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Application of the local plasma approximation for atomic 
generalised oscillator strengths? 

C M Kwei$, T L Lint and C J Tung§ 
$ Department of Electronics Engineering, National Chiao Tung University, Hsinchu, 
Taiwan 
! Institute of Nuclear Science, National Tsing Hua University, Hsinchu, Taiwan 

Abstract. Generalised oscillator strengths of atoms for inelastic interactions have been 
calculated based on  a local plasma approximation. Determinations of the effective oscilla- 
tion frequency associated with the electron density of a given subshell and at a given 
location in an atom have been made. The electron density distribution obtained from the 
Hartree-Fock-Slater model was utilised. The local plasma oscillation was evaluated with 
and without plasma dampings. Calculated results of the generalised oscillator strength for 
several atoms have been compared with other theoretical data. Fairly reasonable agreement 
was found. 

1. Introduction 

Penetration of charged particles in matter has been the subject of numerous investiga- 
tions since the early work of Lenard (1895), Bragg and Kleeman (1905), Rutherford 
(1911) and Thompson (1912), because of its importance in such areas as radiology, 
astrophysics, nuclear physics, solid-state physics, radiation physics, etc. 

Following the classical and semiclassical treatments of atomic collisions with 
charged particles, Bethe (1930, 1933) dealt with the problem by a quantum mechanical 
procedure using the first Born approximation. He considered the transfers of momen- 
tum and energy as a result of the inelastic collision between an incident charged particle 
and an atom and derived the collision cross section in terms of the generalised oscillator 
strength ( G O S ) .  The GOS introduced by Bethe characterises the dynamical response 
properties of an atom to the interacting charged particle. This quantity is closely 
related to the energy loss function of condensed matter. In the case of a weakly 
interacting atomic system such as a dilute gas, the following approximate relation 
holds (Fano 1963): 

df 2WZ 

where df/d W is the GOS of a constituent atom, Im(-l/.s) is the energy loss function 
of the system, W is the excitation energy, W, is the free electron plasma energy (as 
if electrons in the system were free), and Z is the atomic number. Note that atomic 
units are used in this paper unless otherwise specified. 

According to Bethe’s definition, the GOS is expressed in terms of the transition 
matrix element involving initial and final eigenstates of an atom. Detailed atomic 
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wavefunctions must be known in order to calculate the GOS.  This task is fairly tedious 
and difficult and thus limits its application. Lindhard and Scharff (1953) proposed a 
statistical model, later referred to as the local plasma approximation (LPA), using the 
concept of an inhomogeneous free electron gas to describe the collective oscillation 
of the electron density at any location in an atom. In this approximation, it was 
considered that the plasma oscillation of the electron cloud around the nucleus played 
an equally important role to the individual revolution of electrons in contributing to 
the dynamical response of an atom in the stopping medium. Since the advent of the 
LPA, it has been explored in several applications to verify its simplicity and usefulness 
(Chu and Powers 1972, Tung eta1 1979, Tung and Watt 1985, Tung and Kwei 1985). 

In this paper, we will first try to study the LPA through a mathematical formulation 
based on a single group of bound electrons corresponding to a single subshell in an 
atom of a dilute gas. Generalisation of the LPA to a system composed of several 
subshells of correlated electron densities will follow next. We will then apply the LPA 
to formulate atomic GOS both considering and neglecting the plasma damping effect. 
Finally, we will present and discuss the results of GOS for several atoms calculated 
using the LPA and compare these results with those obtained using the more detailed 
method. 

2. Theoretical formulation 

2.1. Local plasma approximation 

In their establishment of the LPA, Lindhard and Scharff (1953) argued that each small 
region of electron density in an atom contributes independently to the oscillator 
frequency and oscillator strength. They pointed out that there were two dominant 
frequencies associated with the electron density n( r )  at position r, namely the revolution 
frequency, W,,, of the independent-electron model and the plasma resonance frequency, 
Wp(r) = [ 4 ~ n ( r ) ] ~ ’ ~ ,  of the electron gas model. They used a simple statistical model 
of atoms to show that these two frequencies were approximately equal in magnitude. 
Thus, it was concluded that the effective oscillation frequency, i.e. the square root of 
the sum of the two squared frequencies, was equal to yW,( r )  where y = a. The mean 
excitation energy of the atom, I ,  was then evaluated by averaging the space-varying 
effective oscillation energy according to the spherically symmetric electron density 
distribution, 47rr2n(r), of the atom. Actually, due to the definition of the mean 
excitation energy, the above averaging process should be carried out with the logarithm 
of the mean excitation energy. Hence, the logarithm of the mean excitation energy is 
expressed in the LPA as 

In I =- 47rr2n(r) ln(yWp(r)) dr. (2) z ‘ I  
The above procedure may be applied to other physical quantities. This procedure 

is much easier than solving the complex transition matrix elements involving detailed 
atomic wavefunctions. Previous applications include several important physical para- 
meters such as the mean excitation energy (Chu and Powers 1972, Tung and Watt 
1985), the inelastic mean free path (Kwei and Chen 1988) and the stopping power 
(Tung et a1 1979). 



Local plasma approximation for oscillator strength 2903 

2.2. LPA for a single-subshell atom 

In order to study the LPA, we consider first a dilute gas composed of atoms having a 
single subshell of binding energy wb. The dynamic response function of the system 
is given by its dielectric function described by a bound electron gas model (Raether 
1980) 

E (  W) = E ’ (  W)+is”(  W) = 1 +  w:, 
wi- w2-irw (3) 

where W, = (47~n)”’ is the free electron plasma energy associated with the collective 
oscillation, r is the plasma oscillation damping coefficient, and E’  and E ”  are the real 
and imaginary parts of the dielectric function, respectively. Note that the threshold 
excitation energy is wb, or W >  W,. In other words, equation (3) is applicable only 
to transitions into the continuum states (ionisations) but not the discrete states (excita- 
tions) of atoms. We shall postpone our discussion about the contribution of excitations 
to the total GOS until § 2.4. 

The effective oscillation or plasma energy of the bound electron system, @,, defined 
as the resonance energy in the energy loss spectrum in the case of no plasma damping, 
is obtained by setting r = 0 in the equation E ’  = 0. It is found that 

@, = ( w:, + Wi)1/*. (4) 

This relation is in agreement with the statement of Lindhard and Scharff (1953), i.e. 
plasma and revolution frequencies share an equal contribution to the effective 
oscillation frequency. 

In order to test the argument of Lindhard and Scharff concerning the equivalence 
in magnitude of W, and wb, we plot in figure 1 these two energies for the 1s and 2s 
subshells of a beryllium atom. The free electron plasma energy was computed using 
the electron density distribution from the Hartree-Fock-Slater model (Herman and 
Skillman 1963). It is clear from this figure that Lindhard and Scharff’s argument is 
correct only in a gross average sense. In reality, the free electron plasma energy varies 
with the position of electrons because of the space-varying electron density, whereas 

0 1 2 3 4 
r (aul 

Figure 1. A plot of the free electron plasma energy for the 1s and 2s subshells of the 
beryllium atom as a function of the radial distance from the nucleus. The binding energies 
of the corresponding subshells are indicated by broken lines. All quantities are in atomic 
units. 
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the binding or revolution energy keeps a constant value at any position due to the 
quantisation of atomic orbitals. 

The energy loss function, which is the imaginary part of the negative inverse 
dielectric function, is obtained using equations (3) and (4) as 

If we neglect plasma damping, i.e. r = 0, the energy loss function becomes 

Equation (6) was derived with the aid of the sum rule (Smith and Shiles 1978) 

Applying equations (1)-(6), we obtain 

df /dW=ZG(W- GP). 
Equation (8) represents an infinitely sharp excitation spectrum for the system when 
neglecting the plasma damping. 

In the LPA procedure, equation (8) should be averaged over the entire space 
according to the spherically symmetric electron density distribution 47rr2n( r ) .  Follow- 
ing this procedure, we get the average GOS as 

-- df 47rr2n(r)6(W- G p ( r ) ) d r  
d W - 1  (9) 

This result is the same as that derived by Johnson and Inokuti (1983) except for the 
replacement of yWp(r) by the effective plasma energy @p(r). Equation (9) may be 
simplified to 

where Gk(roj) is the derivative of 

w- lvp(r)=0.  

Gp( r )  at raj and the roj are the roots of the equation 

(11) 

2.3. LPA f o r  an atom with several subshells 

energies, the dielectric function of the system is given by 
For a dilute gas composed of atoms having several subshells with different binding 

w;, & ( W ) = l +  1 , wf-w2-ir ,w 
( W > W , )  

where Wpi, W, and r, are, respectively, the free electron plasma energy, the binding 
energy and the plasma damping coefficient associated with the ith subshell. Note that 
each term in the summation of equation (12) is contributed by a given subshell. The 
restrictive condition W > Wi ( i  = Is, 2s, 2p, . . .) must be satisfied by that subshell. 
The effective plasma energy, lvP, of this system is again determined from the equation 
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E ’  = 0 by setting Ti = 0. It can be shown that this energy is the solution of the equation 

The subscript associated with the effective plasma energy indicates that there are many 
solutions of equation (13), actually as many as the number of subshells. In the case 
of a single subshell, equation (13) reduces to equation (4). 

A comparison of the effective plasma energies calculated using the Lindhard and 
Scharff model, i.e. yW,, the single or isolated subshell model of equation (4) and the 
multiple subshell model of equation (13) is made in figures 2 and 3 for oxygen 1s and 
2p subshells. The electron density distributions have been obtained again from the 
Hartree-Fock-Slater model. It is seen that the effective plasma energies for the isolated 
and multiple subshell models show almost no difference in the case of the 1s shell but 
a substantial difference in the case of the 2p subshell. This is because electrons in the 
tightly bound 1s shell are relatively isolated and thus weakly correlated with electrons 
in other shells of the atom. Therefore, the isolated model works fairly well for the Is 
shell. At large radii, the effective plasma energies for the Lindhard and Scharff model 
vanish whereas they approach the binding energies for the other two models. Because 
electrons in a given subshell cannot be excited (actually ionised) unless the excitation 
energy is greater than the binding energy of that subshell, it is evident that the Lindhard 
and Scharff model fails to describe the correct excitation behaviour at large radii. 

Using equations (12) and (13), we are able to show that 
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Figure 2. A plot of the effective plasma energy for the 1s shell of the oxygen atom as a 
function of the radial distance from the nucleus. The full curve is the result of the 
isolated-subshell model and the multiple-subshell model of the present work. The chain 
curve is the result of the Lindhard and Scharff (1953) model. All quantities are in atomic 
units. 
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Figure 3. A plot of the effective plasma energy for the 2p subshell of the oxygen atom as 
a function of the radial distance from the nucleus. The full curve is the result of the 
multiple-subshell model. The broken curve is the result of the isolated-subshell model. 
The chain curve is the results of the Lindhard and Scharff (1953) model. Note that the 
broken curve coincides with the full curve for r > 2. All quantities are in atomic units. 

Equation (14) is very useful because of its decoupled form into the summation over 
individual contributing terms. However, an explanation is required before the applica- 
tion of equations (13) and (14). Due to the restrictive condition imposed on each term 
in the summation of equation (12), equation (13) is also restrictive in the following 
way. Consider an atom composed of three subshells of binding energies W, , W, and 
W, with W ,  < Wz< W,. In the excitation energy region W >  W, and W <  W,, W,, 
the second and third subshells do not contribute to the dielectric function of equation 
(12). Hence, in solving the effective plasma energy using equation (13) these two 
subshells should not be taken into consideration. Similarly, the third subshell should 
be excluded from equation (13) when finding the effective plasma energy 6’p2 in the 
region W > W, , W, and W < W,. Finally, we need to consider all three subshells in 
equation (13) to obtain 6’p3 in the region W > W, , W,, W,. Substituting GP,, 
and @p3 into equation (14), we can show the agreement between the energy loss 
function calculated using this equation and that using equation (12) and the relation 
Im(-l/E) = E ” / ( & ” +  E ” , ) .  

We may rewrite equation (14) in a form similar to that of equation (5) by defining 

w;, = 4 r n ,  = 6’;, - wf. (15) 
Combining equations (14) and (15), we obtain 

If we neglect the plasma damping, i.e. take r, =0,  we get 
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where Im(- l /&) i  is the energy loss function contributed by the ith subshell. Repeating 
the same analysis leading to equations (8)-(l l) ,  the COS contributed by the ith subshell 
in the LPA can be obtained. 

It is interesting to compute the number of electrons per atom contributing to the 
energy loss function up to an excitation energy W, i.e. Z,( W). This may be done by 
using equations (15) and (17). Recalling that Gpi spans the region W, < W < W,,, , 
we obtain 

Figure 4 shows a plot of the results of Z,( W) for an aluminium atom using the electron 
density distribution from the Hartree-Fock-Slater model. For comparison, we have 
included in the figure results of similar calculations made by Smith and Shiles (1978) 
for solid aluminium. 

1 4 ,  

W l ev1  

Figure 4. A plot of the number of electrons per atom contributing to the energy loss 
function up to an excitation energy W. The full curve is the result of present calculations 
for an aluminium atom. The broken curve is the result of Smith and Shiles (1978) for solid 
aluminium. 

2.4. Plasma damping and GOS for ionisation 

If we retain the plasma damping coefficient in equation (16), the delta function structure 
of the energy loss function does not exist any more. Instead, the energy loss spectrum 
becomes broadened with the width of the distribution proportional to the damping 
coefficient and the peak value around the effective plasma energy. Substituting equation 
(16) into equation (1) and applying the LPA procedure, we find 

The above derivation of GOS based on the LPA is valid for ionisations but not 
excitations of atoms. The GOS for discrete level transitions features a lineshape spectrum 
rather than the continuous spectrum for ionisations. Although in most cases ionisation 
is the dominant process responsible for the total oscillator strength, in other cases 
excitation may be of importance. In these latter cases, the use of the sum rule of 
equation (7) in the derivation of ionisation GOS should be corrected. Let F be the 
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fraction of the ionisation oscillator strength in the total oscillator strength. The above 
formulae for the ionisation GOS remain unchanged except that they should be multiplied 
by the fraction F. 

3. Results and discussion 

It is interesting to apply the single-subshell model of the LPA to a hydrogen atom which 
has one electron in the 1s shell with a binding energy of 1 Ryd (0.5 au). Substituting 
the electron density distribution (Harris 1975) 

4rrr2n( r) = 4 e-2rr2 (20) 
into equation (lo),  we get 

Figure 5 shows a comparison of the GOS for the hydrogen atom calculated using 
equation (21) and the hydrogenic wavefunction model (Merzbacher and Lewis 1958). 
Reasonably good agreement has been found. The GOS of the LPA vanishes for an 
excitation energy greater than 2 because of the neglect of plasma damping. Since the 
basic sum rule is satisfied in the LPA, its GOS is squeezed into the restricted region of 
w<2. 

0 0 5  1 0  1 5  2 0  2 5  
W (aul 

Figure 5. A comparison of the C O S  for the hydrogen atom calculated using equation (21) 
(full curve) and the hydrogenic wavefunction model (broken curve) (Merzbacher and 
Lewis 1958). All quantities are in atomic units. 

We now apply the multiple-subshell model to a two-subshell atom. Figure 6 shows 
a comparison of the GOS for the lithium atom calculated using equation (19) and the 
Hartree-Slater central potential model (McGuire 1971). The damping coefficients used 
for the 1s and 2s subshells are, respectively, 0.09 and 0.4. The oscillator strength 
fractions for ionisation of the respective subshells are 0.92 and 0.22 (Dehmer et a1 
1975). It is seen that the agreement between these two models is reasonably good. 
Application of the LPA reveals that the binding energy is responsible for the threshold 
behaviour of the GOS around this energy. The GOS at higher energies is mainly from 
the contribution of the plasma oscillation by local electron densities. The plasma 
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Figure 6. A comparison of the GOS for the lithium atom calculated using equation (19) 
(full curve) and the Hartree-Slater central-potential model (broken curve) (McGuire 1971). 
All quantities are in atomic units. 

10 , I 

lo-' 
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Figure 7. A plot of the effective plasma energy for the lithium atom as a function of the 
radial distance from the nucleus. Equation (13) was used for the calculations. Binding 
energies are indicated by the broken lines. All quantities are in atomic units. 
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Figure 8. A comparison of the GOS for the fluorine atom calculated using equation (19) 
(full curve) and the Hartree-Slater central-potential model (broken curve) (McGuire 1971). 
The COS values for the 1s shell have been multiplied by a factor of 10 for easy comparison. 
All quantities are in atomic units. 

2 .2  , 

1 10 102 
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Figure 9. A comparison of the GOS for the sodium atom calculated using equation (19) 
(full curve) and the Hartree-Slater central-potential model (broken curve) (McGuire 1971). 
The GOS values for the 1s and 3s subshells have been multiplied by a factor of 10 for easy 
comparison. All quantities are in atomic units. 
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damping makes the GOS extend to very large excitation energies. This is understood 
from a plot of the effective plasma energy as shown in figure 7. The effective plasma 
energy approaches the binding energy at large radii where the electron density is very 
small. Therefore, the G O S  corresponding to electrons at large radii shows the threshold 
behaviour around the binding energy. As the radius decreases, the effective plasma 
energy becomes gradually increasing due to the contribution from plasma oscillations. 
Since the effective plasma energy is finite everywhere, the GOS should vanish for 
excitation energies above the maximum effective plasma energy if no plasma damping 
is considered. It is this plasma damping which makes the GOS extend to infinite 
excitation energy. 

Figure 8 shows a comparison of the GOS for the three-subshell fluorine atom 
calculated using equation (19) and the Hartree-Slater central-potential model 
(McGuire 1971). The damping coefficients used for the Is, 2s and 2p subshells are 
2.5, 1 and 1.27, respectively. The oscillator strength fractions for ionisation of the 
respective subshells are 0.96, 0.87 and 0.96 (Dehmer et a1 1975). For the convenience 
of comparison, the GOS associated with the 1s shell has been multiplied by a factor 
of 10. Reasonably good agreement has also been found. A similar comparison for 
the four-subshell sodium atom is made in figure 9. Here the damping coefficients for 
the Is, 2s, 2p and 3s subshells are 3.2, 10, 1.7 and 1, respectively. The oscillator strength 
fractions for ionisation of the respective subshells are 0.995, 0.988, 0.987 and 0.056. 
For the convenience of comparison, GOS associated with the 1s and 3s subshells have 
been multiplied by a factor of 10. 

4. Conclusion 

The LPA has proved in this work to be quite useful in predicting atomic GOS for 
ionisation. The basic idea and approach of Lindhard and Scharff have generally been 
followed. However, several modifications had to be made in order to obtain the correct 
features of the GOS spectrum. Firstly, quantum mechanical binding energies of 
individual subshells must be incorporated into the LPA to account for the threshold 
structures around these energies. The effective plasma energies must be determined 
by an equation involving binding energies and local plasma energies of all subshells. 

The damping of plasma oscillation is important in the application of the LPA for 
GOS.  It is generally felt that the damping coefficient is inversely proportional to the 
binding energy (Kliewer and Raether 1973); However, an examination of the GOS of 
the Hartree-Slater central potential model (McGuire 1971) reveals that the magnitude 
of this coefficient varies from subshell to subshell and from atom to atom. For the 
purpose of this work, we have merely treated this coefficient as a fit parameter. A 
detailed study of this parameter may be of interest. 
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