三維積體電路封裝中錫2.5 銀微凸塊

的冶金反應之研究

研究生:楊若薇 指導教授:陳智 博士

國立交通大學材料科學與工程學系研究所碩士班

摘要

隨著電子產業的發展,電子產品紛紛追求高效能、小體積的趨勢 發展,3-D IC 技術因應而生,而其中微凸塊的接點已經被採用來連接 上下層的晶片。本實驗利用錫2.5 銀微凸塊搭配 Ni/Cu 金屬墊層進行迴 銲與高溫儲存測試觀察其冶金反應。在 260°C 下迴銲 30 分鐘,發現微 凸塊幾乎都反應成 Ni₃Sn₄ 介金屬化合物,而 Ni 層仍然保持完整的保護 著上方的 Cu 層,使它不與銲錫反應。另一方面,隨著銲錫與 Ni 反應 生成 Ni₃Sn₄,使得銲錫中的 Ag 濃度上升,造成片狀 Ag₃Sn 的出現。在 迴銲與高溫儲存下,Ni₃SN₄ 成長速率常數分別為 0.45 μ m/min^{1/2}、 0.067 μ m/hr^{1/2}; 而 Ni 消耗速率常數分別為 0.12 μ m/min^{1/2}、0.018 μ m/hr^{1/2}。 而在銲錫厚度 3.53 與 10.2 μ m 的試片,迴銲 10 分鐘前的 Ni₃Sn₄ 平均成 長速率為 0.214 μ m/min、0.117 μ m/min。錫 2.5 銀銲錫在 260°C 迴銲 10 分鐘出現片狀 Ag₃Sn 的臨界體積為 1088.03 μ m³。

Study of metallurgical reaction in Sn2.5Ag microbumps for 3D IC packaging

Student : Ruo-Wei Yang

Advisor : Chih Chen

Department of Materials Science and Engineering National Chiao Tung University

Abstract

In this thesis, we study the metallurgical reactions at liquid state and solid state for Sn2.5Ag microbumps with Cu/Ni UBM. 260°C reflow 30 min, the microbumps almost became the Ni₃Sn₄ intermetalliccompounds (IMCs). In addition, the dispersed Ag₃Sn IMCs would agglomerate to form plate-like Ag₃Sn IMCs as the reflow time increased. For the reflow and thermal aging tests, we calculated the growth rate constant of Ni₃Sn₄ in the reflow and thermal aging test were $0.45 \mu m/min^{1/2}$ and $0.067 \mu m/hr^{1/2}$, and the consumption rate constant of Ni in the reflow and thermal aging tests were $0.214 \mu m/min$ and $0.117 \mu m/min$, respectively. The critical volume of Sn2.5Ag for plate-like Ag₃Sn formation was $1088.03 \mu m^3$ o

誌謝

本論文可以完成首先要最感謝我的指導老師陳智教授,在進度報告的時候老師都會耐心的與我討論實驗結果,並且給予我許多正確的 實驗方向,有老師的悉心指導才讓我能夠順利的完成我的碩士研究。 研究所的兩年中也從老師那學到了不少關於銲錫電遷移、熱遷移、冶 金反應等相關知識,更甚者也學習到了與他人的相處之道,所以在此 我要對我的指導老師陳智教授致上最高的謝意。

另外本實驗得以進行都要感謝工研院提供試片給我,讓我能夠有這些試片去完成想要做的研究,也常常麻煩工研院解答試片的相關問題。 1896

再來要感謝的就是實驗室的阿丸,感謝你總是不厭其煩的跟我討 論我的實驗,也會提醒我要去補充哪一方面的相關知識,每次我粗心 的時候你都會趕快拉我一把,告訴我要如何做下一步,真的很謝謝你 的耐心。筱芸學姐雖然遠在 UCLA,還要用 msn 幫我解答實驗上的問 題、每次都要早起約 EPMA 的祥耀、幫我切 FIB 的 Q 毛、幫我拍 TEM 的健民、還有幫我拍 IR 的蔡頭、宗寬、詠湟、佳凌、韋奇、明墉,謝 謝你們大家的幫忙與陪伴。最後要特別感謝我的好朋友好夥伴曉葳, 有你的陪伴讓我不孤單,碩班這兩年過的多采多姿充滿著歡樂。

iii

摘要	I
ABSTRACT	11
目錄	.IV
圖目錄	V
表目錄	VIII
第一章 序論	1
第二章 文獻回顧	2
2-1 電子封裝發展	2
2-2 三維積體電路堆疊技術	2
2-3 SN-Ag 合金	4
2-4 SN-AG 合金與不同金屬墊層的冶金反應	5
第三章 實驗方法	.13
3-1 試片結構	13
3-2 高温储存與迴銲測試	.13
3-3 試片分析的前處理	.14
3-4 分析工具	15
第四章 結果與討論	. 17
4-1 試片結構與成分確認	. 17
4-2 迴銲測試之 IMC 觀察與量測	. 18
4-3 高溫儲存測試之 IMC 觀察與量測	23
4-4 迴銲與高溫儲存下 NI3SN4成長速率與 NI 的消耗速率	.25
4-5 迴銲測試之片狀 AG3SN 的發現與出現機率	.28
4-6 片狀 AG3SN 在錫 2.5 銀微凸塊中形成的臨界體積	.32
第五章 結論	. 81
參考文獻	. 83

圖目錄

圖 2-1-1 打線接合封裝示意圖	8
圖 2-1-2 覆晶銲錫封裝示意圖	8
圖 2-2-1 三維積體電路技術的演進,從 SIP、SoC 到 TSV 示意圖	9
圖 2-3-1SN3.5A 在 260℃迴銲 2 分鐘出現片狀 AG3SN	10
圖 2-3-2 片狀 AG3SN 出現在銲錫角落應力較大的區域,造成裂痕沿著片狀 AC	33SN
延伸	10
圖 2-4-1 共晶錫鉛銲錫與無電鍍鎳金屬墊層 260℃迴銲1分鐘,在無電鍍鎳金	屬層
與 N13SN4 金屬化合物之前有一層 N13P 介金屬化合物	11
圖 2-4-2 在 216℃熱時效 225 小時, SN3.5AG 銲錫與無電鍍鎳金屬墊層反應, 生	成的
NI3P 介金屬化合物有 KIRKENDALL VOID 產生	11
圖 2-4-3 銲錫中電流分佈 (A)0.5 (B)5 (C)25 (D)50 (E)100 CU UBM,當電流為 0.6A.	12
圖 3-1-1 銲錫微凸塊橫截面示意圖	16
圖 4-1-1 銲錫厚度 4.0MM,迴銲測試前 SEI 橫截面影像	35
圖 4-1-2 銲錫厚度 6.2MM, 迴銲測試前 SEI 橫截面影像	35
圖 4-1-3 銲錫厚度 4.0MM,進行 260℃迴銲測試試片示意圖	36
圖 4-1-4 銲錫厚度 6.2MM,進行 260℃迴銲測試試片示意圖	36
圖 4-1-5 銲錫厚度 4.0MM,進行 150℃高溫儲存測試試片示意圖	36
圖 4-1-6 基板端接合前銲錫微凸塊的平面 BEI 影像	37
圖 4-2-1 銲錫厚度 3.53MM, 迴銲測試前的橫截面 SEI 影像	38
圖 4-2-2 銲錫厚度 3.53MM, 迴銲時間 1 分鐘的橫截面 SEI 影像	38
圖 4-2-3 銲錫厚度 3.53MM, 迴銲 5 分鐘的橫截面 SEI 影像	39
圖 4-2-4 銲錫厚度 3.53MM, 迴銲 10 分鐘的橫截面 SEI 影像	39
圖 4-2-5 銲錫厚度 3.53MM, 迴銲 30 分鐘的橫截面 SEI 影像	40
圖 4-2-6 銲錫厚度 3.53MM, 迴銲測試前晶片端與基板端 IMC 成分分析	40
圖 4-2-7 銲錫厚度 3.53MM, 迴銲 30 分鐘 EDS 成分分析	41
圖 4-2-8 銲錫厚度 3.53MM, 迴銲測試前的橫截面 BEI 影像	41
圖 4-2-9 銲錫厚度 3.53MM,迴銲1分鐘的橫截面 BEI 影像	42
圖 4-2-10 銲錫厚度 3.53MM, 迴銲 5 分鐘的橫截面 BEI 影像	42
圖 4-2-11 銲錫厚度 3.53MM, 迴銲 10 分鐘的橫截面 BEI 影像	43
圖 4-2-12 銲錫厚度 3.53MM, 迴銲測試前的橫截面 BEI 影像	43
圖 4-2-13 銲錫厚度 3.53MM, 迴銲1分鐘的橫截面 BEI 影像	44
圖 4-2-14 銲錫厚度 3.53MM, 迴銲 5 分鐘的橫截面 BEI 影像	44
圖 4-2-15 銲錫厚度 3.53MM, 迴銲 10 分鐘的橫截面 BEI 影像	45
圖 4-2-16 銲錫厚度 3.53MM, 迴銲 30 分鐘的橫截面 BEI 影像	45
圖 4-2-17 銲錫厚度 3.53MM, 迴銲 30 分鐘片狀 AG3SN 成分分析	46

圖 4-2-18 銲錫厚度 10.2MM,迴銲測試前的橫截面 SEI 影像	46
圖 4-2-19 銲錫厚度 10.2MM,迴銲 1 分鐘的橫截面 SEI 影像	
圖 4-2-20 銲錫厚度 10.2MM,迴銲 5 分鐘的橫截面 SEI 影像	
圖 4-2-21 銲錫厚度 10.2MM, 迴銲 10 分鐘的橫截面 SEI 影像	
圖 4-2-22 銲錫厚度 10.2MM, 迴銲 20 分鐘的橫截面 SEI 影像	
圖 4-2-23 銲錫厚度 10.2MM, 迴銲 40 分鐘的橫截面 SEI 影像	
圖 4-2-24 銲錫厚度 10.2MM, 迴銲 90 分鐘的橫截面 SEI 影像	
圖 4-2-25 銲錫厚度 10.2MM, 迴銲測試之前晶片端與基板端 IMC 成分分析	50
圖 4-2-26 銲錫厚度 10.2MM,迴銲 20 分鐘 IMC 成分分析	50
圖 4-2-27 銲錫厚度 10.2MM,迴銲 90 分鐘 IMC 成分分析	51
圖 4-2-28 銲錫厚度 10.2MM,迴銲測試之前的橫截面 BEI 影像	51
圖 4-2-29 銲錫厚度 10.2MM, 迴銲 1 分鐘的橫截面 BEI 影像	52
圖 4-2-30 銲錫厚度 10.2MM, 迴銲 5 分鐘的橫截面 BEI 影像	52
圖 4-2-31 銲錫厚度 10.2MM,迴銲 10 分鐘的橫截面 BEI 影像	53
圖 4-2-32 銲錫厚度 10.2MM, 迴銲 20 分鐘的橫截面 BEI 影像	53
圖 4-2-33 銲錫厚度 10.2MM, 迴銲 40 分鐘的橫截面 BEI 影像	54
圖 4-2-34 銲錫厚度 10.2MM, 迴銲 90 分鐘的橫截面 BEI 影像	54
圖 4-2-35 銲錫厚度 3.53MM, 迴銲時間對晶片端/基板端 NI3SN4厚度作圖	55
圖 4-2-36 銲錫厚度 3.53MM, 迴銲時間對 NI ₃ SN ₄ 在銲錫中的總厚度作圖	55
圖 4-2-37 銲錫厚度 3.53MM, 迴銲時間與 NI ₃ SN4 增加量取對數作圖	56
圖 4-2-38 銲錫厚度 3.53MM, 迴銲時間與 NI ₃ SN ₄ 總增加量取對數作圖	56
圖 4-2-39 銲錫厚度 10.2MM,迴銲時間對晶片端/基板端 NI3SN4厚度作圖	57
圖 4-2-40 銲錫厚度 10.2MM, 迴銲時間對 NI3SN4 在銲錫中的總厚度作圖	57
圖 4-2-41 銲錫厚度 10.2MM,迴銲時間與晶片端 IMC 增加量各取對數	58
圖 4-2-42 銲錫厚度 10.2MM,迴銲時間與基板端 IMC 增加量各取對數	58
圖 4-2-43 銲錫厚度 10.2MM,迴銲時間與 NI3SN4總增加量取對數作圖	59
圖 4-3-1 高溫儲存測試前的橫截面 SEI 影像	
圖 4-3-2 熱時效 40 小時的橫截面 BEI 影像	60
圖 4-3-3 熱時效 200 小時的橫截面 SEI 影像	60
圖 4-3-4 熱時效 1000 小時的橫截面 SEI 影像	61
圖 4-3-5 高溫儲存測試之前 IMC 成分分析	61
圖 4-3-6 熱時效 40 小時晶片端與基板端 IMC 成分分析	
圖 4-3-7 熱時效 1000 小時 IMC 成分分析	63
圖 4-3-8 高溫儲存測試前的橫截面 BEI 影像	64
圖 4-3-9 熱時效 40 小時的橫截面 BEI 影像	64
圖 4-3-10 熱時效 200 小時的橫截面 BEI 影像	65
圖 4-3-11 熱時效 1000 小時的橫截面 BEI 影像	65
圖 4-3-12 熱時效 1000 小時的橫截面 BEI 影像	66

圖 4-4-1 銲錫厚度 3.53MM, 迴銲測試後晶片端 NI3SN4 成長速率常數 K68 圖 4-4-3 銲錫厚度 3.53MM, 迴銲測試後總 NI₃SN4 成長速率常數 K69 圖 4-4-5 銲錫厚度 10.2MM, 迴銲測試後晶片端 NI3SN4 成長速率常數 K70 圖 4-5-1 銲錫厚度 3.53MM,不同迴銲時間下觀察到片狀 AG3SN 的機率77 圖 4-5-2 銲錫厚度 3.53MM,不同迴銲時間對應銲錫中的 AG 濃度.......77 圖 4-6-3 在 260℃迴銲,不同 SN2.5AG 銲錫厚度,迴銲時間對銲錫成分作圖.......80 圖 4-6-4 在 150℃高溫儲存, SN2.5AG 厚度 4.0MM, 熱時效時間對銲錫成分作圖..80

表目錄

表 4-1-1 未接合銲錫 EPMA 定量分析	
-------------------------	--

第一章 序論

隨著電腦與通訊產品功能的快速發展,近年來半導體相關產業為 了滿足電子產品多元化與輕薄微小化等功能需求,使得積體電路 (Intergrated Circuit, IC)構裝製程逐漸脫離傳統的技術而朝向高功率、高 密度與低成本的製程發展,因此三維積體電路堆疊技術(3-D Intergrated Circuit Stacking Technology)運用而生。其中微小間距的銲錫微凸塊 (Solder Microbump)在 3-D IC 中除了可以增加 I/O 數目以外也可以降低 成本。從銲錫微凸塊的結構來看,其銲錫的體積小於金屬墊層(Under Bump Metallization, UBM), 而傳統的覆晶封裝(Flip-chip)的銲錫接點 (Solder Joint)則是銲錫體積大於金屬墊層,讓我們不禁猜想或許在銲錫 微凸塊中的冶金反應可能會和傳統的覆晶封裝銲錫接點不同。本文主 要研究微小間距的銲錫微凸塊經過高溫儲存(High Temperature Storage, HTS)和迴銲測試後,銲錫微凸塊與金屬層的冶金反應。我們除了會觀 察銲錫微凸塊的微結構與成分變化以外,也會計算在熱時效與迴銲測 試中介金屬化合物(Intermetallic Compound, IMC)的成長速率常數、金屬 層與銲錫反應的消耗速率,然後進一步的與覆晶封裝銲錫接點的冶金 反應比較,是否傳統銲錫凸塊與銲錫微凸塊有相異之處。

第二章 文獻回顧

2-1 電子封裝發展

電子封裝技術是電子產業相當重要的一環,主要功能是將訊號從 電子元件經由基板的連線傳遞到外部的其他元件,達到電力及訊號傳 送的效果。隨著電子通訊產品效能需求提升與體積的縮小,使得晶片 的體積也必須跟著縮小與提高 I/O 數目,從早期的打線接合(wire bonding)技術,如圖 2-1-1 所示,只能在晶片(chip)周圍連接導線,使得 接點受到限制而不能加以利用晶片中央的部分,且訊號傳遞路徑過 長;到可以利用晶片大部分面積增加 I/O 數目,且減少外接導線長度與 體積的覆晶接合(Flip-chip)技術,如圖 2-1-2 所示。然而隨著半導體技 術走向奈米化, 奈米晶片的發展使得對應的構裝技術面臨重大的挑 戰,包括高頻高遠、穩定的電源供應、熱的移除、IC 與基板密度的差 異等議題,促使構裝技術必須以變革來因應,而三維積體電路堆疊技 術無疑是成為發展新型構裝技術的重點項目。

2-2 三維積體電路堆疊技術

三維積體電路的概念並不是近幾年才出現的,由於三維積體電路 堆疊可以增加接點數目、提升效能、降低功率消耗、降低成本及異質

晶片整合的優點,所以早在幾年前就已經有相關的技術出現。例如系 統構裝(system in packing, SiP),將不同種類的元件堆疊,再用引腳連接 各層,而將不同種類的元件混載於同一構裝內;或者是利用系統積層 (system on chip, SoC),將不同種類的元件平行放置在同一個基板上, 再用導線連接各個元件。然後這兩種方式都會因為連接各元件的導線 太長使得訊號傳輸慢且有雜訊,因此產生了直通矽晶穿孔 (through-silicon via, TSV)技術,它是將不同的元件堆疊起來後,在矽晶 片中作出一個垂直的通道來導通各層的元件,達到低功耗、效能提升 且整合晶片的效果, SiP、SoC和 TSV 的示意圖如圖 2-2-1 所示。知道 如何將不同種類的元件晶片連接整合之後,我們還必須知道如何將晶 片堆疊起來,而目前所使用的三維積體電路堆疊技術有三種,層疊式 晶片堆疊(chip on chip, CoC)、(chip on wafer, CoW)、(wafer on wafer, WoW), CoC 技術是將晶片一個一個的上下對接,所以花的時間最多但 是也是良率最高的一種技術; CoW 技術則是將晶片一個一個對接到下 方的晶圆(wafer)上,所花的時間比 CoC 少一點,而良率也算不錯;最 後 WoW 技術則是最快的一種,但是因為是晶圓對晶圓的接合,所以對 位容易不準確,因此是三種技術中良率最低的,三種技術的比較與示 意圖如表 2-2-1 所示。而在本實驗中我們則是選擇 CoC 技術製作的試 片。

2-3 Sn-Ag 合金

由於傳統的錫鉛銲料(Sn-Pb solder)之鉛會對環境及人體造成危 害,因此積極開發無鉛銲錫(Lead-free solder)以取代傳統的錫鉛銲錫, 目前開發出來的無鉛銲錫合金有錫銀(Sn-Ag)、錫銅(Sn-Cu)、錫銀銅 (Sn-Ag-Cu)、錫鈆(Sn-Bi)、錫銦(Sn-In)、錫鋅(Sn-Zn)、錫金(Sn-Au)等。 其中 Sn-Ag 系二元合金銲錫比起傳統的錫鉛銲錫具有良好拉伸、潛變、 疲勞等的機械性質^[5-9],為目前可取代共晶錫鉛銲錫的熱門材料之一。 使 SnAg 無鉛銲錫有良好的機械性質,其中 Ag 的添加為主要的原因 ^[4,10],由於約數個 μm 以下的 Ag₃Sn 界金屬化合物,均匀的分散在樹枝 球狀(dendritic globules)的錫基底(β-Sn matrix)周圍,也由於分散強化 之故,所以 Sn-Ag 系合金有較優於傳統錫鉛合金的機械性質。

然而,在銲錫中添加太多 Ag 反而會造成銲錫的機械性質下降,從 文獻中我們知道 Ag 在銲錫中的濃度超過 3.5 wt.%,開始會出現片狀的 Ag₃Sn,如圖 2-3-1 所示,而此片狀 Ag₃Sn 如果形成在高應力的地方, 例如銲錫角落和 UBM 的界面,此時若有一裂痕產生則會沿著 Ag₃Sn 與銲錫的界面裂開,如圖 2-3-2,進而造成銲錫的破壞^[4,11-14]。所以 Ag 在銲錫中的添加量與 Ag₃Sn 在銲錫中的形狀分佈是一個很重要的議題。

2-4 Sn-Ag 合金與不同金屬墊層的冶金反應

由 2-3 中我們知道了 Sn-Ag 系二元合金銲錫相較於傳統 Sn-Pb 銲 錫有較好的機械性質,也是用來取代傳統 Sn-Pb 銲錫的重要銲料之一。 然而在覆晶封裝中銲錫必須要與金屬墊層接合,若銲錫與金屬墊層沒 有良好的潤濕性,即銲錫與金屬墊層冶金反應生成的介金屬化合物發 生剝離現象(spalling),使得銲錫無法與金屬墊層良好接合,則會產生可 靠度的一些問題。因此我們必需要更進一步的了解 Sn-Ag 銲錫與一些 常用金屬墊層,例如 Cu、Ni、Ni(P)、Cu/Ni 等金屬墊層的冶金反應, 來加以評估 Sn-Ag 銲錫的可行性。

過去我們常使用 Sn-Pb 銲錫與 Cu 金屬墊層作接合,但是當銲料換 成了 Sn-Ag 銲錫之後我們發現 Sn-Ag 的熔點較 Sn-Pb 高,因此在迴銲 過程中更容易融入 Cu,使得 Cu 與 Sn-Ag 銲錫的反應速度大於傳統的 Sn-Pb 銲錫。另一方面,Sn-Pb 銲錫中因為有 Pb 的添加使得 Sn-Pb 銲 錫與 Cu 的潤濕角(wetting angle)降到 11°C,也讓 Sn-Pb 銲錫與 Cu₆Sn₅ 介金屬化合物的界面能(interfacial energy)變低^[15]。然而在 Sn-Ag 銲錫 中,少了 Pb 降低界面能,使得 Sn-Ag 銲錫與 Cu 的潤濕角增加,相對 的也造成 Sn-Ag 銲錫與 Cu₆Sn₅ 介金屬化合物界面能增加,產生 Cu₆Sn₅ 介金屬化合物剝離的情況^[8,16,17]。為了解決 Cu 金屬墊層與 Sn-Ag 銲錫 的潤濕問題,我們以 Ni 為基底(Ni-base)的金屬層來取代 Cu 金屬墊層,

例如電鍍鎳或無電鍍鎳來當作 Sn-Ag 銲錫的金屬墊層, 而 Ni 金屬墊層 除了有較好的潤濕性以外,Ni在 Sn-Ag 銲錫中的溶解速率也比較慢 ^[3,18,19]。在無電鍍鎳中,因為含有磷(P)的成分,所以當無電鍍鎳與銲錫 反應時會產生 Ni₃Sn₄與 Ni₃P 兩種介金屬化合物^[4], 如圖 2-4-1 所示, 而 Ni₃P 是生成在 Ni₃Sn₄與 Ni 層間之介金屬化合物,而這層 Ni₃P 裡面 有許多的 Kirkendall void^[20], 如圖 2-4-2 所示,這樣的 Ni₃P 結構造成銲 錫凸塊的強度下降,也造成製程上銲錫凸塊不見的問題^[21,22]。而電鍍 鎳金屬墊層除了與 Sn-Ag 銲錫反應慢以外,不會有 Ni₃P 的介金屬化合 物出現,也就不會有孔洞(void)產生造成銲錫強度下降的問題發生,然 而電鍍鎳本身會有應力累積的問題,所以無法鍍的很厚。而由於銲錫 和導線之間的幾何形狀的改變,造成電流在流經其中時必須轉彎以流 入下一個部分,在導線中的電流可通行截面積與銲錫凸塊中的截面積 的差異不但造成電流密度的差異,也造成電流在流經導線及凸塊時會 出現集中於交界點的情形,由 S. W. Liang 等人發表於 JEM. 2007^[23]的 研究中我們知道電流一但轉彎就會造成電流集中效應(current crowding effect),而這樣的電流集中使得銲錫局部的電流密度上升,此電流密度 的上升導致電流密度梯度的出現,驅使該處多餘的空孔往電流密度的 低的地方移動,進而導致孔洞出現而對銲錫的壽命造成影響。而金屬 墊層的另一項用處就是減輕電流集中效應的現象[23,24,25],如圖 2-4-3 所

示,所以如果只用電鍍 Ni 當作金屬墊層,又沒辨法把電鍍 Ni 鍍的很厚,則無法達到減輕電流集中的效果,使得銲錫的通電壽命變短。因此我們選擇使用 5µm-Cu/3µm-Ni 的金屬墊層結構,利用銅來減緩電流集中效應,又可以用 Ni 與銲錫反應慢的這項特點來阻擋銲錫與 Cu 反應。

圖 2-1-2 覆晶銲錫封裝示意圖^[1]

圖 2-2-1 三維積體電路技術的演進,從 SiP、SoC 到 TSV^[2]

ESP

Stacking style	Die-to-die	Wafer-to-wafer	Die-to-wafer	Self-assembly-based die-to-wafer
Production throughput	Extremely Low	High (wafer bonding)	Low (pick & place)	High (self-assembly & chip transfer)
Production yield	High (use of KGD)	Low	High (use of KGD)	High (use of KGD)
Flexibility in chip size	High	Low	High	High
Applications	Packaging	DRAM (high-yield products)	CIS, logic, memory, MEMS, etc.	CIS, logic, memory, MEMS, etc.

表 2-2-1 三維積體電路晶片堆疊技術[2]

圖 2-3-1Sn3.5Ag 在 260℃ 迴銲 2 分鐘出現片狀 Ag₃Sn^[3]

圖 2-3-2 片狀 Ag₃Sn 出現在銲錫角落應力較大的區域,造成裂痕沿著片狀 Ag₃Sn 延伸^[4]

圖 2-4-1 共晶錫鉛銲錫與無電鍍鎳金屬墊層 260℃ 迴銲 1 分鐘,在無電 鍍鎳金屬層與 Ni₃Sn₄ 金屬化合物之前有一層 Ni₃P 介金屬化合物^[4]

圖 2-4-2 在 216℃ 熱時效 225 小時, Sn3.5Ag 銲錫與無電鍍鎳金屬墊層 反應,生成的 Ni₃P 介金屬化合物有 kirkendall void 產生^[20]

圖 2-4-3 銲錫中電流分佈 (a)0.5 (b)5 (c)25 (d)50 (e)100 Cu UBM,當電 流為 0.6A^[23]

第三章 實驗方法

3-1 試片結構

實驗試片是由工業技術研究院(Industrial Technology Research Institute)所提供,其試片利用層疊式晶片堆疊(Chip-on-Chip, COC)技 術,用熱壓的方式將錫銀銲錫微凸塊連接上下的矽晶片,其中矽晶片 之間並沒有底部填充膠(under fill),因此試片較脆弱。觀察的微凸塊為 離菊花環(daisy chain)結構,上下各是電鍍 5 μm-銅/3 μm-鎳,兩端的金 屬墊層與鋁導線接觸面積直徑(passivation opening)為 12 μm、金屬墊層 開口(UBM opening)為 16 μm,而線層與銲錫的接觸面積直徑為 18 μm; 使用的銲錫為 Sn2.5Ag,電鍍厚度為 10 μm,直徑 18 μm,銲錫形狀主 要呈現圓盤狀。其銲錫結構截面示意圖如圖 3-1-1。然而微凸塊製備較 不容易,使得試片會有些許的誤差,所以在實驗中將會有兩種不同銲 錫量的試片出現。

3-2 高溫儲存與迴銲測試

在高溫儲存測試中,我們先將試片放入溫控型烘箱內,設定溫度 150℃,然後用 TECPEL 公司的電子式熱電偶(thermocouple)溫度量測儀 (thermometer)確定烘箱內溫度達到 150℃且溫度穩定之後開始計時。測 試的高溫儲存時間分別為 0、40、200、1000 小時,測試時間結束之後 將試片爐冷至室溫。

在迴銲測試中,我們使用銲錫量較多與較少兩種試片做測試,利 用加熱板當做熱源,先將加熱板設定溫度 260℃,一樣用熱電偶溫度量 測儀量測加熱板溫度確定溫度達到 260℃且溫度穩定之後將試片置於 加熱板上,然後計時。在第一批銲錫量較少的試片中,我們給予的迴 銲時間為 0、1、5、10、30 分鐘;而在第二批銲錫量較多的的試片中, 我們給予的迴銲時間為 0、1、5、10、20、40、90 分鐘,迴銲時間結 東之後將試片拿起空冷至室溫

3-3 試片分析的前處理

由於本實驗中的試片沒有灌入底部填充膠,因此在試片研磨前必 須要先用冷鑲埋液包覆住,避免沒有灌入底部填充膠的試片在研磨過 程中裂開。之後依序用 80、1000、2000、4000 號砂紙研磨至預觀察的 銲錫位置後,再利用 1、0.3 μm 顆粒的氧化鋁(Al₂O₃)粉進行拋光,最後 再使用矽酸膠(colloidal silica)微腐蝕液稍微蝕刻銲錫,讓 IMC 形貌更 加明顯以利銲錫結構觀察。 實驗中的銲錫結構觀測儀器有光學式顯微鏡(Optical Microscope, OM)、日本電子株式會社(Japan Electron Optics Laboratory, JEOL)的熱場 發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, SEM)JSM-6500F。OM 主要是在試片研磨處理中,幫助隨時觀察試片 研磨狀態,確定試片可以進一步使用 SEM 進行觀測。試片研磨完成後, 將試片經由濺鏡(sputter)鏡上一層鉑(Pt),以改善試片表面的導電度及 保護表面不受氧化,之後再用 SEM 的二次電子影像(Second Electron Image, SEI)和背向散射電子影像(Backscatter Electron Image, BEI)作為 表面形貌及各組成相之觀測用

成分分析儀器主要是利用 SEM 附加的 INCA 公司之 X 光能量分析 圖譜(Energy Dispersive Spectroscope, EDS),作為特定區域 IMC 成分分 析之依據,但由於 EDS 是半定量半定性,所以只有在偵測到的元素濃 度大於 5 at %,我們才會認為一定有此元素的存在。而使用的銲錫中 Ag 濃度只有 2.5 weight %左右,因此若想要進一步的確定成分組成則 必須要使用到日本電子株式會社的電子微探儀(Electron Probe X-ray Microanalyzer, EPMA)JSA-8800M 中的 WDS 來進行較精確的定量分 析,其解析度為 0.01 wt%。

圖 3-1-1 銲錫微凸塊橫截面 SEI 影像

第四章 結果與討論

4-1 試片結構與成分確認

在高溫儲存與迴銲測試開始之前,我們先將未經過測試的試片磨 開,發現銲錫有兩種形狀,一種是銲錫兩邊凹陷的形狀,一種是我們 原先設計的方形結構。我們一開始還沒辨法很準確的控制微凸塊的高 度,因此在高度上很容易會有誤差,所以才會有凹陷與方型兩種形狀 出現。而試片除了會有這兩種形狀差別以外,鍍的銲錫厚度也有所不 同,所以我們必須要估計試片的體積。利用 image J 量測這兩批試片接 合後剩餘銲錫厚度,由圖 4-1-1、圖 4-1-2 得知,迴銲測試的兩批試片 厚度分別為 4.0 μm 與 6.2 μm。而高溫儲存測試使用的試片奧迴銲測試 銲錫厚度 4.0 μm 的試片是同一批試片,所以銲錫量是一樣的,只是迴 銲測試的試片因為一開始無法準確控制銲錫高度,造成同樣一批試 片,在高度上有所差異。所以我們確定迴銲測試與高溫儲存測試的試

最後我們必須要確定銲錫的成分,利用銲錫厚度 6.2 µm 的成球試 片,平面磨開後作 EPMA 的定量分析,其磨開的照片如圖 4-1-6 所示, 而銲錫的成分分析結果如表 4-1-1 所示,得到銲錫成球後成分應該為 Sn2.4Ag。若將試片接合後的 Ni₃Sn₄ 厚度扣掉成球後的 Ni₃Sn₄ 厚度,得

到接合後 Ni₃Sn₄ 增加量 6.38×10⁻¹⁰g,推算接合後銲錫成分將會由 Sn2.4Ag 變為 Sn2.5Ag,讓我們確定試片在接合完成後成分符合我們所 要的 Sn2.5Ag。由以上結果得知在迴銲測試中使用到的銲錫厚度為 4.0μm 與 6.2μm,高溫儲存測試的銲錫厚度則為 4.0μm,而銲錫成分皆 為 Sn2.5Ag。

4-2 迴銲測試之 IMC 觀察與量測

在迴銲實驗中,我們使用錫 2.5 銀銲錫厚度為 4.0 與 6.2µm 的試片 進行 260°C 迴銲測試。首先我們先觀察銲錫厚度 4.0µm 的試片,迴銲時 間分別為 0、1、5、10、30分鐘,磨開後的橫截面 SEI 照片如圖 4-2-1~ 圖 4-2-5。由圖 4-2-1 我們可以觀察到試片在迴銲測試之前基板端的針 狀結構非常明顯,相較於基板端的不同,晶片端的 IMC 針狀結構較不 顯著,這樣的針狀結構在文獻中尚未發現過,在這個部份我們還需要 再深入研究才能給予解釋。另外,我們也可以觀察到基板端的 IMC 厚 度明顯大於晶片端的 IMC 厚度。在迴銲時間 1、5、10 分鐘後,發現 晶片端與基板端 IMC 形貌還是偏向於針狀結構,如圖 4-2-2、圖 4-2-3、 圖 4-2-4 所示,而上下 IMC 厚度皆隨著迴銲時間增加而增加,而基板 端的 IMC 厚度還是比晶片端的厚度來的厚。在迴銲三十分鐘的 SEI 照 片,圖 4-2-5 中我們發現幾乎所有銲錫都反應成 IMC,然而上下的 Ni

層卻依然保持完整。利用 EDS 對 IMC 進行成份分析,如圖 4-2-6 為迴 銲測試前銲錫微凸塊晶片端與基板端 IMC 成分分析結果,由於 EDS 為定性半定量的分析,所以只有在 Cu 的濃度大於 5 at %才能確定真的 有 Cu存在,因此在圖 4-2-6 中得到的 IMC 成分分析我們將它視為 Ni₃Sn₄ 介金屬化合物。到了迴銲 30 分鐘之後,我們看到整顆銲錫幾乎變成了 Ni₃Sn₄,而 IMC 中 Cu 的濃度仍然小於 5 at %,如圖 4-2-7 所示,這項 結果表示 Ni 層依然保持完整。而在 BEI 的照片上, 如圖 4-2-8~圖 4-2-11, 從迴銲 0、1、5、10 分鐘的 BEI 圖中可以看到有許多白色 Ag₃Sn 顆粒散布在銲錫中,但是都會有機會發現有片狀的 Ag₃Sn 出現在銲錫 中,如圖 4-2-12~圖 4-2-15,而 H.Y. SON^[26]也曾經發現片狀 Ag₃Sn 出 現在微凸塊中。到了迴銲30分鐘,銲錫幾乎變成 Ni₃Sn₄,只會發現片 狀的 Ag₃Sn 出現在銲錫中,如圖 4-2-16 所示,對於 Ag₃Sn 的討論我們 將會在 4-5 中提到。圖 4-2-17 是迴銲 30 分鐘 Ag₃Sn 的成分分析結果, 由結果得知銲錫中白色片狀的介金屬化合物的確為 Ag3Sn。

觀察銲錫厚度 6.2μm 的試片,其迴銲時間分別為 0、1、5、10、20、 40、90 分鐘,磨開後的 SEI 橫截面如圖 4-2-18~圖 4-2-24 所示。由圖 4-2-18 我們發現,在迴銲測試前的試片中基板端與晶片端的 IMC 形貌 相似,都稍微呈現針狀結構,然而基板端的 IMC 形貌並沒有像先前銲 錫厚度 4.0μm 的試片那樣有明顯的長針狀結構,而基板端 IMC 厚度仍

然略大於晶片端 IMC 的厚度。隨著迴銲時間增加,上下 IMC 形貌仍然 是針狀結構,如圖 4-2-19、圖 4-2-20、圖 4-2-21 所示,且上下 IMC 厚 度也是隨著迴銲時間增加而增加。到了迴銲20分鐘之後,晶片端與基 板端的IMC開始互相接觸到,如圖4-2-22所示。然而在銲錫厚度10.2µm 的試片中,我們發現迴銲 40 分鐘仍無法使銲錫完全變成 IMC,如圖 4-2-23 所示。一直到迴銲 90 分鐘才讓銲錫幾平變成 IMC, 如圖 4-2-24 所示。利用 EDS 對 IMC 進行成份分析,由圖 4-2-25 得知,在迴銲測 試之前晶片端與基板端的 IMC 成分分析中 Cu 的濃度一樣小於 5 at %, 所以同樣將此 IMC 直接視為 NiaSn4 介金屬化合物。在迴銲 20 分鐘之 後,IMC 中的 Cu 濃度還是小於 5 st %因此還是將 IMC 視為 Ni₃Sn₄, 如圖 4-2-26 所示。到了迴銲 90 分鐘,發現 IMC 中 Cu 濃度仍然小於 5 at %, 同樣地把 IMC 視為 Ni₃Sn₄ 介金屬化合物, 如圖 4-2-27 所示。若 觀察各迴銲時間的 BEI 照片, 如圖 4-2-28~圖 4-2-33 所示, 一樣可以發 現有白色顆粒狀的 Ag₃Sn 散佈在銲錫中,其中不同於第一批銲錫量較 少的試片是在迴銲 40 分鐘後, 也沒有觀察到片狀 Ag₃Sn 的產生, 直到 迴銲 90 分鐘銲錫幾乎變為 Ni₃Sn₄ 才開始有機會觀察到片狀 Ag₃Sn, 如 圖 4-2-34 所示。

我們進一步的利用電腦繪圖軟體 image J 量測不同迴銲時間,基板端與晶片端的 Ni₃Sn₄ 面積,然後再分別除以基板端 Ni 層與 Ni₃Sn₄ 的

邊界長度與晶片端 Ni 層與 Ni₃Sn₄ 的邊界後,我們就可以得到不同迴銲 時間基板端與晶片端 Ni₃Sn₄ 的厚度。首先觀察銲錫厚度 4.0µm 的試片, 在迴銲 0、1、5、10 分鐘量測到晶片端 Ni₃Sn₄ 厚度分別 0.98、1.25、1.53、 1.84µm;而基板端量測到的 Ni₃Sn₄ 厚度分別為 1.99、2.21、2.34、 2.51µm,由以上結果可以知道,的確基板端的 Ni₃Sn₄ 厚度大於晶片端 Ni₃Sn₄ 的厚度,將上下 Ni₃Sn₄ 厚度對迴銲時間作圖,可以得到圖 4-2-35。而迴銲 0、1、5、10、30 分鐘所量測到的總 Ni₃Sn₄ 厚度分別為 2.97、3.46、3.87、4.35、5.51µm,若將總 Ni₃Sn₄ 厚度對迴銲時間作圖 可以得到圖 4-2-36。由圖 4-2-35、圖 4-2-36 可以看到 Ni₃Sn₄ 的厚度都 是隨著迴銲時間呈拋物線成長。為了要了解 Ni₃Sn₄ 的成長動力學,我

 $h_t - h_0 = kt^n$ (i)

其中h_t是不同迴銲或熱時效的時間所對應的IMC平均厚度、h₀是迴銲 或高溫儲存測試前的IMC平均厚度、k是成長速率常數、t是迴銲或熱 時效的時間、n是時間的次方。若將公式(i)兩邊同取 log,則由 log (h_t-h₀) 與 log t 作圖,得到的直線斜率即為n值,而我們就利用n值的結果推 測IMC 成長的動力學。

現將不同迴銲時間量測到兩端 Ni₃Sn₄厚度扣掉迴銲測試前的兩端 Ni₃Sn₄厚度,得到不同迴銲時間兩端 Ni₃Sn₄厚度增加量,即為公式(i)

中的(ht-ho),其迴銲1、5、10分鐘晶片端的增加量分別為0.27、0.55、 0.86µm;基板端的增加量分別為0.22、0.35、0.52µm。將不同迴銲時 間Ni₃Sn₄厚度增加量取對數並且對迴銲時間取對數作圖,可以得到圖 4-2-37,晶片端與基板端的直線斜率分別為0.49、0.37。若將不同迴銲 時間Ni₃Sn₄總厚度增加量0.49、0.90、1.38、2.54µm 對迴銲時間各取 對數作圖,如圖4-2-38所示,圖中斜率為0.49,而從J. Shen 等人發表 的結果得知在這樣長時間的迴銲或熱時效下,Ni₃Sn₄已成長一連續的厚 度而Sn 跟Ni 原子若要進行反應則必須要先經過這一層Ni₃SN₄,因此 在這個時候Ni₃Sn₄的成長行為是一拋物線動力學(parabolic kinetics), Ni 與Sn 的反應主要是由體擴散(volume diffusion)為主要擴散^[27]。

觀察銲錫厚度 6.2µm 的試片,在迴銲 0、1、5、10 分鐘量測到的 晶片端 Ni₃Sn₄ 厚度分別為 0.90、1.02、1.30、1.51µm;而基板端 Ni₃Sn₄ 厚度分別為 1.02、1.12、1.41、1.59µm,將上下 Ni₃Sn₄ 厚度對迴銲時間 作圖,如圖 4-2-39。由於在迴銲 20 分鐘後,晶片端與基板端的 Ni₃Sn₄ 已經相互接觸到,所以在迴銲二十分鐘之後的 Ni₃Sn₄ 厚度皆以總厚度 表示,而迴銲 0、1、5、10、20、40、90 分鐘量測到的 Ni₃Sn₄總厚度 分別為 1.92、2.14、2.71、3.10、3.85、4.85、5.80µm,將量測到的總厚 度對迴銲時間作圖,如圖 4-2-40 所示。由圖 4-2-39、圖 4-2-40 可以看 到 Ni₃Sn₄ 厚度隨迴銲時間增加呈拋物線成長。同先前迴銲測試的試片

我們求n值來推測 Ni₃Sn₄的成長動力學,將不同迴銲時間量測到的兩端 Ni₃Sn₄厚度扣掉迴銲前兩端的 Ni₃Sn₄厚度後,迴銲1、5、10分鐘得 到晶片端的 Ni₃Sn₄增加量 $0.12 \times 0.4 \times 0.61$ µm 對迴銲時間各取作圖,如 圖 4-2-41 所示,得到直線斜率為 0.74;而基板端 Ni₃Sn₄增加量 $0.1 \times 0.39 \times 0.57$ µm 對迴銲時間各取對數作圖,如圖 4-2-42 所示,得到的直線斜率 為 0.77。而迴銲 $1 \times 5 \times 10 \times 20 \times 40 \times 90$ 分鐘的 Ni₃Sn₄總厚度增加量分 別為 $0.22 \times 0.79 \times 1.18 \times 1.93 \times 2.93 \times 3.88$ µm,再將 Ni₃Sn₄總厚度的增 加量取對數對迴銲時間取對數作圖,發現圖 4-2-43 中的直線斜率為 0.65,其值不同於銲錫厚度 3.53 µm 的試片量測到的 0.49。

在高溫儲存測試中我們的測試條件為 150℃下熱時效 0、40、200、 1000 小時,觀察試片磨開橫截面的影像,如圖 4-3-1~圖 4-3-4。從圖 4-3-1 中可以看到晶片端與基板端的 IMC 形貌皆為針狀結構。到了熱時 效 40 小時上下 IMC 的形貌變得較為圓滑,且明顯增厚,如圖 4-3-2 所 示,直到熱時效 200 小時晶片端與基板端的 IMC 形貌變得較為平整, 如圖 4-3-3 所示。最後到了 1000 小時,兩端 IMC 幾乎是平整的,且增 厚許多,如圖 4-3-4 所示。利用 EDS 對 IMC 作成分分析,在還沒有進 行高溫儲存測試之前我們得知銲錫中的 IMC 成分分析中 Cu 的濃度低

於 5 at %所以一樣把 IMC 視為 Ni₃Sn₄, 如圖 4-3-5 所示。在熱時效 40 小時之後,晶片端與基板端 IMC 仍是 Ni₃Sn₄ 的組成,偵測到的 Cu 濃 度仍低於 5 at %, 如圖 4-3-6 所示。到了熱時效 1000 小時之後, 我們 對晶片端與基板端的 IMC 進行成分分析,發現 Cu 的濃度還是很低, 因此還是將 IMC 視為 Ni₃Sn₄, 如圖 4-3-7 所示。在還沒有進行高溫儲 存測試前的橫截面 BEI 影像,如圖 4-3-8 中所看到的,有許多白色 Ag3Sn 顆粒散佈在銲錫中。然而隨著熱時效時間的增加,如圖 4-3-9、圖 4-3-10 所示,在熱時效40小時與200小時之後,散佈的Ag₃Sn變少,但會看 到較大顆粒的 Ag₃Sn 出現。而數量變少但變大的 Ag₃Sn 顆粒的出現應 該是在高溫儲存時, Ag3Sn 晶粒成長, 使得 Ag3Sn 顆粒會慢慢聚集成 較大的顆粒,而數量也跟著減少。而在最後熱時效 1000 小時的 BEI 影 像中我們幾乎已經看不到有顆粒狀的 Ag₃Sn 出現在銲錫中,且開始有 片狀的 Ag₃Sn 出現, 如圖 4-3-11 和圖 4-3-12 所示。在 IMC 厚度量测方 面我們一樣利用 image J 來量測不同熱時效時間的 Ni₃Sn₄ 厚度變化,得 到熱時效 0、40、200、1000 小時晶片端 Ni₃Sn₄ 厚度分別為 0.91、1.05、 1.16、1.63µm; 而基板端 Ni₃Sn₄ 厚度分別為 1.71、2.02、2.28、3.12µm, 將不同熱時效時間對晶片端與基板端 Ni₃Sn₄厚度各別作圖,得到圖 4-3-13,發現兩端的 Ni₃Sn4 都是隨著熱時效時間增加呈拋物線成長。而 熱時效 0、40、200、1000 小時的 Ni₃Sn₄ 總厚度為 2.62、3.07、3.44、

4.75μm, 一樣將量測到的 Ni₃Sn₄總厚度對不同熱時效時間作圖,得到 圖 4-3-14 所示,總厚度也是跟著熱時效時間增加呈拋物線成長。一樣 利用 4-2 中提到的公式(i),求出 n 值來推測 Ni₃Sn₄ 的成長動力學,現 將晶片端與基板端量測到的 Ni₃Sn₄厚度扣掉高溫儲存測試前 Ni₃Sn₄的 厚度,我們可以得到熱時效 40、200、1000 小時晶片端 Ni₃Sn4 增加量 為 0.14、0.25、0.72µm;而基板端 Ni₃Sn₄ 增加量依序為 0.31、0.57、 1.41µm。將得到的增加量取對數並對熱時效時間取對數作圖求n,圖 4-3-15 所示,晶片端的直線斜率為 0.49,基板端的直線斜率為 0.47。 若將銲錫中 Ni₃Sn₄總厚度增加量 0.45、0.82、2.13µm 取對數並對熱時 效時間取對數作圖,如圖 4-3-16 所示,其直線斜率為 0.48。由這三個 n 值約等於 0.5 這項結果來看,符合 M. O. Alam 在 JAP, 2005^[28]發表的 結果, Sn-Ag 銲錫與 Ni 在固態反應時, Ni₃Sn₄的成長是由體擴散控制 的。

4-4 迴銲與高溫儲存下 Ni₃Sn₄成長速率與 Ni 的消耗速率

利用 4-2 與 4-3 得到的迴銲與高溫儲存測試 Ni₃Sn₄ 厚度,來計算 IMC 的成長速率與 Ni 的消耗速率。我們利用擴散控制的通式(ii)

$$h_t - h_0 = kt^{1/2}$$
 (ii)

其中h_t是不同迴銲或熱時效的時間所對應的IMC平均厚度、h₀是迴銲或

高溫儲存測試前的IMC平均厚度、k是成長速率常數、t是迴銲或熱時效 的時間、n是時間的次方。將銲錫厚度4.0µm的迴銲試片得到的兩端 Ni₃Sn₄增加量與銲錫中Ni₃Sn₄厚度總增加量對迴銲時間的開根號作 圖,得到圖4-4-1~圖4-4-3。晶片端與基板端的Ni₃Sn₄成長速率常數分別 為6.76×10⁻¹⁰ cm²/min、2.56×10⁻¹⁰ cm²/min,晶片端的IMC成長速度是基 板端的快三倍,猜测可能是這批試片兩邊向內凹,但是晶片端Ni接觸 到的銲錫厚度明顯的小於基板端的厚度,使得晶片端少量銲錫與Ni的 反應較快於基板端。而銲錫中Ni₃Sn4總厚度的成長速率常數則為 2.12×10⁻⁹ cm²/min。若計算迴銲10分鐘前總Ni₃Sn₄成長的平均速率,如 圖4-4-4中直線斜率為0.124µm/min。在銲錫厚度6.2µm的迴銲試片中, 將兩端的Ni3Sn4增加量與銲錫中Ni3Sn4厚度總增加量對迴銲時間的開 根號作圖,得到圖4-4-5、圖4-4-6、圖4-4-7。晶片端與基板端的Ni3Sn4 成長速率常數分別為4.0×10⁻¹⁰ cm²/min、3.61×10⁻¹⁰ cm²/min, 雨端的IMC 成長速率差不多,應該是因為這批試片的銲錫微凸塊符合原設計的圓 盤對稱結構,所以兩端的成長速率差不多。而銲錫中Ni3Sn4總厚度的成 長速率常數則為 1.94×10^{-9} cm²/min。同樣地去計算迴銲10分鐘之前總 Ni₃Sn₄平均成長速率,如圖4-4-8所示,圖中直線斜率即為平均速率 0.117µm/min。高溫儲存測試兩端的Ni₃Sn4增加量與銲錫中Ni₃Sn4厚度總 增加量對熱時效時間的開根號作圖,得到圖4-4-9、圖4-4-10、圖4-4-11。

得到晶片端與基板端IMC成長速率常數分別為8.82×10⁻¹⁴ cm²/min、 3.23×10⁻¹³ cm²/min,明顯看出兩端的成長速率差非常多,其原因還必須 要再深入研究。而銲錫中Ni₃Sn₄總厚度的成長速率常數則為 7.48×10⁻¹³ cm²/min。而在150℃高溫儲存測試下得到的Ni₃Sn₄成長速率 常數與Z. Chen等人在JEM,2004^[29]和C. P. Huang等人在JMR,2005^[30]發 表的結果相近。從上面的結果得知260℃迴銲測試下Ni₃Sn₄的成長速率 遠大於高溫儲存測試下Ni₃Sn₄的成長速率。

最後我們用量測到的 Ni₃Sn₄厚度去計算不同迴銲時間的 Ni 消耗厚度,利用公式(iii)

h_{Ni3Sn4}為 Ni₃Sn₄ 的平均厚度、f_{Ni}為 Ni 在 Ni₃Sn₄ 中的重量比、ρ_{Ni}和 ρ_{Ni3Sn4}分別為 Ni 的密度 8.9 g/cm³ 與 Ni₃Sn₄ 的密度 8.64 g/cm^{3 [29]}, h_{Ni} 為 Ni 的消耗厚度。我們可以得到銲錫厚度 4.0µm 的試片在迴銲 0、1、 5、10、30 分鐘 Ni 總消耗厚度分別為 0.78、0.91、1.02、1.15、1.45µm, 將迴銲時間對 Ni 總消耗厚度作圖,如圖 4-4-12 所示,進一步的將 Ni 消耗厚度變化對迴銲時間的開根號作圖得到圖 4-4-13,得知 Ni 的消耗 速率常數為 1.44×10⁻¹⁰ cm²/min; 銲錫厚度 6.2µm 的試片在迴銲 0、1、5、 10、20、40、90 分鐘 Ni 總消耗厚度分別為 0.50、0.56、0.71、0.82、 1.01、1.27、1.52µm,將 Ni 消耗厚度對迴和時間作圖得到圖 4-4-14, 同樣的將 Ni 消耗厚度變化對迴銲時間的開根號作圖,如圖 4-4-15 所 示,得到 Ni 的消耗速率常數為 1.21×10⁻¹⁰ cm²/min;最後在高溫儲存測 試 0>40>200>1000 小時的 Ni 消耗厚度分別為 0.69>0.81>0.91>1.25μm, 並且對熱時效時間作圖,如圖 4-4-16 所示,進一步的將 Ni 的消耗厚度 改變對熱時效時間開根號作圖,如圖 4-4-17 所示,可以得到 Ni 的消耗 速率常數為 5.4×10⁻¹⁴ cm²/min,得到的 Ni 消耗速率常數與 C. P. Huang 等人在 JMR, 2005^[30]發表的結果相近,表示在高溫儲存情況下銲錫微凸 塊與一般傳統覆晶封裝接點的 Ni 消耗速率是相似的。而迴銲測試的 Ni₃Sn₄成長速率與 Ni 消耗速率大於高溫儲存測試四個 order 左右。

4-5 迴銲測試之片狀 Ag3Sn 的發現與出現機率

如 4-2 中所提到,在銲錫厚度 4.0µm 的試片中我們發現不論是在 未迴銲測試之試片還是迴銲測試之後的試片皆有片狀(plate-like)Ag₃Sn 出現的機會。我們觀察不同迴銲時間,片狀 Ag₃Sn 在銲錫中出現的機 率,而我們在此觀察中定義片狀 Ag₃Sn 為任一方向大於 2µm 的 Ag₃Sn, 其不同迴銲時間出現之機率如下:

有片狀 Ag₃Sn 的銲錫數/觀察銲錫總數×100%=片狀 Ag₃Sn 出現機率 迴銲 0 分鐘:5/74=6.8%

迴銲1分鐘:5/68=7.4%
迴銲5分鐘:6/77=7.8%

迴銲10分鐘:34/95=35.8%

迴銲 30 分鐘: 32/80=40.0 %

由以上得到的片狀 Ag₃Sn 出現機率對迴銲時間作圖, 如圖 4-5-1 所示, 我們可以看到在迴銲10分鐘之後,片狀 Ag3Sn 出現的機率大幅上升, 猜測此時銲錫內部 Ag 的濃度由原來的 2.5 wt %提升到 3.5 wt %以上, 所以較容易出現片狀的 Ag₃Sn。對於此項猜測,我們利用 4-1 章節中得 到的接合完成後銲錫為 Sn2.5Ag 與剩餘銲錫厚度 4.0µm 的條件,去計 算在不同迴銲時間量測到的 Ni₃Sn₄厚度對應到的銲錫成分變化。計算 中會使用到銲錫的密度是以 Sn2.5Ag 的實際密度 7.34 g/cm³ 為主、 Ni₃Sn₄密度 8.64 g/cm³^[29]、Ni 原子量 58.71 g/mole、Sn 原子量 118.69 g/mole。首先我們先算出銲錫總質量為 6.59×10^{-9} g,而在 Sn2.5Ag 的銲 錫中 Ag 有 1.65×10⁻¹⁰g, 然後再算出消耗掉 1.88×10⁻⁹g 的 Sn 會使 Sn2.5Ag 變為 Sn3.5Ag, 最後利用消耗掉的 Sn 去計算生成 1.17µm 的 Ni₃Sn₄ 會使 Sn2.5Ag 變為 Sn3.5Ag。而在 4-2 章節中我們量測到迴銲 1、 5、10、30 分鐘 Ni₃Sn₄ 總厚度增加量分別為 0.49、0.90、1.38、2.54 μm,發現迴銲 10 分鐘的 Ni₃Sn₄ 厚度增加量已大於臨界的 1.17μm。若 將迴銲1、5、10、30 量測到的 Ni₃Sn₄總厚度增加量反推計算,我們可 以得到迴銲1、5、10、30分鐘對應的銲錫成分分別為 Sn2.8Ag、

29

Sn3.2Ag、Sn3.8Ag、Sn6.5Ag,如圖 4-5-2 所示,可以看出在迴銲 10 分鐘時銲錫中 Ag 濃度已超過 3.5 wt%,因此在迴銲 10 分鐘可以看到 片狀 Ag₃Sn 的機率大幅提升到 35.8%。由於這批銲錫微凸塊體積很小, 可能造成各個銲錫微凸塊成分有所差異,導致在迴銲 0、1、5 分鐘就 有機會看到片狀的 Ag₃Sn。而在迴銲 30 分鐘之後,銲錫成分已變為 Sn6.5Ag,已遠大於 Sn3.5Ag 之成分,所以在迴銲 30 分鐘之後更大比 例的發現片狀 Ag₃Sn 是與此結果相符合的。

反之在第二批銲錫厚度 6.2μ m 的試片中,即使迴銲 40 分鐘仍未 發現片狀的 Ag₃Sn,直到迴銲 90 分鐘才開始可以觀察到片狀的 Ag₃Sn, 觀察迴銲 90 分鐘的試片,58 顆銲錫微凸塊中發現 18 顆銲錫出現片狀 Ag₃Sn,其觀察到的機率為 310%。同樣地,我們利用計算的方式進行 推算,我們從 4-1 章節中知道銲錫量較多的這批試片,在接合後剩餘銲 錫厚度為 6.2μ m、銲錫成分為 Sn2.5Ag。首先我們先計算出銲錫的質量 為 1.91×10^8 g,而在 Sn2.5Ag 中 Ag 有 4.76×10^{-10} g,然後算出消耗掉 5.44×10⁻⁹ g 的 Sn 會使銲錫從 Sn2.5Ag 變為 Sn3.5Ag,最後利用消耗掉 的 Sn 去計算生成 3.39μ m 的 Ni₃Sn₄ 會使 Sn2.5Ag 變為 Sn3.5Ag。而我 們在 4-2章節中提到,在迴銲 $1 \times 5 \times 10 \times 20 \times 40 \times 90$ 分鐘的 Ni₃Sn₄總 厚度增加量為 $0.22 \times 0.79 \times 1.18 \times 1.93 \times 2.93 \times 3.88\mu$ m,我們可以清楚 看到,在迴銲九十分鐘之後,Ni₃Sn₄的厚度才大於臨界厚度 3.39μ m。

30

若將量測到的 Ni₃Sn₄ 厚度反推計算,我們可以得到迴銲1、5、10、20、
40、90 分鐘對應的銲錫成分分別為 Sn2.6Ag、Sn2.7Ag、Sn2.8Ag、
Sn3.0Ag、Sn3.3Ag、Sn3.7Ag,如圖 4-5-3 所示,確實在迴銲 90 分鐘之後,銲錫中 Ag 濃度超過 3.5 wt%,也開始有機會觀察到片狀的 Ag₃Sn
生成。

而在高溫儲存測試中,我們只在熱時效1000小時的條件下發現片 狀的 Ag₃Sn, 觀察 55 顆銲錫微凸塊發現 19 顆微凸塊有出現片狀的 Ag₃Sn,其片狀 Ag₃Sn 的出現機率為 34.5 %。一樣是使用 4-1 章節中得 到的銲錫厚度 4.0μm、銲錫成分為 Sn2.5Ag 的條件下去計算,得到銲錫 的質量為 8.16×10⁻⁹g, 而在 Sn2.5Ag 中 Ag 有 2.04×10⁻¹⁰g, 然後算出消 耗掉 2.33×10⁻⁹ g 的 Sn 會使銲錫從 Sn2.5Ag 變為 Sn3.5Ag, 最後利用消 耗掉的 Sn 去計算生成 1.45μm 的 Ni₃Sn₄ 會使 Sn2.5Ag 變為 Sn3.5Ag。 將在 4-3 章節中得到的熱時效 0、40、200、1000 小時的 Ni₃Sn₄ 總厚度 增加量 0.45、0.82、2.13µm 反推計算銲錫對應之成分分別為 Sn2.7Ag、 Sn3.0Ag、Sn4.3Ag,將得到的銲錫成分對不同熱時效時間作圖,如圖 4-5-4 所示, 在熱時效 1000 小時銲錫中 Ag 的濃度高達 4.3 wt %, 所以 在熱時效1000小時開始會有很大的機會看到片狀的Ag3Sn是符合這項 結果的。

4-6 片狀 Ag3Sn 在錫 2.5 銀微凸塊中形成的臨界體積

從 4-5 的章節中我們發現,同樣是在 260℃ 迴銲 10 分鐘條件下, 在銲錫厚度 4.0µm 的試片中已經可以大幅的看到片狀的 Ag₃Sn 出現, 但是在銲錫厚度 6.2µm 的試片中則沒有發現片狀 Ag₃Sn,因此我們嘗 試計算出當銲錫微凸塊為 Sn2.5Ag、直徑 18µm,在 260℃ 迴銲下迴銲 10 分鐘,出現片狀 Ag₃Sn 的臨界厚度。我們利用公式(iv)

$$C = \frac{Vs\rho sI}{Vs\rho s - Vi\rho ifi} \quad (iv)$$

C 為銲錫在 Ni₃Sn₄ 厚度改變後的 Ag 的濃度(wt %)、Vs 為試片接合後剩 餘 Sn2.5Ag 銲錫體積(μ m³)、ps 為 Sn2.5Ag 的密度 7.34 g/cm²、I 為銲錫 初始 Ag 濃度 2.5 wt%、Vi 為 Ni₃Sn₄ 的體積(μ m³)、pi 為 Ni₃Sn₄ 的密度 8.64 g/cm²、f 為 Ni₃Sn₄ 中 Sn 佔有的重量百分比 72.93 %。其中 Vs=As×Hs、As 為銲錫圓盤面積 9×9×π、Hs 為銲錫厚度; Vi=Ai×Hi、 Ai 為 Ni₃Sn₄ 的底部圓面積 9×9×π、Hs 為銲錫厚度,即為(kt)^{0.5}、k 為 Ni₃Sn₄ 的成長速率常數,這邊我們帶入銲錫厚度 3.53 μ m 與銲錫厚度 10.2 μ m 求得的 Ni₃Sn₄ 成長速率常數 0.46 μ m/min^{1/2}和 0.44 μ m/min^{1/2} 的平 均 0.45 μ m/min^{1/2}、t 為迴銲時間(min)。將公式(iv)化簡後得到公式(v)

$$C = \frac{I}{1 - \frac{f(kt)^{0.5} \rho i}{Hs \rho s}} \qquad (v)$$

而我們將上述的參數代入,並以公式(v)作圖,得到圖 4-6-1,可以看到 在 260℃ 迴銲 10 分鐘 Sn2.5Ag 直徑 18μm 的情況下,厚度 4.0μm 的銲 錫已低於臨界厚度 4.38µm,表示銲錫成分已經超過 Sn3.5Ag,因此可 以有很大的機率可以觀察到片狀 Ag₃Sn 而厚度 6.2µm 的銲錫高於臨界 厚度,所以在同樣迴銲溫度下迴銲 10 分鐘仍無法看到片狀的 Ag₃Sn。 目前工業上給予銲錫接點的迴銲測試時間為10分鐘,而我們得到 Sn2.5Ag 的銲錫在迴銲 10 分鐘開始會出現片狀 Ag₃Sn 的臨界體積為 1088.03um³,超過此臨界體積表示 Sn2.5Ag 的銲錫在 260℃ 迴銲 10 分 鐘之後將會使銲錫中 Ag 濃度超過 3.5 wt %。同樣地,在高溫儲存測試 下求得的 Ni₃Sn₄ 成長速率常數 $0.065 \mu m/hr^{1/2}$ 代入公式(v),可以得到銲 錫厚度對銲錫成分變化的關係圖,如圖 4-6-2 所示,可以看到在 150℃ 熱時效 200 小時的臨界厚度為 2.85µm; 1000 小時臨界厚度為 6.37µm、 臨界體積為 1621µm³, 而在此測試下我們使用的銲錫厚度為 4.0µm, 已 小於熱時效 1000 小時的臨界厚度,因此我們在熱時效 1000 小時後可 以有很大的機率發現片狀的 Ag₃Sn。

進一步的觀察迴銲與高溫儲存測試下,不同銲錫厚度的試片,在 不同測試時間對應的銲錫中 Ag 濃度。從圖 4-6-3 中的曲線可以看到, 銲錫厚度 4.0μm 的試片,隨著迴銲時間增加銲錫中 Ag 濃度大幅的上 升,在迴銲 10 分鐘後 Ag 濃度已高於 3.5 wt%;反觀銲錫厚度 6.2μm

33

的試片,隨著迴銲時間增加銲錫中 Ag 濃度上升較緩慢,到了迴銲 21 分鐘銲錫中 Ag 的濃度才超過 3.5 wt %。而觀察圖 4-6-4 中的曲線,可 以得知在高溫儲存測試下厚度 4.0µm 的銲錫, Ag 的濃度也是隨著熱時 效時間增加而提升,在 420 小時後銲錫中 Ag 濃度已達到 3.5 wt %。

圖 4-1-1 銲錫厚度 4.0 µm, 迴銲測試前 SEI 橫截面影像

圖 4-1-2 銲錫厚度 6.2μm, 迴銲測試前 SEI 橫截面影像

圖 4-1-3 銲錫厚度 4.0µm,進行 260℃迴銲測試試片示意圖

圖 4-1-4 銲錫厚度 6.2µm,進行 260℃迴銲測試試片示意圖

圖 4-1-5 銲錫厚度 4.0µm,進行 150℃高溫儲存測試試片示意圖

ESA				
No.	Sn 189	Ag	Cu	Ni
1	96.05	2.4	0.75	0.81
2	96.02	2.37	0.81	0.80
3	96.28	2.48	0.48	0.77
Average	96.12	2.41	0.68	0.79

圖 4-1-6 基板端接合前銲錫微凸塊的平面 BEI 影像

unit: Weight %

表 4-1-1 未接合銲錫 EPMA 定量分析

圖 4-2-1 銲錫厚度 4.0μm, 迴銲測試前的橫截面 SEI 影像,基板端的

Ni₃Sn₄介金屬化合物針狀結構比晶片端 Ni₃Sn₄的針狀結構明顯

圖 4-2-2 銲錫厚度 4.0μm,迴銲時間 1 分鐘的橫截面 SEI 影像,Ni₃Sn₄ 介金屬化合物的針狀結構仍存在,且上下 Ni₃Sn₄厚度皆有稍微變厚

圖 4-2-3 銲錫厚度 4.0μm, 迴銲 5 分鐘的橫截面 SEI 影像,晶片端的

圖 4-2-4 銲錫厚度 4.0μm, 迴銲 10 分鐘的橫截面 SEI 影像, Ni₃Sn₄ 針狀 結構依然存在, 中間有一塊片狀 Ag₃Sn。

圖 4-2-5 銲錫厚度 4.0μm, 迴銲 30 分鐘的橫截面 SEI 影像,可以明顯

看到銲錫幾乎變為Ni3Sn4介金屬化合物,且上下的Ni層仍保持完整

-	Element	Weight%	Atomic%
	Ni K	20.80	33.97
	Cu L	2.91	4.40
	Sn L	76.28	61.63

Element	Weight%	Atomic%
Ni K	23.60	37.95
Cu L	1.88	2.79
Sn L	74.52	59.26

圖 4-2-6 銲錫厚度 4.0μm, 迴銲測試前晶片端與基板端 IMC 成分分析

Element	Weight%	Atomic%
Ni K	25.58	40.80
Cu L	0.73	1.07
Sn L	73.69	58.13

圖 4-2-7 銲錫厚度 4.0μm, 迴銲 30 分鐘 EDS 成分分析,發現幾乎整顆 銲錫都變成 Ni₃Sn₄介金屬化合物

圖 4-2-8 銲錫厚度 4.0μm,迴銲測試前的橫截面 BEI 影像,可以看到許 多白色 Ag₃Sn 顆粒散佈在銲錫中

圖 4-2-9 銲錫厚度 4.0μm, 迴銲 1 分鐘的橫截面 BEI 影像, 可以看到許

圖 4-2-10 銲錫厚度 4.0μm, 迴銲 5 分鐘的橫截面 BEI 影像,可以看到 有白色的 Ag₃Sn 顆粒散布在銲錫中

圖 4-2-11 銲錫厚度 4.0μm, 迴銲 10 分鐘的橫截面 BEI 影像,可以看到

許多白色 Ag3Sn 顆粒散布在銲錫中

圖 4-2-12 銲錫厚度 4.0μm, 迴銲測試前的橫截面 BEI 影像,可以看到 白色片狀的 Ag₃Sn 出現在靠近基板端的位置

圖 4-2-13 銲錫厚度 4.0μm, 迥銲 1 分鐘的橫截面 BEI 影像,可以看到

圖 4-2-14 銲錫厚度 4.0μm, 迴銲 5 分鐘的橫截面 BEI 影像,可以看到 白色片狀的 Ag₃Sn 出現在銲錫中央

圖 4-2-15 銲錫厚度 4.0μm, 迴銲 10 分鐘的橫截面 BEI 影像,可以看到

白色片狀的 Ag₃Sn 出現在銲錫左側

圖 4-2-16 銲錫厚度 4.0μm, 迴銲 30 分鐘的橫截面 BEI 影像,可以看到 白色片狀 Ag₃Sn 出現在銲錫右邊

Element	Weight%	Atomic%
Ni K	1.90	3.53
Ag L	71.04	71.66
Sn L	27.06	24.81

圖 4-2-17 銲錫厚度 4.0μm, 迴銲 30 分鐘片狀 Ag₃Sn 成分分析

圖 4-2-18 銲錫厚度 6.2μm,迴銲測試前的橫截面 SEI 影像,晶片端與 基板端的 Ni₃Sn₄形貌皆為針狀結構

圖 4-2-19 銲錫厚度 6.2μm, 迴銲 1 分鐘的橫截面 SEI 影像,晶片端與

圖 4-2-20 銲錫厚度 6.2μm, 迴銲 5 分鐘的橫截面 SEI 影像,晶片端與 基板端的 Ni₃Sn₄仍為針狀結構

圖 4-2-21 銲錫厚度 6.2μm, 迴銲 10 分鐘的橫截面 SEI 影像,晶片端與

基板端的 Ni₃Sn₄仍為針狀結構,且厚度明顯增厚

圖 4-2-22 銲錫厚度 6.2μm,迴銲 20 分鐘的橫截面 SEI 影像,晶片端與 基板端的 Ni₃Sn₄ 還是針狀結構,而上下 Ni₃Sn₄ 已互相接觸到

圖 4-2-23 銲錫厚度 6.2μm, 迴銲 40 分鐘的橫截面 SEI 影像,晶片端與

圖 4-2-24 銲錫厚度 6.2μm,迴銲 90 分鐘的橫截面 SEI 影像,銲錫幾乎 反應成 Ni₃Sn₄ 介金屬化合物

基板端的 Ni₃Sn₄形貌仍不平整

	"Spectrum 2	Spectrum 1	
	"Spectrum 3	"Spectrum 4	
10µm	1	Electron Image 1	

Atomic %	Ni	Cu	Ag	Sn
Spectrum 1	39.66	6.01	0.32	54.00
Spectrum 2	59.11	1.42		39.47
Spectrum 3	33.28	1.04	1.79	63.89
Spectrum 4	28.73	0.87	2.28	68.13

Weight %	Ni	Cu	Ag	Sn
Spectrum 1	25.43	4.17	0.38	70.01
Spectrum 2	42.09	1.10		56.82
Spectrum 3	19.94	0.67	1.98	77.41
Spectrum 4	16.74	0.55	2.44	80.27

圖 4-2-25 銲錫厚度 6.2μm,迴銲測試之前晶片端與基板端 IMC 成分分

析

Weight %	Ni	Cu	Sn
Spectrum 1	25.41	1.85	72.74
Spectrum 2	24.66	2.66	72.67
Spectrum 3	25.47	1.90	72.63

Atomic %	Ni	Cu	Sn
Spectrum 1	40.27	2.71	57.02
Spectrum 2	39.10	3.90	56.99
Spectrum 3	40.33	2.79	56.88

圖 4-2-26 銲錫厚度 6.2μm, 迴銲 20 分鐘 IMC 成分分析, IMC 仍為 Ni₃Sn₄

	Atomic %	Ni	Ag	Sn
	Spectrum 1	4.56	68.78	26.66
	Spectrum 2	41.82		58.18
	Spectrum 3	39.30		60.70
	Spectrum 4	40.24		59.76
	Spectrum 5	40.55		59.45
Spectrum 2	Weislet 0/	NI:		C
i Construm 1	weight %	IN1	Ag	Sn
Spectrum 3 Spectrum 4 Spectrum 5	Spectrum 1	1N1 2.47	Ag 68.38	Sn 29.16
Spectrum 3 Spectrum 4 Spectrum 6	Spectrum 1 Spectrum 2	N1 2.47 26.23	Ag 68.38	Sn 29.16 73.77
Spectrum 3 Spectrum 4 Spectrum 5	Spectrum 1 Spectrum 2 Spectrum 3	NI 2.47 26.23 24.26	Ag 68.38	Sn 29.16 73.77 75.74
"Spectrum 3 "Spectrum 4 "Spectrum 5	Spectrum 1 Spectrum 2 Spectrum 3 Spectrum 4	NI 2.47 26.23 24.26 24.98	Ag 68.38	Sn 29.16 73.77 75.74 75.02

圖 4-2-27 銲錫厚度 6.2μm, 迴銲 90 分鐘 IMC 成分分析, 銲錫幾乎變成

且有片狀 Ag₃Sn 產生 Ni₃Sn₄,

圖 4-2-28 銲錫厚度 6.2μm,迴銲測試之前的橫截面 BEI 影像,可以看 到白色 Ag₃Sn 顆粒散佈在銲錫中

圖 4-2-29 銲錫厚度 6.2μm, 迴銲 1 分鐘的橫截面 BEI 影像, 可以看到

白色 Ag₃Sn 顆粒散佈在銲錫、中山,

圖 4-2-30 銲錫厚度 6.2μm, 迴銲 5 分鐘的橫截面 BEI 影像,可以看到 白色 Ag₃Sn 顆粒散佈在銲錫中

圖 4-2-31 銲錫厚度 6.2μm, 迴銲 10 分鐘的橫截面 BEI 影像, 一樣有白

- NCTU
 COMPO 15.0K
 X500
 Jam
 WD 9.5mm
- 色 Ag3Sn 顆粒散佈在銲錫中

圖 4-2-32 銲錫厚度 6.2μm, 迴銲 20 分鐘的橫截面 BEI 影像, 銲錫中的 白色亮點為 Ag₃Sn 顆粒

圖 4-2-33 銲錫厚度 6.2µm, 迴銲 40 分鐘的橫截面 BEI 影像, 銲錫中仍

然有 Ag₃Sn 散佈

圖 4-2-34 銲錫厚度 6.2μm, 迴銲 90 分鐘的橫截面 BEI 影像, 銲錫幾乎 變為 IMC,開始可以看到有片狀的 Ag₃Sn 出現

圖 4-2-36 銲錫厚度 4.0μm, 迴銲時間對 Ni₃Sn₄ 在銲錫中的總厚度作圖

圖 4-2-38 銲錫厚度 4.0μm, 迴銲時間與 Ni₃Sn₄總增加量取對數作圖

圖 4-2-40 銲錫厚度 6.2μm, 迴銲時間對 Ni₃Sn₄ 在銲錫中的總厚度作圖

圖 4-3-1 高溫儲存測試前的橫截面 SEI 影像,晶片端與基板端的 Ni₃Sn₄ 皆呈現針狀結構

圖 4-3-2 熱時效 40 小時的橫截面 BEI 影像,晶片端與基板端的 Ni₃Sn₄

圖 4-3-3 熱時效 200 小時的橫截面 SEI 影像,可以看到晶片端與基板端 的 Ni₃Sn₄形貌變得較為平整

圖 4-3-4 熱時效 1000 小時的橫截面 SEI 影像,晶片端與基板端 Ni₃Sn₄ 都變得平坦且厚度變得非常厚

Element	Weight%	Atomic%
Ni K	25.50	40.90
Sn L	74.50	59.10

圖 4-3-5 高溫儲存測試之前 IMC 成分分析

Element	Weight%	Atomic%
Ni K	24.57	39.42
Cu L	1.05	1.55
Sn L	74.38	59.02

圖 4-3-6 熱時效 40 小時晶片端與基板端 IMC 成分分析,得知在熱時效 40 小時之後晶片端與基板端的 IMC 仍是 Ni₃SN₄

Element	Weight%	Atomic%
Ni K	24.09	38.73
Cu L	1.32	1.95
Sn L	74.59	59.31

(b)

Element	Weight%	Atomic%
Ni K	23.75	37.82
Cu L	3.07	4.52
Sn L	73.18	57.65

(c)

Element	Weight%	Atomic%
Ni K	1.43	2.66
Ag L	72.12	73.01
Sn L	26.45	24.33

圖 4-3-7 熱時效 1000 小時 IMC 成分分析,基板端與晶片端的 IMC 仍 是 Ni₃Sn₄,也有片狀 Ag₃Sn 的出現(a)晶片端 IMC(b)基板端 IMC(c)片狀 Ag₃Sn

圖 4-3-8 高溫儲存測試前的橫截面 BEI 影像,可以看到白色 Ag₃Sn 顆

粒散佈在銲錫內部

圖 4-3-9 熱時效 40 小時的橫截面 BEI 影像,看不太到有 Ag₃Sn 散佈在 銲錫中,只觀察到較大的 Ag₃Sn 顆粒貼著 Ni₃Sn₄

圖 4-3-10 熱時效 200 小時的橫截面 BEI 影像,幾乎看不到有 Ag₃Sn 顆

粒散佈在銲錫中,但是有 Ag3Sn 貼著 Ni3Sn4,並且顆粒也比較大

圖 4-3-11 熱時效 1000 小時的橫截面 BEI 影像,可以看到沒有 Ag₃Sn 顆粒散佈在銲錫中

圖 4-3-12 熱時效 1000 小時的橫截面 BEI 影像,可以清楚看到有片狀的

圖 4-3-13 不同熱時效時間晶片端與基板端 Ni₃Sn₄厚度

圖 4-3-15 不同熱時效時間與晶片端/基板端 Ni₃Sn₄ 厚度各取對數作圖

圖 4-4-1 銲錫厚度 4.0μm, 迴銲測試後晶片端 Ni₃Sn₄ 成長速率常數 k

圖 4-4-3 銲錫厚度 4.0 μ m, 迴銲測試後總 Ni₃Sn₄ 成長速率常數 k

圖 4-4-5 銲錫厚度 $6.2\mu m$, 迴銲測試後晶片端 Ni₃Sn₄ 成長速率常數 k

圖 4-4-7 銲錫厚度 $6.2\mu m$, 迴銲測試後總 Ni_3Sn_4 成長速率常數 k

圖 4-4-9 高溫儲存測試後晶片端 Ni3Sn4 成長速率常數 k

圖 4-4-11 高溫儲存測試後總 Ni₃Sn₄成長速率常數 k

圖 4-4-13 銲錫厚度 4.0μm, 迴銲測試後得到的 Ni 消耗速率常數 k

圖 4-4-15 銲錫厚度 6.2μm, 迴銲測試後得到的 Ni 消耗速率常數 k

圖 4-4-17 高溫儲存測試後得到的 Ni 消耗速率常數 k

圖 4-5-2 銲錫厚度 4.0μm,不同迴銲時間對應銲錫中的 Ag 濃度

圖 4-5-4 高溫儲存測試,不同熱時效時間對應銲錫中的 Ag 濃度

圖 4-6-1 在 260°C 迴銲 10 分鐘, Sn2.5Ag 銲錫直徑 18µm 不同厚度對應

之銲錫成分

圖 4-6-2 在 150℃ 高溫儲存, Sn2.5Ag 銲錫 18μm 不同厚度對應之銲錫 成分

圖 4-6-3 在 260℃ 迴銲,不同 Sn2.5Ag 銲錫厚度,不同迴銲時間對應之

圖 4-6-4 在 150℃ 高溫儲存, Sn2.5Ag 厚度 4.0µm, 不同熱時效時間對 應之銲錫成分

第五章 結論

本實驗中的 Sn2.5Ag 銲錫微凸塊在 260℃迴銲與 150℃高溫儲存測 試後,迴銲測試的兩種試片得到的 Ni₃Sn₄總厚度成長n值分別是 0.49 與 0.65,兩種試片得到不同的n值可能是因為銲錫的形狀或者是銲錫 鍍液品質上的差異所造成。而高溫儲存測試得到的 Ni₃Sn₄總厚度成長 n 值為 0.48 接近體擴散的 0.5,表示 Ni₃Sn₄ 的成長機制是以體擴散為主導。

若分別求出 Ni₃Sn₄的成長速率常數與 Ni 的消耗速率常數,我們可 以得到銲錫厚度 4.0µm 試片在 260°C 迴銲測試下的 Ni₃Sn₄成長速率常 數 k = 2.12×10⁻⁹ cm²/min、迴銲 10 分鐘前總 Ni₃Sn₄ 平均成長速率為 0.124µm/min; 銲錫厚度 6.2µm 試片在 260°C 迴銲測試下得到的 Ni₃Sn₄ 成長速率常數 k =1.94×10⁻⁹ cm²/min、迴銲 10 分鐘前總 Ni₃Sn₄ 平均成長 速率為 0.117µm/min; 150°C 高溫儲存測試下得到的 Ni₃Sn₄ 成長速率常 數 k=7.48×10⁻¹³ cm²/min。而 Ni 的消耗速率常數則分別為 1.44×10⁻¹⁰ cm²/min、1.21×10⁻¹⁰ cm²/min、5.4×10⁻¹⁴ cm²/min。從 Ni₃Sn₄ 的成長速率 常數和 Ni 的消耗速率常數可以看出迴銲測試中 IMC 成長速率與 Ni 的 消耗速率都比高溫儲存測試快了四個 order。

由於銲錫微凸塊的體積比起一般傳統覆晶封裝的凸塊要小很多,因此更容易與金屬墊層反應後全部變成 IMC,銲錫厚度 4.0µm 的銲錫

在 260℃ 迴銲 30 分鐘即看到幾乎所有銲錫反應成 Ni₃Sn₄; 而銲錫厚度 6.2µm 的銲錫在 260℃ 迴銲 90 分鐘也幾乎變成 Ni₃Sn₄。隨著銲錫中 Sn 的消耗造成 Ag 濃度的上升,當 Ag 濃度高於 3.5 wt %以上就有可能出 現片狀的 Ag₃Sn,從我們計算出的片狀 Ag₃Sn 出現的臨界體積結果來 看若 Sn2.5Ag 銲錫的體積低於臨界的 1088.03µm³,則銲錫在 260℃ 迴銲 10 分鐘之後就有很大的機率發現片狀的 Ag₃Sn;而在 150℃高溫 儲存下,若 Sn2.5Ag 銲錫體積低於臨界的 1621µm³,則在熱時效 1000 小時之後就會有很大的機率發現片狀的 Ag₃Sn。在實驗中使用的 Sn2.5Ag、直徑 18µm、厚度 4.0µm 的銲錫已低於 260℃迴銲 10 分鐘與 150℃熱時效 1000 小時的臨界體積,所以在 260℃迴銲 10 分鐘與 150 ℃熱時效 1000 小時的臨界體積,所以在 260℃迴銲 10 分鐘與 150

參考文獻

[1] D. R. Frear, J. Minerals Metals & Materials Society, 51, 22 (1999)

[2] T. Fukushima, E. Iwata, K.-W. Lee, T. Tanaka and M. Koyanagi, 60th

Electronic Components & Technology Conference, 1050 (2010)

[3] J. W. Jang, D. R. Frear, T. Y. Lee and K. N. Tu, J. Applied Physics, 88, 6359 (2000)

[4] K. Zeng, K. N. Tu, J. Materials Science and Engineering, 38, 55 (2002)

[5] W.J. Tomlinson and A. Fullylove, J. Materials Science, 27, 5777 (1992)

[6] S.K. Kang and A.K. Sarkhel, J. Electronic Materials, 23, 701 (1994)

[7] H.D. Solomon, Trans. ASME J. Electronic Packaging, 113, 102 (1991)

[8] J.S. Hwang and R.M. Vargas, Soldering & Surface Mount Technology, 2, 38 (1990)

[9] W. Yang, L.E. Felton and R.W. Messler, J. Electronic Materials, 24, 1465 (1995)

[10] K. S. Kim, S. H. Huh and K. Suganuma, Microelectronics Reliability, 43, 259 (2003)

[11] K. S. Kim, S. H. Huh and K. Suganuma, J. Alloys and Compounds, 352, 226 (2003)

[12] D. Q. Yu, L. Wang, Yu DQ, Wang L, Wu CML, Law CMT, J. Alloys and Compounds, 389, 153 (2005)

[13] H. F. Hsu, Acta Materialia, 52, 2541 (2004)

[14] C. A. Chang, J. Electronic Materials, 33, 1071 (2004)

[15] H. K. Kim, H. K. Liou, and K. N. Tu, J. Materials Research, 10, 497 (1995)

[16] K. N. Tu and K. Zeng, 52th Electronic Components & Technology Conference, 1194 (2002)

[17] M. Abtew and G. Selvaduray, J. Materials Science, 27, 95 (2000)

[18] G. Ghosh, J. Applied Physics, 88, 6887 (2000)

[19] P. G. Kim, J. W. Jang, T. Y. Lee and K. N. Tu, J. Applied Physics, 86, 6746 (1999)

[20] M. He, Z. Chen and G. J. Qi, Acta Materialia, 52, 2047 (2004)

[21] M.O. Alam, Y.C. Chan and K.C. Hung, Microelectronics Reliability, 42, 1065 (2002)

[22] D. Goyal, T. Lane, P. Kinzie and C. Panichas, 52th Electronic Components & Technology Conference, 732 (2002)

[23] K. N. Tu, C. C. Yeh, C. Y. Liu and Chih Chen, Applied Physics Letters, 76, 988 (2000)

[24] J.W. Nah, K. Chen, J. O. Suh and K. N. Tu, 57th Electronic Components & Technology Conference, 1450 (2007)

[25] J. W. Nah, J. O. Suh and K. N. Tu, J. Applied Physics, 100, 123513 (2006)

[26] H. Y. Son, G. J. Jung, B. J. Park and K. W. Paik, J. Electronic Materials, 37, 1832 (2008)

[27] J. Shen, Y.C. Chan and S.Y. Liu, Acta Materialia, 57, 5196 (2009)

[28] M. O. Alam and Y. C. Chan, J. Applied Physics, 98, 123527 (2005)

[29] Z. Chen, M. He and G. Qi, J. Electronic Materials, 33, 1465 (2004)

[30] C. P. Huang, Chih Chen, C. Y. Liu, S. S. Lin and K. H. Chen, J.

Materials Research, 20, 2772 (2005)

