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摘  要 

在本論文中，我們提出一新的語者不相關的英文母音辨識技術。首先，我

們提出一組名為「聽學增強型-離散餘弦序列係數(AE-DCSC)」的新特徵。此特

徵的想法是將許多聽學語言學上有關英文母音的研究成果實現在頻譜的強化

上，讓其更具有代表性與差異化。其中，頻譜正規化(Spectrum-Level-Normalization)

用以平衡不同共振峰的高度差異。根據語言學的研究，共振峰的位置比其高度來

的重要。諧音的強化(Enhancement of Spectral Peaks)則能有效的壓抑介於諧音間

頻譜微小的變化，使其更具強健性。為了能在有限的特徵維度裡有效地保留母音

頻譜隨時間的變化情形，我們採用了離散餘弦序列係數這項技術。此技術具有可

改變的頻率與時間的彎曲比例，這讓我們能根據訊號的特性，找出最具有代表性

的特徵。而在本系統中，我們採用一前向式自我建構類神經模糊推理網路

(SONFIN)做為核心辨識器。利用其可自我建構並調整的架構與參數學習功能，

與優異的模糊類神經推論過程，來達到較佳之辨識效果。最後，我們提出一基於

語言學特徵的確認程序。針對較為混淆的辨識結果，擷取其在聽學語言學上的特

徵，並與我們事先建立的知識庫理的模型比對。以找出最可信的辨識結果。實驗

證明，在 TIMIT 的資料庫下，此系統的辨識率可達 74.75%，優於其他在文獻上

所見的結果。這說明了我們在此所提出的辨識系統所具有的潛力與優越性。 
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ABSTRACT 
 
 
 In this thesis, we proposed a novel speaker-independent English vowel 
recognition technique based on acoustic-phonetics and fuzzy neural networks. At first, 
we proposed a new feature set called as “AE-DCSC”. It was derived from the 
researches of acoustic-phonetics and implemented here to enhance the spectrum so 
that the features became more representative and discriminative. The technique 
spectrum-level-normalization was used to balance the amplitude difference between 
formants. Moreover, the enhancement of spectral peaks was used to suppress the 
variation of valley between harmonics. These processes let the spectrum more robust 
and noise-free. In order to preserve the temporal cues of vowels, the technique DCSC 
was used. The flexible time/frequency warping scales were adjusted according to 
properties of signals. An on-line self-constructing neural fuzzy inference network 
(SONFIN) was adopted as the main classifier in this system. SONFIN found its 
optimal structure and parameters automatically and achieved the better classification 
result via superior inference process. Finally an acoustic-checking procedure was 
proposed. We applied it to the ambiguous case in which the acoustic characteristics 
was evaluated and compared with the model in our knowledge-base database. The 
proposed approach resulted in an accuracy rate of 74.75% in TIMIT database, which 
higher than other published result for the same task. The potential and effectiveness of 
the proposed system was verified.  
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Chapter 1 
Introduction 
 
 

Speech is one of the most primary and the most convenient means of 

communication between people. The dream of creating a machine which 

is capable of understanding human speech is very charming and attractive 

for people in the information age. Automatic Speech Recognition (ASR) 

has been researched and developed worldwide for more than four decades. 

Many useful applications, such as phone number recognition, speech 

command, blindness or palsy to use computers, business transactions, and 

airline reservations, have been introduced to human beings.  

However, current performance of state-of-art ASR system is 

substantially inferior to the human performance. One of the major 

difficulties is the extreme variability of the speech signal at the 

acoustic–phonetic level and across speakers. For example, some pattern 

recognition approaches based on statistical methods try to handle this 

variability by being data driven, but generally ignore acoustic–phonetic 

features especially in the most common statistical model Hidden Markov 

Model [1]. This kind of ASR often adopts the gross shape of spectrum as 

its input features. Contrast to the statistical model, there are several kind 

of ASR called as knowledge-base system involves the direct and explicit 

incorporation of expert’s speech knowledge into the classification process 

[2]. The expert is the linguist/phonetician who attempts to describe and 

qualify acoustic events into phonetic description in the form of 

production rules. The features in this kind of system are derived from 
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acoustic characteristics, but they are difficult to be evaluated correctly 

automatically. Another main problem is in the acquisition and 

classification of the knowledge from the expert in order to formulate the 

appropriate production rules. A further difficulty is in putting this 

knowledge into a framework that can maintain trainability and optimality. 

However it seems that these two kinds of approaches may be 

complementary if we put them in the suitable position. In this research, 

we try to provide a recognition system which integrates both of them in 

order to bring their advantages into full play respectively. 

There are a lot of speech perception researches done by the speech 

scientists. The primary and long-standing goal of speech perception 

research is to explain the human perceptual mechanisms that are involved 

in the recognition of vowel identity. Since the classic paper [3] was 

proposed by Peterson and Barney, the first three formants (F1-F3, i.e. the 

first three spectral prominences) have been regarded as the primary 

source of this spectral information. Peterson and Barney plotted vowels in 

a formant-one/formant-two space and showed that, to a large degree, 

phonologically similar vowels cluster in this space while phonologically 

dissimilar vowels are more separated. The main idea underlying formant 

representations is the notion that the recognition of vowel identity and the 

related aspects of phonetic quality are controlled not by the detailed shape 

of the spectrum but rather by the distribution of formant frequencies, 

chiefly the three lowest formants (F1–F3).The formant frequencies are 

the most important acoustic parameters affecting vowel quality. Even the 

spectral shape was arbitrarily manipulated such as the alteration of low- 

and high-pass, spectral tilt, formant amplitude and formant bandwidth, it 
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resulted in little or no change in phonetic quality as long as the formant 

structure was not destroyed. Some excellent reviews of literatures can be 

found in [5]. In many studies [4], [5], models of vowel perception have 

been developed using formants as the primary acoustic correlates. Vowel 

perception for fixed F1 and F2 values also depends on F0, fundamental 

frequency of voicing. For example, summarizing these proposed acoustic 

characteristics, a narrow band pattern-matching model was proposed by 

Hillenbrand [5]. It assumed that the human vowel perception was a kind 

of template-matching process. It compares the narrow band input spectra 

to a set of spectrum templates. Deferent templates were made for men, 

women and children and used to be matched respectively. These acoustic 

characteristics were specially emphasized and involved in the model. 

However, besides perceptual studies, automatic recognition of vowels 

based on formants with sophisticated pattern recognition schemes is 

never quite as accurate as recognition rates obtained by human listener 

[4]. The main problems which lie in formant theory are the unresolved or 

even quite possibly unresolved problem of tracking formants in natural 

speech. Therefore the most popular kind of features really used in current 

ASR is developed form the gross shape of the smoothed spectral shape. 

The feasibility of global spectral shape features have been investigated by 

Pols et al. [6]. An extensive series of experiments were done using a 

principal-components spectral-shape representation of vowel spectra. 

They demonstrated that a plot of vowel data in a rotated 

principal-component-one versus principal-component-two parameter 

space resembles the Peterson-Barney vowel data plotted in a formant 

space. Several well-known human perception phenomena such as 
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nonlinear frequency scale and amplitude scale are also applied in those 

gross shape based features. A familiar example is the so-called 

mel-frequency cepstrum coefficients (MFCCs). It implemented the notion 

with the filter-bank spaced uniformly in the bark frequency and used the 

cosine transform to encode the energy distribution of each band.  

Zahorian et al. proposed a so-called discrete cosine transform coefficients 

(DCTCs) in the same concept but more flexible way [7]. The transform 

function which used to describe the nonlinearity relationship between the 

real frequency and perceptual frequency scale was implemented directly 

in this approach. Therefore the basis functions used in cosine transform 

were modified such that the spectrum of speech signal could be matched 

more in a favorable way. Zahorain showed the DCTCs performed better 

than MFCCs due to the flexible and straight-forward frequency warping.  

There are still some weaknesses existed in the spectral shape 

approaches. For example, the important acoustic cues such as formant 

structure are not reasonably emphasized but the redundancy of the 

information about the spectral change is maintained. In those approaches 

the spectrum is smoothed and directly encoded, and therefore the acoustic 

evidences which hide themselves in the spectrum are usually degraded or 

unnoticed. However the detailed spectral change without affecting the 

phonetic quality was preserved. For that reason, in this research, we try to 

find a way to avoid these problems and bring the acoustic-phonetic 

characteristics into the spectral shape approaches. 

Another important issue in the search for acoustically invariant cues 

to vowel perception is the relative importance of static versus temporal 

cues. There is more than enough evidence showing that the static spectral 
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properties of vowels are not always sufficient cues for perception, and 

that some time-varying information contained in the interval surrounding 

the vowel “center” is also required. For example, Hillenbrand et al. 

showed the vowels can be separated with a higher degree of accuracy if 

spectral change information is included [4]. In this thesis, we tried to 

search the methods which could effectively solve these problems. 

There are many published papers in the literature which report 

phonetic classification and/or recognition results using the TIMIT 

database. Several well-known and important works are as following:  

Meng and Zue used the auditory model output and neural networks [21];  

Goldenthal and Glass used MFCCs and Gaussian multi-state / spectral 

trajectories [18]; Gish and Ng used MFCCs, △MFCCs, durations and 

segmental speech modeling [22]. The best result shown in these 

published works are the system using DCSCs and partitioned neural 

networks which was proposed by Zahorian et al [13]; The accuracy rate 

of the system is 71.50%.  

In this thesis, a new speaker-independent English vowel recognition 

system is constructed as shown in Fig. 1. The knowledge about 

acoustic-phonetic characteristics is taken into consideration and then 

integrated into the feature representation AE-DCSC which is based on 

acoustic enhancement and the DCSC encoding process in the procedure 

of feature extraction. Then the extracted speech feature set is employed to 

train a fuzzy neural network SONFIN [14]. Finally, the recognition result 

from SONFIN is checked by a procedure of acoustic-checking to decide 

the final result. 
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Fig. 1 system structure 
 

This thesis is organized as follows. In chapter 2, the proposed 

recognition system, including acoustic-enhanced feature sets, neural 

fuzzy inference network, and the acoustic-checking process, will be 

interpreted. In chapter 3, we will verify the performance of the proposed 

vowel recognition system. The results of experiments were shown in 

order to show the superior ability of the system. In chapter 4, the 

conclusions of our work are summarized. 
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Chapter 2 
Framework of the Acoustic-Phonetics and 
SONFIN Based Speaker-Independent 
English Vowel Recognition System 
 

2.1 Introduction 

As mentioned in Chapter 1, we know that both the acoustic 

characteristics and the gross shape of the smoothed spectral envelope 

used to distinguish the vowels have their own advantages and drawbacks 

respectively. Therefore, we propose a novel system which integrates both 

the mentioned feature sets and puts them in the suitable position as shown 

in Fig. 1. The details of the system will be described in this chapter. 

There are two major components in the proposed system. The first 

one used the gross shape of the smoothed spectral envelope to extract a 

set of time-frequency features which give more basic distinguished 

information about vowels. In this phase, some skills called as “acoustic 

enhancement” are adopted, in order to enhance the representation ability 

of the spectrum. Once the feature set was extracted, an on-line 

self-constructing neural fuzzy inference network (SONFIN) is chosen as 

the main classifier in our recognition system. The SONFIN is designed to 

give a score to each candidate. Form these scores, then the so-called 

confidence-factor which reflected the amount of difficulty in arriving at a 

decision is estimated. If the value of confidence-factor is too low (i.e. the 

classification result of SONFIN is not confide in enough), an acoustic 
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knowledge based sub-system plays a complementary role in choosing the 

more reasonable and possible result. The proposed sub-system is called as 

“acoustic characteristic checking”, because it is designed to check the 

reasonability of these candidates with higher scores. 

 

2.2 Acoustic-Enhanced Feature Set 

 It is proved that the features derived from the gross shape of the 

smoothed spectral envelope perform better than those from acoustic 

characteristics in the complicated and natural environment. This is 

because the acoustic features are difficult to be measured accurately, 

when vowels are spoken by different unlimited talkers, in different 

phonetic environments, at different speaking rates, at different 

fundamental frequencies, or with varying levels of contrastive stress. As 

shown in many acoustic-perception researches, the trajectories should be 

the most important acoustic evidence for vowel recognition, but it is 

difficult to represent the trajectory automatically well in the finite feature 

dimensions. Besides, to automatically extract the formant trajectory is 

unreliable due to the spurious spectral peaks. Here, we propose a set of 

gross-shape based features and apply the enhancement of the acoustic 

representation of the spectrum. This set of features is called as 

acoustic-enhanced discrete-cosine-series-coefficients (AE-DCSCs).
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Fig. 2 procedure of feature extraction 
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 An abstract illustration of the procedure used to extract the feature 

sets is presented in Fig. 2. The speech signal (16 kHz sampling rate, 16 

bit resolution) is first pre-emphasized using the second-order equation 

 
 y[n] = x[n] – 0.95x[n - 1] + 0.49y[n - 1] – 0.64y[n - 2].  (2. 1) 
 

The frequency response is shown in Fig. 3. 

 

Fig. 3 frequency response of 2nd order pre-emphasis 
 

Observing this plot, we can know that the second-order pre-emphasis has 

a peak at approximately 3 kHz (0.375π), and therefore is a reasonably 

good match to the inverse of an equal-loudness contour, results in slightly 

better performance than does a first order pre-emphasis, (y[n] = x[n] 
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-0.95x[n-1]) . The next step is to compute the magnitude spectrum of 

each frame of data with an FFT. Each frame is Kaiser “windowed,” using 

a coefficient of 5.33 (i.e., approximately a Hamming window). Then, the 

skills of acoustic enhancement are adopted to improve each traditional 

FFT according to its acoustic phenomena. The details about acoustic 

enhancement will be introduced in later sections.  

The next step in processing is to compute a cosine transform of the 

scaled magnitude spectrum, but with variations and additions as described 

later in the chapter to implement the designed frequency and time 

non-linearity. The discrete-cosine-series-coefficients (DCSCs) are 

adopted to represent the encoded movement of spectral shapes according 

to time. The DCSCs have much better performance due to the ability of 

scalable frequency-time warping. The more complete investigation about 

DCSCs will be showed later. 

 

2.2.1 Acoustic Spectrum Enhancement 

 The features adopted here are derived form the spectrum of the 

pattern. Therefore, the shape of the spectrum played an important role in 

representing the identity of this vowel. In this section, we introduce the 

technique which is use to improve the representation of spectrum. The 

first skill is the application of broadband spectrum-level normalization 

(SLN). The motivation behind this step is to reduce as much as possible 

within-vowel-category differences in formant amplitude relations, 

following data such as Klatt [26] indicating that formant amplitude 

variation contributes little to perceived vowel color, while quite audible to 
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listeners. Therefore, SLN is adopted in order to balance the amplitude of 

different formants. The idea of the SLN operation, then, is simply to 

attenuate spectral regions of relatively high amplitude and amplify 

regions of relatively low amplitude, reducing the magnitude of amplitude 

differences among broad spectral peaks. The implementation of SLN is 

done by computing a gain function is relatively low in spectral regions 

with high average amplitude and, conversely, is relatively high in spectral 

regions with low average amplitude. The gain function is computed as 

simply the inverse of the Gaussian-weighted running average of spectral 

amplitudes computed over an 81-channel (2531.2 Hz) spectral window. 

Then, the SLN spectrum is obtained from the original spectrum 

multiplied by the gain function. The original spectrum and its 

corresponding gain function are shown in Fig. 4(a). Here, 

Gaussian-weighted running average refers to an approximation 

implemented with three passes of a rectangular (i.e. un-weighted) running 

average. Greater weight is assigned to spectral values at the center of the 

averaging window than to values nearer to the edge of the window. The 

distribution of weights follows a Gaussian function. Fig. 4(b) shows the 

spectrum after application of the broadband SLN operation. It can be seen 

that the variation in spectral peak amplitudes has been considerably 

reduced, although by no means entirely eliminated. The size of the 

smoothing window is a compromise, determined by inspecting a large 

number of individual normalized and un-normalized spectra. The rather 

large window size that is selected represents a compromise between two 

competing considerations. Very large window sizes produce rather limited 

benefit with respect to the goal of minimizing the importance of formant 
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amplitude differences but have the advantage that they seldom amplify 

minor spectral peaks that are of little or no perceptual relevance. Smaller 

window sizes, on the other hand, do an excellent job of reducing the 

range of formant amplitude variation but can sometimes have the 

undesirable effect of amplifying minor spectral peaks.  

 Another important skill used is called as enhancement of spectral 

peak (ESP). The signal processing step consists of a thresholding 

procedure. The idea here is simply to emphasize the spectral peak regions 

(both narrow and broad band) that are known to have the greatest 

influence on vowel identity and to suppress the largely irrelevant spectral 

components in between harmonic peaks and in the less perceptually 

significant valleys that lie in between broad spectral peaks. This step is 

implemented by defining a threshold function as the Gaussian-weighted 

running average of spectral amplitudes computed over a 21-channel 

(656.2 Hz) spectral window. The running average is then subtracted from 

the spectrum, with all negative values (i.e., values below the threshold) 

set to a small positive value (not zero, to avoid log(0) in the next 

feature-coding procedure). As with the gain function described above, the 

size of the averaging window used for the threshold operation is 

determined through extensive informal experimentation using a vowel 

database other than the one used to evaluate the model. The process 

involved examination of a large number of individual cases of spectra 

with and without the thresholding operation and trying to find a 

smoothing window size that appeared to do the best job of enhancing the 

information-bearing aspects of the spectra (i.e., harmonics, especially 

those defining formant peaks). Only the spectrum within the useful 
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frequency range is taken into consider in order to eliminate the trivial 

high band. A frequency range of 75 Hz to 6000 Hz is used, as shown in 

Fig. 4(d). 

 
Fig. 4 signal processing in the acoustic enhancement procedure 

 

 

(a) FFT spectrum and gain function (b) spectrum after SLN and threshold 
function 

(c) spectrum after thresholding (d) the useful frequency range 
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2.2.2 Discrete-Cosine-Series-Coefficients 

A powerful encoding method, which is suitable for speech spectra, 

called as Discrete-Cosine-Series-Coefficients (DCSC) is introduced here. 

DCSCs successfully encode the trajectories of the perceptual spectra of 

vowels and represent them in finite dimensional time-frequency features. 

Some method such as 2D-MFCC also encoded the movement of spectral 

shapes according to time, but the DCSCs have much better performance 

due to the ability of scalable frequency-time warping. The suitable 

parameters for warping are adjusted via pilot experiments. 

 The DCSCs are computed form the static encoding method, 

Discrete-Cosine-Transform-Coefficients (DCTC), which encoded only 

the spectrum of each one frame. The procedure to evaluate DCTCs is 

shown as following. Let X(f ) be the magnitude spectrum represented 

with linear amplitude and frequency scales and let X’(f’) be the 

magnitude spectrum as represented with perceptual amplitude and 

frequency scales. Let the relations between linear frequency and 

perceptual frequency, and linear amplitude and perceptual amplitude, be 

given by 

 
 f’ = g(f ),  X’ = a(X).        (2. 2) 
 

For convenience of notation in later equations, and are also normalized, 

using an offset and scaling, to the range {0, 1}. The acoustic features for 

encoding the perceptual spectrum are computed using a cosine transform 
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∫=
1

0

')'cos()'(')( dfiffXiDCTC π       (2. 3) 

 

where DCTC(i) is the ith feature as computed form a single spectral 

frame. 

 Making the substitutions  

 
 f' = g(f),   X’(f’) = a(X(f)),       (2. 4) 
 

and 

 df
df
dgdf ='            (2. 5) 

 

the equation can be rewritten as  

 

∫=
1

0

)](cos[))(()( df
df
dgfgfXaiDCTC iπ     (2. 6) 

 

We therefore define modified basis vectors as  

 

 df
dgfigfi )](cos[)( πφ =         (2. 7) 

 

and re-write the equation as 
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 ∫=
1

0

)())(()( dfffXaiDCTC iφ        (2. 8) 

 

Thus, using the modified basis vectors, all integrations are with respect to 

linear frequency. In practice, therefore, the integration of DCTC can be 

implemented as a sum, directly using spectral magnitude values obtained 

from our proposed acoustic enhanced spectrum. Any differentiable 

warping function can be precisely implemented, with no need for the 

triangular filter-bank typically used to implement warping in MFCC. 

Except for the frequency warping method and other spectral

“preprocessing” refinements as mentioned above, the terms computed 

with (2. 8) (DCTC(i)) are equivalent to cepstral coefficients. However, to 

emphasize the underlying cosine basis vectors and the calculation 

differences relative to most cepstral coefficient computations, we call 

them the discrete cosine transform coefficients (DCTCs). The suggested 

DCTC is computed with () using a logarithmic amplitude scale (i.e. a(f ) 

is the log function) and bilinear warping with a coefficient α = 0.45: 

 
 a(f ) = log(f )           (2. 9) 

 )
)2cos(1

)2sin((tan1')( 1

f
ffffg
πα

πα
π −

+== −
    (2. 10) 

 

Fig.5 and Fig.6 showed the frequency warping function and 

corresponding basis vectors. 
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Fig. 5 frequency warping, with = 0.45 

 

Fig. 6 first three DCTC basis vectors, with = 0.45 
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Once the DCTCs for each frame are obtained, the DCSC features are 

computed so as to encode the trajectory of the smoothed short-time 

spectra, but typically with better temporal resolution in the central region 

than for the end regions. Using the processing as described for the second 

feature set, DCTC’s (typically 10 to 15) are computed for equally-spaced 

frames of data spanning a segment of each token. Each DCTC trajectory 

is then represented by the coefficients in a modified cosine expansion 

over the segment interval. The equations for this expansion, which are of 

the same form as for (2. 2)–(2. 8) above, allow non-uniform time 

resolution as follows. Let the relation between linear time and “perceptual 

time” (i.e., with resolution over a segment interval proportional to 

estimated perceptual importance) be given by 

 
 t’ = h(t ). DCTC’(i, t’) = DCTC(i, t)     (2. 11) 
 

For convenience, and are again normalized to the range {0, 1}. The 

spectral feature trajectories are encoded as a cosine transform over time 

using 

 

∫=
1

0

')'cos()',('),( dtjttiDCTCjiDCSC π      (2. 12) 

 

The DCSC terms in this equation are thus the new features that represent 

both spectral and temporal information (“dynamic”) over a speech 

segment. Making the substitutions 
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 t' = h(t ),  DCTC’(i, t’) = DCTC(i, t)    (2. 13) 
 

and  

 

 dt
dt
dhdt ='             (2. 14) 

The equation can be rewritten as  

 

∫=
1

0

)](cos[),(),( dt
dt
dhtjhtiDCTCjiDCSC π     (2. 15) 

 

We again define modified basis vectors as 

 

dt
dhtjhtj )](cos[)( πθ =         (2. 16) 

 

And rewrite the equation as  

 

∫=
1

0

)(),(),( dtttiDCTCjiDCSC jθ       (2. 17) 

 

Using these modified basis vectors, feature trajectories can be represented 

using the static feature values for each frame, but with varying resolution 

over a segment consisting of several frames. The terms computed in (2. 

17) are referred to as discrete cosine series coefficients (DCSC’s) to 
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emphasize the underlying cosine basis vectors and to differentiate 

between expansions over time (DCSC) versus DCTC expansions over 

frequency. In general, each DCTC is represented by a multi-term DCSC 

expansion. In our work, the function h(t) is chosen such that its derivative, 

dh / dt, which determines the resolution for t’, is a Kaiser window, as 

shown in Fig. 7. Then, the time warping function can be computed from 

the Kaiser function using numerical method. By varying the Kaiser beta 

parameter, the resolution could be changed from uniform over the entire 

interval (beta = 0), to much higher resolution at the center of the interval 

than the endpoints (beta values of 2 to 15). Fig. 8 depicts the first three 

DCSC basis vectors, using a coefficient of 2 for the Kaiser warping 

function. The motivation for these features is to compactly represent both 

spectral and temporal information useful for vowel classification, with 

considerable data reduction relative to the original features. For example, 

12 DCTC’s computed for each of 50 frames (600 total features) can be 

reduced to 48 features if four DCSC basis vectors are used for each 

expansion.
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Fig. 7 derivative of time warping, with beta = 2 

 

Fig. 8 first three DCSC basis vectors, with beta = 2 
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2.3 Neural Fuzzy Inference Network 

 The main classifier in our proposed system is a particular fuzzy 

neural network which is the so-called self-constructing neural fuzzy 

inference network (SONFIN). The SONFIN is a general connectionist 

model of a fuzzy logic system, which can find its optimal structure and 

parameters automatically. There are no rules initially in the SONFIN, and 

they are created and adapted as on-line learning proceeds via 

simultaneous structure and parameter learning. The SONFIN can always 

find itself an economic network size, and the learning speed as well as the 

modeling ability is all superior to normal neural networks.  

 

2.3.1 Desired Output 

 The desired output is defined as the membership-value which 

describes how this pattern belongs to a specified class [29]. Here, a 

formula to evaluate the membership-value would be given. Let’s consider 

an l-class problem domain, and there should be also l nodes in the output 

layer. Let the n-dimensional vectors Ok and Vk denote the mean and 

standard deviation respectively of the numerical training data for the kth 

class. A weighted distance could be obtained to represent the normalized 

distance between this pattern and the class. The weighted distance of the 

training pattern Fi from the kth class is defined as 
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where Fij is the value of the jth component of the ith pattern point, and Ck 

is the kth class. The weight 1/vkj is used to take care of the variance of the 

classes so that a feature with higher variance has less weight (significance) 

in characterizing a class. Note that when all the feature values of a class 

are the same, then the standard deviation will be zero. In that case, we 

consider vkj = 1 such that the weighting coefficient becomes 1. this is 

obvious because any feature occurring with identical magnitudes in all 

members of a training set is certainly an important feature of the set. 

Hence its contribution to the membership function should not be reduced. 

Therefore, the desired output (dk) of the kth output node for the ith 

input pattern, is defined as 
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where Fi is the input feature vector, µk(Fi) is the membership value of the 

ith pattern in class Ck, zik  is the weighted distance of the training pattern 

from and the positive constants fd and fe are the denominational and 

exponential fuzzy generators controlling the amount of fuzziness in this 

class-membership set. They influence the amount of overlapping among 

the output classes. Note that, here we have used a (nonlinguistic) 

definition of the output nodes which indicates the degree of 

belongingness of a pattern to a class. However, this definition may be 

suitably modified in other application areas to include linguistic 

definitions. Obviously µk (Fi) lies in the interval [0, 1]. Here (2. 19) is 
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such that the higher the distance of a pattern from a class, the lower its 

membership value to that class. It is to be noted that when the distance is 

0, the membership value is 1 (maximum) and when the distance is infinite, 

the membership value is 0 (minimum). 

  

2.3.2 SONFIN 

    The structure of the SONFIN is shown in Fig. 4-2. This 6-layered 

network realizes a fuzzy model of the following form: 

 

 Rule i: IF x1 is Ai1 and … and xn is Ain 
   THEN y is m0i + ajixj + …      (2. 20) 
 

where Aij is a fuzzy set, m0i is the center of a symmetric membership 

function on y, and aji is a consequent parameter. It is noted that unlike the 

traditional TSK model where all the input variables are used in the output 

linear equation, only the significant ones are used in the SONFIN; i.e., 

some ajis in the above fuzzy rules are zero. We shall next describe the 

functions of the nodes in each of the six layers of the SONFIN. 

    Each node in Layer 1, which corresponds to one input variable, only 

transmits input values to the next layer directly. Each node in Layer 2 

corresponds to one linguistic label (small, large, etc.) of one of the input 

variables in Layer 1. In other words, the membership value that specifies 

the degree how an input value belongs to a fuzzy set is calculated in 

Layer 2. A node in Layer 3 represents one fuzzy logic rule and performs 

precondition matching of a rule. The number of nodes in layer 4 is equal 

to that in Layer 3, and the result (firing strength) calculated in Layer 3 is 
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normalized in this layer. Layer 5 is called the consequent layer. Two types 

of nodes are used in this layer, and they are denoted as blank and shaded 

circles in Fig. 9, respectively. The node denoted by a blank circle (blank 

node) is the essential node representing a fuzzy set of the output variable. 

The shaded node is generated only when necessary. One of the inputs to a 

shaded node is the output delivered from Layer 4, and the other possible 

inputs (terms) are the selected significant input variables from Layer 1. 

Combining these two types of nodes in Layer 5, we obtain the whole 

function performed by this layer as the linear equation on the THEN part 

of the fuzzy logic rule in (2. 20). Each node in Layer 6 corresponds to one 

output variable. The node integrates all the actions recommended by 

Layer 5 and acts as a defuzzifier to produce the final inferred output. 

    Two types of learning, structure and parameter learning are used 

concurrently for constructing the SONFIN. The structure learning 

includes both the precondition and consequent structure identification of 

a fuzzy if-then rule. For the parameter learning, based upon supervised 

learning algorithms, the parameters of the linear equations in the 

consequent parts are adjusted to minimize a given cost function. The 

SONFIN can be used for normal operation at any time during the learning 

process without repeated training on the input-output patterns when 

on-line operation is required. There are no rules in the SONFIN initially, 

and they are created dynamically as learning proceeds upon receiving 

on-line incoming training data by performing the following learning 

processes simultaneously, 

 

(A) Input/output space partitioning, 
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(B) Construction of fuzzy rules, 

(C) Optimal consequent structure identification, 

(D) Parameter identification. 

 

Processes A, B, and C belong to the structure learning phase and process 

D belongs to the parameter learning phase. 

 

Fig. 9 network structure of SONFIN 
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2.4 Acoustic Characteristic Checking 

 The feature set AE-DCSCs used above successfully encoded the 

gross shape of spectra. However, some features derived form the acoustic 

correlates of vowel perception, which play the complementary part, are 

introduces here. Those feature works when the recognition-result form 

SONFIN is ambiguous.  

The most dominant acoustic characteristics are the frequencies of the 

first three formants (i.e. F1, F2, and F3) and their trajectories. Moreover, 

it is also found in numerous researches that the gender of the speaker 

affected the formant trajectories (i.e. the trajectories of the same vowel 

spoken by men and women are different). Thus, the fundamental 

frequency (i.e. F0, also called pitch) also played an important role to 

indicate the gender of the speaker. 

 Numerous pitch determination algorithms (PDA) have been proposed 

in the past. The most common errors are pitch doubling and pitch having. 

One of the reasons for pitch doubling and pitch halving is the appearance 

of alternate pulse cycles in speech signal, which reflects the short-term 

instability of the vocal fold system. A PDA based 

Subharmonic-to-Harmonic Ratio (SHR) is adopted here to evaluate the 

fundamental frequency. 

Estimation of formant frequencies is generally more difficult than 

estimation of fundamental frequency. The problem is that formant 

frequencies are properties of the vocal tract system and need to be 

inferred from the speech signal rather than just measured. The spectral 

shape of the vocal tract excitation strongly influences the observed 
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spectral envelope, such that we cannot guarantee that all vocal tract 

resonances will cause peaks in the observed spectral envelope, and nor 

that all peaks in the spectral envelope are caused by vocal tract 

resonances. Frequently a vital problem of spurious formant arises in the 

automatic formant estimation system. 

 

 
Fig. 10 procedure for acoustic checking 

 

Therefore, to avoid the fatal trouble happening in our system, we 

adopt a strategy, as shown in Fig. 10, in which the formant candidates 

generated from formant estimation algorithm are just preserved (i.e. all 

the possible peaks in the spectrum are kept and not assigned as F1, F2, or 

F3). Then, these candidates are mapped to the formant structure of a 

specific vowel and it is checked if they are matched. In the proposed 

system, only the two categories of vowel with the first two higher scores 
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are mapped to. If there is only one vowel structure matched, the one 

would be the final recognized result. If none or both are matched, the 

recognition result form SONFIN would not be changed.  

Those algorithms about the estimation of confidence factor, the 

evaluation of pitch and formants, and the construction of formant 

structure models will be introduced in detail later. 

 

2.4.1 Confidence Factor 

 We use a measure which reflects the amount of difficulty in arriving 

at a decision by minimizing the ambiguity in the computed output vector 

from SONFIN [29]. A confidence factor (CF) is defined as 
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where ymax = maxj
l
=1 {yj}, yj is the jth component in the output vector y, 

and fmax indicates the number of occurrences of ymax in y. Note that CF 

take care of the fact that the difficulty in assigning a particular pattern 

class depends not only on the highest entry in the output vector ymax but 

also on its differences from the other entries yj. It is seen that the higher 

the value of CF, the lower is the difficulty in deciding a class and hence 

greater is the degree of certainty of the output decision. Based on the 

value of CF, there are two decisions while generating the consequent 

clause (then part) of the rule. Let yk = ymax such that the pattern under 

consideration belongs to class Ck. The first one is that the pattern is very 

likely class Ck, and there is no second choice, if CFk is greater than the 
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threshold of CF. The second is that the pattern is likely class Ck, and there 

is second choice, if CFk is less than the threshold. In other words, the 

recognized result is taken as ambiguous when the confidence factor is not 

greater than the threshold. In the proposed system, these ambiguous cases 

will be verified by acoustic checking procedure. 

 

2.4.2 Acoustic Measurement 

 In this section, we explain the signal processing techniques used in 

computing the two sets of acoustic characteristics. These two acoustic 

sets are fundamental frequency and formants. 

 

Fundamental Frequency 

The general problem of fundamental frequency estimation is to take a 

portion of signal and to find the dominant frequency of 

repetition. Difficulties arise from (1) that not all signals are periodic, (2) 

those that are periodic may be changing in fundamental frequency over 

the time of interest, (3) signals may be contaminated with noise, even 

with periodic signals of other fundamental frequencies, (4) signals that 

are periodic with interval T are also periodic with interval 2T, 3T etc, so 

we need to find the smallest periodic interval or the highest fundamental 

frequency; and (5) even signals of constant fundamental frequency may 

be changing in other ways over the interval of interest. A PDA based 

Subharmonic-to-Harmonic Ratio (SHR) which can reduce these problems 

is adopted to evaluate the fundamental frequency [30]. 

The SHR-based PDA algorithm is computed in the frequency domain. 
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First, Let A(f) denote the short-term spectrum function, which is obtained 

by applying the Fourier transform on windowed short-term speech frames. 

The length of FFT is varied with the sampling rate and frame length. 

Suppose that the fundamental frequency is f0, and then the sum of 

harmonic amplitude is defined as: 
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where N is the maximum number of harmonics considered. If we only 

consider the sub-harmonic frequency that is at one half of fundamental 

frequency, the sum of sub-harmonic amplitude is defined as: 
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Consequently, SHR can be obtained by dividing SS with SH: 

 

 SH
SSSH =             (2. 24) 

 

In order to get SS and SH, we could use the direct spectrum compression 

technique on linear frequency scale as that in Harmonic Product 

Spectrum (HPS) algorithm. However, because of the numerical problem, 

a logarithmic transformation on the frequency scale is more preferable, 

which has been used in Sub-harmonic Summation algorithm (SHS). In 
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developing the current algorithm, we adopted this basic approach. 

Nevertheless, the rationale and detail implementation are quite different, 

which affects the performance in a significant way. To facilitate our work 

in log domain, we reformulate the above definitions. Let LOGA(f) denote 

the short-term log spectrum, and log(f0) denote fundamental frequency on 

the log scale. Therefore, we have: 
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The log frequency scale is then linearly interpolated. In order to obtain 

SH, the spectrum is shifted leftward along the logarithmic frequency 

abscissa at even orders, i.e., log(2), log(4),… log(2N). These shifted 

spectra are added together.  
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From (2. 27), SH is given by: 
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Similarly, by shifting the spectrum leftward at log(1), log(3), 
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log(5), …. log(2N-1), we get SS also at log(0.5f0) 
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Next, we obtain the difference function, which is defined as: 

 
 DA(log f ) = SUMA(log f )even – SUMA(log f )odd   (2. 31) 

 

In so doing, we remove the effect of the contribution of the points around 

the real peaks, which is equivalent to peak enhancement. Moreover, there 

are some very interesting properties of the DA(•) function. In ideal cases, 

if sub-harmonics do not exist, and ignoring the contribution from the 

points that are at log(nf ) ± log(0.25f0), we would have two maximum 

values at log(0.5f0) and log(0.25f0) from (2.31), respectively. The values 

are: 

 
 DA(log(0.5f0)) = SH – SS        (2. 32) 
 DA(log(0.25f0)) = SH + SS        (2. 33) 
 

Therefore, SHR can be approximated by the following simple formula: 
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Based on the above analysis, we perform the following procedures to 

compute SHR and then determine the pitch: First, we locate the position 

of the global maximum denoted as log f1. Then, starting from this point, 

the position of the next local maximum denoted as log f2 is selected in 

the range of [log(1.75f1), log(2.25f1)]. Following (2. 34), SHR can be 

easily derived: 
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If SHR is less than a certain threshold value, which is 0.6 in the current 

implementation, f2 is chosen as the final pitch. Otherwise, f1 will be 

selected. 

 

Formant Frequency 

The algorithm adopted in the system to evaluate the formant 

candidates is based on so-called linear prediction analysis (LP). As shown 

in Fig. 11, each frame of speech to be analyzed is first preprocessed by 

pre-emphasis and Hamming windowing. The preprocessed speech is used 

to design the inverse filter A(z). Then, the LPC-based spectrum is 

evaluated from 1 / A(z). We chose the peaks in the spectrum as the 

formant candidates. 
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Fig. 11 procedure for formant estimation using linear prediction 
 

The linear prediction analysis is based on modelling the speech signal 

as if it are generated by a particular kind of source and filter, as shown 

below. 

 

 
Fig. 12 simplified model for speech production 
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In this model, the composite spectrum effects of radiation, vocal tract and 

glottal excitation are represented by a time-varying digital filter whose 

steady state system function is of the form 
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The system can be excited by an impulse train for voiced speech or a 

random sequence of unvoiced speech. The pitch period and 

voiced/unvoiced parameters can be estimated using linear predictive 

analysis. The speech samples s(n) can be given by using simple 

difference equation 
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The linear predictor with predictor coefficient αk, and order p is defined 

as a system whose output is 
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The system function of this linear predictor is  
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The prediction error is defined as 
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Thus the prediction error filter is the output of the system whose transfer 

function is  
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Comparison of (2. 37) and (2. 40) suggests that if αk = ak, then e(n) = 

G*u(n) and in such condition, prediction error filter A(z) will be an 

inverse filter for the system H(z) 
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The basic problem of linear prediction here is to determine a set of 

predictor coefficients {αk} directly from speech signal in such a manner 

as to obtain a good estimate of spectral properties of speech signal 

through the use of (2. 42). The predictor coefficients could be computed 

efficiently using the Levinson-Durbin recursion [1]. 
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2.4.3 Modelling Acoustic Characteristics 

 Here, we will introduce the way to construct the formant trajectory 

model of each model. We used the histogram analysis to analyze these 

acoustic characterises. The speech database which provides the corpus for 

analysis is the training set of TIMIT database. The detailed interpretation 

of TIMIT will be seen in the next chapter. First we used the SHR-based 

PDA to reveal the relationship between fundamental frequency and the 

gender of speaker. The threshold of SHR is chosen as 0.6. Fig. 13 showed 

the distribution of fundamental frequency respectively for men and 

women. 

 

 

Fig. 13 the distribution of F0 for men and women 
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 Form the analysis, a threshold-value of 140 (Hz) is chosen. The 

patterns whose fundamental frequency is above the threshold are taken as 

men-like category, and those else taken as women-like category. Then we 

constructed the trajectory model for each vowel class respectively for 

both men-like and women-like category. The models are derived the 

histogram analysis form individual vowel category and consisted of three 

time-dependent sub-model sampled at 20%, 50% and 80% of the vowel 

duration. In each sub-model, we chose the pass-bands for F1 and F2 

respectively which indicate the formant candidates may be allowed to 

take place in the frequency range. On the other hand, the stop-band is 

chosen which prohibited the occurrence of formant candidates in this 

vowel category. Let’s take the vowel /iy/ of men-like category as an 

example. In sub-model 1, the pass-band for F1 is chosen as 400~500 Hz, 

the pass-band for F2 is chosen as 1600~2500 Hz, and the stop-band as 

700~1200 Hz. An illustration of the model of a specific vowel category is 

shown below. 

 
Fig. 14 model of /iy/ 
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Many acoustic evidences could be found in these models. For example, as 

shown in Fig. 15, the difference between /iy/ and /ih/ is presented by the 

location of pass-band and stop-band. In Fig. 16, we could see the 

temporal trajectories of the diphthongs /ay/ and /oy/. Those phenomena 

are the cues for the acoustic characteristic checking. 

 

 
Fig. 15 an illustration of /iy/ and /ih/ 

 

 
Fig. 16 an illustration of /ay/ and /oy/ 
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Chapter 3 
Experiments 
 

 

3.1 Introduction 

 In the previous chapter, we described the structures of the proposed 

vowel recognition system in detail. In order to investigate and show the 

contribution and correlation of these different techniques we applied, 

several sets of experiments are done. In the first set of experiments, the 

method of narrow band pattern-matching model proposed by Hillenbrand 

[5] was evaluated. The second set of experiments is designed and 

implemented with DCSCs as feature set and SONFIN as the classifier. In 

these experiments, we tried to show the superior ability of the neural 

fuzzy inference network for this classification task. In the third set of 

experiments, we adopted the AE-DCSCs as the feature set and SONFIN 

again as the classifier. The improvement caused by the feature 

enhancement techniques are shown here. Finally, in the last set of 

experiments, acoustic-checking technique is applied to this system. The 

experiment results showed the contribution of this process. 

 For these experiments (except for the pattern-matching model), the 

following 101 features are first computed for each token. The first 45 

features encoded 15 DCTC trajectories over 100 ms centered at each 

vowel midpoint (20-ms frame length, 5-ms frame spacing, 15 DCTCs 

using three DCSCs, with a warping factor of two). This part of features 

tried to represent the steady-state of the token (i.e. the duration of vowel 
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is greater than 100ms). The next 56 features encoded eight DCTC 

trajectories over 300 ms centered at each vowel midpoint (10-ms frame 

length, 2.5 ms frame spacing, eight DCTCs using seven DCSCs, with a 

time warping of 4). This part of features tried to represent the 

co-articulation phenomenon of the vowel token (i.e. the duration of vowel 

is less than 300ms and the preceding and following consonants will be 

included). Thus, these features include varying degrees of time-frequency 

resolution, based on the conjecture that different vowel pairs might be 

best discriminated with features varying with respect to these resolutions. 

 

3.2 Experiment Database 

 The TIMIT acoustic-phonetic speech corpus is used for all training, 

development, and performance evaluation experiments. This corpus is 

widely used throughout the world and provides a standard that permits 

direct comparison of experimental results obtained by different 

methodologies. The entire corpus consists of 10 sentences recorded from 

each of 630 speakers of American English. Two of the sentences (sa) are 

identical for all the speakers. Five of the sentences (sx) for each speaker 

are drawn from a set of 450 phonetically compact sentences 

hand-designed at MIT. The emphasis behind these sentences is on 

covering a wide range of phonetic pairs. The 450 (sx) sentences are each 

spoken by seven different speakers. The final three sentences (si) for each 

speaker are chosen at random from the Brown Corpus and are unique for 

all the speakers. The speakers in the corpus are comprised of males and 

females (at a ratio of roughly two to one) from eight predefined dialect 
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regions of the United States. 

 For all experiments, the data is divided into distinct units known as 

the training set and the test set. The training set is used to estimate the 

parameters for each of the phonetic models to be used in the experiments. 

The test set consists of the actual test data for the classification or 

recognition performance evaluation. Speakers from the training and test 

sets never overlap. This is important to ensure fair experimental 

conditions. Both sets are generally chosen to reflect a well balanced 

representation of the speakers in the corpus. Most of the training and test 

sets utilized in this work are selected specifically because they are 

identical to training and test sets used in other work. Therefore, the results 

can be directly compared to those obtained and reported in the literature. 

The sets used in this thesis are listed along with some of their statistics in 

Table 1. The experiments are performed with vowels extracted from the 

TIMIT database. A total of 16 vowels are used, encompassing 13 

monophthongal vowels /iy/, /ih/, /eh/, /ey/, /ae/, /aa/, /ah/, /ao/, /ow/, /uh/, 

/ux/, /er/, /uw/, and diphthongs /ay/, /oy/, /aw/. 

 
Table 1 data set used for the experiments 

Data Set Training Speakers Test Speakers Training Tokens Test Tokens 

SX 450 50 17040 1786 
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3.3 Experiment Result 

Experiment Set I 

 In this set of experiments, the narrow band pattern-matching model 

proposed by Hillenbrand [5] was evaluated in the TIMIT database. 

Hillenbrand summarized the cues from the researches about human vowel 

perception and proposed the pattern-matching model algorithm. It was 

assumed that the human perception mechanism is a narrow band 

pattern-matching procedure. Thus several experiments done by 

Hillenbrand were used to verify the assumption. The original corpus in 

those experiments is the database recorded by Hillenbrand et al. it 

consisted of 1668 /hVd/ utterances spoken by 139 well-trained speakers. 

The original accuracy rate by Hillenbrand was 91.4%. However in the 

experiment set I, we used the TIMIT database and the accuracy rate was 

32.06%, which was much lower as expected. 

 

Experiment Set II 

 In this set of experiments, we used DCSCs as the feature set and 

SONFIN as the classifier. Several parameters of SONFIN are adjusted to 

allow SONFIN to find its optimal structure by itself. There are 21 rules in 

the best structure of SONFIN. The recognition rate of this structure is 

72.72% which is higher than other methodology in the literature 

(including the 71.50% reached by the system proposed by Zahorian et 

al.). 
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Experiment set III 

 The acoustic enhanced features AE-DCSCs are adopted in 

experiment set III in order to evaluate the improvement of the feature 

modification. Again, the neural fuzzy classifier SONFIN is used as the 

classifier and the parameters of SONFIN are adjusted. There are 14 rules 

in the best structure of SONFIN for AE-DCSCs. The recognition rate of 

this structure is 74.41% which is higher than those in experiment set II. 

 

Experiment IV 

 Finally, the acoustic-checking procedure is applied to the result of 

AE-DCSCs and SONFIN structure. The threshold of confidence factor is 

chosen as 0.4. and the experiment result showed a recognition rate of 

74.75% 

 
Table 2 experiment results and comparison 

Feature set Method Accuracy 

Narrow-Band Spectra Pattern-Matching 

Model 

32.06% 

DCSCs Partitioned Neural 

Networks 

71.50% 

DCSCs SONFIN 72.72% 

Acoustic-Enhanced-DCSCs SONFIN 74.47% 

Acoustic-Enhanced-DCSCs SONFIN + 

Acoustic Checking 

74.75% 
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3.3 Discussion 

 It is shown by these experiments that our proposed system and the 

applied techniques performed better than those by others in the literature. 

In the first set of experiments, we showed the poorness of the feasibility 

in the perception model by Hillenbrand. In the second set of experiments, 

we just tried to evaluate the classification ability of the neural fuzzy 

classifier SONFIN if we compare it to the system proposed by Zahorian 

(1999) [13] which also used the DCSCs as the feature set but partitioned 

neural networks as the classifier. The experiment showed the accuracy 

rate by SONFIN is 72.72% higher than the accuracy rate of 71.50 % from 

the system proposed by Zahorain. Almost 1.2% improved by SONFIN. 

The experiment results showed the powerful classification ability of 

SONFIN. It used a simpler structure and easier to be trained than the 

PNN, but performed better. The reasons may be the partition ability in the 

input/output space and the effective inference of rules. Each rule 

constructed in SONFIN may classify the output space as many parts as 

the output class, and multiple rules are integrated via fuzzy inference 

which partitioned the output space carefully and precisely. 

The modified feature set is proved more representative in experiment 

set III, the higher recognition rate in experiment set II is 74.41% which is 

1.69% higher than that in experiment set II. the experiment result showed 

the idea of the enhancement of the acoustic characteristics in the 

spectrum domain is feasible. The procedure of acoustic-enhancement 

emphasized the spectral harmonics and balanced them which suggested in 

the acoustic-phonetic researches [5]. The acoustic-checking procedure is 
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applied in experiment IV. The experiment result showed the recognition 

rate is raised to 74.75%. Thus, the potential and effectiveness of the 

proposed system was verified.  
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Chapter 4 

Conclusion  
 

 

 In this thesis, we attempt to develop a more robust speaker 

independent automatic recognizer for English vowels. We integrate the 

spectral shape based features and acoustic characteristics in our system. 

Moreover several techniques are applied in this work. 

 Fist of all, we modify the gross shape of spectrum, which will be 

encoded to the feature set of the token. In this phase, we try to enhance 

the spectral peaks by eliminating the variation between harmonics and 

balance the amplitude difference by a spectrum-level-normalization 

process. The DCTC is adopted to encode the spectrum with a nonlinearity 

frequency warping according to the characteristic of human perception. In 

order to represent the temporal cues, we use the DCSC to encode the 

trajectory of spectrum. The suitable time warping can be adjusted to 

preserve the information better in a finite feature dimension. 

 A neural fuzzy inference classifier called as SONFIN is adopted in 

the proposed system as the main recognizer. The SONFIN has the ability 

to construct its optimal structure by itself and can self-adjust its 

parameters such as membership function and the consequent parameters. 

Experiments showed the SONFIN has a simpler structure and better 

performance. 

 Finally a formant checking procedure is done in the system. The 

procedure is used to distinguish the ambiguous cases according to their 
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acoustic evidence. If the confidence factor form SONFIN classification is 

not high enough, the recognition-result is taken as ambiguous and their 

acoustic cues such as fundament frequency and formant trajectory will be 

evaluated and checked with the model of vowels. This procedure 

provides another view to look at the token and provide a more accuracy 

recognition result. Many experiments based on the popular 

acoustic-phonetic database are done and the results showed that our 

proposed system performed much better. 
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