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Effects of Constrained Backfill on Active Earth Pressure

Student : Wei-Ting Chen Advisor : Dr. YungeBhFang

Department of Civil Engineering

National Chiao Tung University

Abstract

This thesis investigates the effects of constraibadkfill on active earth
pressure. The instrumented model retaining wallifies at National Chiao Tung
University was used to study the active earth pmeson retaining wall with
constrained backfill. Loose Ottawa sand with tHatree density D= 36% was used
as backfill material. The height of backfill H w@$ m. To simulate an inclined rock
face, a steel interface plate and-its supportirsgesy were designed and constructed.
Two main parameters considered were rock face nattn angle3 and the
horizontal spacing b between the rock face andviddebase. The backfill in the soil
bin was prepared by air-pluviated method. Testltesinow the distribution relative
density in the soil bin is uniform and independehthe interface plate inclination
and location. With a faraway interface plate (b/H4:0), the measured active
pressure distribution was in good agreement withul@ub’s solution. When the
vertical boundary was relatively far from the wite, the measured stress was not
strongly affected by the existence of the vertjgate. With the approaching of the
interface plate (b/H ratio decreasing), the platieuded the active soil wedge, so
that the active soil wedge behind the wall can awtelop fully. The active earth
pressure coefficient &, decreased with decreasing wall-plate spacing leffic@nt
Kan decreased with decreasing plate inclination afigleor 3 = 90° (vertical plate)
and b/H < 1.0, the measured active pressure wasthes Coulomb’s solution.
Coulomb’s solution is the upper bound for all expental K, values based on

different b/H ratios an@ angles. The constrained backfill would result igraater



factor of safety against sliding for the retainmgll. Under the aspect ratio b/H =
0.3, 0.5, 0.7, and 1.0, the point of applicatiortlef active soil thrust was located at
about H/3 above the wall base. The evaluation effélctors of safety against sliding

and overturning with Coulomb’s solution would besafe side.

Keywords: Active pressure; Constrained backfill; Earth grge; Model test;
Retaining wall; Sand
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Chapter 1

Introduction

This thesis studies the effects of a constrain@ldosakfill on the active earth
pressure against a retaining wall as showhign 1.1.In the figure, an inclined rock
face is near the retaining wall. The backfill imstrained and the active soil failure
wedge behind the wall can not develop fully. Undach a condition, the active
earth pressure may be different from Coulomb’s Radkine’s theories. In this study,
experiments were conducted to investigate theibligton of active earth pressure
as a function of the inclination andbeand the horizontal spacing b of the inclined

rock face.

1.1 Objectives of Study

The calculation of forces exerted by soil agairtsticsures was one of the
oldest problems in soil mechanics. The most wicgelgepted theories to estimate
earth pressure are those of Coulomb and RankimghEgravity wall shown iffrig.
1.1,the Rankine active soil wedge is bounded by thé avad the failure plane with
the inclination angle of 45° ¢/2 with the horizontal.

If the retaining wall is constructed adjacent toeaustence stable face such as a
stiff rock face near the retaining wall shownFRig. 1.1, the stiff rock face might
intrude the active soil wedge as the wall movesyafn@m the backfill. In this case,
can the Coulomb and Rankine theories be used itoastthe active earth pressure
on the wall with constrained backfill? Would thesttiibution of active earth pressure
still be linear with depth? To correctly calculdke factor of safety against sliding
and overturning of the wall, it is necessary far ttesigner to understand how would
the nearby rock face influence the active eartlsqree. InFig. 1.1 the horizontal

spacing between the inclined rock face and the bagee wall is defined as b and



the inclination angle of the rock face with theikontal is expressed @s

Valuable studies associated with earth pressurerataining walls with
constrained backfill had been conducted. Basederatching theory, Spangler and
Handy (1984) developed a theoretical equation falcudating the lateral earth
pressure acting on the wall of a silo. The granyarticles in the silo were
constrained by the vertical silo walls. Based anltimit equilibrium method and the
computer program ReSSA 2.0, Leshchinsky et al. 4p@@merically investigated
the lateral earth pressure on a Mechanically-SeagitEarth wall with constrained
fill. Lawson and Yee (2005) used the limit equililbon method to numerically
investigate the lateral earth pressure acting daimeag walls with constrained
reinforced fill. Yang and Liu (2007) conducted fmielement analysis to study the
earth pressure for narrow retaining. Fan and F2099) used the non-linear finite
element program PLAXISPLAXIS BV, 2002) to investigate the earth pressure
against a rigid wall close to-an-inclined rock fattiang (2009) used the model
retaining wall facilities at National Chiao’ Tung iersity to investigate the active
earth pressure on retaining walls near an'inclioe# face.

Fig. 1.2 shows a cylindrical storage silo filled with grdeaumaterial. It is
important for designer to know how much lateralsgrge is acting on the inside of
silo walls. The silo wall deforms under the latgoa¢ssure due to the granular. Due
to symmetry, the center axis of the silo remainseat, which is similar to the
vertical rock-face nearby. The granular materidlibe the deformable silo wall was
restrained by the central axis of the silo. In @tisdy, the lateral pressure in silo is

discussed.

1.2 Research Outline

The National Chiao Tung University (NCTU) modelaiaing wall facility was

modified to investigate the effects of a constrdir®ackfill on the active earth



pressure. As shown faig. 1.1, two main parameters considered were the horizonta
spacing b and the inclination anddeof the rock faceFig. 1.3to Fig. 1.7shows all
constrained condition for backfill for b = 150 m260 mm, 350 mm, 500 mm and
2000 mm. For all tests, the height of the baclilivas 0.5 m, and air-dry Ottawa
sand was used as the backfill material. The sadl ptaced between the wall and the
interface plate with the air-pluviaiton method. TNaiation of lateral earth pressure
o0n, was measured with the soil pressure transducd?3)(8n the surface of the
model wall. Based on experimental results, theribigion of active earth pressure
was obtained. Based on the test results, the matgif active soil thrust and the
location of the active thrust were calculated anchpared with the Coulomb and
Rankine solutions. The displacement of backfill @nd large wall movement was

observed.

1.3 Organization of Thesis

This paper is divided into the following parts:
Chapter 1: Introduction of the subject
Chapter 2: Review of past investigations regardihg active earth pressures
theories, numerical studies and laboratory testlt®es
Chapter 3: Description of experimental apparatus
Chapter 4: Description of the Interface plate amgp®rting system
Chapter 5: Characteristics of the backfill andititerfaces
Chapter 6: Test results regarding horizontal epréssure, active soil thrust, and
movement of the backfill

Chapter 7: Conclusions and design recommendations



Chapter 2

Literature Review

Geotechnical engineers frequently use the Coulom& Rankine’s earth
pressure theories to calculate the active eartespre behind retaining structures.
These theories are discussed in the following sestiMackey and Kirk (1967),
Fang and Ishibashi (1986), Frydman and Keissar{1%hd Huang (2009) made
experimental investigations regarding active egntbssure. Frydman and Keissar
(1987) used the centrifuge technique to test a Ismmaldel wall. Numerical
investigation was studied by Leshchinsky, et aQ0@®, Lawson and Yee (2005)
Yang and Liu (2007) and Fan and Fang (2009). Timaijjor findings are introduced

in this chapter.

2.1 Active Earth Pressure Theories

2.1.1 Coulomb Earth Pressure Theory

Coulomb (1776) proposed a method of analysis te&trchines the resultant
horizontal force on a retaining system for any slop wall, wall friction, and slope
of backfill. The Coulomb theory is based on theuagstion that soil shear resistance
develops along the wall and the failure plane. Dedaassumptions are made as the
followings:

1. The backfill is isotropic and homogeneous.

2. The rupture surface is plane, as plane BEign2.1(a) The backfill surface

AC is a plane surface as well.
3. The frictional resistance is distributed uniféyralong the rupture surface

BC.



4. Failure wedge is a rigid body.

5. There is a friction force between soil and wdtlen the failure wedge

moves toward the wall.

6. Failure is a plane strain condition.

In order to develop an active state, the wall isigliied moved away from the
soil mass. If the wedge ABC Fg. 2.1(a)moves down relative to the wall, the wall
friction angle d will develop at the interface between the soil avall. Let the
weight of wedge ABC be W and the force on BC b@/kh the given valued and
the summation of vertical forces and horizontatés:, the resultant soil thrust P can
be calculated as shownking. 2.1(b)

Similarly, the active forces of other trial wedgssch as ABg ABC; (SeeFig
2.2) can be determined. The maximum value ofhRas determined is the Coulomb's

active force.

P, =2 JH?K, (2.1)

where
P, = total active force per unit length of wall
Ka = coefficient of active earth pressure
Y = unit weight of soil

H = height of wall

And
Ka = Sin2(¢+ ,B) . (22)
C o B sin(p+ J) sin(p—1)
sin” fsin(8 5){1+\/sin(,8—5)sin(,8+i)}
where

¢ =internal friction angle of soll



0 =wall friction angle
P = slope of back of the wall to horizontal

I = slope of ground surface behind wall

2.1.2 Rankine Earth Pressure Theory

Rankine (1875) considered the soil in a state abtpt equilibrium and used
essentially the same assumptions as Coulomb. The&imatheory further assumes
that there is no wall friction and failure surfac@® straight planes, and that the
resultant force acts parallel to the backfill slopetailed assumptions are made as the
followings:

1. The backfill is isotropic and homogeneous.

2. The retaining wall is a rigid body. The wall fa@e is vertical and the friction

force between the wall:and the soil is neglected.

Rankine assumedo friction between wall surface and backfill, ahe backfill
is cohesionless. The earth pressure on plane ABgof2.3(a)is the same as that on
plane AB inside a semi-infinite soil ' mass king. 2.3(b) For active condition, the

active earth pressure, at a given depth z can be expressed as:

o, =K, (2.3)

P, =2 H?K, (2.4)

The direction of resultant force, B parallel to the ground surfacefsg. 2.3(b)

where



- cos cos - \/ (cos’ i —cos @) 2.5)

cos + \/ (cos’ i —cos @)

K

a

2.1.3 Terzaghi General Wedge Theory

The assumption of plane failure surface made byld&olb and Rankine,
however, does not apply in practice. Terzaghi ()}9ldggested that the failure
surface in the backfill under an active conditioasva log spiral curve, like the curve
bd inFig. 2.4 but the failure surface dc is still assumed a@la

Fig. 2.5illustrates the procedure to elevate the actigestance by trial wedge
method (Terzaghi and Peck, 1967). The lipg thakes an angle ofi5 + @/2 with
the surface of the backfill. The arcibof trial wedge abgt; is a logarithmic spiral

formulated as the following equation

r, =r,e’®" (2.6)

O is the center of the logspiral curve in Fig. 2vBhere Qb =, O;d; = 1o,
and ~bOid; = 6. For the equilibrium and the stability of the smidss abd; in
Fig. 2.6 the following forces per unit width of the watleaconsidered.
1. Soil weight per unit width in abld: W, = v x (area of abd)
2. The vertical face ik is in the zone of Rankine’s active state; henhe, t
force

Pypacting on the face is

1
Py =5 V(H )’ tan’ (@5 —%) 2.7)

where
Ha1 = chf1

P41 acts horizontally at a distance of;F3 measured vertically



upward from g.
v is the unit weight of sall
3. The resultant force of the shear and normalefod, acting along the
surface of sliding bd At any point of the curve, according to the pmype
of the logarithmic spiral, a radial line makes argle ¢ with the normal.
Since the resultandF makes an angle with the normal to the spiral at its
point of application, its line of application witloincide with a radial line
and will pass through the point O
4. The active force per unit width of the wall Bcts at a distance of H/3
measured vertically from the bottom of the wall eTdirection of the force
P: is inclined at an angled with the normal drawn to the back face of the
wall.

5. Moment equilibrium of W, Py, dF and R about the point ©
W1[|2] + Pdl[|3] +dF (0) = Pl[ll] (2.8)

or

1
Pl ZI_[Wllz + Pd1|3] (2-9)
1

where I2, '3, andh are the moment arms for forceg Wy, and R, respectively.

The trial active forces per unit width in variouglk wedges are shown iaig.
2.7. Let B, P,, P;, ..., and R be the forces that respectively correspond tarihe
wedges 1, 2, 3, ..., and n. The forces are plottatiedcsame scale as shown in the
upper part of the figure. A smooth curve is plottecugh the points 1, 2, 3, ..., n.
The maximum Pof the smooth curve defines the active forgg& unit width of

the wall.



2.1.4 Spangler and Handy’s Theory

Spangler and Handy (1984) have applied JansseB8%5]1theory to design
problem of fascia retaining wallBig. 2.8defines the soils with a width B bounded
by two unyielding frictional boundaries (the rockcé and wall face). The vertical

force equilibrium of the thin horizontal soil elenten Fig. 2.9requires
Vv
(V+dv)+ 2K,uEdh =V +)Bdh (2.10)

This is a linear differential equation, the solatfor which is

, 1- e—ZK,u(h/B)

V = - -
- 2Ku

(2.11)
where

U = tan o, the coefficient of friction between the soil anc th

wall

y= unit weight'of the soll

B = backfill width

h = backfill depth (i.e. z)

K = the coefficient of lateral earth pressure

V = the vertical force
From the solution of eq.(2.11), an equation foeralt earth pressure, can be

calculated
o = E[l— e‘ZK”(%)} (2.12)

Some solutions for different values of B are shawrFig. 2.10 The soil
pressure, instead of continuing to increase witheiasing values df, levels off at a

maximum valueoy,max defined as follows.



%
w

o (2.13)

max

N

U 2tand

2.2 Laboratory Model Retaining Wall Tests

2.2.1 Model Study by Mackey and Kirk

Mackey and Kirk (1967) experimented on lateral legtessure by using a
steel model wall. This soil tank was made of sta#h internal dimensions of 36 in.
x 16 in. x 15 in. (914 mmx 406 mmx 381 mm) as shown iRkig. 2.11 In this
investigation, when the wall moves away from thi sloe earth pressure decreases
(seeFig. 2.19 and then increases slightly until it reaches astant value. Mackey
and Kirk reported that if the -backfill is loose etlactive earth pressure obtained
experimentally are within 14 percent off those oied theoretically from almost
any of the methods list ifable 2.1

Mackey and Kirk utilized a powerful beam of light bbserve the failure
surface in the backfill. It could trace the posttiof the shadow, formed by changes
of the sand surface in different level. It was fduhat the failure surface in the
backfill due to the translational wall movement waggproximated a curve in the

backfill (Fig. 2.13, rather than a plane assumed by Coulomb.

2.2.2 Model Study by Fang and Ishibashi

Fang and Ishibashi (1986) conducted laboratory moebgperiments to
investigate the distribution of the active stresskge to three different wall
movement modes: (1) rotation about top, (2) rotatibout base, and (3) translation.
The experiments were conducted at the Universitjashington.

Fig. 2.14 shows the horizontal earth pressure distributions at edéht

translational wall movements. The measured actiuess is slightly higher than
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Coulomb's solution at the upper one-third of wadigmt H is 3.33 ft (1.01 m),
approximately in agreement with Coulomb's preditiio the middle one-third, and
lower than Coulomb' at the lower one-third of wallface. However, the magnitude
of the active total thrust.Rt S =20x1C™° in. (0.5 mm) is nearly the same as that
calculated from Coulomb's theory.

Fig. 2.15shows lateral earth pressures measured at vadepths decreased
rapidly with the translational active wall displavent. Most measurements reach
the minimum value at approximateBCx1C2 in (0.25 mm, or 0.00025H) wall
displacement and stay steady thereaffexble 2.2 shows the range of wall
displacement reported by previous researchershiotrainslational wall to achieve
an active state.

Fig. 2.16shows the Kas a function of soil density and internal frictiangle. In
this figure, the K value decreases with increasipgngle. The Coulomb’s solution

might underestimate the coefficienffidr rotational wall movements.

2.2.3 Model Retaining-Wall Study by Huang

Huang (2009) used the model retaining wall fae#tat National Chiao Tung
University to investigate the active earth pressureetaining walls near an inclined
rock face. The backfill height H is 0.5 m. The paeters considered for that study
were the rock face inclination anglgs= 0°, 50°, 60°, 70°, 80°, 90°, the horizontal
spacing b = 0, 50 mm, 100 mm as illustrateétim 2.17 to Fig. 2.19

Fig. 2.20 to Fig. 2.28hows the distribution of active earth pressurdiféerent
interface inclination angle for b = 0, 50 mm, 10@nnfig. 2.23shows the active
earth pressure coefficient K versus interface inclination ang@ The point of
application of active soil thrust versus interfacelination angle is shown inFig.
2.24.Based on the test result, the following conclusiare drawn:

1. With the approaching of the interface plate, $b& mass behind the wall

decreased. The active earth pressure coefficiept #ecreased with

increasing interface inclination angdeor decreasing spacing b.
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2. As the interface angl@ increased or spacing b decreased (the rock face
approached the wall face), the inclined rock faseuded the active soil
wedge, the active pressure decreased near thebtdsewall. This change
of earth pressure distribution caused the activesthto rise to a slightly
higher location.

3. Forallb =0, b=0.1H, and b = 0.2H, the hontal component of active
soil thrust R would decrease with increasifigangle. The intrusion of the
inclined rock face would actually increase the g&imst sliding of the wall.
The evaluation of FS against sliding with Coulomthisory would be on

the safe side.

2.2.4 Centrifuge Model Study by Frydman and Keissar

Frydman and Keissar (1987) used the centrifuge fmgdechnique to test a
small model wall near a vertical rock face as shawfig. 2.25 and changes in
pressure from the at-rest to the active conditias wbserved. The centrifuge system
has a mean radius of 1.5 m, and can develop a niaxiacceleration of 100 g, where
g is the acceleration due to gravity. The modessbaiilt in an aluminum box of inside
dimensions 327 x 210 x 100 mm. Each model incladegtaining wall made from
aluminum (195 mm high x 100 mm wide x 20 mm thiak)shown irfFig. 2.26 The
rock face is modeled by a wooden block, which tlarmugh a screw arrangement, be
positioned at varying distances b from the walcd-af the block is coated with the
sand used as fill, so that the friction betweenrto& and the fill is equal to the angle
of internal friction of the fill. The granular filbetween the wall and the rock face was
modeled by uniform fine sand, the uniformity coa#int, G, = 1.5. The model tests
were carried out with the sand placed at a relatesgsity of 70%. Simple shear tests
performed on the sand at this relative density dhgeangle of internal frictiop =
36°. Direct shear tests between the sand and alumymelded a friction angle

20°~25°.
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Frydman and Keissar (1987) found that Spangler-anttly (1984) developed
equation, (2.12) base on Janssen’s (1895) archewyy, for calculating the lateral
pressure acting on the wall of a silo. In the dihe lateral pressui, at any given

depth, z, is given as:

o= P {1—exp(—2KEtan5H (2.14)
2tand b

where

o, = lateral pressure acting on the wall (og).

b = distance between silo walls

z = depth from top at whicbi is required

K = coefficient of lateral earth pressure

Y = unit weight of the backfill

0 = angle of friction between the wall and the bdtkf

The coefficient K value depends on the lateral moset of the silo wall. For

walls without any lateral movement, the Jaky's emuma was suggested for
estimating the K value. In the active conditionydman and Keissar derived the K
value by taking into account the friction betwedre twall and the fill, and

assuming that the soil near the wall reached a sffafiailure. The K value is given

by

K = (sin® p+1) - \/(sin2 P+ 1)2 - (1— sin® qa)(4tan2 J—sin® g+ 1)

2.15
(4tan’ 5 - sin? g+1) (.15)

Where@ = the angle of internal friction of the fill. Tlemefficient of lateral earth
pressure in the active condition at given depthrzlze determined as the ratio of

oy overay (=yz), and is expressed as
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K=—2 Db 1—ex;{— ZKEtané'j (2.16)
2tand z b

The coefficient of active earth pressures at gigdepth z for a retaining wall
near a vertical rock face can be theoreticallynested by substituting Eq. 2.15 into
Eq. 2.16. The distribution of Kwith the depth in Eq. 2.16 was verified using the
experimental data obtained from the centrifuge ek, in which the wall rotated
about its base (RB model). The ¥alue obtained decreased considerably with depth.
Additionally, the measured Kvalue was significantly less than the Rankine’'s or
Coulomb’s coefficient of active earth pressufgg. 2.27shows the distribution of
Ka as a function of z/b. It is seen that for z/bslélsan about 1, the horizontal stress
estimated using the silo pressure equation is gre#ian that corresponding to
Rankine distribution. Obviously this is unaccepgal®l more reasonable distribution
may be obtained by assuming the silo pressure dorbe limited by the Rankine

pressure, resulting in a composite curve such & mBrig. 2.27

2.3 Numerical Studies

2.3.1 Numerical Study by Leshchinsky, et al.

Leshchinsky, et al. (2004) used the limit equilioni method with computer
program ReSSA 2.0 (ADAMA, 2003) to numerically istigate the lateral earth
pressure acting on a Mechanically-Stabilized-Eavél. A baseline 5m-high wall
was specifiedthe geometrical modeling was showrfig. 2.28(a) A single layer of
reinforcement at 1/3 of the height of the wall vgasulated in the analysis. Fig.
2.28 the foundation was considered as competent bedimoddiminate external
effects on its stability. Various types of reinfedccohesionless fill were used in the
analysis, all having a unit weight gf= 20 kN/n? and the internal angle of frictiap
of the fill varying from 20 to 45. Fig. 2.28(b)shows the base width of the fill was

B, and the slope of the rear section of the filswa
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Fig. 2.29 shows the results predicted by ReSSA versus valepesrted by
Frydman and Keissar (1987). The bedrock constrgitiie sand in all tests was
vertical (i.e., m= ). Frydman and Keissar (1987) reported an inteamgle of
friction of 36° and interface friction between takiminum and sand = 20°~25°.
Note that rather than usingsKthe ratio K;/K, is used, K = tarf(45 —@2) is
Rankine’s active lateral earth pressure coefficiéng). 2.29 implies that as the
retained soil space narrows (i.e., H/B increases)) ReSSA and the experimental
data show the KIK ; ratio decreases.

Fig. 2.30 presents the variation of active earth pressuedficent Ky as a
function of the rock face slope myKvas determined with the numerical analysis,
and K, was calculated with the Rankine theory, K tarf(45° — @/2). The
normalization of K with K, produces charts that are independenp.dfor B = 0,
the coefficient K rapidly decreased with increasing slope m. Theoam of fill
between the wall and bedrock-was very snfatk B = 0.1H and 0.2H, Kalso
decreases with increasing slope m, however theespatween the wall and the

bedrock slope was becoming wider.

2.3.2 Numerical Study by Lawson and Yee

Lawson and Yee (2005) used the limit equilibriumtimoel to numerically
investigate the lateral earth pressure acting daimeag walls with constrained
reinforced fill. The forces acting on the reinfadddl zone are shown ifig. 2.31(a).
The height of wall is H, andLis the width of fill at top. UH represents the
normalized with the height of fill. The destabihgi force is due to the weight of the
fill, W, within the potential failure surface. Faimplicity, it is assumed that the
stabilizing force Racting on the rear of the wall face is horizoradl the wall face
IS vertical.

Fig. 2.31(b)shows values of earth pressure coefficient K forous wall L/H

ratio for a fill with an internal friction anglg = 30". For L/H ratios greater than 0.5,
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the active wedge can develop fully within the gdandill zone, hence the value of
K = K, = tarf(45 —@2) = 0.333. For |/H ratio less than 0.5, the active wedge

cannot develop fully, hence the magnitude of K dases for decreasing/H.

2.3.3 Numerical Study by Yang and Liu

Yang and Liu (2007) used the finite element progRlaxis version 8 (Plaxis,
2005) to investigate the earth pressures for narretaining walls.Fig. 2.32
illustratesthe narrow retaining walls in front of a stablekdace. L is the width of
backfill and H is the height of walFig. 2.33(a)shows the finite element mesh for
at-rest condition, an&ig. 2.33(b)is the finite element model for active condition.
The wall height H was fixed to 10 m while wall whdt corresponding to desired
wall aspect ratio L/H = 0.1, 0.3, 0.5, 0.7. Preglicearth pressure coefficients were
normalized by Rankine K

Normalized earth pressure coefficient profilesdtrest condition are shown in
Fig. 2.34(a) the earth pressure coefficieng Hecreases with decreasing aspect ratio
L/H. Normalized earth pressure coefficient profilésr active condition are
addressed ifrig. 2.34(b) the data are ‘scattered aroungafld do not show a clear
tendency. Even so, it can be observed that thén gmessure coefficient profiles
decrease with decreasing aspect ratio. The eftdédisundary constraint still can be
recognized.

Fig. 2.35(a)shows the equivalent earth pressure coefficienis(&ong the
wall face), K'(along the center of the backfill) and the equerdl earth pressure
coefficients computed from arching equation forest condition. All the pressure
coefficients are normalized by Ranking. Khe data from finite element analyses
show the normalized equivalent earth pressure icgaits are less thangi, by
10% to 60%, when the aspect ratio changed fronta0071.

Fig. 2.35(b)is the analytical results for active case. All gige coefficients are
normalized by Rankine K The decreasing tendency of equivalent earth press

from finite element analyses is not obvious unfiHl< 0.3. This implies that the

16



boundary constraint starts to play a role whenghape of backfill become very
slender. The difference between the earth pressiloeg the wall face and the earth
pressures along the center of the backfill is agmarThis is most likely because all
the stress points along the wall face are insiddditure wedge, but not all of stress
points at the center of the backfill are at in @etive wedge. Data from limit

equilibrium analyses by Lawson and Yee (2005) aaghchinsky et al. (2003) are
compared with data calculated from finite elememtutation. The results generally

show a similar trend.

2.3.4 Numerical Study by Fan and Fang

Fan and Fang (2009) used the non-linear finite efenprogram PLAXIS
(PLAXIS BV, 2002)to investigate the earth pressure against a vigiltl close to an
inclined rock faceKig. 2.39. The wall used for analysis is 5 m high, the batk
the wall is vertical, and the surface of the bdtkdi horizontal. Typical geometry
of the backfill zone used in-the ‘study is shownFig. 2.36 To investigate the
influence of the adjacent rock face'on the behavi@arth pressure, the inclination
anglep of the rock face and the spacing b between theamdl the foot of the rock
face were the parameters for numerical analysie.Wall was prevented from any
movement during the placing of the fill. After tHidling process, active wall
movement was allowed until the earth pressure loethia wall reached the active
condition. The finite element mesh, for a retainimgll with restrained backfill
space B = 70 and b = 0.5m) is shown iRig. 2.37 The finite element mesh
consists of 1,512 elements, 3,580 nodes, and 4#88s points.

Base on the numerical analysistributions of horizontal earth pressures with
the depth (z/H) at various wall displacements fer @5 m and3 = 8(° are shown irFig.
2.38 In the figure, the distribution of active eartlegsure with depth is non-linear.
Due to the nearby rock face, the calculated agiressure is considerably less than

that computed using the Coulomb’s theory.
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Fig. 2.39 shows the variation of the active earth pressuvefficient
(Ka(computedj Kacoulomb) @s a function of the inclination anddeof the rock face and
the wall-rock spacing b, for walls under translatmovement. Fop > 60°, the
analytical active K values are less than thoseutatled with Coulomb’s solution.
The analytical K value decreased with increagirangle.

Fig. 2.40shows the variation of the location of active gbiust with thef3
angle and wall-rock spacing Bor 3 > 60, the active soil thrust rises with

increasing3 angles, and the active h/H value increased withedesing fill width b.

2.4 Plane Strain State-of-Stress

In many soil mechanics problems, a type of statst@ss that is often
encountered is the plane strain condition. Refgrta-ig. 2.41 for the retaining wall,
the normal strain in the y direction at any poinh Ehe soil mass is equal to zeeg £
0). To reduce the side wall deflection, due torkitearth pressure the NCTU model
retaining wall Fig. 1.7) used U-shaped steel beams and steel columnstmedhe
side walls deformation. The soil bin is nearly dighat lateral deformation of side

wall becomes negligible.

The normal stresses, at all sections in the xz plane (intermediate @pal
plane) are the same, and the shear stresses erxthpkanes are zero,{ = ty, = 0).
To minimun the side wall friction on xz plane, tRETU model retaining wall uesd
lubrication layers to reduce the interface frictlmetween the sidewall and the

backfill.

Under a plane-strain state of stress, the nornkhaear stresses on the yz plane
are equal t@y andty,. Similarly, the normal and shear stress on thplage areo,

andt, (Tx = Txz). The relationship between the normal stressebeaxpressed as

18



wherev is Poisson’s ratio.

for a plane strain conditiosy = 0

0=0,-vo, -vo,

ay = V(ax + Uz)

19
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Chapter 3

Experimental Apparatus

In order to study the earth pressure behind retgisiructures, the National
Chiao Tung University (NCTU) has built a model retag wall system which can
simulate different kinds of wall movements. All thfe investigations described in
the thesis were conducted in this model wall, whigh be carefully discussed in
this chapter. The entire facility consists of fa@mponents namely, model retaining
wall, soil bin, driving system, and data acquisit®ystem. The arrangement of the

NCTU model retaining wall system is shownFig. 3.1

3.1 Model Retaining Wall

The movable model retaining wall and its drivingtgyns are shown irig. 3.1
The model wall is a 1000-mm-wide, 550-mm-high, d2®-mm-thick solid plate,
and is made of steel. Note thatHiy. 3.1the effective wall height H is only 500 mm.
The retaining wall is vertically supported by twaidirectional rollers , and is
laterally supported by four driving rods. Two sefswall-driving mechanisms, one
for the upper rods and the other for the lower rau®vide various kinds of
movements for the wall. A picture of the NCTU modeilll facility is shown inFig.
3.2

Each wall driving system is powered by variableespenotor. The motors turn
the worm driving rods which cause the driving roalsnove the wall back and forth.
Fig. 3.3showstwo displacement transducers (Kyowa DT-20D) areaitesd at the
back of retaining wall and their sensors are atddo the movable wall. Such an

arrangement of displacement transducers would feetefe in describing the wall
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translation.

To investigate the distribution of earth pressuaiee earth pressure transducers
were attached to the model wall. The arrangemettieotarth pressure cells should
be able to closely monitor the variation of thetleg@ressure of the wall with depth.
Base on this reason, the earth pressure transd8&ar$ through SPT9 have been
arranged at two vertical columns as showRim 3.4.

A total of nine earth pressure transducers haenlarranged within a narrow
central zone to avoid the friction that might exasiar the side walls of the soil bin
as shown inFig. 3.5 The Kyowa model PGM-02KG (19.62 kN?ncapacity)
transducer shown irFig. 3.6 was used for these experiments. To reduce the
soil-arching effect, earth pressure transducerh wistiff sensing face are installed
flush with the face of the wall. They provide clysespaced data points for

determining the earth pressure distribution witptte

3.2 Soil Bin

The soil bin is fabricated of steel members witside dimensions of 2,000 mm
x 1,000 mmx 1,000 mm (se€ig. 3.1). Both sidewalls of the soil bin are made of
30-mm-thick transparent acrylic plates through wltiee behavior of backfill can be
observed. Outside the acrylic plates, steel beamdscalumns are used to confine
the side walls to ensure a plane strain condition.

The end wall that sits opposite to the model rétginvall is made of 100 mm
thick steel plates. All corners, edges and screleshan the soil bin have been
carefully sealed to prevent soil leakage. The lottd the soil bin is covered with a
layer of SAFETY-WALK to provide adequate frictioetween the soil and the base
of the soil bin.

In order to constitute a plane strain conditior® $oil bin is built very rigid so
that the lateral deformations of the side wallsl vaé negligible. The friction

between the backfill and the side walls is to baimized to nearly frictionless, so
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that shear stress induced on the side walls willnbgligible. To eliminate the
friction between backfill and sidewall, a lubriaati layer with 3 layers of plastic
sheets was furnished for all model wall experimefite “thick” plastic sheet was
0.152 mm thick, and it is commonly used for condinn, landscaping, and
concrete curing. The “thin” plastic sheet was 0.00% thick. It is widely used for
protection during painting, and therefore it is sbimes called painter’s plastic.
Both plastic sheets are readily available and geitls very expensive. The
lubrication layer consists of one thick and twonttplastic sheets were hung
vertically on each sidewall of the soil bin beftine backfill was deposited (s€&.
3.7). The thick sheet was placed next to the soiligdag. It is expected that the thick
sheet would help to smooth out the rough interfasea result of plastic-sheet
penetration under normal stress. Two thin sheete vpéaced next to the steel
sidewall to provide possible sliding planes. Forrenanformation regarding the
reduction of boundary friction with the plastic-shenethod, the reader is referred to

Fang et al. (2004).

3.3 Driving System

Fig. 31 shows the variable speed motors M1 and M2 (Eleti4621AB) are
employed to compel the upper and lower driving rogspectively. The shaft
rotation compels the worm gear linear actuatorsleathe actuator would push the
model wall. To investigate the variation of earttegsure and the failure wedge
caused by the translational wall movement, the mspeeds at M1 and M2 were

kept the same speed of 0.015 mm/s for all expettisnarthis study.

3.4 Data Acquisition System

A data acquisition system was used to collect ame she considerable amount

of data generated during the tests. The data atiqnisystem was composed of the
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following four parts: (1) dynamic strain amplifier@dyowa: DPM601A and
DPM711B); (2) NI adaptor card (NIBNC-2090); (3) ADA card; and (4) personal
computers shown ifrig. 3.8 An analog-to-digital converter digitized the al
signals from the sensors. The digital data wera thtored and processed by a
personal computer. For more details regarding t68& Ul retaining-wall facility, the

reader is referred to Wu (1992) and Fang et aB4)1.9
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Chapter 4

Interface Plate and Supporting System

A steel interface plate is designed and construci¢de soil bin to simulate the
constrained backfill shown iRig. 1.1 In Fig. 4.1 the plate and its supporting system
are developed to fit in the NCTU model retaininghwacility. The interface plate
consists of two parts: (1) steel plate; and (2)foecing steel beams. The supporting
system consists of the following three parts: @) supporting beam; (2) base
supporting block; and (3) base boards. Detailb@iterface plate and its supporting

system are introduced in the following sections.

4.1 Interface Plate

4.1.1 Steel Plate

The steel plate shows kig. 4.2is-1.370 m-long, 0.998 m-wide, and 5 mm-thick.
The unit weight of the steel plate is 76.52 kRlAnd its total mass &3 kg (814 N). A
layer of anti-slip material (SAFETY-WALK, 3M) is &@ched on the steel plate to
simulate the friction that acts between the balc&hd rock face as illustrated kig.
4.2 andFig. 4.3 For the wall height H = 0.5 m and the inclinatangle = 5¢, the
length of the interface plate should be at lea37@ m. On the other hand, the inside
width of the soil bin is 1.0 m. In order to put tilerface plate into the soil bin, the
width of the steel plate has to less than 1.0 ma Aesult, the steel plate was designed

to be 1.370 m-long and 0.998 m-wide.

4.1.2 Reinforcement with Steel Beams
To simulate the rock face shownhing. 1.1, the steel interface plate should be
nearly rigid. To increase the rigidity of the 5 ntimek steel platef-ig. 4.2 (b)andFig.

4.3 (b)shows 5 longitudinal and 5 transverse steel L-lseaere welded to the back
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of steel plate. Section of the steel L-beam (30 m80 mm x 3 mm) was chosen as
the reinforced material for the thin steel plate.tOp of the interface plate, a 65 mm
x 65 mm x 8 mm steel L-beam was welded to reinfthheeconnection between the

plate and the hoist ring shownhig. 4.3 (b)

4.2 Supporting System

To keep the steel interface plate in the soil bdable during testing, a new
supporting system for the interface plate was eegigand constructed. A top-view of
the base supporting frame is illustratedrig. 4.4 The supporting system composed
of the following three parts: (1) top supportingbe (2) base supporting block and (3)

base boards. These parts are discussed in follcseicigons.

4.2.1 Top Supporting Beam

In Fig. 4.5 the top supporting steel beam is placed at tlok bathe interface
plate and fixed at the bolt slot on the side whthe soil bin. Details of top supporting
beam are illustrated iRig. 4.6 The section of supporting steel beam is 65 mnd x 6
mm x 8 mm and its length is 1700 mRig. 4.4shows bolt slots were drilled on each
side of the steel beam on the side wall of thelsioil The locations of bolt slots were
calculated for the interface plate at differenceizumtal spacing b and inclined

anglep. Fig. 4.7shows the top supporting beam was fixed at the s¥ih bolts.

4.2.2 Base Supporting Block

The base supporting block used to support the stesface plate is shown in
Fig. 4.8 The base supporting block is 1.0 m-long, 0.6 rdeyiand 0.113 m-thick.
Fig.4.8 shows seven trapezoidal grooves were carved tofadbe of the base

supporting blockFig. 1.2to Fig.1.5shows the foot of the interface plate could be
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inserted into the groove at different distance frioase of the model wall. IRig.4.8
different horizontal spacing b adopted for testimudes: (1) b = 0; (2) b = 50 mm; (3)
b =100 mm; (4) b =150 mm; (5) b = 250 mm; (6) 8580 mm; and (7) b = 500 mm.

4.2.3 Base Boards

Fig. 4.5shows 6 pieces of base boards are stacked bethedase supporting
block and the end wall, to keep the base blocKetdhe base boards show FHing.
4.9is 1400 mm-long, 1000 mm-wide and 113 mm-thickplavide adequate friction
between the backfill and the base board, the seidéthe top base board was cover

with a layer of anti-slip material SAFETY-WALK.
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Chapter 5

Backfill and Interface Characteristics

This chapter introduces the properties of the hliclkdnd the interface
characteristics between the backfill and the wadboratory experiments have been
conducted to investigate the following subjects: l§ackfill properties; (2) model
wall friction; (3) side wall friction; (4) interfae plate friction; and (5) distribution of

soil density in the soil bin.

5.1 Backfill Properties

Air-dry Ottawa sand (ASTM C-778) was used throughthis investigation.
Physical properties of the soil inclu@= 2.65, ena= 0.76,emin= 0.50,Dgo= 0.40
mm, andD;= 0.22 mm. Grain-size distribution of the backidlshown inFig. 5.1
Major factors considered in choosing Ottawa sandhas backfill material are
summarized as follows.

1. Its round shape, which avoids effect of angtyaf soil grains.

2. Its uniform distribution of grain size (coefieit of uniformity G=1.82),
which avoids the effects due to soil gradation.

3. High rigidity of solid grains, which reduces pide disintegration of soil
particles under loading.

4. Its high permeability, which allows fast draieagf pore water and therefore
reduces water pressure behind the wall.

To establish the relationship between the unit wieigof backfill and its
internal friction anglep, direct shear tests have been conducted. The bbgarsed

has a square (60 mmx60 mm) cross-section, andraagement is shown iRig.
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5.2

Chang (2000) established the relationship betweeimnternal friction angley
and unit weighty of the Ottawa sand as shownFkig. 5.3 It is obvious from the
figure that solil strength increases with increasog density. For the air-pluviated
backfill, the empirical relationship between soilituweight y and ¢ angle can be

formulated as follows

©=6.43 - 68.99 (5.1)

where
@ = angle of internal friction of soil (degree)
y = unit weight of backfill (kN/rf)
Eqn. (5.1) is applicable for= 15.45 ~ 17.4 kN/rhonly.

5.2 Model Wall Friction

To evaluate the wall friction angl®, between the backfill and model wall,
special direct shear tests have been conducted8 Mm@ x 88 mmx 25 mm
smooth steel plate, made of the same materialeastdel wall, was used to replace
the lower shear box. Ottawa sand was placed irgauiper shear box and vertical
load was applied on the soil specimen. The arraegéwof this test is shown ifg.

5.4

To estimate the wall friction anglés, developed between the steel plate and
sand, soil specimens with different unit weight evegsted. Air-pluviation methods
was used to achieve different soil density, andtéise results are shown kig. 5.5

For air-pluviated Ottawa sand, Lee (1998) suggetedollowing relationship:

ow=2.33-17.8 (5.2
where
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o = wall friction of angle (degree)

y = unit weight of backfill (kN/rf)

Eqn. (5.2) is applicable for = 15.5~17.5 kN/rhonly. Theg angle and,, angle
obtained in section 5.1 and 5.2 are used for caicul of active earth pressure based

on Coulomb, and Rankine’s theories.

5.3 Side Wall Friction

To constitute a plane strain condition for modellveaperiments, the shear
stress between the backfill and sidewall shouldelminated. Lubrication layers
fabricated with plastic sheets were equipped fdreaperiments to reduce the
interface friction between the sidewall and the Kiidic The lubrication layer
consists of one thick and two.thin plastic shestswgygested by Fang et al. (2004).
Plastic sheets were vertically hung next to the-swdll as shown iifrig. 5.6.

The friction angle between the plastic sheets ardsidewall was determined
by the sliding block tests. The schematic diagrawh the photograph of the sliding
block test suggested by Fang et al. (2004) arstitited inFig. 5.7 and Fig. 5.8
respectively. The sidewall friction anglg_ is determined based on basic physics
principles. InFig. 5.8 the handle was turned to tilt the sliding platdjch the soil
box on the plate starts to slide. Then measuratiimation o, that the plate makes
with the horizontal.

Fig. 5.9shows the variation of interface friction angie with normal stress
o based on the sliding block tests. The frictionlamgeasured was 7.5With the
plastic — sheet lubrication method, the interfaggtibn angle is almost independent
of the applied normal stress. The shear stresseeetvthe acrylic side-wall and

backfill has been effectively reduced with the ptasheet lubrication layer.

29



5.4 Interface Plate Friction

To evaluate the interface friction between therfate plate and the backfill,
special direct shear tests were conducted as shofig. 5.10.In Fig. 5.10(b) a 80
mm x 80 mm x 15 mm steel plate was covered with a layer of slipi-material
“SAFETY-WALK” to simulate the surface of the intefe plate. The interface-plate
was used to simulate the rock face near the wallvahinFig. 1.1 Dry Ottawa sand
was placed into the upper shear box and verticakstwas applied on the soil
specimen as shown kig. 5.10(a)

To establish the relationship between the unit tmeygof the backfill and the
interface-plate friction angl@;, soil specimens with different unit weight were
tested. Air-pluviation methods was used to achigifferent soil densities, and the
test results are shown ig. 5.11. For air-pluviated Ottawa sand, Wang (2005)

suggested the following empirical relationship:

8= 2.77<21.39 (5.3)

where
& = interface-plate friction angle (degree)
y = unit weight of backfill (kN/m)
Eqgn. (5.3) is applicable for= 15.1 ~16.36 kN/rhonly.

The relationships between soil unit weighaind friction angle for different
interface materials are summarized kig. 5.12 The internal friction angle of
Ottawa sand, model wall-solil friction angle?d v, interface-plate friction angles |,
and lubricated sidewall friction anglé s as a function of soil unit weight are
compared in the figure. It is clear ilng. 5.12that, with the same unit weight, the
order of the four different friction angles invot/éor the model wall experiment is
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5.5 Control of Soil Density

5.5.1 Air-Pluviation of Backfill

To achieve a uniform soil density in the backfdiy-dry Ottawa sand was
deposited by air-pluviation method into the sor.brhe air-pluviation method had
been widely used for a long period of time to restitnte laboratory sand specimens.
Rad and Tumay (1987) reported that pluviation msethod that provides reasonably
homogeneous specimens with desired relative denkdyPresti et al. (1992)
reported that the pluviation method could be penfet for greater specimens in less
time. As indicated inFig. 5.13 the soil hopper that lets the sand pass through a
calibrated slot opening at the lower end was usethke spreading of sand. A picture
showing air-pluviation of the Ottawa sand into soih is indicated inFig. 5.14
Air-dry Ottawa sand was shoveled.from the soil ager bin to the sand hopper,
weighted on the electric scale, then pluviated thi soil bin. As indicated ifig.
5.15 four types of slot openings (5 mm, 7 mm, 10 mm 45 mm) were adopted by
Ho (1999), and the drop height of soil varied fror85 m to 2.5 m.

Das (2010) suggested that the granular soil witblative density of 15% ~
50% is defined as loose. In this study, the draghteof 1.0 m and the slot opening
of 15 mm were selected to achieve the loose b&ckith a relative density of

approximately 36%.

5.5.2 Distribution of Soil Density

To investigate the distribution of soil density tine soil bin, soil density
measurements were made. The soil density contphtade of acrylic is illustrated
in Fig. 5.16 and Fig.5.17. For the air-pluviated backfill, the density cupsre used
to measure the soil density at different elevatimmd locations.

In Fig. 5.18to Fig. 5.21 interface plate was placed with the inclinatiogle
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3 = 90° and the horizontal spacing b = 150 mm, 25 860 mm, and 500 mm. In
Fig. 5.22to Fig. 5.24 interface plate was placed with the inclinatiowgla 3 = 80°,
70°, 60°, and b = 150 mm. A layer of 100 mm-thicka@a sand was placed in the
soil bin as a soil blanket. The bottom density wgs then put on the surface of soll
blanket. Locations of the density cups buried i fili are illustrated inFig.5.18 to
Fig.5.24 Ottawa sand was placed layer by layer into thilebsoup to 0.5 m thick.
After the soil has been placed in the soil binh® top, soil cups were dug out
of the backfill carefully. Soil density is determaith by dividing the mass of soil in
the cup by the inside volume of the cup. The distions of relative density of loose
sand measured at different elevations with theeplatlination anglg3 = 90° are
shown inFig. 5.25 Test result for b = 150 mm are also showrFig. 5.25.In the
figure, the mean relative density is 35.6%, witlstandard deviation of relative
density was 1.39%From a practical point of view, it may be conclddeom these
data that the soil density in the soil bin.is quiteform. The relative density of the
Ottawa sand in the soil bin is independent of thkerface plate inclination and

location.
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Chapter 6

Test Results

This chapter reports the experimental results efl#teral earth pressure on a
retaining wall with a constrained cohesionless blcklest conditions for the
interface plate located at the horizontal spacirgd®0 mm, 250 mm, 350 mm, 500
mm and 2000 mm are illustrated fing. 1.3 to Fig. 1./respectivelyThe height of
backfill H is 0.5 m and the air-pluviation methochsvused to prepare the loose
backfill. The loose Ottawa sand has a relative iy = 35.6 % and a unit weight
vy = 15.6 kN/m. Based on direct shear tests by H#g) the corresponding internal
friction angleo for the loose backfill would be 3L.3They and values are used to
calculate earth pressures based on the Jaky antbrlouheories. The testing

program for this study is summarizedliable 6.1

6.1 Horizontal Earth Pressure with Faraway Plate

The variation of horizontal earth pressure agdimstwall as function of active
wall movement was investigated. After the loosekblavas placed into the soil bin
as shown irFig. 6.1 (a)and(b). The model wall slowly moved away from the soil
mass in a translation mode at the constant speed®% mm/s. No compaction was
applied to the loose backfill.

Distributions of horizontal earth presswgmeasured at different stages of wall
displacements S/H (S: horizontal wall displacemeéit,backfill height) for Test
0119-1landTest 0427-2 are illustrated kig. 6.2 and Fig. 6.3As the wall started to
move, the earth pressure decrease, and eventudilhyitang active pressure was
reached. The pressure distributions are essentiagar at each stage of wall

movement. Active earth pressures calculated withkik@ and Coulomb theories
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are also indicated in the figure. The ultimate expent active pressure distribution
at S/H = 0.004 is in fairly good agreement withtthatimated with Coulomb and
Rankine theories.

The variation of horizontal earth-pressure codditiK, as a function of wall
displacement is shown iRig. 6.4 The coefficient K is defined as the ratio of the
horizontal component of total soil thrust ®yH?/2. The horizontal soil thrust,P
was calculated by summing the pressure diagram showig. 6.2andFig. 6.3 In
Fig. 6.4the coefficient K decreased with increasing wall movement S/H uantil
minimum value was reached then remained approxlynateonstant. The ultimate
value of K, is defined as the horizontal active earth-pressasfficient K, . In Fig.
6.4, the active condition was reached at approximedéty= 0.004.

In Fig. 6.4 it may not be an easy task to define the pointacive wall
movement § For a wall that moved away from a loose sandykfibdn a
translational mode, Mackey and' Kirk (1967) conchidiae wall displacement
required to reach an active state §5=S0.004 H. The Svalues recommended by
Mackey and Kirk (1967), Bros. (1972), Fang andbskhi (1986) Fang et al. (1997)
illustrated inFig. 6.4 In this study the active wall movement is assuneede G =
0.004 H.

Das (2004) stated that, in the actual design dimetg walls, the wall friction
angle o is generally assumed to be betweg@i2 and 2/3. Potyondy (1961)
investigated the skin friction between varioussaihd construction materials. It was
concluded that, among several other factors, ttexface friction was influenced by
the roughness of the wall material. For this stuldg, model-wall surface was made
of smooth steel, as a result the wall friction aglas assumed to e= @2 =
15.65°. The wall friction angle mentioned above vessumed for calculation of
earth pressure for the Coulomb theory in the foifgasections. It may be observed
in Fig. 6.4that the Coulomb theory (= @'2) provide a good estimate of the active
soil thrust. The wall friction calculated with Edism 5.2 isd = 18.5°. For

comparison purposes, the Kdetermined withd = 18.5° is also illustrated iRig.
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6.4.

In Fig 6.2andFig. 6.3 the distribution of earth pressure with deptlliffierent
wall movements is nearly linear. As a result, tbenpof application of the total soll
thrust should act at about H/3 above the wall bi@ge = 0.333). The vertical
distance between the point of application of thgltsoil thrust and wall base is
designed as h. Test resultsHig. 6.5shows that the points of application of soll

thrust are located at about 0.33 H ~ 0.36 H abbgenall base.

6.2 Horizontal Earth Pressure for b = 150 mm

Fig. 6.6 (a) and (b3how the steel interface plate was placed in tilsofor b =
150 mm and3 = 90°. It is clear in the figures that only a thayer of soil was sand
which between the wall and the interface plate. dis&ributions of earth pressure at
different stages of wall movement are illustratedFg. 6.7 and Fig. 6.8 The
measuredo, was significantly. lower than Jaky’s solution aHS# 0. At the wall
movement S/H = 0.004, the active earth pressusggisificantly less than that of
Coulomb’s solution. IrFig. 6.6(a) the interface plate constrained the backfillls® t
active soil wedge cannot develop fully. It is rezaole to expect the measum@gdto
be less than Coulomb’s prediction.

Fig. 6.9 (a) and (b3how the steel interface plate was placed in tildsofor b =
150 mm and3 = 80°. The distributions of earth pressure atedéht stages of wall
movement are illustrated iRig. 6.10and Fig. 6.11 The measuredy, was slightly
lower than Jaky’s solution at S/H = 0. At S/H =@0Qthe measured, was lower
than Coulomb’s solution. It may be observedrig. 6.9 with the3 angle decreasing
from 3 = 90° to3 = 80°, the horizontal distance between the modeaill and
interface plate was increased. The amount of sagsrbetween the wall and the
inclined plate increased.

Fig. 6.12 (a)and(b) show the inclined plate was standing in the sailwith b =
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150 mm and3 = 70°. The distributions of earth pressure ateddht stages of wall
movement are shown fg. 6.13andFig. 6.14 The stress measured at S/H = 0 was
lower than Jaky’s solution near the bottom of thelwHowever, the active earth
pressure irfFig. 6.13andFig. 6.14was close to Coulomb’s solution. It was clear in
Fig. 6.12 (a)with B angle decreased from 80° to 70°, the interfacéeptizdd not
intrude the active soil wedge. It is possible fug tictive soil wedge to develop fully
in the backfill. As a result, the measured actiatte pressure was close to
Coulomb’s solution.

The steel interface plate with b = 150 mm &nd 60° is shown irFig. 6.15 (a)
and (b). The distributions of earth pressure at differglages of wall movement are
shown inFig. 6.16andFig. 6.17 The measured, at S/H = 0 was close to Jaky’s
solution, and the active pressure distribution wlase to Coulomb’s solutiorkig.
6.15 (a)shows the interface plate was relatively far frdme tvall face, thus the
measured lateral stress was not.be strongly affelcyethe existence of the steel
interface plate.

Fig. 6.18 toFig. 6.21 presents the variation of horizontal earth pressur
coefficient K, as a function of wall movement f@r= 90°, 80°, 70° and 60°. As the
wall started to move, the lateral soil thrust dasesl with increasing wall movement
until a stable value was reached, then remainedoappately a constant. The
ultimate value of IKwas defined as the horizontal active earth pressoeéicient
Kan For b = 150 mm, the active condition was obseraedpproximately S/H =
0.004.

TheFig. 6.22 toFig. 6.25demonstrate the variation of the point of applmatof
the solil thrust as a function of active wall movenor 3 = 90°, 80°, 70° and 60°.
At the active wall movement of 0.004 H, fdr= 90°, 80°, 70° and 60°, the (h/H)
values were 0.332, 0.345, 0.340 and 0.332. Thet pbimpplication of the active soil

thrust was located at 1/3 H above the base of #ie w
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6.3 Horizontal Earth Pressure for b = 250 mm

Fig. 6.26 (aand(b) illustrate the steel interface plate was placethesoil bin
for b = 250 mm an = 90°. InFig. 6.26 (a)the vertical interface plate intruded the
active soil wedge. Ifrig. 6.27andFig. 6.28 the distributions of earth pressure at
different stages of wall movement are presentedS/At = 0, the stress measured
was less than Jaky’s solution. The active eartlssune at S/H = 0.004 was lower
than Coulomb’s solution.

Fig. 6.29 (aand(b) show the steel interface plate was placed in tiidosofor
b = 250 mm an@ = 80°. The distributions of earth pressure ated#ht stages of
wall movement are shown iRig. 6.30and Fig. 6.31 At S/H = 0, the stress
measured was slightly less than Jaky’s solutiore attive earth pressure at S/H =
0.004 was close to Coulomb’s solution.

Fig. 6.32 (aand(b) show the steel interface plate was placed in tiidosofor
b = 250 mm an@@ = 70°. The distributions of earth pressure ated#ht stages of
wall movement are shown ifig. 6.33and Fig. 6.34 For B = 70°, the stress
measured at S/H = 0 was close to Jaky’s solutiod,the active earth pressure was
near Coulomb’s solutionkig. 6.32 (a)showsthe inclined interface plate did not
intrude the active soil wedge arkle interface platevas far from the wall. The
active soil wedge can develop fully, therefore, theasured active earth pressure
was close to Coulomb’s solution.

Fig. 6.35 toFig. 6.37show the variation of lateral soil thrust as action of
wall movement fo3 = 90°, 80° and 70°. As the wall started to move, [tieral soll
thrust decreased with increasing wall movementl anstable value was reached,
then remained approximately a constant. For b =rk{ the active condition was
reached at the wall movement of approximately 0.004

Fig. 6.38 toFig. 6.40show the point of application of the soil thrust as

function of wall movement. At the active wall movemt of 0.004 H, the (h/H)
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values were 0.330, 0.324 and 0.330far 90°, 80°, and 70°, respectively. It is clear

that the active soil thrusts act at about H/3 akbbeawall base.

6.4 Horizontal Earth Pressure for b = 350 mm

Fig. 6.41 (aand(b) illustrate the steel interface plate was placethesoil bin
for b = 350 mm ang = 90°. InFig. 6.41 (a)the steel interface plate does not
invade the active soil wedge. The distributiongarfth pressure at different stages of
wall movement are shown irig. 6.42andFig. 6.43 At S/H = 0, the measuredl,
was slightly lower than Jaky’s solution at the lovpart of the wall. At active wall
movement S/H = 0.004, tle measured at the lower part of the wall was lowant
Coulomb’s solution.

The steel interface plate with b = 350 mm @nd 80° is shown irFig. 6.44 (a)
and(b). Fig. 6.45andFig. 6.46present the distributions of earth pressure &traint
stages of wall movement. Fig. 6.44 (a)the interface plate was relatively far from
the wall face. Therefore, the measumgdat S/H = 0 was close to Jaky’s solution,
and the active earth pressure measured at S/H G4 GM@&s close to Coulomb’s
solution.

Fig. 6.47andFig. 6.48show the variation of lateral soil thrust as action of
wall movement for3 = 90° and 80°. As the wall started to move, therkdtsoil
thrust decreased with increasing wall movementl anstable value was reached,
then remained approximately a constant. For b =r85h{ the active condition was
observed at approximately S/H = 0.004.

The Fig. 6.49andFig. 6.50show the point of application of the soil thrustaas
function of wall movement. At the active wall movem of 0.004 H the (h/H)
values reached 0.342 and 0.332 ffor 90° and 80°. It may be concluded that the

point of application of the total thrust was lochtg H/3 above the base of the wall.
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6.5 Horizontal Earth Pressure for b = 500 mm

Fig. 6.51(a) and(b) show the steel interface plate was placed in tiidosofor
b = 500 mm and@ = 90°. Fig. 6.52andFig. 6.53show the distributions of earth
pressure at different stages of wall movement. [@itezal stress measured at S/H =0
was close to Jaky’s solution, and the measuredeaeiarth pressure was close to
Coulomb’s solution. IrFig. 6.51(a), the interface plate was relatively far from the
wall and the active soil wedge. As a result, thesoeed stress was good agreement
with Jaky’s and Coulomb’s predictions.

Fig. 6.54present the variation of lateral soil thrust asiraction of active wall
movement. As the wall started to move, the late@il thrust decreased with
increasing wall movement until a stable value wasched, then remained
approximately a constant. For 500, miig. 6.54shows the active condition was
reached at the wall movement of S/H =.0.004.

Fig. 6.55shows the point of application of the soil thrustaafunction of wall. At
the active wall movement of 0.004 H, the (h/Malue was 0.336. It means that the

active thrust was located at H/3 above the basesoivall.

6.6 Active Soil Thrust

The distributions of active earth pressure for riigige plates with horizontal
spacing b = 150 mm, 250 mm, 350 mm and 500 mm thighdifference interface
inclination anglef3 were shown irfFig. 6.56to Fig. 6.59.In Fig. 6.56 for b = 150
mm, the active earth pressure increased with deiogf angle. InFig 6.6(a)and
Fig 6.15(a) the plate inclination angle decreased frfm 90° to3 = 60°. In these
figures, the amount of soil mass behind the walleased with decreasifigangle
In Fig 6.15(a) the active soil wedge can fully develop in theldél. The interface

was relatively far from the retaining wall. It walube reasonable to expect that the
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active earth pressure on the wall would reach Guhble solution.Fig. 6.57shows
the active earth pressure distributions for b = 88@. For3 = 90°, the measured
active earth pressure was slightly less than Col®msolution. InFig 6.26(a) the
interface plate intruded the active soil wedgethe active earth pressure was less
than Coulomb’s solution. F@ = 80° and 70°, the interface plate did not intrtie
active soil wedge are shownfing 6.29(a)andFig 6.32(a) As a resultthe measured
active earth pressure was close to Coulomb’s swlutn Fig. 6.58,a similar trend
that the active earth pressure increased with dstrgf3 angle can be observed. In
Fig. 6.59 the measured active earth pressure was in fgolyd agreement with
Coulomb’s solution, because the interface plate vedetively far (b = 500 mm)
from the wall.

The variation of horizontal earth pressure coedfitiK, as a function of wall
movement S/H for b = 150 mm, 250 mm, 350 mm and ra@® are shown irfrig.
6.60 to Fig. 6.63In these figures, the active condition can beeoled at the wall
movement of S/H = 0.004. Irig. 6.60,the active earth pressure coefficientyfor
B =90° 80° 70° and 60° is 0.199, 0.261, 0.282 @raB8, respectively. Wit =
@2, the Coulomb’s solution for 44 was 0.286. It was clear iRig. 6.60that the
active earth pressure coefficienf Kkincreased with decreasifigangle.ln Fig. 6.61
for B = 90°, the active earth pressure coefficieqt, tas 0.214, which was less than
Coulomb’s solution. Fof3 = 80° and 70°, the &,values was 0.281 and 0.287,
which were close to Coulomb’s solution. Fig. 6.61 the active earth pressure
coefficient K, pincreased with decreasifigangle. InFig. 6.62 the Ky, value forf3 =
90° and 80° was 0.258 and 0.280, respectivelfidn6.63 the active earth pressure
coefficient Ky, is 0.287, which was in very good agreement withul@mb’s
solution Ky = 0.286. InFig. 6.5] the interface was quite far from the active soill
wedge and retaining wall. Therefore, the active geed¢dan fully develop. The
influence of the interface plate on the activelearessure becomes negligible.

Fig. 6.64 to Fig. 6.6'present the point of application of the soil thrasta

function of wall movement for b = 150 mm, 250 mrB03nm and 500 mm. In these
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figures, with increasing wall movement, the poirft application of the earth
pressure resultant remained at about H/3 abovevdiidbase. InFig. 6.56 from 3 =
90° to3 = 60°, the distributions of active earth pressusrenapproximately linear
with depth. As a result, the point of applicationactive soil thrust was located at
about H/3 above the wall base. A similar trend barobserved ifrig. 6.65to Fig.

6.67.

6.6.1 Magnitude of Active Soil Thrust

The active earth pressure coefficient:kas a function of the aspect ratio b/H of
the constrained backfill fds = 90°, 80°, 70° and 60° were shownhiyg. 6.68.In the
figure, with the sam@ angle, the active earth pressure coefficiept Kcreased
with increasing aspect ratio b/H. For the aspetd la/H > 1.0, the interface plate
was faraway from the retaining wall, the influeréehe plate oo, vanish. The K,
value converged to Coulomb’s solution, because attéve failure wedge could
develop fully.

For comparison purposes, the numerical solutiopsrted by Leshchinsky, et
al. (2004), Yang and Liu (2007) and experimentaules based on centrifuge tests
by Frydman and Keissar (1987) were plotted=ig. 6.69 In the figure, All active
pressure coefficients were fds =90° and normalized by Rankine K The
experimental coefficient &K{K, values in this study were lower than numerical
KaKa values. However, the research findings show alaintiend that, for b/H <
1.0 the normalized active pressure coefficient{K, increased with increasing
aspect ratio b/H. As b/H ratio approached 1.0 #st tata in this study and the
numerical solution by Yang and Liu (2007) convergedCoulomb’s solution. The
Kan coefficient obtained by Leschinsky et al. (200Hnwerged to Rankine’s

solution.
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6.6.2 Point of Application of Active Soil Thrust

Fig. 6.70shows the point of application of active soil struvith increasing
backfill aspect ratio b/H fop = 90°, 80°, 70° and 60°. For b/H = 0, the point of
application of active soil thrust (h/kjor B = 80°, 70°, 60° is 0.463, 0.417, 0.380,
respectively. For b/H = 0, the interface plate wasr the wall resulted in a thin
layer of backfill. The active earth pressure meaduat lower part of wall was
significantly less than Coulomb’s prediction. Thasthe reason why the active soill
thrust moved to a higher location. For b/H < Ol point of application of active
soil thrust (h/H) increased with decreasing backfill aspect ratio.

For the aspect ratio b/H between 0.3 to 1.0, eveugh the active earth
pressure was influenced by the interface plate, dis&ributions of active earth
pressure were approximately linear with depth,hed the (h/H) values were near
1/3.

For b/H > 1.0, the measured distributions of acpuessure were nearly linear
with depth. The influence -of -the relatively farawayterface plate becomes

negligible. This is the reason why the (h{Malues were approximately 1/3.

6.7 Lateral Pressure in Silo

Fig. 6.71shows a cylindrical storage silo filled with grdswumaterial. It is
important for designer to know how much lateralsgrge is acting on the inside of
the silo wall. The granular material in the silgenerally constrained by the parallel
vertical walls. At an active condition, the movahiedel wall simulates the vertical
silo wall which vyields laterally under the interngitessure. A3 =90°, the steel
interface plate simulates the vertical central afishe silo that remains unyielding
due to symmetry.

Fig. 6.72illustrates the distributions of active earth ptessat different aspect
ratio b/H for 3 =90°. For b/H < 1.0, the active earth pressure was ldhan

Coulomb’s solution. This implies that the interfguate constraint starts to play a
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role when the shape of fill becomes slender. Fét b/ 1.0, the measured active
earth pressure was close to Coulomb’s solutiormjitlies the boundary constraint
was relatively far from the wall face, the measuseéss was not strongly affected
by the existence of the steel interface plate.

The variation of horizontal earth pressure coedfitiK, as a function of wall
movement S/H fof = 90° is shown irFig. 6.73 With a faraway interface plate (b/H
= 1.0) the active earth pressure coefficientpkvas in fairly good agreement with
Coulomb’s equationd = @2). However, with the approaching of the interfaceela
b decreasing, the soil mass behind the wall becaarmew. InFig. 6.73at the active
wall movement S/H = 0.004, the active earth pressoefficient K , decreased with
decreasing backfill aspect ratio b/H.

Fig. 6.74shows the point of application of the solil thrustaafunction of wall
movement for3 = 90°. Huang (2009) reported the point of applicatadrnthe soil
thrust for b/H = 0.1 and 0.2 was-higher than H/8vabthe wall base. Based on the
test result in this study, for b/H = 0.3, 0.5, @7 and 4.0, the point of application of
the active earth pressure resultant was locatatdait H/3 above the wall base.

Fig. 6.75shows the distribution of normalized horizontatiae pressure da,
h/yz) based on the theoretical solution by Spangldriaandy (1982), experimental
results based on centrifuge tests by Frydman ands&e (1987), and the 1-g
physical model tests of this study. Fig. 6.75 with a constrained backfill, the
normalized active pressu,h'yz was not a constant with depth as assumed by
Coulomb and Rankine, it decreased with depth aift be concluded that, with a
constrained backfill, both Coulomb and Rankine tleowould overestimate the

active earth pressure against the vertical sild. wal

6.8 Displacement Vector in Backfill

Fig. 6.76(a) and (b)show the observed backfill displacement for b € &im
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andf3 = 90° Vertical and horizontal black lines werewdnaon the acrylic side walls
with the spacing of 50 mm. The movement of backi#is traced with black plastic
balls (@ = 3 mm) placed next to the acrylic side wall. Huotive soil wedge based on
Rankine theory is also marked on the side wallth&twall movement of S = 20 mm
(S/H = 0.04), the accumulated displacement of thekplastic ball is shown iRig.
6.77. The observed displacement occurred at the upgeiopthe fill, the soils tend
to move downward with the active wedge. The largestace settlement measured
was 24.8 mm. It is obvious that the magnitude o$pldicement reduced
progressively with increasing distance to the walkurface crack was observed at
246 mm from the wall, which happens to be fairlgsd to Coulomb’s prediction of
264 mm.

Fig. 6.78(a) and (b)show the observed displacement vector of backith b =
150 mm andB = 90°. At the wall. movement of S = 20 mm (S/H 94), the
accumulated displacement vectors Is showirin 6.79 It can be seen from this
figure that large soil displacements were obsemtethe upper part of the wall. In
Fig. 6.78(b), the surface of backfill settled significantly. Ttergest fill settlement
measured was 38.2 mimhe magnitude of displacement reduced progressivily
increasing depth of the backfill. Fg. 6.79 the active soil wedge was constrained
by the vertical interface plate. At the upper pafrtthe backfill, a sliding surface
developed along the interface plate

At the horizontal wall movement of S = 20 mm (S/H.84), the active wedge
slide into the extra volume created by the largdl wavement. InFig. 6.77,the
interface plate was faraway from the retaining wélle active soil wedge can
develop fully. InFig. 6.79,the interface plate intruded the active soil wedpe,
active soil wedge cannot develop fully. At the walbvement of 20 mm, an extra
space was created behind the wall. The backfilifesethe wall moved to fill extra
space. InFig. 6.78(b), the amount of backfill was limited. This is the sea why
the displacement vectors in the backfill for b =016im are larger than the
displacement vectors in backfill for b = 500 mm..

44



It should be noted that, to observe the movemerthefbackfill clearly, no
plastic-sheet lubrication layer was provided betwde backfill and the side-wall.
As a result, friction existed between the baclkditid the side-wallFig. 6.76 and
6.78 the pictures showed the backfill movement witlurdary effects. It does not
simulate a plane strain condition. However, thadref backfill deformation can be

observed in there pictures.

6.9 Design Considerations

In the design of a rigid retaining structure, itafien necessary to check its
adequacy. It is important to evaluate how the canstd backfill influence the

Factor of Safety (F.S.) against sliding-and oveing of the retaining wall.

6.9.1 Factor of Safety against Sliding

The factor of safety against sliding of the retagnhstructure is defined as:

F
FSiiging = %

(6.1)

Where > F, = the sum of horizontal resisting forces abd~, = the sum of
horizontal driving forces. For the retaining wallosvn in Fig. 1.1, the horizontal
driving force on the wall was the horizontal comegonof the active soil thrust. The
horizontal active thrusts 4 as a function of backfill aspect ratio b/H o= 90°,
80°, 70° and 60° were shown kg. 6.68.In the figure, the magnitude of active
thrust increased with increasing backfill aspetibrb/H. The Coulomb’s solution is
the upper bound for all experimental falues based on different b/H ratios ghd
angles.

In Eq. (6.1), if the driving force on the wall weeduced due to the constrained

backfill, and the resisting force remained the sathe factor of safety against
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sliding would increase. From a practical point a¢éw, the constrained backfill
would result in a greater FS against sliding. Iheotwords, the evaluation of F.S.

against sliding with Coulomb’s theory would be be safe side.

6.9.2 Factor of Safety against Overturning
The Factor of safety against overturning of thairebg wall is defined as:

M
FSoverturnirg = z MR

where XM, = the sum of resisting moments a}ddM, = the sum of overturning

(6.2)

moments about toe. The overturning moment in EQR) (& the product of the
horizontal active thrust R and the moment arm kig. 6.80shows the normalized
driving moment K, x (h/H) as a function of the backfill aspect rabidl. It is clear
in the figure that the driving moment calculateddshon Coulomb’s solution is the
upper bound value. For b/H-< 1.0, the overturnirggmant due to active soil thrust
decreased with decreasing backfill aspect ratio b/H

In EqQ. (6.2), if the overturning moment was reduedile the resisting moment
remained the same, the factor of safety againsttwvéng would increase. The
constrained backfill would result in a greater Efiast overturning. In other words,
the evaluation of F.S. against overturning with ©mb’s theory would be on the

safe side.
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Chapter 7

Conclusions

In this study, the effects of a constrained baktkfil active earth pressure were
investigated. Based on the experimental data,dlf@rfing conclusions are drawn.

1. The backfill in the soil bin prepared by air-plutad is quite uniform. The
distribution relative density of Ottawa sand in #wel bin is independent of the
interface plate inclination and location.

2. With a faraway interface plate (b = 2,000 mm), #ath pressure decreased
with increasing wall movement, and eventually aitiimy active pressure was
reached. For the wall with loose backfill, the miéite pressure was measured at
the active wall movement of 0.004 H. The measuretiva pressure
distribution was in good agreement with Coulomiokigon.

3. With the approaching of the interface plate, thatelintruded the active soil
wedge, so that the active soil wedge cannot devielibpbehind the wall. The
active earth pressure coefficient, Kdecreased with decreasing wall-plate
spacing b and increasing plate inclination arfiyle

4. For [ =90° and b/H < 1.0, the measured active eartbspre was less than
Coulomb’s solution. This implies that the verticainstraint play a role when
the shape of fill becomes slender. For b#H1.0, the measured active earth
pressure converged to Coulomb’s solution. Whenwrical boundary was
relatively far from the wall, the measured stresaswnot affected by the
existence of the vertical plate.

5. Under the aspect ratio b/H = 0.3, 0.5, 0.7, and th@ point of application of
active soil thrust was located at about H/3 abbteawall base.

6. For b/H < 1.0, the magnitude of active thrust iase with increasing backfill
aspect ratio b/H. Coulomb’s solution is the uppeurd for all experimental

Kan values based on different b/H ratios ghdngles. The constrained backfill
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would result in a greater factor of safety agasisgting for the retaining wall.
The evaluation of factor of safety against slidwith Coulomb’s theory would
be on the safe side.

For b/H < 1.0, the overturning moment due to actiw#é thrust decreased with
decreasing backfill aspect ratio b/H. The drivingpment about the toe
calculated with Coulomb’s solution is the upper hadwalue. The constrained
backfill would result in a greater factor of safetgainst overturning for the
wall. The evaluation of factor of safety againsedurning with Coulomb’s

theory would be on the safe side.
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Table 2.1. Comparison of experimental and theaaktialues (after Mackey and Kirk, 1967)

Active Pressure Coefficient

Theories Sand 1 Sand 2 Sand 3
Loose Dense Loose Dense Loose Dense

Coulomb 0.25 0.13 0.22 0.14 0.19 0.13
Rankine 0.26 0.13 0.24 0.14 0.19 0.13
Krey(¢ circle) 0.26 0.21 0.25 0.21 0.21 0.19
Ohde 0.26 0.21 0.25 0.21 0.21 0.19
Caquot and Kerise 0.25 0.13 0.23 0.14 0.19 0.13
Janbu 0.27 0.12 0.22 0.13 0.18 0.13
Rowe 0.21 0.16 0:21 0.16 0.21 0.16
Experimental 0.22 0.32 0.19 0.29 0.17 0.27
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Table 2.2. Wall displacements required to reachdive state

Investigator Soil Type T&%%g:n\évﬂl Max. Wsl(lcilisrglglcemer
Mackey and Kirk (1967) Loose Sand T mode 0.00400 H
Bros (1972) Sand T mode 0.00060 H
Fang and Ishibashi (198p)oose Sand T mode 0.00050 H
Fang et al. (1997) Loose Sand T mode 0.00150 H

Note: T = Translation; and H = Wall height
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Table 6.1 Test Program

Horizontal Spacing Interface Inclination Test No
b, (mm) Angle, p (degree) '
0305-1

90 0503-4

0315-3

150 80 0316-2
20 0413-1

0413-2

0420-3

60 0512-3

0322-3

90 0323-3

0518-3

250 80 05184
0524-1

70 0524-3

0330-2

350 90 0330-3
40 0525-1

0525-2

0412-2

500 90 04123
0119-1

2,000 90 04272
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Fig. 1.2. Cylindrical silo filled with granular matal
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Fig. 2.3. Rankine’s theory of active earth pressure
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Fig. 2.4. Failure surface in soil'by Terzaghi's-sgral method
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Rock ledge

Fig. 2.8. Fascia retaining wall of backfill widtha@hd wall friction F
(after Spangler and Handy, 1984)

70



Natural ground

h

I__.n"
dh #_‘_ { ; .,*-,-f Ku B dh

Fig. 2.9. Horizontal element of backfill material
(after Spangler.and Handy, 1984)

71



oy, (kPa)

0 50 100,
v =20 kN/m?
(127 Ib/ft3)
d=6= 30°
= |
Actual Simplified .
- —15
5 hl D
z i
= Rankine, =
— E = oo —
10} Y
=09 m
i Gy | b hma
B=18m
(6 ft)
15 | 45
0 E 1000 2000
ay, (Ib/ft?)

Fig. 2.10. Distribution of soil pressure againsicia walls due to partial

72

support from wall friction F (after Spangénd Handy, 1984)



D

‘ﬁcj ﬁgi A /Pressure measerment
1 1 device

il —
N =
[ =
" =
| —
‘ ‘ ——
[ =

16"

| Y |

L B
SECTIONAL ELEVATION A-A

Wall Face

NN
R

Removable Bars
1%1

Drive shaff
wheel \\

36

NN

2
7 .
g 3

Fixed Slep

12'*4' Base Channel

A

SECTIONAL ELEVATION B-B

Fig. 2.11. University of Manchester model retainmngj!
(after Mackey and Kirk, 1967)

73



03
Ll
x 0.2
S
N
0
9"
X o1 ——
o - —
6 — [
\//J 3" —_ ] |
0
0.1 0.2 0.3 0.4 05 0.6

WALL MOVEMENT , in

Fig. 2.12. Earth pressure with wall movement (raftackey and Kirk, 1967)

74



— —— —— — Coulombd=0
321

/)
///
/V/
/
% /
S s
AN/
1)%)/2
/
/ ;ooze

DISTANCE FROM WALL, in

Sand 1: A uniformly graded fine sand
Sand 2: A medium graded sand
Sand 3: A uniformly graded coarse sand

Fig. 2.13. Failure surfaces ( after Mackey and Kird67)

75



Lateral Earth Pressure gpsf)
20 40 60 80 100 120 140 160 180 200 220

o
o

/// |

Translation (T mode)
Test: 342
Y = 98.1pcf

=
o
\

Depth (ft)
|_\
(6]
I

N
o
I
> E
0”\*9//6
/
7.
/
2

%
25+ Z i O Sofey
RICHACY % RN ",
» 3 \\\’e/)&
3.0 \all Base Line ,\g‘% \i ~ 2 %
333~ | 2% | | —

Fig. 2.14. Distributions of horizontal earth pressat different wall displacement
(after Fang and Ishibashi, 1986)

76



0.9 I I I I

Translation (T mode)
0.8 [— Test: 342 |
4 Yy =98.1pcf

Normalize Lateral Pressure, kow/yz

0.0 | l l I | | | | |
0 2 4 6 8 10 12 14 16 18 20

W all Displacement ( x1§ in )

Fig. 2.15. Change of normalized lateral pressuth wanslation wall displacement
(after Fang and Ishibashi, 1986)

77



Active Thrust, 4K

Coefficient of Horizontal

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

O
\
\
L ) _
[ ] ~0
AT “\,\. \Q‘
A\\\\\: A C’N\g\\\‘ PY
- e , % T——
TN OU/O’hb's .
r A ™~ \\\\SO/UI‘/'O”(\\\ N
A S~ \A\W@
~ A
~
n L R
~
| O©— —o Rotion about Top I
® — —¢@ Rotion about Base
A—-—  Translation
B A Translation + Rotation about base B
(Ichihara & Matsuzawa, 1973)
| | | | | |
98 100 102 104
Density (pcf)
| | | | | |
32 34 36 38 40 42
@ (degree)
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Fig. 2.17. Different interface inclinations fo=t0 (after Huang, 2009)
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(after Fan and Fang, 2009)

Fig. 2.37. The finite element mesh for a retainvadl with limited backfill
space 8=70° and b=0.5m)
(after Fan and Fang, 2009)
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Fig.3.3. Displacement transducer (Kyowa DT-20D)
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Fig. 3.6. Soll pressure transducer (Kyowa PGM-0.2KG
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Fig. 3.7. Plastic-sheet on each sidewall
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Fig. 4.1. NCTU model'retaining wall with inclinedterface plate
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Fig. 5.2. Shear box.of direct shear test device(alu, 1992)
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Fig. 5.3. Relationship between unit weigtand internal friction angle
(after Chang, 2000
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Fig. 5.4. Direct shear test to determinate watition (after Chang, 2000)
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Fig. 5.6. Plastic-sheet lubrication layers on siddis
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Fig. 5.7. Schematic diagram of sliding block tedtgr Fang et al., 2004)
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Fig.5.8 Sliding block test apparatus (after Fangl.e2004)
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Fig. 5.9 Variation of‘side-wall friction angle witiormal stress
(after Fang et al., 2004)
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Fig. 5.10. Direct shear test to determine interfaiction angle
(after Wang, 2005)
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127



Friction Angle, 6 (degree)

45

35

30

25

20

15

10

7 Q %090\
N Ottawa Sand
| (Air-Pluviation)
_ i
. g\e: O
Yulle)
= \ate FNC 005)
| \nteﬁa‘iz? ) (W o -
ouEEY e
. — a
— (CLO 09®)
B N\ode\ 233\‘ AT o
dy
7] W Lubricated Sidewall Friction Angléswy
] dsw = 7.5 (Fang, et al., 2004)
| | | | | | |
15 15.5 16 16.5 17 17.5 18 18.5 19

Unit Weight , y(kN/m?3)
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Fig. 5.13. Soil hopper (after Chang, 2000)
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Fig. 5.14. Pluviation-of Ottawa sand into soil bin
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Fig. 5.15. Relationship between relation density drop height

(after Ho, 1999)
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Fig. 5.16. Soil-density control cup
(after Ho, 1999)
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Fig. 5.17."Soil-density cup (after Chien, 2007)
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Fig. 5.18. Locations of density cups for b = 150 samd3 = 90°.
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Fig. 5.19. Locations of density cups for b = 250 eimd3 = 90°.
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Fig. 5.20. Locations of density cups for b = 350 eimd3 = 90°.
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Fig. 5.21. Locations of density cups for b = 500 eimd3 = 90°.
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Fig. 5.22. Locations of density cups for b = 150 eimd3 = 80°.
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Fig. 5.23. Locations of density cups for b = 150 eimd3 = 70°.
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Fig. 5.24. Locations of density cups for b = 150 samd3 = 60°.
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Fig. 6.1. Model wall test with faraway interfacetg(b = 2,000 mm an@ = 9°)
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Fig. 6.1. Model wall test with faraway interfacaf(b = 2,000 mm anf§ = 9°)
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Fig. 6.6. Model wall test with interface spacing 850 mm and = 90
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Fig. 6.6. Model wall test with interface spacing 50 mm andg = 9¢°
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Fig. 6.9. Model wall test with interface spacing #50 mm and = 8¢
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Fig. 6.9. Model wall test with interface spacing K50 mm ang = 80
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Fig. 6.12. Model wall test with interface spacing k50 mm ang = 7
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Fig. 6.12. Model wall test with interface spacing 250 mm ang = 7¢
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Fig. 6.13. Distribution of horizontal earth pressfor b = 150 mm anfi = 70
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Fig. 6.15. Model wall test with interface spacing k50 mm ang = 6
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Fig. 6.15. Model wall test with interface spacing 250 mm ang = 6
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Fig. 6.19. Earth pressure coefficient\ersus wall movement for

b = 150 mm ang = 8¢
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Fig. 6.21. Earth pressure coefficient\ersus wall movement for
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Fig. 6.26. Model wall test with interface spacing B50 mm ang = 9¢
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Fig. 6.26. Model wall test with interface spacing B50 mm ang = 9¢
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Fig. 6.29. Model wall test with interface spacing B50 mm ang = 8¢
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Fig. 6.29. Model wall test with interface spacing B50 mm ang = 8¢
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(Test 0518-3)
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Fig. 6.31. Distribution of horizontal earth pressfor b = 250 mm anfl = 8¢
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Fig. 6.32. Model wall test with interface spacing B50 mm ang = 7¢
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(b)

Fig. 6.32. Model wall test with interface spacing B50 mm ang = 7¢
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Fig. 6.33. Distribution of horizontal earth presséor b = 250 mm anfl = 7¢
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Fig. 6.34. Distribution of horizontal earth presséor b = 250 mm anfl = 7¢
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Fig. 6.35. Earth pressure coefficient\ersus wall movement for
b =250 mm.ang = 9¢
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Fig. 6.36. Earth pressure coefficient\ersus wall movement for
b = 250 mm ang = 8¢
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Fig. 6.37. Earth pressure coefficient\ersus wall movement for
b =250 mmang = 70
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Fig. 6.38. Location of total soil thrust for b =®@&m and3 = 9¢
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Fig. 6.39. Location of total soil thrust for b =®@&m and3 = 8¢
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Fig. 6.40. Location of total soil thrust for b =®@&m and3 = 70
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Fig. 6.41. Model wall test with interface spacing B50 mm ang = 9¢
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(b)

Fig. 6.41. Model wall test with interface spacing B50 mm ang = 9¢
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Fig. 6.42. Distribution of horizontal earth pressfor b = 350 mm anfl = 9¢°
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Fig. 6.43. Distribution of horizontal earth pressfor b = 350 mm anfl = 90
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Fig. 6.44. Model wall test with interface spacing B50 mm ang = 8¢
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(b)

Fig. 6.44. Model wall test with interface spacing B50 mm ang = 8¢
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Fig. 6.45. Distribution of horizontal earth pressfor b = 350 mm anfl = 80
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Fig. 6.46. Distribution of horizontal earth pressfor b = 350 mm anfl = 8¢
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Dr = 36% ———— Coulombf = ¢/2)
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Fig. 6.47. Earth pressure coefficient\ersus wall movement for
b = 350 mm ang = 9¢
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Fig. 6.48. Earth pressure coefficient\ersus wall movement for

b = 350 mm ang = 8¢
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Fig. 6.49. Location of total thrust application for 350 mm an@ = 9¢
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Fig. 6.50. Location of total thrust application for 350 mm an@ = 8¢
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Fig. 6.51. Model wall test with interface spacing B00 mm ang = 9¢
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(b)

Fig. 6.51. Model wall test with interface spacing 500 mm ang = 9¢
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Fig. 6.52. Distribution of horizontal earth pressuior b = 500 mm
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Fig. 6.53. Distribution of horizontal earth pressuior b = 500 mm
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Fig. 6.54. Earth pressure coefficient ersus wall movement for
b =500 mm-andg = 90°
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Fig. 6.55. Location of total thrust application for= 500 mm ang = 90°
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Fig. 6.56. Distribution of active earth pressuredafferent interface
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0 —%
Active, Loose Sand
- b =250 mm
\\ Dy = 36%
0.1 — =313
. y=15.6 kN/m?
B \\ — Jaky
\\ fffff Rankine
202 \\ ——  — Coulomb §=@?2)
~ \\ AL—A—A B=90
g_ N \ O—=— =80
A C—6——0Op=70
0.3 —
\\
\
B \
\)
\
0.4 — \
\
\
- \
\
\
05
\ \
0 2 4 6

Horizontal Earth Pressure, (kN/m2)

Fig. 6.57. Distribution of active earth pressuredafferent interface
inclination anglep for b = 250 mm
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Fig. 6.58. Distribution of active earth pressuredafferent interface
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Fig. 6.59. Distribution of active earth pressure to= 500 mm
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Fig. 6.60. Variation of earth pressure
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Fig. 6.61. Variation of earth pressure coefficidqf with wall movement
for b = 250 mm
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Fig. 6.62. Variation of earth pressure coefficidqf with wall movement
for b =350 mm
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Fig. 6.63. Variation of earth pressure coefficigqit with wall movement
for b = 500 mm
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Fig. 6.64. Variation of total thrust location withall movement for
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Fig. 6.65. Variation of total thrust location withall movement for
b =250 mm
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Fig. 6.66. Variation of total thrust location withall movement for
b =350 mm
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Fig. 6.67. Variation of total thrust location withall movement for
b =500 mm
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Fig. 6.68. Active earth pressure coefficienf Kversus constrained
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Fig. 6.69. Normalized active earth pressure coeéfind¢ with aspect ratio
b/H
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Fig. 6.70. Point of application of active soil tlstuversus aspect ratio
b/H
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Fig. 6.73. Variation of earth pressure coeffici¢qit with wall movement
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Fig. 6.76 Observed backfill displacement for b =05@m andp = 90° for
(a) S =0 (b) S/H =0.04
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Fig. 6.77 Accumulated displacement for b = 500 mmd & = 90°
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Fig. 6.78 Observed backfill displacement for b =01fam andp = 90°
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Appendix A:

Calibration of Soil Pressure Transducers

To investigate the lateral earth pressure actinthemmodel retaining wall, nine
strain-gage type soil pressure transducers (SPTe wesed. The transducers
PGM-02KG manufactured by KYOWA are installed on therface of model
retaining wall to measure the lateral earth pressgainst the retaining wall. The
pressure acts between soil particles and the tumesds quite different from the
pressure that acts between liquid and transducer.nlecessary to calibrate the soil
pressure transducer in an environment similar & ¢fi the actual testing condition.
A special system was designed for ‘the calibratidntle strain-gage type
soil-pressure transducers. The.system consistshef dalibration device, the
controlled air-pressure system, signal conditiomer] the sensor data acquisition
system, as indicated in Fig. A1 and Fig. A2.

The calibration device is a shallow cylindrical oitzer with an inner diameter
of 400 mm and a height of 30 mm. The chamber isawtdd solid steel plate, which
is the same material as the model retaining wdilke $oil-pressure transducer was
inserted through the bottom of the chamber. limpartant that the surface of the
sensor was installed flush with the upper face i thamber. To simulate the
interface between the sand particle and soil pressansducer, 10 mm-thick sand
layer was poured into the calibration device oviee transducer. Then a 0.2

mme-thick rubber membrane was placed over the skaydy, as shown in Fig. A.1.
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A uniformly distributed air-pressure was applied the membrane, over the soill
particles, and transmitted to the transducer. Titpud voltage of the transducer was
found to increase linearly with the increase oflegoppressure, as shown in Fig.3A.
to Fig. A.7.

A rubber O-ring was arranged to prevent air leakaggveen the chamber and
the cap. It should be noted that the air pressy@iead for the calibration of
transducer should be consistent with the opergpirggsure range for model wall
experiments. To reduce the effect of sidewall imict the thickness of sand layer in
the chamber should be limited, so that the sid#iém between the sand the
sidewall of the chamber could be minimized. Fig3 Ao Fig. A.7 shows the test
results of the soil pressure-transducers calibratgdout the compressible layer.

Table A.1 is a summary of the calibration factoreach soil pressure transducer.
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Table Al. Soil Pressure Transducer Calibration dtact

Dynamic Strain Amplifier

Range . Calibration
Transducer No. No. Selecgt]or Calibration Setter(é) Capacity(kN/nf) Factor[(kN/nf)/volt]
(*100 1<)
EZ0660029 9 5 2090 19.62 2.9323
EX3270002 10 5 2014 19.62 3.9138
FL8550012 11 5 1794 19.62 3.7048
FG6900006 12 5 1815 19.62 3.8560
FL8550010 13 5 1880 19.62 3.7389
FL8550011 14 5 2047 19.62 3.8362
EG6210026 15 5 1906 19.62 2.4392
EZ0660017 16 5 2014 19.62 3.5872
EG6210005 17 5 2005 19.62 2.5706
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Fig. A.1 Schematic diagram of the soil pressuresdaicer calibration system
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Fig. A2. Soil pressure transducer calibration syste
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