1}{\omega^{2}} \right] F_{x} - \frac{1}{\omega^{2}} 125 \sqrt{2} \left[-\sqrt{7} \sqrt{46 + \frac{5}{\omega^{2}} + 5 \omega^{2}} (1 - 10 \omega^{2} + \omega^{4})^{2} + 7 (1 + 14 \omega^{2} + \omega^{4}) \sqrt{20 - \frac{2 (1 + \omega^{4})}{\omega^{2}}} F_{x} \right] \right] \right]$$

$$CDF213 = \left[25 \pm \left[-2 \pm (-1 + \omega^{4}) \left[7 + 7 \omega^{4} + \omega^{2} \left[98 - 6 \sqrt{14} \sqrt{46 + \frac{5}{\omega^{2}} + 5 \omega^{2}} \right] \right] \frac{1}{\omega^{2}} - 2 \left[7 + 140 \omega^{2} + 602 \omega^{4} + 140 \omega^{6} + 7 \omega^{8} - 8 \left(\omega + \omega^{2} \right)^{2} \sqrt{644 + \frac{70 \left(1 + \omega^{4} \right)}{\omega^{2}}} \right] \frac{1}{\omega^{2}} \right] \frac{1}{\omega^{2}} - 2 \left[7 + 140 \omega^{2} + 602 \omega^{4} + 140 \omega^{6} + 7 \omega^{8} - 8 \left(\omega + \omega^{2} \right)^{2} \sqrt{644 + \frac{70 \left(1 + \omega^{4} \right)}{\omega^{2}}} \right] \frac{1}{\omega^{2}} - \frac{1}{\omega^{2}} \left[2 \pi \omega^{3} \left[2000 \left(1 + \omega^{2} \right)^{2} \sqrt{464 + \frac{70 \left(1 + \omega^{4} \right)}{\omega^{2}}} - \frac{1}{\omega^{2}} 125 \sqrt{2} \left[-\sqrt{7} \sqrt{464 + \frac{5}{\omega^{2}} + 5 \omega^{2}} \left(1 - 10 \omega^{2} + \omega^{4} \right)^{2} + 7 \left(1 + 14 \omega^{2} + \omega^{4} \right)^{2} \sqrt{10 - \frac{1 + \omega^{4}}{\omega^{2}}} \right] \right] \right] \right]$$

$$\left[- \left[25 \pm \left(1 + \omega^{2} \right) \left[\frac{7 \left(1 + 14 \omega^{2} + \omega^{4} \right) \sqrt{20 - \frac{2 \left(1 + \omega^{4} \right)}{\omega^{2}}} \left(3 \pm \left(-1 + \omega^{2} \right) \frac{1 + \omega^{2}}{\omega} \right) \frac{1}{\omega^{2}} + \frac{1}{\omega^{2}} \frac{1 + \omega^{2}}{\omega^{2}} \frac{1 + \omega^{2}}{\omega^{2}} \right] \right] \right] \right]$$

$$\left[\frac{1 - 10 \omega^{2} + \omega^{4}}{\sqrt{644 + \frac{10 \left(1 + \omega^{4} \right)}}} \left[3 \pm \left(-1 + \omega^{2} \right) \frac{1 + \omega^{2}}{\omega^{2}} \frac{1 + \omega^{2}}{\omega^{2}} \right) \frac{1}{\omega} + \frac{1 + \omega^{2}}{\omega^{2}} \frac{1 + \omega^{2}}{\omega^{$$

$$CDF312 = -\left(25 \pm \sqrt{7} \sqrt{46 + \frac{5}{\omega^2} + 5 \omega^2} + \left(-\frac{1}{2} + \sqrt{2} - \frac{4}{\omega^4} + \omega^2 \left(-10 \sqrt{2} + 12 \sqrt{10 - \frac{1 + \omega^4}{\omega^2}}\right)\right) P_x - \left(\sqrt{2} - 4 \sqrt{2} - \frac{4}{\omega^2} + \sqrt{2} - \frac{4}{\omega^4} + \frac{4}{\omega^2} + \frac{4}{\omega^2} + \sqrt{2} - \frac{4}{\omega^4} + \frac{4}{\omega^2} + \frac{4}{\omega^$$

第二步驟為處理 $\frac{1}{\psi_i(\omega)}$ (i=1~3)部分,如第五章第一節所述,其結果列於下表 5.5,其中 x、y、z 分別為計算幾何位置,而A₁、A₂、A₃為第三章之 3.36a~3.36c 式:

表 5.10 範例說明岩石 4 之
$$\frac{1}{\psi_i(\omega)}$$
 (i=1~3) 方程表

依據第四章(4.36a)-(4.36c)式推導之位移解型式,當表面三維點荷重為 $P_x = 1, P_y = 1, P_z = 1$ 時(單位: N/m³),表 5.9 之各方程分母為0情況之點位可由圖 5.13(a)~(h)所呈現,然後考慮表 5.9 方程之分子部份是否有相同之影響點,再與 表 5.10 綜合檢驗則可找出各方程確切之令分母為0奇異點位置,如表 5.11 所示。 而奇異點檢驗方法為雙向確定:(1)圖 5.13(a)~(h)是利用數學軟體(Mathematica® 7 (2008))將表 5.9 方程之分母部份輸入,以2 維方式將可能使分母為0之點位圖 形畫出,由此可租估大約奇異點所在位置。(2)表 5.11 則同樣為利用數學軟體 (Mathematica® 7 (2008))將表 5.9 方程之分母採分段方式,利用直接求解之 Mathematica® 7 程式碼(Ex: Solve[待解方程 function=0,待解之解 ω])將有所可能 之點位解出,然後綜合起來分析共同影響點位,在與圖 5.13(a)~(h)比較,本節之 討論範例由檢驗方法(1)和檢驗方法(2)結果相同。然而此結果並非為確定之奇異 點位置,必需與分子部份(依照此雙向確定方法)比較考慮是否有相同之影響點, 排除相同影響點則可得前述之表 5.11 確切之此範例奇異點位置列於如下。

由以上得知各方程之奇異點位置,即可按照第四章之(4.31a)~(4.31c)位移閉 合解型式表示,進行殘數定理積分,而得到最終之位移閉合解析解。若要延伸計

算應力解情況,則可將垂直位移解型式代入第三章(3.2b)及(3.3)式處理後,分別 可得到各個應力閉合解。

圖 5.13 (a)~(h) 於表 5.4CDF111~CDF313 分母為 0 之點位圖

表 5.11 範例說明岩石 4 之奇異點位置表

由表 5.11 可得知岩石 4($\frac{E}{E} = 1, \frac{G}{G} = 1.5, \frac{\upsilon}{\upsilon} = 1$)位移方程之奇異點位置,在

 $\frac{1}{\psi_i(\omega)}$ (i=1~3)方程內確定固定含有2個奇異點需處理,分別為範例說明求解方 法之第二部分所列之結果,如5.5a~5.5c 三式。而x向和y向之位移Ux、Uy受到 P_z 點荷重影響之方程分別又含2個相同之奇異點需處理: $\sqrt{5-2\sqrt{6}}$ 和 $-\sqrt{5-2\sqrt{6}}$; 另外最重要的由此表可發現y向位移Uy不受到Px點荷重之影響。

若已知岩石 4 ($\frac{E}{E}$ = 1, $\frac{G}{G}$ = 1.5, $\frac{v}{v}$ = 1)位移方程之奇異點位置則可進行殘數 定理積分,而本論文之困難點在於「殘數積分」部分,由於所得位移閉合解析解 方程與奇點位置,帶有複雜的根號形式,如表 5.9 和表 5.11,在處理方面無法直 接利用數學軟體(mathematica)綜合整理得到最終之殘數定理積分結果以至於無 法得到位移閉合解析解,以下就可解部分(殘數積分),來表示此範例之位移解型 式,如表 5.12 至表 5.14,其中 x 向位移 Ux 殘數定理積分之

Res_(CDF113×1) (CDF113×1)×
$$\omega_7$$
和Res_(CDF113×1) (CDF113×1)× ω_8 , $\omega_7 = \sqrt{5-2\sqrt{6}}$ 、
 $\omega_8 = -\sqrt{5-2\sqrt{6}}$ 是無法利用殘數定理積分出來,原因為當分母方程表示成此
 $(\omega - \omega_1)(\omega - \omega_2)(\omega - \omega_3)$時,會出現 $\sqrt{(\omega - \omega_1)}(\omega - \omega_2)(\omega - \omega_3)$之 $\sqrt{(\omega - \omega_1)}$ 情況,
就在 $\omega_1 = \sqrt{5-2\sqrt{6}}$ 或 $\omega_1 = -\sqrt{5-2\sqrt{6}}$ 時,此在利用殘數定理積分時,會出現數
學上的錯誤,也就是此項會有出現0的情況產生,而0的代表為此點不為奇異點
位置,但由圖 5.13(a)~(h)和表 5.11 雙向檢核所顯示,為不合理之地方。而y向位
移 Uy 之殘數定理積分,同樣在**Res**(CDF213×1)/ $\psi_3(\omega)$)× ω_5 和

 Res
 $(CDF213 \times \frac{1}{\psi_3(\omega)}) \times \omega_6$ 也會有上述情況產生,而 z 向位移 Uz 之殘數定理

 $\omega = \omega_6$ 積分卻無此情況產生,以下表 5.12 至表 5.14 則為位移閉合解型式。

表 5.13 岩石 4 位移 U, 閉合解型式

表 5.14 岩石 4 位移 U, 閉合解型式

因 z 向位移 Uz 無殘數定理積分不合理之情況,若考慮分別受到表面單位點荷重 作用為 P_x =1,P_y =1,P_z =1作用時 (單位:N/m³),其計算幾何位置(x,y,z)於 (1,2,1)、 (1,1,1)、(1,-2,1)、(1,-1,1)、(1,1,2) 及(1,1,3)的位移閉合解(單位:m)結果如表 5.15, 觀察所得位移閉合解結果為一複數解,與求解推導假設為實數不合,推其原因為 計算過程中,傅立葉轉換(複數應出現)、逆轉換(複數可存在)與殘數定理積分(複 數應消失)多次疊代運算,應用程是無法完整檢驗複數情況應出現與不應出現情 況,而產生此不合理結果。

	(1,2,1)	Uz	-0175491-0.00875597i
	(1,1,1)	Uz	-0.272528
岩	(1,-2,1)	Uz	-0.01621168
7 6 4	(1,-1,1)	Uz	-0.0266578-0.0155598i
	(1,1,2)	S Uz	0.00603746
	(1,1,3)	U _z 0	0.00765691

表 5.15 岩石 4 位移閉合解表

綜合以上所述為何半無限空間垂直橫向等向性受三維點荷重之位移解會有 如此大的差異結果,水平部份可很容易求得位移閉合解,而垂直部分只能將已求 得結果與未求得結果表示此型式,若探討其原因為水平與垂直推導解過程之特徵 根型式影響為最大,水平部份是由已知彈性常數組成之實數,而垂直部分則是根 號中帶有未知傅立葉域之 α 、 β ,再經由不斷的疊代運算後出來之結果,含有大 量 α 、 β 或 $\sqrt{\alpha}$ 、 $\sqrt{\beta}$ 之結果,在求解過程中除了整個方程之條件,還要考慮額外考 慮滿足根號裡之條件,故造成垂直位移解有如此大的差異與困難度,下表 5.16 則為垂直橫向等向性位移解與水平橫向等向性位移解推導過程之差異來作探 討:

	垂直横向等向性位移解與水平横向	等向性位移解推導過程之差異						
	水平横向等向性	垂直横向等向性						
旋轉因子	無	$\begin{bmatrix} l_{pq} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$						
彈性常數	$[C] = \begin{bmatrix} c_1 & c_1 - 2c_4 & c_3 - c_5 & 0 & 0 & 0 \\ c_1 - 2c_4 & c_1 & c_3 - c_5 & 0 & 0 & 0 \\ c_3 - c_5 & c_3 - c_5 & a_2 & 0 & 0 & 0 \\ 0 & 0 & 0 & c_5 & 0 & 0 \\ 0 & 0 & 0 & 0 & c_5 & 0 \\ 0 & 0 & 0 & 0 & 0 & c_4 \end{bmatrix}$	$[C] = \begin{bmatrix} c_1 & c_3 - c_5 & c_1 - 2c_4 & 0 & 0 & 0 \\ c_3 - c_5 & c_2 & c_3 - c_5 & 0 & 0 & 0 \\ c_1 - 2c_4 & c_3 - c_5 & c_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & c_5 & 0 & 0 \\ 0 & 0 & 0 & 0 & c_4 & 0 \\ 0 & 0 & 0 & 0 & 0 & c_5 \end{bmatrix}$						
[Di] 內 各 元 素 dij	$d_{11}(\alpha, \beta, p) = \alpha^{2}c_{1} + \beta^{2}c_{4} - c_{4}p^{2}$ $d_{12}(\alpha, \beta, p) = d_{21}(\alpha, \beta, p) = (c_{1} - c_{4})\alpha\beta$ ES $d_{13}(\alpha, \beta, p) = d_{31}(\alpha, \beta, p) = i\alpha c_{3}p$ $d_{22}(\alpha, \beta, p) = \alpha^{2}c_{4} + \beta^{2}c_{1} - c_{5}p^{2}$ $d_{23}(\alpha, \beta, p) = d_{32}(\alpha, \beta, p) = -i\beta c_{3}p$ $d_{33}(\alpha, \beta, p) = \alpha^{2}c_{5} + \beta^{2}c_{5} - c_{2}p^{2}$	$d_{11}(\alpha, \beta, p) = \alpha^{2}c_{1} + \beta^{2}c_{5} - c_{4}p^{2}$ $d_{12}(\alpha, \beta, p) = d_{21}(\alpha, \beta, p) = \alpha\beta c_{3}$ $d_{13}(\alpha, \beta, p) = d_{31}(\alpha, \beta, p) = i\alpha(c_{4} - c_{1})p$ $d_{22}(\alpha, \beta, p) = \alpha^{2}c_{5} + \beta^{2}c_{2} - c_{5}p^{2}$ $d_{23}(\alpha, \beta, p) = d_{32}(\alpha, \beta, p) = -i\beta c_{3}p$ $d_{33}(\alpha, \beta, p) = \alpha^{2}c_{4} + \beta^{2}c_{5} - c_{1}p^{2}$						
特徵根	$p_{j} = -\sqrt{A_{j}} (j = 1 \sim 3)$ $p_{r} = \sqrt{A_{j}} (r = 4 \sim 6 \sim j = 1 \sim 3)$	$p_{j} = \frac{-\sqrt{A_{j}(\beta^{2} + \alpha^{2}A_{j})}}{A_{j}} (j = 1 \sim 3)$ $p_{r} = \frac{\sqrt{A_{j}(\beta^{2} + \alpha^{2}A_{j})}}{A_{j}} (r = 4 \sim 6 \ j = 1 \sim 3)$						

表 5.16 垂直橫向等向性位移解與水平橫向等向性位移解推導過程之差異表

第六章 結論與建議

6.1 結論

本文選取特定範圍之岩石參數進行範例計算, 說明利用胡廷秉(2009)提出之 半無限空間橫向等向位移和應力基本解推導垂直橫向等向位移和應力閉合解之 可能性,得到以下結論:

- 本文雖未求出垂直橫向等向性材料受三維點荷重作用之位移和應力最終位移 閉合解(僅舉一範例說明),但可由表 5.2 各組彈性常數代入求解至 (4.34a)-(4.34c)所整理出複雜之位移解式子-ω函數(ω為奇異點位置),看出受 三維點荷重作用之垂直橫向等向性材料位移解與水平部分之位移解同樣會受 到材料異向性影響。
- 2、在計算半無限空間垂直橫向性材料受載之位移解,除了最終解出之位移方程存在奇異點(singular point)之影響,然而材料參數(彈性常數、待測幾何位置x、y、z...等)也會使整個方程有奇異點位置產生,如(3.36a)至(3.36c)式的 A₁、A₂、A₃不可有兩兩相同之情況,因為此結果直接影響到(4.18a)~(4.18c)f 矩陣之分母部份,會出現矩陣兩列元素相同而造成矩陣為0情況;同樣地待 測幾何位置(x、y、z)也不可以有 x=y 情況,當 x=y 時由(5.2a)-(5.3a) 式得知 同樣會出現奇異點位置問題。
- 3、水平橫向等向性材料受載重作用所得之位移結果與胡廷秉(2009)比較完全相同,且與Ding(2006)比較結果相似。
- 4、在範例計算說明部分,半無限空間垂直橫向等向材料之位移閉合解,本文選 擇岩石 4($\frac{E}{E} = 2, \frac{G}{G} = 1, \frac{v}{v} = 1$)作計算舉例,雖奇異點位置已全找出,但殘 數定理積分卻無法全部完成,只有部分結果呈現,如第五章 5.2 節範例計算 說明所述,可是能確定的是這些位移方程之奇異點位置幾乎落在 $\frac{1}{\psi_i(\omega)}$

 $(i=1\sim3)$ 方程之範圍內,而 $C_d^j(\omega)D_{i1}^i(\omega)\frac{\psi_i(\omega)}{\psi_k(\omega)}$ $(i \cdot j=1\sim3 \cdot k=7\sim9)$ 內含有奇異點 位置,只在 Pz 作用之 x 向與 y 向位移 Ux、Uy,即表 5.11。 5、若探討橫向等向性材料受載重作用之位移閉合解,其分別可受到(1)材料的異向性(Anistropy)、(2)幾何位置(x,y,z)及深度,此可由 5.2 節範例說明探討之表 5.5 得知、(3)載重大小及形式,此可由 5.2 節範例說明探討之表 5.4 得知等影響。

6.2 建議

本論文之完成在受限於垂直橫向等向部份,是採直接代入參數,如:彈性常 數、計算幾何位置、單位點荷重...等,舉範例計算其半無限空間垂直橫向等向受 三維點荷重作用下之位移解,在求解過程中發現一些限制條件與結果,如 6.1 節 所示,但未來還是有很多可改進及注意的地方,其建議事項如下各點所述:

- 材料參數(彈性常數、幾何位置 x、y、z...等)使整個方程產生奇異點狀況, 未來可針對此特殊情況更改求解方法,而求得特殊情況下之半無限空間 垂直橫向等向性材料受三維點荷重之位移解,也可延伸至求解應力部分, 對於位移誤差探討有更進一部確定其合理性。
- 2、本研究求解半無限空間垂直橫向等向性材料受載之位移和應力解,由於 方程式在轉換的過程中,多次使用疊代手法,造成最終求解積分方程, 如(4.31a)式~(4.31c)及(4.32a)~(4.32f)式過於複雜,必需直接代入數值參數 (彈性常數、點荷重、幾何位置...等)求解,雖在求解過程中有先將方程 簡化,然後才代入參數,但這種疊算的方法在數值進入運算時還是存在 著代數運算的誤差。未來可針對半無限垂直橫向等向性空間,找出求解 方程的規律性,則可建立整個方程的通式,譬如:用勢能函數來表示位 移解,或著是減少方程推導過程的疊代手法,故才可使求解時一氟呵成, 此不僅可明顯降低誤差與運算時間而增加答案的精準度,方便於檢驗各 項參數(彈性常數、幾何位置、點荷重型式等)之影響性。除此之外,可 藉此與胡廷秉 (2009)提出之水平橫向空間(Ø=0°)之位移及應力解型式 相比較,提高找到半無限空間傾斜橫向等性(Inclined Transversely Isotropic)受載之位移及應力基本解析解。
- 3、由範例計算說明可知此奇異點已完全找出,如表 5.11,然後進行殘數定 理積分得知 Z 向位移 UZ 之殘數定理積分可完全做出,但求出之位移解在

特定範圍內為一複數型式,如表 5.15,與原先假設位移量 Uz 為實數不 相符合,然而本研究在求解過程未對此方程(如:第三章、第四章之傅立 葉轉換與逆轉換過程)做數學限制條件的探討,只運用到其求解原理,才 會有此結果產生未來建議在求解過程中,x 向及 y 向位移 Uy、Uz,只要 針對數學式推導過程應詳細了解分析其限制條件,然後只要殘數值積得 (及解決數學問題)即可得到 Ux、Uy、Uz 位移之合理閉合解。

參考文獻

- Amadei ,B., Savage ,W.Z. and Swolfs ,H.S., "<u>Gravitational Stresses in</u> <u>Anisotropic Rock Masses</u>" ,International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstract ,Vol.24,No.1 ,p.5-14,1987.
- Bray ,J. "Unpublished Note". Adapted from Goodman ,R.E , "<u>Introduction to</u> <u>Rock Mechanics</u> ",John Wiley and Sons ,Inc ,2nd.Endition ,New York,p.197,358,360,1989.
- De Urena ,R. ,Piquer ,J.S. ,Muzas ,F. and Sanz Saracho J.M. , "<u>Stress</u> <u>Distribution in Cross-Anisotropic Media</u>" ,Pro.1st Cong. Int. Soc. Rock Mech. ,Belgrade ,Vol.1,p.313-317,1966.
- Ding , H.J. , Chen ,B. and Liang ,J. , "<u>General solutions for coupled equations</u> for piezoelectric media", International Journal of Solids and Structures, Vol.39,No.33,p.2283-2298,1996
- 5. Ding H. J., Chen W. and Zhang L., "<u>Elasticity of Transversely Isotropic</u> <u>Materials</u>" Springer, Netherlands (2006).
- Erwin, "<u>Advanced engineering mathematics</u>", Professor of Mathematics Ohio State University, 8th edition, Columbus, John wiley & Son, Inc, 1999.
- Eringen , A.C. and Suhubi , E.S. , "<u>Elastodynamics</u>" , Vol.II, Academic Press New,1975.
- 8. Gaziev, E and Erlikhman, S. "<u>Stress and Strain in Anisotropic Foundations</u>", Proceedings, Symposium on Rock Fracture, ISRM(Nancy), paper II-1, 1971.
- Gerrard , CM., "<u>Background to Mathematical Modeling in Geomechanics :the</u> <u>Roles of Fabric and Stress Hisotry</u>", Proceedings of the International symposium on Numerical Methods, Karlsruhe, p.22-120, 1975.
- 10. Hildebrand ,F. B., "<u>Advanced calculus for applications</u> ",^{2nd} Edn,1976.
- Hu ,T.B. ,Wang ,C.D. and Liao ,J.J., "<u>Elastic Solutions of Displacements for</u> <u>Transversely Isotropic Full-Space with Inclined Planes of Symmetry Subjected</u> <u>to Point Load</u> ", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.31, No.12, p.1401-1442, 2007.
- Hu, T.B., "<u>Three-Dimensional Fundamental Solutions of Displacements and</u> <u>Stresses in an Inclined Transversely Isotropic Materials Subjected to</u> <u>Three-Dimensional Point Loads</u>", PH.D of civil engineering of Chiao Tung University,2009.

- Lekhnitskii ,S.G. , "<u>Some Case of the Elastic Equilibrium of a Homogeneous</u> <u>Cylinder with Arbitrary Anisotropy</u>",Prikl. Matem. I Mekh 2(3),p.345-367(in French),1939a.
- Lekhnitskii ,S.G., "<u>Generalized Plane Strain in an Infinite Elastic Anisotropic</u> <u>Half Space Bounded by the Surface of a parabolic Cylinder</u> ", Dokl. Akad Nauk SSSR, 25(3), p.182-185(in French), 1939b.
- Lekhnitskii , S.G. , "<u>Theory of Elasticity of an Anisotropic Elastic Body.</u>" Moscow: Mir Publishers ,1981.
- Liew ,K.M. ,et al, "spaces subject to point force and uniform ring loads ", Volume 190,p. 3749-p.3769, Issues 29-30,2001.
- Liao, J.J. and Wang ,C.D., "<u>Elastic Solutions for a Transversely Isotropic</u> <u>Half-Space Subjected to a Point Load</u> ", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.22, No.6, p.425-449, 1998.
- Liao, J. J., Hu T B, Wang, C. D. "<u>Elastic solutions for an inclined transversely</u> isotropic material due to three-dimensional point loads ", Journal of Mechanics of Materials and Structures,3(8): 1521-1547, 2008
- 19. Mathematica® 7. Wolfram Research Inc. Wolfram Media, U.S.A., 2008.
- Piquer , H.G. ,Davis ,E.H., "Elastic Solutions for Soil and Rock Mechanics ", Wiley ,New York,1966.
- Poulos ,H.G. & Davis, E.H., "Elastic solution for soil and rock mechanics ", Civil engineering , university of Sydney Engineering, p.1~p.12,1974.
- Rahman ,M., "Some fundamental axisymmetric singular solutions of elastodynamics", Q.J. Mech. Appl. Math, 48(3): p.329-p.342, 1995.
- 23. Sneddon, I.N., "Fourier Transform ",^{2nd} Ed ,McGraw-Hill, New York,1951.
- 24. Timoshenko & Goodier, "Theory of Elasticity", 3th edition, 1970.
- Wang ,C.D. and Liao ,J.J. , "<u>Elastic Solutions and for a Transversely Isotropic</u> <u>Half-Space Subjected to Buried asymmetric-Load</u>", International Journal for Numerical and Analytical Methods in Geomechanics ,Vol.23, p.115-139,1999.
- Zou ,D.Q., Liang ,J. and Ding ,H.J., "<u>General solution of Transversely isotropic</u> <u>Elasticity problem</u>", Journal of Zhejiang University, p.28, 273-282.39 ,41 ,64 ,374 ,1944.

附錄 A 特徵方程的推導

摘自 Liao et al. (2008)

假設 x 和 y 軸在橫向等向性平面上,則橫向等向性材料所滿足的虎克定律可 以表示為:

在彈性力學理論之微小應變情況下,位移和應變的表示方式為:

其中, u'x、u'y和u'z為卡式座標系統各軸的三向度位移。而動態力平衡方程 式又可表示成(A.3)式:

$$\begin{bmatrix} \sigma_{xx} & \tau_{xy} & \tau_{zx} \\ \tau_{xy} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{yz} & \sigma_{zz} \end{bmatrix} \begin{bmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{bmatrix} - \begin{bmatrix} F_{x} \\ F_{y} \\ F_{z} \end{bmatrix} = \rho \begin{bmatrix} \frac{\partial^{2}u_{x}}{\partial t^{2}} \\ \frac{\partial^{2}u_{y}}{\partial t^{2}} \\ \frac{\partial^{2}u_{z}}{\partial t^{2}} \end{bmatrix}$$
(A.3)

若假設無徹體力 F_x 、 F_y 、 F_z 作用,則 $\left(F_x, F_y, F_z\right) = (0, 0, 0)$,將(A.1) 式及(A.2)式代入(A.3)式展開後可以表示為:

$$c_1 \frac{\partial^2 u_x}{\partial x^2} + c_4 \frac{\partial^2 u_x}{\partial y^2} + c_5 \frac{\partial^2 u_x}{\partial z^2} + (c_1 - c_4) \frac{\partial^2 u_y}{\partial x \partial y} + c_3 \frac{\partial^2 u_z}{\partial x \partial z} = \rho \frac{\partial^2 u_x}{\partial t^2}$$
(A.4a)

$$(c_1 - c_4)\frac{\partial^2 u_x}{\partial x \partial y} + c_4 \frac{\partial^2 u_y}{\partial x^2} + c_1 \frac{\partial^2 u_y}{\partial y^2} + c_5 \frac{\partial^2 u_y}{\partial z^2} + c_5 \frac{\partial^2 u_z}{\partial y \partial z} = \rho \frac{\partial^2 u_y}{\partial t^2}$$
(A.4b)

$$c_{3}\frac{\partial^{2}u_{x}}{\partial x\partial z} + c_{3}\frac{\partial^{2}u_{y}}{\partial y\partial z} + c_{5}\frac{\partial^{2}u_{z}}{\partial x^{2}} + c_{5}\frac{\partial^{2}u_{z}}{\partial y^{2}} + c_{2}\frac{\partial^{2}u_{z}}{\partial z^{2}} = \rho\frac{\partial^{2}u_{z}}{\partial t^{2}}$$
(A.4c)

然後經由三維傅立葉轉換(triple Fourier transform)則可得到傅立葉定義域下 之動態力平衡方程式表達如下:

$$c_{1}\alpha^{2}\bar{u}_{x}^{*} + c_{4}\beta^{2}\bar{u}_{x}^{*} + c_{5}\gamma^{2}\bar{u}_{x}^{*} + (c_{1} - c_{4})\alpha\beta\bar{u}_{y}^{*} + c_{3}\alpha\gamma\bar{u}_{z}^{*} = \rho\omega^{2}\bar{u}_{x}^{*}$$
(A.5)

$$(c_{1}-c_{4})\alpha\beta\bar{u}_{x}^{*}+c_{4}\alpha^{2}\bar{u}_{y}^{*}+c_{1}\beta^{2}\bar{u}_{y}^{*}+c_{5}\gamma^{2}\bar{u}_{y}^{*}+c_{3}\beta\gamma\bar{u}_{z}^{*}=\rho\omega^{2}\bar{u}_{y}^{*}$$
(A.6)

$$c_{3}\alpha\gamma \bar{u}_{x}^{*} + c_{3}\beta\gamma \bar{u}_{y}^{*} + c_{5}\alpha^{2} \bar{u}_{z}^{*} + c_{5}\beta^{2} \bar{u}_{z}^{*} + c_{2}\gamma^{2} \bar{u}_{z}^{*} = \rho\omega^{2} \bar{u}_{z}^{*}$$
(A.7)

其中, ux, uy, uz 為傅立葉定義域下之三向度位移, ω為角頻率, ρ為材料 密度, 然後將 (A.07a)-(A.07c)用矩陣方式表達並將右項移至左項, 重新整理如 下:

$$\begin{bmatrix} d_{11} - \rho \omega^2 & d_{12} & d_{13} \\ d_{21} & d_{22} - \rho \omega^2 & d_{23} \\ d_{31} & d_{32} & d_{33} - \rho \omega^2 \end{bmatrix} \begin{bmatrix} -* \\ u_x \\ -* \\ u_z \\ -* \\ u_z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
(A.8)
$$\ddagger \Phi \begin{bmatrix} d_{ij} \end{bmatrix} = \begin{bmatrix} c_1 \alpha^2 + c_4 \beta^2 + c_5 \gamma^2 & (c_1 - c_4) \alpha \beta & c_3 \alpha \gamma \\ (c_1 - c_4) \alpha \beta & c_4 \alpha^2 + c_1 \beta^2 + c_5 \gamma^2 & c_3 \beta \gamma \\ c_3 \alpha \gamma & c_3 \beta \gamma & c_5 \alpha^2 + c_5 \beta^2 + c_2 \gamma^2 \end{bmatrix}$$
(i,j=1-3)

方程式(A.8)中,若 $\begin{bmatrix} -* & -* & -* \\ u_x & u_y & u_z \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ 則可解得任何 $\rho \omega^2$ 值,然而實

際上 $\begin{bmatrix} x & x & x \\ u_x & u_y & u_z \end{bmatrix}$ ≠ $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ 故 $\begin{bmatrix} d_{ij} \end{bmatrix}$ 必定為一零矩陣,故在這樣情況下, $\begin{bmatrix} d_{ij} \end{bmatrix}$

此稱為矩陣為特徵矩陣,而 $ho \omega^2$ 稱為矩陣的特徵值,展開後結果如(A.9)式所示:

$$\begin{bmatrix} d_{11} - \rho\omega^{2} & d_{12} & d_{13} \\ d_{21} & d_{22} - \rho\omega^{2} & d_{23} \\ d_{31} & d_{32} & d_{33} - \rho\omega^{2} \end{bmatrix}$$

$$= -\left\{ \rho\omega^{2} - \left[c_{5}\gamma^{2} + c_{4}(\alpha^{2} + \beta^{2})\right]\right\} \cdot \left\{ \rho\omega^{2} - \frac{c_{1}(\alpha^{2} + \beta^{2}) + c_{2}\gamma^{2} + c_{5}(\alpha^{2} + \beta^{2} + \gamma^{2}) + \Delta}{2} \right\} \cdot \left\{ \rho\omega^{2} - \frac{c_{1}(\alpha^{2} + \beta^{2}) + c_{2}\gamma^{2} + c_{5}(\alpha^{2} + \beta^{2} + \gamma^{2}) - \Delta}{2} \right\}$$

$$\left\{ \rho\omega^{2} - \frac{c_{1}(\alpha^{2} + \beta^{2}) + c_{2}\gamma^{2} + c_{5}(\alpha^{2} + \beta^{2} + \gamma^{2}) - \Delta}{2} \right\}$$
(A.9)
$$\nexists \psi \cdot \Delta = \sqrt{\left[(c_{1} - c_{5})(\alpha^{2} + \beta^{2}) - (c_{5} - c_{5})\gamma^{2} \right]^{2} + 4c_{3}^{2}(\alpha^{2} + \beta^{2})\gamma^{2}}$$

其中, $\Delta = \sqrt{\left[(c_1 - c_5)(\alpha^2 + \beta^2) - (c_2 - c_5)\gamma^2 \right] + 4c_3^2 (\alpha^2 + \beta^2)\gamma^2}$ 若將變數(α、β、γ)透過座標轉換,轉換至(k、θ_x、θ_y)極座標系統,則可

$$\gamma^2 = k^2 \cos^2 \theta_z$$

由此可得知 $V^2 = \frac{\omega^2}{k^2} (V 定義為體波速度), 在橫向等向性中三種不同型式之$

體波速度可定義如(A.12a)-(A.12c)式:

$$V_{SH,\theta,z'} = \sqrt{\frac{c_5 \cos^2 \theta_z + c_4 \sin^2 \theta_z}{\rho}}$$
(A.12a)

$$V_{P,\theta,z'} = \sqrt{\frac{c_1 \sin^2 \theta_{z'} + c_2 \cos^2 \theta_{z'} + c_5 + \Delta'}{2\rho}}$$
(A.12b)

$$V_{SV,\theta,z'} = \sqrt{\frac{c_1 \sin^2 \theta_{z'} + c_2 \cos^2 \theta_{z'} + c_5 - \Delta'}{2\rho}}$$
(A.12c)

軸及波傳導方向之夾角,因此 $\left[d_{ij}
ight]$ 的行列式又可表達為:

其中 、
$$\Delta' = \sqrt{\left[(c_1 - c_5) \sin^2 \theta_z - (c_2 - c_5) \cos^2 \theta_z \right]^2 + 4c_3^2 \sin^2 \theta_z \cos^2 \theta_z}$$
 , θ_z 為 z

$$D = \det \left[d_{ij} \right] = \rho^{3} k^{6} (V_{SH,\theta,z} \cdot V_{P,\theta,z} \cdot V_{SV,\theta,z'})^{2}$$

$$= \left[c_{5} \gamma^{2} + c_{4} (\alpha^{2} + \beta^{2}) \right] \left\{ \left[c_{1} (\alpha^{2} + \beta^{2}) + c_{5} \gamma^{2} \right] \left[c_{5} (\alpha^{2} + \beta^{2}) + c_{2} \gamma^{2} \right] - c_{3} (\alpha^{2} + \beta^{2}) + \gamma^{2} \right\}$$

$$= c_{2} c_{5} \prod_{i=1}^{3} \left[A_{i} (\alpha^{2} + \beta^{2}) + \gamma^{2} \right]$$

$$= c_{2} c_{5}^{2} k^{6} \prod_{i=1}^{3} \left[A_{i} \sin^{2} \theta_{z} + \cos^{2} \theta_{z} \right]$$

$$IB96$$

$$IB96$$

$$IB96$$

$$IB96$$

$$IB96$$

$$IB96$$

$$A_{1} = \frac{c_{4}}{c_{5}}$$

$$A_{2} = \frac{1}{2} \left[\frac{c_{5}^{2} + c_{1}c_{2} - c_{3}^{3}}{c_{2}c_{5}} + \left\{ \frac{c_{5}^{2} + c_{1}c_{2} - c_{3}^{2}}{c_{2}c_{5}} \right\}^{2} - 4\frac{c_{1}}{c_{2}}^{\frac{1}{2}} \right]$$

$$A_{3} = \frac{1}{2} \left[\frac{c_{5}^{2} + c_{1}c_{2} - a_{3}^{3}}{c_{2}c_{5}} - \left\{ \frac{c_{5}^{2} + c_{1}c_{2} - a_{3}^{2}}{c_{2}c_{5}} \right\}^{2} - 4\frac{c_{1}}{c_{2}}^{\frac{1}{2}} \right]$$

若考慮一個新的坐標系的(x, y, z)和原座標系統(x', y', z')中有一共同原點,當 x和x'軸平行於xy平面,x與x'軸間的夾角角度為 φ ,而相對的y'軸和xy平面 夾角為 ϕ 。也就是說我們可以假設於新座標系統和舊座標系統間之夾角為餘弦轉 換,如表A.1所示:

表 A.1 新、舊座標系統間之餘弦角度轉換

新座標/舊座標	x	y	Z.
X	$\cos \varphi$	$\sin \varphi$	0
У	$-\cos\phi\sin\phi$	$\cos\phi\cos\phi$	$\sin\phi$
Z	$\sin\phi\sin\phi$	$-\sin\phi\cos\varphi$	$\cos\phi$

將(A.13) 之 D 改寫為(A.14)式:

$$D = \rho^{3} k^{6} (V_{SH,\theta,t} \cdot V_{P,\theta,t} \cdot V_{SV,\theta,t})^{2}$$

$$= c_{2} c_{5}^{2} k^{6} \prod_{i=1}^{3} \left[A_{i} \sin^{2} \theta_{i} + \cos^{2} \theta_{i} \right]$$

$$(A.14)$$

$$(A.14)$$

$$(A.14)$$

其中, θ_{i} 為向量 (α, β, γ) 及z軸間的夾角, 若以 (α, β, γ) 及 ϕ 表示, 可表示為:

$$D = c_{2}c_{5}^{2}k^{6}\prod_{i=1}^{3}\left[A_{i}\sin^{2}\theta_{i} + \cos^{2}\theta_{i}\right]$$

$$= \frac{c_{2}c_{5}^{2}k^{6}}{\alpha^{2} + \beta^{2} + \gamma^{2}}\prod_{i=1}^{3}\left\{A_{i}\left[\alpha^{2} + \beta^{2} + \gamma^{2} - (\alpha\sin\phi\sin\varphi - \beta\sin\phi\cos\varphi + \gamma\cos\phi)^{2}\right]\right\}$$

$$= c_{2}c_{5}\prod_{i=1}^{3}\left\{A_{i}\left[\alpha^{2} + \beta^{2} + \gamma^{2} - (\alpha\sin\phi\sin\varphi - \beta\sin\phi\cos\varphi + \gamma\cos\phi)^{2}\right]\right\}$$

$$+ (\alpha\sin\phi\sin\varphi - \beta\sin\phi\cos\varphi + \gamma\cos\phi)^{2}$$

$$(A.16)$$

最終,令 D=0,在方程式(A.16)之六個特徵根就能夠獲得,如同第3張3.3節(3.35)式也可同樣獲得,其表示如下:

$$\gamma_{j}(\alpha,\beta) = \frac{\begin{cases} \beta \cos\phi \sin\phi \cos\phi(-1+A_{j}) - \alpha \cos\phi \sin\phi \sin\phi(-1+A_{j}) \\ +i\sqrt{A_{j}\left\{(\alpha^{2}+\beta^{2})\cos^{2}\phi + \sin^{2}\phi(\beta\cos\phi - \alpha\sin\phi)^{2} + \sin^{2}\phi(\alpha\cos\phi + \beta\sin\phi)^{2}A_{j}\right\}} \\ \cos^{2}\phi + A_{j}\sin^{2}\phi \end{cases}$$
(j=1-3)

(A.17a)

$$\gamma_{j}(\alpha,\beta) = \frac{\begin{cases} -\beta\cos\phi\sin\phi\cos\phi(-1+A_{j}) + \alpha\cos\phi\sin\phi\sin\phi(-1+A_{j}) \\ +i\sqrt{A_{j}\left\{(\alpha^{2}+\beta^{2})\cos^{2}\phi + \sin^{2}\phi(\beta\cos\phi-\alpha\sin\phi)^{2} + \sin^{2}\phi(\alpha\cos\phi+\beta\sin\phi)^{2}A_{j}\right\}} \\ \cos^{2}\phi + A_{j}\sin^{2}\phi \end{cases}$$
(j=4-6)

(A.17b)

若一個新座標系統(x, y, z)經由舊座標系統轉換角度,當x = x'軸,即 $\varphi = 0$, 則只考慮新、舊座標系統轉換角度 ϕ 而得,故(A.17a)-(A.17b)式之特徵值 γ 可以 表示為:

附錄 B 傾斜橫向等向性材料之彈性常數 C_{ii}

為(3.19a)式傾斜橫向等向性材料之彈性常數 C_{ij} (i,j=1~6),各項值如下所示: $C_{11} = c_1$ (B.1)

$$C_{12} = C_{21} = (c_1 - 2c_4)\cos^2\phi + (c_3 - c_5)\sin^2\phi$$
(B.2)

$$C_{12} = C_{11} = (a_{11} + a_{21})\cos^{2} \phi + (a_{21} + 2a_{21})\sin^{2} \phi$$
(B.3)

$$C_{13} = C_{31} = (c_3 - c_5)\cos^2 \phi + (c_1 - 2c_4)\sin^2 \phi$$
(B.3)

$$C_{14} = C_{41} = (c_3 - c_5 - c_1 + 2c_4)\cos\phi\sin\phi$$
(B.4)

$$C_{22} = c_1 \cos^4 \phi + 2(c_3 + c_5) \cos^2 \phi \sin^2 \phi + c_2 \sin^4 \phi$$
(B.5)

$$C_{23} = C_{32} = \frac{1}{8} \{ c_1 + c_2 + 6c_3 - 10c_5 - [c_1 + c_2 - 2(c_3 + c_5)]\cos 4\phi \}$$
(B.7)

$$C_{24} = C_{42} = -\frac{1}{4} \{ -c_1 + c_2 + [c_1 + c_2 - 2(c_3 + c_5)] \cos 2\phi \} \sin 2\phi$$
(B.8)

$$C_{33} = c_2 \cos^4 \phi + 2(c_3 + c_5) \cos^2 \phi \sin^2 \phi + c_1 \sin^4 \phi$$
(B.9)

$$C_{34} = C_{43} = \frac{1}{4} \{ -c_1 + c_2 + [c_1 + c_2 - 2(c_3 + c_5)] \cos 2\phi \} \sin 2\phi$$
(B.10)

$$C_{44} = -\frac{1}{8} \{ c_1 + c_2 - 2c_3 + 6c_5 - [c_1 + c_2 - 2(c_3 + c_5)] \cos 4\phi \}$$
(B.11)

$$C_{55} = c_5 \cos^2 \phi + c_4 \sin^2 \phi$$
 (B.12)

$$C_{56} = C_{65} = (c_5 - c_4)\cos\phi\sin\phi$$
(B.13)

$$C_{66} = c_4 \cos^2 \phi + c_5 \sin^2 \phi \tag{B.14}$$

$$C_{15} = C_{16} = C_{25} = C_{26} = C_{35} = C_{36} = C_{45} = C_{46} = C_{51} = C_{52} = C_{53} = C_{54}$$

= $C_{61} = C_{62} = C_{63} = C_{64} = 0$ (B.15)

以上為傾斜橫向等向空間之彈性常數, ϕ 隨著旋轉角度而變,若為垂直橫向等向空間, $\phi = 90^{\circ}$,則在加入 $C_{14} = C_{24} = C_{34} = C_{41} = C_{42} = C_{43} = C_{56} = C_{65} = 0$ 如 (3.19b)式。

附錄 C Dij 矩陣的展開表達式

(4.3) 式之Dⁱ₁₁、Dⁱ₂₁、Dⁱ₃₁、Dⁱ₁₂、Dⁱ₂₂、Dⁱ₃₂、Dⁱ₁₃、Dⁱ₂₃、Dⁱ₃₃值為矩陣d_{ij}(i,j=1~3)
 如(3.35a)~(3.35f)式之餘因子(cofactor)所組成之二階行列式,其展開結果如下所示:

$$D_{11}^{i}(\alpha,\beta,p_{j}) = \det \begin{bmatrix} d_{22}(\alpha,\beta,p_{j}) & d_{23}(\alpha,\beta,p_{j}) \\ d_{32}(\alpha,\beta,p_{j}) & d_{33}(\alpha,\beta,p_{j}) \end{bmatrix}$$

= $(c_{1}c_{5})p_{j}^{4} + (\alpha^{2}(-c_{1}c_{5}-c_{5}c_{4}) + \beta^{2}(-c_{2}c_{1} + (c_{3}-c_{5})^{2} + 2(c_{3}-c_{5})c_{5}))p_{j}^{2}$ (C.1)
+ $(\alpha^{4}(c_{4}c_{5}) + \alpha^{2}\beta^{2}(c_{2}c_{4} + c_{5}^{2}) + \beta^{4}c_{2}c_{5})$

$$\begin{split} D_{21}^{i}(\alpha,\beta,p_{j}) &= D_{12}^{i}(\alpha,\beta,p_{j}) & d_{13}(\alpha,\beta,p_{j}) \\ &= -\det \begin{bmatrix} d_{12}(\alpha,\beta,p_{j}) & d_{13}(\alpha,\beta,p_{j}) \\ d_{32}(\alpha,\beta,p_{j}) & d_{33}(\alpha,\beta,p_{j}) \end{bmatrix} = -\det \begin{bmatrix} d_{21}(\alpha,\beta,p_{j}) & d_{23}(\alpha,\beta,p_{j}) \\ d_{31}(\alpha,\beta,p_{j}) & d_{33}(\alpha,\beta,p_{j}) \end{bmatrix} \end{split}$$
(C.2)
$$&= \alpha\beta(c_{1}c_{3} - (c_{1} - c_{4})c_{3})p_{j}^{2} - \alpha\beta(\alpha^{2}c_{4}c_{3} + \beta^{2}c_{5}c_{3})$$

$$= de \begin{bmatrix} d_{12}(\alpha,\beta,p_{j}) & d_{13}(\alpha,\beta,p_{j}) \\ d_{22}(\alpha,\beta,p_{j}) & d_{13}(\alpha,\beta,p_{j}) \\ d_{23}(\alpha,\beta,p_{j}) & d_{23}(\alpha,\beta,p_{j}) \end{bmatrix} = de \begin{bmatrix} d_{21}(\alpha,\beta,p_{j}) & d_{22}(\alpha,\beta,p_{j}) \\ d_{31}(\alpha,\beta,p_{j}) & d_{32}(\alpha,\beta,p_{j}) \end{bmatrix}$$
(C.3)
$$&= -i\alpha c_{5}(c_{1} - c_{4})p_{j}^{3} + i\alpha(\alpha^{2}c_{5}(c_{1} - c_{4}) + \beta^{2}(c_{1}c_{2} - c_{2}c_{4} - c_{3}^{2}))p_{j} \end{split}$$

$$D_{22}^{i}(\alpha,\beta,p_{j}) = d e \begin{bmatrix} d_{11}(\alpha,\beta,p_{j}) & d_{23}(\alpha,\beta,p_{j}) \\ t \\ d_{13}(\alpha,\beta,p_{j}) & d_{33}(\alpha,\beta,p_{j}) \end{bmatrix}$$
(C.4)

$$D_{23}^{i}(\alpha,\beta,p_{j}) = D_{32}^{i}(\alpha,\beta,p_{j})$$

= $-de \begin{bmatrix} d_{11}(\alpha,\beta,p_{j}) & d_{12}(\alpha,\beta,p_{j}) \\ d_{31}(\alpha,\beta,p_{j}) & d_{32}(\alpha,\beta,p_{j}) \end{bmatrix} = -de \begin{bmatrix} d_{11}(\alpha,\beta,p_{j}) & d_{13}(\alpha,\beta,p_{j}) \\ d_{21}(\alpha,\beta,p_{j}) & d_{23}(\alpha,\beta,p_{j}) \end{bmatrix}$ (C.5)

$$D_{33}^{i}(\alpha,\beta,p_{j}) = \det \begin{bmatrix} d_{11}(\alpha,\beta,p_{j}) & d_{12}(\alpha,\beta,p_{j}) \\ d_{21}(\alpha,\beta,p_{j}) & d_{23}(\alpha,\beta,p_{j}) \end{bmatrix}$$
(C.6)

其中, p_j為 3.4 節(3.35a)-(3.35c)的特徵根(j=1~3), Dⁱ_{i1}、Dⁱ_{i2}、Dⁱ_{i3}上標代 表代入之特徵根值(i=1~3),而下標為 D 矩陣元素之餘因子, 如(C.1)~(C.6)式。

附錄 D 水平横向等向材料受載不同岩石舉例之奇異

點位置

岩石1					
	P _x	P _y	Pz		
U _x	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_1} + i\sqrt{x^2 + y^2 + z^2A_1}}$	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_2} + i\sqrt{x^2 + y^2 + z^2A_2}}$	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2A_3}}$		
	x - iy	x - iy	x – iy		
	P _x	P _y	P _z		
Uy	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_1 + i\sqrt{x^2 + y^2 + z^2A_1}}}$	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_2 + i\sqrt{x^2 + y^2 + z^2A_2}}}_{\cdot}$	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_3 + i\sqrt{x^2 + y^2 + z^2A_3}}}_{.}$		
	x - iy	x - iy	x - iy		
TT	P_{x}	P_{y}	P_z		
Uz	$0 \cdot 0 \cdot \underbrace{-iz\sqrt{A_1 + i\sqrt{x^2 + y^2 + z^2A_1}}}_{x - iy}$	$0 \cdot \frac{-iz\sqrt{A_2} + i\sqrt{x^2 + y^2 + z^2A_2}}{x - iy}$	$0 \cdot \frac{-iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2A_3}}{x - iy}$		
	D		P		
TT	$P_{\rm X}$	P_{y}	$\mathbf{P}_{\mathbf{Z}}$		
Ux	$0 \cdot 0 \cdot \underbrace{-iz\sqrt{A_1 + i\sqrt{x^2 + y^2 + z^2A_1}}}_{x - iy}$	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_2 + i\sqrt{x^2 + y^2 + z^2A_2}}}_{x - iy}$	$0 \cdot 0 \cdot \underbrace{-iz\sqrt{A_3 + i\sqrt{x^2 + y^2 + z^2A_3}}}_{x iv}$		
	x - iy	x - iy	x - iy		
II	$\frac{1}{x}$	1 y 0 > 0 > $-i\pi \sqrt{A} + i \sqrt{x^2 + y^2 + z^2 A}$	$\frac{1}{z}$		
Uy	$\frac{1}{2\sqrt{A_1 + i\sqrt{x + y + z}}} = \frac{1}{2\sqrt{A_1 + i\sqrt{x + y}}}$	$\frac{1}{\sqrt{1-1}} \frac{1}{\sqrt{1-1}} 1$	$\frac{-i2\sqrt{A_3+i\sqrt{\lambda_1+y}+2A_3}}{x-iy}$		
	P _x	P.	P _z		
U,	$0 > 0 > -iz \sqrt{A} + i\sqrt{x^2 + y^2 + z^2 A}$	$0 - iz_{2}\sqrt{A_{2}} + i\sqrt{x^{2} + y^{2} + z^{2}A_{2}}$	$0 > -iz_{2}\sqrt{A_{2}} + i\sqrt{x^{2} + y^{2} + z^{2}A_{2}}$		
L	$\frac{1}{x-iy}$	x - iy	$\frac{1}{x-iy}$		
	E	岩石 3			
	P _x	189P	Pz		
Ux	$0 \cdot 0 \cdot -iz\sqrt{A_1} + i\sqrt{x^2 + y^2 + z^2A_1}$	$0 \cdot 0 \cdot -iz\sqrt{A_2} + i\sqrt{x^2 + y^2 + z^2A_2}$	$0 \cdot 0 \cdot -iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2A_3}$		
	x-iy	x-iy	x - iy		
	P _x	P _y	P _z		
Uy	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_1} + i\sqrt{x^2 + y^2 + z^2A_1}}$	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_2} + i\sqrt{x^2 + y^2 + z^2A_2}}$	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2A_3}}$		
	x-iy	x - iy	x - iy		
	P_{x}	P_{y}	P_z		
Uz	$0 \cdot 0 \cdot \underbrace{-iz\sqrt{A_1 + i\sqrt{x^2 + y^2 + z^2A_1}}}_{x_1 - ix_2}$	$0 \cdot \frac{-iz\sqrt{A_2 + i\sqrt{x^2 + y^2 + z^2A_2}}}{x - iy}$	$0 \cdot \frac{-iz\sqrt{A_3 + i\sqrt{x^2 + y^2 + z^2A_3}}}{y - iy}$		
	x - ly		x - iy		
	-	石石 4	_		
	P _x	P _y	P _z		
U _x	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_1} + i\sqrt{x^2 + y^2 + z^2A_1}}$	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_2 + i\sqrt{x^2 + y^2 + z^2A_2}}}$	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_3 + i\sqrt{x^2 + y^2 + z^2A_3}}}$		
	x-iy	x - iy	x - iy		
	$\frac{P_x}{\sqrt{2}}$	$\frac{P_{y}}{P_{y}}$	P_z		
Uy	$0 \cdot 0 \cdot \underbrace{-iz\sqrt{A_1 + i\sqrt{x^2 + y^2 + z^2A_1}}}_{\cdot}$	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_2 + i\sqrt{x^2 + y^2 + z^2A_2}}}_{.}$	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_3 + i\sqrt{x^2 + y^2 + z^2A_3}}}_{.}$		
	x - iy	x - iy	x - iy		
I	1 X	$\frac{1}{\sqrt{1-\frac{1}{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}}{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{1-\frac{1}{\sqrt{1-\frac{1}{1-\frac{1}{\sqrt{1-\frac{1}{1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	$\frac{1}{2}$		
Uz	無	$\frac{1}{x-iy} = \frac{-i\sqrt{x^2+i\sqrt{x^2+y^2+2}}}{x-iy}$	$\frac{1}{x-iy}$		
岩石 5					
U.	P.	P	P _a		

	$0 \cdot 0 \cdot -iz\sqrt{A_1} + i\sqrt{x^2 + y^2 + z^2A_1}$	$0 \cdot 0 \cdot -iz\sqrt{A_2} + i\sqrt{x^2 + y^2 + z^2A_2}$	$0 \cdot 0 \cdot -iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2A_3}$		
	x-iy	x - iy	x - iy		
	P _x	Py	Pz		
Uy	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_1} + i\sqrt{x^2 + y^2 + z^2A_1}}$	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_2} + i\sqrt{x^2 + y^2 + z^2A_2}}$	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2A_3}}$		
	x-iy	x - iy	x - iy		
	P _x	Py	Pz		
Uz	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_1} + i\sqrt{x^2 + y^2 + z^2A_1}}$	$0 \cdot \underline{-iz\sqrt{A_2} + i\sqrt{x^2 + y^2 + z^2A_2}}$	$0 \cdot \underline{-iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2A_3}}$		
	x-iy	x - iy	x - iy		
岩石 6					
	P _x	Py	P,		
	<i>a</i>	ÿ	- 2		
U _x	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_1} + i\sqrt{x^2 + y^2 + z^2A_1}}$	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_2} + i\sqrt{x^2 + y^2 + z^2A_2}}$	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2A_3}}$		
U _x	$0 \cdot 0 \cdot \underline{-iz\sqrt{A_1} + i\sqrt{x^2 + y^2 + z^2A_1}}_{x - iy}$	$0 \cdot 0 \cdot \underbrace{-iz\sqrt{A_2} + i\sqrt{x^2 + y^2 + z^2A_2}}_{x - iy}$	$0 \cdot 0 \cdot \underbrace{-iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2A_3}}_{x - iy}$		
U _x	$\frac{0 \cdot 0 \cdot \underline{-iz\sqrt{A_1} + i\sqrt{x^2 + y^2 + z^2A_1}}}{x - iy}$ P_x	$\frac{0 \cdot 0 \cdot \underbrace{-iz\sqrt{A_2} + i\sqrt{x^2 + y^2 + z^2A_2}}_{x - iy}}_{P_y}$	$\frac{0 \cdot 0 \cdot \underbrace{-iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2A_3}}_{x - iy}}_{P_z}$		
U _x U _y	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$0 \cdot 0 \cdot \frac{-iz\sqrt{A_2} + i\sqrt{x^2 + y^2 + z^2A_2}}{x - iy}$ $\frac{P_y}{0 \cdot 0 \cdot -iz\sqrt{A_2} + i\sqrt{x^2 + y^2 + z^2A_2}}$	$0 \cdot 0 \cdot \underbrace{-iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2 A_3}}_{X - iy}$ P_z $0 \cdot 0 \cdot \underbrace{-iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2 A_3}}_{Z - iy}$		
U _x U _y	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{0 \cdot 0 \cdot \frac{-iz\sqrt{A_2} + i\sqrt{x^2 + y^2 + z^2A_2}}{x - iy}}{P_y}}{0 \cdot 0 \cdot \frac{-iz\sqrt{A_2} + i\sqrt{x^2 + y^2 + z^2A_2}}{x - iy}}$	$\frac{0 \cdot 0 \cdot -iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2 A_3}}{x - iy}}{P_z}$ $\frac{P_z}{0 \cdot 0 \cdot -iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2 A_3}}{x - iy}}$		
U _x U _y	$ \begin{array}{c c} 0 \circ 0 \circ & \underline{-iz\sqrt{A_{1}} + i\sqrt{x^{2} + y^{2} + z^{2}A_{1}}}{x - iy} \\ \hline P_{x} \\ \hline 0 \circ 0 \circ & \underline{-iz\sqrt{A_{1}} + i\sqrt{x^{2} + y^{2} + z^{2}A_{1}}}{x - iy} \\ \hline P_{x} \\ \end{array} $	$ \frac{0 \cdot 0 \cdot \frac{-iz\sqrt{A_{2}} + i\sqrt{x^{2} + y^{2} + z^{2}A_{2}}}{x - iy}}{P_{y}} \\ \frac{P_{y}}{0 \cdot 0 \cdot \frac{-iz\sqrt{A_{2}} + i\sqrt{x^{2} + y^{2} + z^{2}A_{2}}}{x - iy}}{P_{y}} $	$\frac{0 \cdot 0 \cdot -iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2 A_3}}{x - iy}$ $\frac{P_z}{0 \cdot 0 \cdot -iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2 A_3}}{x - iy}$ P_z		
U _x U _y U _z	$\begin{array}{c c} 0 & \circ & 0 & \circ & \underline{-iz\sqrt{A_{1}} + i\sqrt{x^{2} + y^{2} + z^{2}A_{1}}}{x - iy} \\ \hline & & P_{x} \\ \hline & 0 & \circ & 0 & \circ & \underline{-iz\sqrt{A_{1}} + i\sqrt{x^{2} + y^{2} + z^{2}A_{1}}}{x - iy} \\ \hline & & P_{x} \\ \hline & & 0 & \circ & \underline{-iz\sqrt{A_{1}} + i\sqrt{x^{2} + y^{2} + z^{2}A_{1}}} \\ \hline & & 0 & \circ & 0 & \circ & \underline{-iz\sqrt{A_{1}} + i\sqrt{x^{2} + y^{2} + z^{2}A_{1}}} \end{array}$	$ \begin{array}{r} 0 \circ 0 \circ \frac{-iz\sqrt{A_2} + i\sqrt{x^2 + y^2 + z^2A_2}}{x - iy} \\ \hline P_y \\ 0 \circ 0 \circ \frac{-iz\sqrt{A_2} + i\sqrt{x^2 + y^2 + z^2A_2}}{x - iy} \\ \hline P_y \\ \hline 0 \circ \frac{-iz\sqrt{A_2} + i\sqrt{x^2 + y^2 + z^2A_2}}{x - iy} \\ \hline \end{array} $	$ \begin{array}{r} 0 \circ 0 \circ \frac{-iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2 A_3}}{x - iy} \\ \hline P_z \\ 0 \circ 0 \circ \frac{-iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2 A_3}}{x - iy} \\ \hline P_z \\ \hline 0 \circ \frac{-iz\sqrt{A_3} + i\sqrt{x^2 + y^2 + z^2 A_3}}{x - iy} \\ \hline \end{array} $		

