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Grey Predictor Applied to Speed Control of DC Motor

student : Chih-Yuan Liang Advisors : Dr. Yon-Ping Chen

Institute of Electrical and Control Engineering
National Chiao Tung University

ABSTRACT

This thesis verifies the efficiencies’ of grey predictor on the prediction of the
disturbances and the application-to speed-control of-DC motor. Sliding-mode control
is chosen here for speed control of DC motor because of its robustness of eliminating
the matched disturbances. The traditional sliding-mode control has such property with
the hypothesis that the upper bound of the disturbances is known. However, the upper
bound of the disturbance is difficult to be measured or estimated exactly, and the
system would be unstable if the upper bound is not well estimated. It is obvious that if
the value of the disturbances could be predicted well, the upper bound would not be
necessary information any more. In the thesis, the performances of grey predictor are
evaluated with several distinct disturbances and compared with the performances of
linear regression method. The simulation results show that grey predictor has well
performances for the disturbances with lower frequency or less rapid variations, and it

can solve the problem of estimating the upper bound of the disturbances.
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Chapter 1

Introduction

The presence of disturbances is an inevitable feature of control systems, no
matter linear or nonlinear systems, and the disturbances would cause unwanted effects
on the system’s performance. Many investigators have proposed diverse methods to
deal with the disturbances, such as the disturbance accommodation control (DAC) [1]
and the internal-model-based repetitive control [2]. The basic idea of DAC is to model
the disturbance, augment its state equations to' the system state equations, and then
reconstruct the states of this augmented system for use in a controller that minimizes
the effects of the disturbance. For this‘control scheme to work, the disturbances must
be of known waveform type, such as a step function, ramp function, and so forth. It is
actually speaking that, however, the disturbances in physical systems are very difficult
to model. As for the internal-model-based repetitive control, it could deal with
repeatable disturbances but amplifying non-repeatable disturbances, which are at
frequencies between those of the repeatable disturbances. Due to these drawbacks,
they are not so practicable and the sliding-mode control is chosen here because of its
robustness for system’s parametric uncertainties and the elimination of matched

external disturbances.



Disturbance suppression and adaptation to internal system parameter variations

are important as well as the command input response characteristics in designing

control systems. In order to suppress the disturbance and to improve the robustness,

high-gain controllers are employed in general. However, it is well known that in

controlling elastic electro-mechanical systems, high gain controllers can cause

resonance easily [3]. The traditional sliding-mode control is one kind of high gain

control since the upper bound of the disturbances are often over-estimated. It might be

argued that if the disturbances can be estimated, the control problems of the systems

with disturbances may become easier to solve.» Many investigators have paid their

attentions to disturbance observers or estimators. Nevertheless, most of them need a

large amount of data or the complicated caleulation to do the observation or

estimation. A new approach adopting grey theory is proposed in this thesis to not only

estimate the disturbances but also predict the disturbances, and it can be called as grey

predictor. Besides, the simulation of the grey predictor applied to speed control of DC

motor combined with sliding-mode control will be presented.

The rest of this thesis is organized as follows: following the introduction, the

system descriptions, including the mathematical model of the system and system’s

software and hardware architectures, will be introduced in Chapter 2. In Chapter 3,

the concepts of grey theory and the derivation of grey prediction model, GM(1,1), will



be shown. The next chapter contains the brief introduction of the sliding-mode control,

the traditional sliding-mode controller design, and design of the sliding-mode

controller incorporated with grey prediction. In Chapter 5, some computer simulations

and comparisons will be given to demonstrate the effectiveness of the proposed

method, and finally, some conclusions are drawn in Chapter 6.



Chapter 2
System Descriptions

System descriptions will be introduced in Chapter 2. First, the mathematical
model of a DC motor will be shown in Section 2.1 and the general diagram of the
rotation system of a DC motor mounted with payload is shown in Figure 2.1. Then,

the software and hardware architectures will be introduced in Section 2.2.

Ra La

Payload

Fig. 2.1 DC motor rotation system

2.1 Mathematical Model

The dynamic equation of a DC motor, schematically depicted in Figure 2.1, is

generally expressed as

L, ddlf +R,i,+v, =¢, (2.1)



where L, and R, are the inductance and resistance of armature, i, and e, represent the
current through and the voltage across the armature, and v, is the
back-electromotive force. Since v, is proportional to the angular velocity of motor
as v, = K, @ and L, is negligible, (2.1) can be further modified as

R, +K,o=e, (2.2)
Besides, the generated torque of the motor T, is known as

T, =Ky, (2.3)
which means T, is proportional to the armature current i, with constant coefficient K.
By rearranging (2.2) and (2.3), we have

T
R,—/+K,o=e, (2.4)
Kt

When a payload is mounted to.the motor as shewn in Figure 2.1, the rotational
differential equation can be displayed as

T, =1,+J)o+(D,+D)w+r, (2.5)
where J_ and D, are the motor’s inertia and damping ratio, J represents the
rotational inertia of payload, Do and z_ are respectively the viscous and coulomb
friction. Substituting (2.5) into (2.4), we can get
R i
K—a[(Jm+J)a)+(Dm+ D)o+17.)]+K, 0=¢, (2.6)

t

Since (D,,+ D)w+ 7, consists of damping and friction which are commonly hard to

exactly estimated, these terms will be treated as uncertainties or disturbances, denoted



as d =(D,,+ D)o + 7, . Therefore, (2.6) can be rearranged as

R )

K—a[(Jm+J)a)+d]+ K,w=e, (2.7)
t

To describe the system as a state equation, let state variable x =@, control input

u=e,, then, (2.7) can be expressed as

X = Ax+ Bu+ Bd, (2.8)
K.K K .
where A=-—""2 - B=—-'"— and d,=-d . After deriving the
R,(J,+7J) R,(J,+7J)

system’s dynamic equation, the system’s software and hardware architectures would

be introduced in the next section.

2.2 Software and Hardware Architectures

The parameters of the DC motor are listed in Table 1. The control platform is a

PC-based system, which is constructed under xPC Target environment and consists of

a master computer and a slave computer with the communication protocol of RS-232

or Ethernet. This PC-based system is called the xPC system here for convenient. The

XPC Target, a product of The MathWorks Company, is developed to operate with the

Real-Time Workshop in MATLAB software. The xPC Target is a host-target PC

solution for prototyping, testing, and deploying real-time systems. In this environment,

the user can use MATLAB with Simulink in the master computer to create models



using Simulink blocks and run simulations to verify whether the controller design is

OK or not. Once the simulation results represent as the desired performances, the user

can transmit the program code generated by Real-Time Workshop to the slave

computer, and run the generated code in the slave computer in real time.

Table 1. Parameters of the DC motor

Symbol Terminology Values
Ra Armature Resistance 18.6 2
La Inductance 6.6 mH
I Rotor Inertia 0.08 g-cm-sec?
Kt Torque Constant 1.78 kg-cm/A
Kp \oltage Constant 18.2 V/Krpm

The MATLAB 6.5 software compiled by Visual C program is installed in the

master computer. As for the slave computer, it only needs to be installed with the

XPC-MC240 1/0 card developed by The Terasoft Incorporated Company and the

Advantech1753 LAN card, a specific LAN card. The xPC-MC240 1/O card is

integrated with the PLX9052 chip for PCI control and the TMS320F240 DSP chip,

where both chips are communicated through SRAM. Besides, the xPC-MC240 1/0

card also contains 16 analog input channels (10-bit ADC, 0~5V), 4 analog output



channels (12-bit DAC, +10V), 16 digital inputs, 16 digital outputs, 6 PWM channels

(TTL, 5V), 1 encoder input, and 3 input captures. Among them, the first input capture

can also be treated as the QEP input, so the xPC-MC240 1/O card receives signals of

the encoder from encoder input pin and the first input capture pin. It should be noted

that because of the restriction on the efficiency of the TMS320F240 DSP chip, the

maximum sampling frequency is 10KHz; i.e., if the sampling frequency were higher

than 10KHz, the A/D conversion time would be insufficient such that the ADC value

would be incorrect.

Now, let’s see how to install the XPC system. First, there are some additional

important working paths should-berincluded:in-the‘default working paths menu, which

could be added by using the “setpath” function in.Figure 2.2. The connection between

MATLAB and Visual C also has to be constructed so that the xPC system could take

the Visual C program as the compiler. Then, the command ’xpcsetup’ would be typed

into the command window of MATLAB to pop up the xPC target setup menu, which

is displayed in Figure 2.3. There are several relative setup options about the

communication protocol and the target computer in the setup menu. The first option is

choosing the compiler, such as Visual C, and the blank under the compiler option is

the compiler path. The communication protocol between the master and the slave

computers is chosen from the ‘HostTargetComm’ option; if RS232 is chosen,



‘RS232HostPort’ and ‘RS232Baudrate’ would be determined, on the contrary, if

TCP/IP is chosen, ‘TcplpTargetAddress’, ‘“TcplpTargetPort’, ‘“TcplpSubNetMask’,

and ‘TcplpGateway’ would be assigned. Here, the communication protocol is chosen

as TCP/IP because of the higher transmission rate, and the slave computer would be

connected to the master computer directly through a LAN cable or indirectly through

a hub. When the xPC target setup is finished, the ‘BootDisk’ button would be press

down to produce a boot-disk, which contains the specific operating system of the

slave computer, and the slave computer would be booted with it. After the slave

computer has been booted, some procedures, such as pinging the slave computer or

running some test program, would'be done to‘ensure the connection is well done.

-} Bet Path ;IEI il

All changes take effect immediately.

MATLAB search path:

Add Folder... ﬂ Ea C:IMP-.TLAEIEpEItDUItJDmm&targetampcltargeﬂbuildlxpti!
[ CAMATLABEpSitoolboxirtwitargetsegp citarg etibuildegoe
[ CAWATLABEpSitoolboxirtwitargetsegp citarg etibuildege
filowe o Tap [ CAMATLABEpSitoolboxirtwitargetsegp citarg etibuildegoe
[ CAWATLABEpSitoolboxirtwitargetsegp citarg etibuildege
[ CAMATLABEpSitoolboxirtwitargetsegp citarg etibuildegoe
W ove Doyt [ CAWATLABEpSitoolboxirtwitargetsegp citarg etibuildege
[ CAMATLABEpSwearkiterasoft_xpe_driver
[ CAWATLABEpSitonlboximatiabligeneral

e [ CAWATLABEpSitoolboximatiablops -
_reroe | Kl | -
Save | Close | Eevert Default | Help |

Fig. 2.2 “set path’ function window
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CCompiler: Im RS232B audrate: |1152DEI 'i
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T argetRAMSizeMB IAuto LI I TeplpTargetPort: ! 22222
b awbd adelSiza: 1ME . TcplpSubMethd asgk: I 255.266.256.0
e Im TeplpG ateway: I 140.113.149.254
CAMLibrany: m TeplpT argetDiriver: I MEZ000 - i
HastT argetComnm: Im ToplpTargetBusT ppe: PCI -
TargetScope: Im TcplpT argetlSatemPort; Iw.
T argethdouze:; m TcplpT argetlSAIRG: m
—— #PLC Target Embedded Option
TargetBaoat: W
pdate | Rewert | BootDizk | Cloge

Up to present, there would.be a-gquestion sameone may ask that why choosing

the XxPC system even though it requires two computers. It should be known that every

function designed in the xPC-MC240 1/O card, such as ADC, DAC, PWM, and so on,

has its own module block. Thus, one of the advantages of the xPC system is that the

control algorithm could be verified by using block diagram as mentioned before

instead of writing the program codes. In other words, the user can do the experiment

just by using the general Simulink block incorporated with the individual module

block of the xPC-MC240 1/O card to construct the controller block diagram, such as

Figure 2.4. Such designed method can solve the problem that something may be

Fig. 2.3 The xPC target Setup-menu
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difficult to be represented by the program codes, and reduce the consuming time of

try and error and debugging.

=13l x]

File Edit View Simulation Format Tools Help

NEES 20| Them  SmSd BT S

#PC-MC240 Initialization
10 -

(Khz)
PUA_2 Duty Ratio (0m)

%P C-MC240 Initialization Constant2 PUIM3_4 Duty Ratio (On1)
PGS _6 Duty Ratia'(0=1)"
n o %P C-MC290_Piitd
D » » M vl
= + +
Constant F Y I// |ﬂ_|
Zain-P Saturation

Discrete-Time Gainl
Integrator

Digital Clodk1

Constantt

Constant3

=P C-MC240 QEF : CountB as| | Target Scope
Fulzes/Revalution: 1000 1d: 1

b

=PC-MC240_0EP Soope (xPC)

Ready 100% [ [ [FixedStepDisorete o

Fig. 2.4. Simulink block-diagram

In addition, it is a common phenomenon that students usually have some
operative errors or negligence when they are doing the experiments. If the control
platform were a single-PC-based system, it would take a large amount of cost when a
critical operative error happens. For the xPC system, the hardware is constructed on
the slave computer, which doesn’t need to be equipped with so high-level equipments
as those in the master computer. Thus, it would not take so much cost as the

single-PC-based system does even though a crucial mistake is made. Furthermore,

11



when the user uses the xPC system, the command “xpcscope’ could be typed into the

command window of MATLAB to pop up the xPC target scope window, Figure 2.5,

where the real-time results would be shown. After the xPC target scope window was

popped up, the user could add the desired signals whose real-time results would be

shown on the scope window, and choose the signals that would be exported. When the

desired results have been shown, the user could stop the program, export the results,

and then save the numerical results and waveforms.

=lalx|

0.8

0.6

0.4+

0.2+

0.2

-0.4 -

0.6~

-0.8 -

. - | | | | | | | | | |
0 01 0.z 0.3 0.4 05 0.6 0.7 0.8 0.9 1

SIGMALS TRIGGER TRACING HAMDLING

Expart Trigger Signal: FreeRun s |2507
I_ Start Cloze
| 1 | o |

&dd/Remove Define Trigger | Sottware Trigger Interleave

Fig. 2.5 The xPC target scope window

It is actually speaking that the xPC system is not only a powerful but also an

extendable system. It could be applied to several fields, such as mobiles and

12



navigation controls, industrial automation, robotics and motion controls, and so forth.

It also could provide the assistance in the simulations of various operations of the

embedded control system, such as system rapid prototyping and hardware-in-the-loop.

Except the one-on-one control system, the xPC system also can do the multi-system

control as long as the connection could be successfully established, whether one

master computer vs. multiple slave computers or multiple master computers vs. one

slave computer. Moreover, if the xPC Target Embedded Option were added into the

XPC Target environment, it would have stand-alone application, which means that the

user can run target applications on the slave ecomputer without connecting to the

master computer for deploying theiapplications.

13



Chapter 3
Grey Prediction

In the control theory, people usually use the deepness of colors to describe the
clearness of the message, for example, Ashby called the object with unknown inner
messages a “Black Box”. In general, a system with exactly definite inner messages is
called a white system; on the contrary, a system whose inner messages are all
unknown is called a black system. However, it is impossible to divide all the systems
into just black type or white type, i.e.;-mostsystems have both definite and unknown
inner messages. Such system may be given a name as grey system, and the grey

theory is evolved to deal with the relative problems of it.

3.1 Grey Theory

Grey theory was first introduced by the professor Julong Deng on the
International periodical, “Systems and Control Letters”, in 1982. The research
subjects of grey theory are small number of samples with some known messages and
some unknown messages, and the systems with uncertainties resulted from lack of

data. Since the amount of data is too small to form a regular distribution and to

14



provide enough experiences, the statistics and fuzzy theory are not suitable to analyze

those systems so that the significance of grey theory is manifested. Grey theory had

been applied in many fields [4]~[6], and several International periodicals, such as

“Systems and Control Letters”, “The Journal of Grey System”, “International Journal

of Systems Science” and so on, have the publications of grey theory. The content of

grey theory includes the analysis system based on grey relation space, the approach

system based on grey sequence generation, the model system kernelled with grey

model, and other essential rationales and assistant tools [12][13].

It is as known to all that a general abstractssystem would have several different

factors whose interactive influences determine ‘the development situation of the

system. Grey relation analysis is"used to judge whieh factors are major or minor ones

and which factors should be intensified or suppressed such that the system

performance could be improved. Besides, for any system, the mathematical model

should be constructed first, and then the whole operations, mutual coordination, and

dynamic properties of the system could be analyzed. Grey model is built to represent

the mathematical model of a grey system and grey prediction is used to predictive the

behavior of the system. It should be noted that all types of the grey models can be

used to do grey prediction, and the most common case is GM(1,1) model. Not only

grey relation but also grey model and grey prediction are applied in several territories

15



[7]~[9]; similarly, the GM(1,1) model is chosen to predict the behavior of the matched

disturbance in our research and it would be introduced in detail in the next section.

3.2 Grey Prediction [10]
Consider a non-negative data sequencey® (k) >0 for k=12,--,p where p
ischosen as p > 4. The accumulated generating operation (AGO) is defined as
YO0 =X y00) k=120 @)
E
which accumulates the data sequenice y® (k). The inverse accumulated generating
operation (IAGO) is defined as

yo@m =y®(@)
yO (k) =y (k)- yP (k-1) k=23,--p

(3.2)
As for the mean operation, it simply takes the average value of y® (k) and
y®P(k-1),ie.,

2900 =5 [y 0+ y kD] k=23p (33)
The famous grey model GM(1,1) is constructed to suitably represent the non-negative
sequence y (k) as below:

yO K +az® (k) =b, k=23,-,p (3.4)

Both a and b are constants to be determined, where a is called the development

coefficient and b is treated as the grey input. Rewriting (3.4) into a matrix form leads

16



to

a
-F. 3.5
y M (3.5)
Y (2) -2 1
where y= : and F = : : |. According to the least square method,
y®(p) -29(p) 1

a
the parameters a and b can be solved as [b} =(FTF)*FTy. The GM(1,1) model is

then obtained and the predicted values of y® (p+q) is achieved as

0 (pea) =y @)-2 Je s 9)
a a
where g e R represents the predictive steps. Thus, it is obvious that for the first

predictive value, q=1, we have

YO (p+1) = ( y© (1)-9}3‘3“R (3.7)
a a
Further using the inverse accumulated‘generating operation (3.2), the first predictive

value of the original non-negative data sequence y® (k) where k=12,--,p can be

obtained as

YOp+D) =99 (p+D)-y¥(p)

:Ky@)(l)-gjeap+ﬂ{(y<°>(1)-gjea<“>+g} (3.8)

= (1—ea)~(y(°) (1)-9jeap
a
However, if a sequence with negative data is processed, it should be modified

into a non-negative data sequence first. The most common way is choosing a bias

term, such as

17



bias =

min y© (k)| (39)
and adding the bias term to the original data sequence. In this way, the original data
sequence could be mapped into a new data sequence, which is expressed as

Yo (k) = y© (k) + bias (3.10)
and then the first predictive value could be obtained as

¥, (p+1) = (1- e"")(ym © (1)-gje-ap (3.11)
After taking away the bias, the first predictive value of the original sequence y© (k)
is then found as

YO (p+1) =9, (p+=bias (3.12)
which will be employed to predict the matched disturbance. It is noted that (3.10) is
usually called the mapping generating operation-(MGO) and (3.12) is called the
inverse mapping generating operation (IMGO). The block diagram of grey prediction

is shown in Figure 3.1, and then a simple example of the application of grey

prediction will be shown.
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Accumulated Generating
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Grey model
GM(1,1)

v

Solve the parameters
aandb
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s the original sequence a
non-negative sequence?

yes

(0)
v y

Accumulated Generating
Operation (AGO)

v W

Grey model
GM(1,1)

v

Solve the parameters
aandb

‘

Get the predictive value

Get the predictive value

v Wep)

v I0+p)

Inverse Accumulated
Generating Operation (IAGO)

Inverse Accumulated
Generating Operation (IAGO)

VW)

Inverse Mapping Generating
Operator (IMGO)

Fig. 3.1. The

v

¥ (n+ p)

block diagram of grey prediction
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Example of grey prediction

for a given function x = cos(27rt), set the sampling time T, =0.01sec and
the displayed time interval is 0 ~ 2 sec. Here the minimum value of p is chosen, i.e.,
p =4. For the first grey prediction loop, the first four values of x, x(1)~ x(4), is
chosen as the first data group and used to calculate y(1)~ y(4) and z(1)~ z(4) by
AGO and IAGO, respectively. The matrices y and F in the matrix form of GM(1,1)

can be obtained as

0.99803 -1499 1
y=1099211| , F=-24941 1
0.98229 ~3.4813 1

and then the parameters a and b-can be solved as

0.0079375
=T FTy
1.0106

Finally, the first predicted value is calculated as y© (5) =0.97518 which represents
the 5th value of the original data sequence. As for the second grey prediction loop, the
first data group would be shifted one position and appended the next component of
the original data sequence, i.e., the new data group is x(2) ~ x(5). Similarly, the next
predicted value could be obtained by following the procedures operated in the first
prediction loop. The remaining prediction loops would be finished in the same way,

and the results are shown in Figure 3.2.
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Fig. 3.2 Results of the grey prediction

It should be noticed that in Fig. 3.1(a), the symbol ‘X’ represents the original

data sequence, the symbol ‘y’ represents the predictive value, and the first four data

are not shown since they would not be predicted. Fig. 3.1(b) is the predictive error.
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For the resulted sequence ¥ (k), let’s check the following ratio between two
consecutive data
% =e?, for k>2 (3.13)
7 (k)
Clearly, the ratios for k >2 are all the same and equal to e™® which shows that the
sequence Y@ (k) decreases or increases monotonously with an exponential rate a. In
other words, the GM(1,1) model is mainly suitable for monotone sequences
approximately possessing a single exponential rate. Unfortunately, most of the
physical sequences are changeable and not of single exponential rate. This implies the
GM(1,1) model may not well predict most of the physical sequences. To reduce the
prediction errors, some investigators employ-a higher order grey model and some
others try to modify the original GM(1,1) model" Here, a novel modified pseudo
second-order grey model, called pseudo-GM(2,1) or PGM(2,1), is proposed which is
not only as simple as the GM(1,1) model but also allows the predictive data to possess
two exponential rates similar to the GM(2,1) model.
It has been known that the GM(1,1) model adopts the latest p data where p >4,
and then the first predictive data of the i-th subsequence y. given as
v,% =(yO@), y©@+1), ..., y9(p+i-1)), can be achieved from (3.8) and

expressed as

’yi(O)(p+1) :(1_eai)‘(yi © (l)_%]eaip (314)
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where the development coefficient a, and grey input b; could be solved as mentioned

before. Tracing back to the first predictive data of the (i-1)-th subsequence, we can get

. N b,
7.9 (p+1) = [1—e ”)-[yi_ﬁ"’ -

jea”p (3.15)
i-1

In case that a; and a;.; are not quite distinct, (3.14) and (3.15) will have good results
for predicting y, and vy, ,. However, when the difference between a; and aiy

9 are at least related to

increased to a certain level, then it reveals that y,” and y, '
two exponential rates. Intuitively, the GM(2,1) model should be a better choice for

such situation, but it is much more complicated than the GM(1,1) model. In order to

keep the simplicity of the GM(1,1) model, a modification is proposed as follows:

—(a;—ain1)
5,7 (p+1) = - )-[yi 3 (1)-biea—]eaip (3.16)

which changes b, into bie‘(a"a'*). The performance of the PGM(2,1) model is
expected to be better than that of the GM(1,1) model, and the comparisons will be

shown later.
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Chapter 4
Controller Design

The sliding-mode controller design will be presented in Chapter 4. However,
before get into the sliding-mode controller design, the sliding-mode control (SMC)
should be introduced. Thus, Section 4.1 is the introduction of the sliding-mode control,
and then the novel sliding-mode controller design will be shown in Section 4.2.
Finally, Section 4.3 will introduce the sliding-mode controller design incorporated

with grey prediction.

4.1 Introduction of Sliding-Mode Control

Sliding mode is a particular system behavior of the variable structure system
(VSS). Generally speaking, the rough definition of the variable structure system is
that a system containing two or more subsystems and possessing some switching
conditions which would be used to determine which subsystem should be presented
under some specific situation. According to the tracing of the bibliography, the
technology of the variable structure system had been applied to the motor control, and

the sliding mode had been noticed in about the 1950s. But until the 1970s and the
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1980s, the variable structure control (VSC) was studied and researched more and

more widely, and more and more scholars threw themselves into this field.

Variable structure control is a technology that makes the controlled system

produce two or more subsystems, and then uses some purposely adding switching

conditions to get the control goal. As for the sliding-mode control, a sliding surface S

must be designed first and then the system trajectory would be forced to get into the

sliding surface in a finite time, which is the so-called approaching condition or

reaching condition, by using the designed control input. Besides, the system trajectory

would stay within the hyperspace thereafter and:move toward the control destination

smoothly, which is the so-called:sliding condition: It should be noticed that the

equivalent control input would ‘occur<at the moment of S =0 and the number of

degree-of-freedom in the hyperspace is one less than that in the original system. The

modern control technology contains both the variable structure control and the

sliding-mode control, and the occurrence of the sliding mode is the main key point to

distinguish between them [11].

As SMC is mentioned, it is undoubtedly that the robustness property for the

system’s parametric uncertainty and external disturbances would be emphasized. For

the matched disturbance, it can be completely eliminated if an infinite switching

frequency exists. However, it’s a pity that the switching operations could not be
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finished immediately, no matter in the practical experiments or in the computer
simulations. In other words, the switching operation would suffer from the hysteresis
and the system trajectory would vibrate to and fro between both sides of the sliding
surface at a very high frequency. Certainly, the switching term of the control input
would also change at a very high frequency, and such unpredictable high-frequency
oscillation phenomenon is the so called chattering. There are several methods to
improve the chattering phenomenon and the most general one is the adoption of the
sliding layer, which allows the system to stay just in the sliding layer instead of
strictly on the sliding surface. The system’s behavior within the sliding layer is

depicted in Figure 4.1, where &>'0 and 2&7 s the thickness of the layer.

x(0)

3
—

SECEEVANEVAN A
o} \/ \VARVERV

Fig. 4.1. The system’s behavior within the sliding layer
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4.2 Conventional Sliding-Mode Controller Design
In general, a linear time-invariant system suffering from matched disturbance
can be described as
X = Ax + Bu + Bd(x,t) (4.1.1)
where X e R" isthe system state, ue R™ is the control input, A and B are constant
matrices of appropriate dimensions, and d(x,t)e R™ is the matched disturbance
which would represent the parametric uncertainties and external disturbances. The
sliding-mode control can theoretically suppress the matched disturbance with the
hypothesis that the upper bound of;the matched disturbance, denoted as [d(x,t)|
for d(x.t) or |d;(x,t] . i=12z-m,for.isth componentof d(x,t), are known.
The first step of the sliding-mode controller design is to choose an appropriate
sliding vector. Let the sliding vector be
s=(CB)"Cx (4.1.2)
where s=[s, s, - s, ] and the coefficient matrix C e R™"must satisfy that
det(CB)=0,i.e, (CB)" exists. Taking the first derivative of (4.1.2) yields
$=(CB)"Cx=(CB)"CAX +u+d(x,t) (4.1.3)

Based on the concept of equivalent control, i.e., $

q =0, we have

U, = —(CB)'CAX—d(xt) (4.1.4)

Then, withu =u_,, the system (4.1.1) in the sliding mode performs as

eq’?
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% =(1-B(CB)*C)Ax (4.15)
which is nothing to do with the matched disturbance. In other words, the matched
disturbance is completely eliminated while the system trajectory is restricted in the
sliding mode. It has been known that no matter what C is, (I - B(CB)‘lC)A
possesses m zero eigenvalues; besides, C should be designed to locate the other n-m
eigenvalues of (I -B(CB )‘1C)A to guarantee the system stability, i.e., all the other
n-m eigenvalues must be located on the left half plan in s-domain or within the unit
circle in z-domain.

To develop the sliding-mode.control algorithm, (4.1.3) is first transformed into
the numerical form as

5, =|(cB) Al x+upd (D) A=12,m (4.1.6)
where [(CB)*CA]i represents the i-th row vector of (CB)™CA. In order to suppress
the effect caused by d,(x,t), the control law is established as

u, =-|(CBY*CA] x~(, +,)sign(s,) (4.1.7)
wheres; >0 and y; =|d;(x,t)__.By using the control law (4.1.7), it is easy to find

that

5,8 =—(r; + o, )si|+ 5,0, (x.1)

——ols|-7 |si|(1-%(sx_|’t)] (4.0.8)

<-os;|
which guarantees the reaching and sliding condition. That means the system trajectory
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will be driven to the sliding mode in a finite time and then approach the destination
along the sliding surface. However, the use of sign(s;) always generates undesirable
high-frequency chattering phenomenon. To avoid such unwanted high-frequency

response, sign(s;) is often modified as

sign(s;) , if |s;|> ¢,
sat(s; &, ) = S i |5| <e

&

(4.1.9)

where |si| < ¢, is the so-called sliding layer with thickness 2g,. Consequently, the
control law (4.1.7) could be rewritten into

u, = —[(CB)’1CA]i X —(y, +o,)sat(s; &)
~[cB)y cal x + o )sigits, ), if [s|> <, (4.1.10)
- [(CB)_lCA]i X — (7i +0; )% . if |Si| <&

which steers the system trajectory to the sliding layer within a finite time and makes

the system trajectory moving smoothly without any chattering within there.

4.3 Sliding-Mode Controller Design Combined with Grey Prediction

Since it is known to all that the upper bound of the disturbances is very difficult
to be calculated, the grey prediction method is used to predict the value of the
matched disturbances. When the grey prediction applies into the sliding-mode

controller design, the control law (4.1.7) could be rewritten as
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u, =—[(CB)’lCA]i X —y, -sign(s,)—d,(mT), forte[mT,(m+1)T) (4.2.1)
where T is the prediction period and d,(mT) is the predicted value of d(x.t) at
t=mT. Intuitively, if d,(x,t) can be well predicted by d,(x.t), then the effects

caused by the matched disturbance could be effectively ameliorated. Besides, y; is

chosen to satisfy
7 >[d (xt)-d,(mT)_+o, forte[mT,(m+1T), o, >0 (4.2.2)

By using (4.2.1), it is easy to find that

si8 =7+ 5,l8,6xt) -3, m )]
=] [ (xi)-d (mT} s s (c)-dmm)] 29

<-ols;|

Clearly, the reaching and sliding condition 's;S. < —Ui|5i| is satisfied, which
guarantees the system trajectory reaching the sliding mode in a finite time and then
approaching the destination along the sliding surface. In the same way, substituting
the saturation function (4.1.9) into the control law (4.2.1) leads to

u, = —[(CB)’ICA]i X —y, -sat(s; & )—d,(mT) for t e [mT,(m+1)T)

- [(CB)‘1CA]i x -y, -sign(s,)—d,(mT), if[s|> e,

_[(CB)_1CA]iX_7i '_i_ai(mT)’ if |Si|£8i

(4.2.4)
which steers the system trajectory to the sliding layer in a finite time and makes it

moving smoothly without any chattering.
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Next, let’s concentrate on the grey predicting scheme introduced in Chapter 3 by
which the vector ai (x,t) could be determined. First, define the data sequence as

yO>k)=d, (x((m= p-1+Kk)T),(m=- p-1+k)T), k=1.2,---,p, p=4 (4.2.5)
which are required to predict d,(x(mT),mT) at the moment t=mT, i.e., the value
of y°(p+1). However, the sequence in (4.2.5) is actually constructed by a series of
disturbances, which could not be obtained via direct measurement. In other words, an
indirect process should be adopted to achieve the sequence (4.2.5). Before getting into
the indirect process, the sequence in (4.2.5) is re-expressed as

d, (x((m=J)T).(m=j)T)  for'j=p,p&d, - 21 (4.2.6)
for convenient. By applying the-control algarithm (4.2.4) to (4.1.6), we have

s, =—7, -sat(s, & )+ d, (x,t)=d(mT) “for -t & [mT,(m+1)T) (4.2.7)
then the value of d,(x,t) at t=mT could be derived as

d, (x(mT),mT)=s,(mT)+y, -sat(s,(mT).& )+d,(mT) (4.2.8)

which implies the data sequence (4.2.5) can be also calculated from

d, (x((m=j)T),(m-j)T) (4.2.9)

= §,((m= §)T)+7, -sat(s,(m~ ))T).,)+ d (m-J)T)

where j=p,p—1,--,21. Unfortunately, the differential term s ,((m—j)T) is still

not measurable; instead, it is approximated as

& ((m=)T)~ s; ((m- j+1)T_|)__ s ((m=j)T) (4.2.10)

for j=p,p-1,---,2, which is not suitable for the case of j=1 due to the fact that
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s.(mT) is not attainable at t=mT . In other words, it is impossible to adopt d,(mT)
which should be calculated from si(mT) in the control algorithm (4.2.4) at t=mT .

In order to avoid such situation, the term §,((m—1)T) is approximated as

s;(m=05)T)-s,(m-1)T)

0.5T

. However, there is an assumption here that the first
predictive value of the data sequence (4.2.9), ai(mT), can be obtained within the
time interval of t e ((m—05)T,mT). Hence, the data sequence (4.2.9) can be obtained

approximately as

d; (x((m= )T ) (m- j)T) =

ol e O8I =8 (=) ot (- j)7).c)+ 8, (- )
| for j=1 (4.2.11)
om0 00T 5 s i3 N )+, (- )
for j=23,---,p

which is used for the grey prediction of d(mT):
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Chapter 5
Simulation Results

The general dynamic equation of a DC motor mounted with a payload derived in

Chapter 2 is depicted again as (5.1)

X = Ax+ Bu+ Bd, (5.2)
K. K K . . .
where A=————+2 _ B=——""__  x means the rotational velocity, u is
R,(J,+7J) R,(J,+7J)

the input voltage, and d, represents some uncertainties and the external disturbances.

However, for the consideration of robustness of the designed controller, the mounted

payload could be any shape or-material; i.e.;"the rotational inertia of payload, J, is

thought as unknown. If this unknown*parameter is also categorized as disturbance,

defined as d,, (5.1) can be simplified as

= Ax+Bu+B,d (5.2)
KK, K, ~ L .
where A =R B, = Ry and d =d,+d,, which includes the parametric

uncertainties and the external disturbances. Since speed control is the control goal, it
would be more convenient that changing the state variable from speed of DC motor to
the error of speed. Thus, (5.2) can be further rewritten as

¢ = Ae+Bu+B,d+ A o, (5.3)

where e=w—w, iserror of speed, and @, is the desired speed.
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The numerical simulations of the performance of grey predictor for distinct

forms of the disturbances, the comparisons with the linear regression method, and the

comparison between the traditional sliding-mode control and the novel sliding-mode

control incorporated with grey predictor will be shown in this chapter. The given

disturbances are designed as the combination of sinusoidal waveforms. The types of

sinusoidal disturbances would vary from low frequency to high frequency, and from

simple combinations to more and more complicated forms. Because grey prediction

needs at least four data to work, grey predictor would not predict the first four data.

The first part of the simulation results is the comparison between the grey predictor

and the linear regression method: The second part-is the comparison between the

GM(1,1) model and the modified.PGM{(2,1) model,-and the last part is the comparison

between the traditional sliding-mode control and the sliding-mode control combined

with grey predictor. In the following simulation result figures, the symbol ‘X’ presents

the given disturbance signal, ‘linear’ means the linear regression method.
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Comparison | :
The comparisons between the GM(1,1) model and the linear regression method

will be shown as follows:

@ Case1: d=11cos(7t)+55sin(9t)+15cos(5.3t)cos(6.7t)
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Fig. 5.1(a) The predicted result of GM(1,1)
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Fig. 5.1(c) The predictive error of GM(1,1) and linear regression
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@ Case2: d =11cos(7t)+55sin(9t)+15cos(5.3t)cos(6.7t)+ 22 sin(4.5t)cos(3.3t)
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Fig. 5.2(b) The predicted result of linear regression
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Fig. 5.2(c) The predictiveserrorof GM(1,1) and linear regression

d =11cos(7t)+5sin(9t)+54sin(11t)+ 23cos(4.4t)cos(8.61)

Case 3 :
¢ +33sin(2.1t)cos(5.2t) =29sin(3.5t)
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Fig. 5.3(a) The predicted result of GM(1,1)
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@ Case4: d=11cos(7xt) + 29sin(9xt)

Fig. 5.4(a):The predicted result of GM(1,1)
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Fig. 5.4(b) The predicted result of linear regression
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Fig. 5.4(c) The predictive error of GM(1,1) and linear regression

@ Case5: d =11cos(7zt)+ 29s8in(97t)+17cos(3.7z t)sin(5.4xt)
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Fig. 5.5(a) The predicted result of GM(1,1)
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Fig. 5.5(c) The predictive error of GM(1,1) and linear regression
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Comparison I1:
The comparisons between the GM(1,1) model and the modified PGM(2,1)

model will be shown as follows:

@ Case1: d=11cos(7t)+55sin(9t)+15cos(5.3t)cos(6.7t)
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Fig. 5.6(a) The predicted results of GM(1,1) and PGM(2,1)

43



120

! — GM(1.1)
: — PGME2.1)
)3 SN AN NS N—T—
] .
GM(1.1) ! i :
s ol Loy I I L L I |
= : : :
L | N  RERRN S BN B 5 S =
20 e b -
: : : S
0 | | | | i
0 0.5 1 1.5 2 2.5 3
Time
(b)

Fig. 5.6(b) The predictive errorof. GM(1,1) and PGM(2,1)

@ Case2: d =11cos(7t)+55sin(9t)+ 15c0s(5,3t)cos(6.7t)+ 22sin(4.5t)cos(3.3t)
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Fig. 5.7(a) The predicted results of GM(1,1) and PGM(2,1)
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Fig. 5.7(b) The predictive.error of GM(1,1) and PGM(2,1)

d =11cos(7t)+5sin(9t)+54sin(11t)+ 23cos(4.4t)cos(8.61)

Case 3:
¢ +33sin(2.1t)cas(5.2t)+29sin(3.5t)
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Fig. 5.8(a) The predicted results of GM(1,1) and PGM(2,1)
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Fig. 5.8(b) The predictive error of GM(1,1) and PGM(2,1)

@ Case4: d=11cos(7xt) + 29%5in(9t)
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Fig. 5.9(a) The predicted results of GM(1,1) and PGM(2,1)
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Fig. 5.9(b) The predictive error of GM(1,1) and PGM(2,1)

@ Case5: d =11cos(7zt)+ 29sin(9zt)+17cos(3.77t)sin(5.47t)
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Fig. 5.10(a) The predicted results of GM(1,1) and PGM(2,1)
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Fig. 5.10(b) The predictive error of GM(1,1) and PGM(2,1)
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Comparison 111
The comparisons between the traditional sliding-mode control and the novel

sliding-mode control incorporated with grey predictor will be shown as follows:

@ Case1: d=11cos(7t)+55sin(9t)+15cos(5.3t)cos(6.7t)
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Fig. 5.11(a) The simulation result of the novel sliding mode control
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Fig. 5.11(b) The simulation result of traditional sliding mode control

@ Case2: d =11cos(7t)+55sin(9t)+15c0s(5.3t)eos(6.7t)+ 22sin(4.5t)cos(3.3t)
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Fig. 5.12(a) The simulation result of the novel sliding mode control

50



o ns 1 15 2 25 3
Titme

(b)

Fig. 5.12(b) The simulation result of traditional sliding mode control

d =11cos(7t)+5sin(9t)+54sin(11t)+ 23cos(4.4t)cos(8.61)

Case 3 :
¢ +33sin(2.1t)cas(5.2t)+29sin(3.5t)
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Fig. 5.13(a) The simulation result of the novel sliding mode control
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Fig. 5.13(b) The simulation result of traditional sliding mode control

@ Case4: d=11cos(7xt) + 29%5in(9t)
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Fig. 5.14(a) The simulation result of the novel sliding mode control
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Fig. 5.14(b) The simulation result of traditional sliding mode control

@ Case5: d =11cos(7zt)+ 29sin(9zt)+17cos(3.77t)sin(5.47t)
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Fig. 5.15(a) The simulation result of the novel sliding mode control
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Fig. 5.15(b) The simulation result of traditional sliding mode control
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Chapter 6
Conclusions

This thesis has proposed a new method adopting grey theory for the prediction
of the disturbances. The substance of the grey theory is utilizing the lacking data on
hand to pick up the significant information and then go further and further until
reaching the destination. Grey predictor has a well performance of the disturbances
prediction by using only four data and simple calculations instead of a large amount
of data and the complicated computations. 1t should be known that grey predictor is a
low-frequency predictor so it is-not suitable for the disturbances with rapid variations,
such as white noise. The simulation results .of the PGM(2,1) model and the
sliding-mode control combined with grey predictor applied to speed control of DC
motor are also presented. These results demonstrate that the PGM(2,1) model has
better performance than the GM(1,1) model and the grey predictor indeed solves the
problem of estimating the upper bound of the disturbances. However, the results of
the PGM(2,1) model still has the problem of phase delay, some advanced
modifications could be applied to the original GM(1,1) model to make it more

efficient for the prediction of the disturbances.
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