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On the Stability Properties of Hexapod Tripod Gait 

TSU-TIAN LEE, CHING-MING LIAO, AND TING-KOU CHEN 

Abstract-In this communication, hexapod tripod gaits for straight- 
line motion and crab walking are derived. Mathematical relations that 
express the stability margin, the stride length, and the duty factor are 
formulated for straight-line motion and for crab walking, respectively. 
The derived results provide tripod gaits of the hexapod for walking with a 
prescribed stability margin either over perfect terrain or constant slope 
terrain. 

I. INTRODUCTION 
It is generally recognized by vehicle designers that the mobility 

characteristics of terrestrial animals are in many respects superior to 
those of wheeled or  tracked vehicles for off-road locomotion. Indeed, 
it is commonplace knowledge that much of the earth’s surface is 
accessible only to men on foot or to certain types of multi-legged 
animals. This fact has motivated considerable attempts to develop the 
multi-legged walking vehicles. During the past several years, the 
generalized walking vehicle with multiple degrees of freedom was 
considered, and the coordinated control of legs by computer to 
complete the walk by the suitable choice of lifting legs was 
investigated. As a matter of fact, although the number of the legs of 
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the walking vehicles under research varies from six to one, it seems, 
that the hexapod attracts more attention. This is justified by the fact 
that a number of walking vehicles under development is hexapod [2]- 
(41, [111-[161. 

The basic control problems that all the walking vehicles confront 
are: 1) How to generate the trajectory and the average speed? 2) How 
to determine the best sequence for liftoff and placing the feet? 3) 
What is the suitable distance that each leg should transfer in order to 
maintain a prescribed statical stability’? 4) How to control the body’s 
inclination and height? 5) How to develop a measurement system and 
information processing method to support the motion planning’? 

The problem of choosing the best sequence for liftoff and placing 
the feet of a walking vehicle is the gait selection problem. A 
considerable amount of previous research has been devoted to the leg 
sequencing problem [lj-[3], (91, [ I l l ,  [13], [14]. Central to this 
work has been the finite characterization of a leg’s states in which 
each leg of a machine is idealized to a two-state device, namely, 
either those of being on the ground (1-state) or  in the air (0-state) [ 11. 

Although the gait control problem of a hexapod has been studied by 
McGhee [1]-[3], Raibert and Sutherland [4], Orin [ l l ] ,  Sun (131, 
Ozguner et al. [ 151, Wilson [SI, Bessonov and Umnov [ 141, and Song 
[19], still, there are some problems which remain unanswered. These 
include: 

I )  The tripod gait for crab walking, with a prescribed stability 
margin, over perfectly flat terrain. 

2) The tripod gait for crab walking, with a prescribed stability 
margin, over constant slope terrain. 

3) The tripod gait for moving straightforward, with a prescribed 
stability margin, over constant slope terrain. 

This communication aims at studies of these problems and some 
results of McGhee [ l ] ,  [3] and Hirose [9] are extended to cover the 
case of hexapod crab walking. 

Basically, McGhee and Iswandhi [3] developed a nonperiodic gait, 
namely, the free gait of the hexapod. At each iteration, the free gait 
determines the legs’ movement adaptively that tends to maximize the 
number of legs in the air. This algorithm yields good mobility and is 
very useful in locomotion over rough terrain. A similar adaptive gait 
for quadruped had also been developed by Hirose (91. However, for 
the case of even terrain, simple solutions for the gait selection can be 
found without using the free gait. 

The purpose of this communication is to derive a simple periodic 
gait for the straight-line walking of the hexapod that will have three 
legs in the air and still ensure the guranteed stability margin during a 
complete locomotion cycle on the even terrain. Results are then 
generated for the crab walking tripod gait. Finally, these results are 
generalized for locomotion on constant slope terrain. It should be 
noted that all the results derived in this communication are based on 
the assumptions that 1 )  the hexapod has a symmetric structure, 2) the 
reachable area of each leg is a rectangular region, 3) the initial 
foothold positions should be at the specified locations before the 
locomotion starts. and 4) unless specified othcrwise, the hexapod is 
moving with constant speed. 

11. PROBLEM STATEMENT 
Consider the geometry of the hexapod shown in Fig. l(a) [3], in 

which each leg has a reachable area in the form of a sector of an 
annulus. Since overlapping reachable areas raise interference prob- 
lems [3], one way to solve it is to avoid it altogether by eliminating a 
priori all overlapping reachable areas so that each leg has a distinct 
region that can be accessed only by it and not by any other leg. 
Moreover, for simplicity of analysis, we define a rectangular region 
as the reachable region of each leg as shown in Fig. l(b). 

The problem considered in this communication is that given a 
reachable region of each leg of the hexapod as shown on Fig. I(b). 
determine the tripod gaits for I) moving straightforward with 
prescribed stability, and 2) crab walking with prescribed stability. 

In particular, mathcmatical equations that relate the stride length, 
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(b)  

Fig. 1. (a) Schematic top view of a hexapod showing leg numbering, 
boundary lines for foot placing. and reachable areas of legs. (b) The 
reachable area o f  each leg. 

duty factor, and stability margin for I )  crab-walking tripod gait, and 
2) moving straightforward tripod gait will be formulated, respec- 
tively. 

111. TRIPOD GAIT FOR STRAIGHT-LINE LOCOMOTION ON 
EVEN TERRAIN 

In the following. we assume the hexapod is moving in the +X-axis 
direction. The following definitions and notations are required for the 
derivations to be followed. 

Let q( t )  be the center of gravity of the hexapod, P the length of the 
reachable area along the X-axis, and Q the length of the reachable 
area along the Y-axis. 

Definition I 
The support pattern of a tripod gait is the convex hull of the point 

set in a horizontal plane which contains the area of the vertical 
projections of all supporting legs. 

Definition 2 ( I ]  

and on11 if  q ( t )  is contained inside the support pattern. 
The support pattern of a tripod gait is statically stable at time t if 

Let 

S + ( t )  

S ( t )  

S + ( t )  

the distance from q(r) to the boundary of support pattern 
along thc forward direction of motion (+x direction). 
the distance from q ( t )  to the boundary of support pattern 
along the oppositive direction of motion (-x direction). 
the distance from q( t )  to the boundary of the support 
pattern in a direction that is perpendicular to the motion 
direction ( + y  direction). 
the distance from q ( f )  to the boundary of support pattern 
in the opposite direction of s+ ( t )  ( - y  direction). 

S -  ( I )  

Definition 3 ( I ]  

and only if inin ( S ~  ( t ) ,  S +  ( t ) ,  S + ( t ) ,  S -  ( t ) )  = S, for all t 2 0. 
The tripod gait is said to have statical stability margin S(S > 0), if 

Let X(s, a ,  0) and P(s, a ,  0) denote the stride length and duty 
factor, respectively, of the hexapod for crab walk tripod gait on a 
slope plane with a minimum statical stability margin S ,  where a is the 
crab angle, and I9 is the slope of the plane. 

Let A (s, a ,  19) denote the distance that the body moves in order to 
maintain a minimum statical stability margin S whilc three legs are in 
their transfer states, where the hexapod is crab walking with tripod 
gait on a slope plane. 

Remark I :  When I9 = 0, i.e., on the flat terrain, the notations 

h(s,  a )  = h(s,  a ,  0 )  

0 6 ,  a )  = P(s, a ,  0) 
and 

A (s, a)  = A (s, a ,  0 )  

shall be used. 
Remark 2: When a = 0 and 0 = 0, the notations 

h(s)=X(s,  0, 0) 

P(s)=P(s,  0 ,  0) 

and 

A (s) = A (s, 0 ,  0) 

shall be used. 
Assume the hexapod is walking in the +x direction. Let the left 

side legs of the hexapod be numbered from front to back as I ,  2, 3 
and those on the right side (in the same order) as 4, 5, 6. Moreover, 
assume the initial foothold of each leg is as shown in Fig. 2(a). Then 
we have the following theorems: 

Theorem I 
The hexapod tripod gait for straight-line motion (in the +x  

direction) with zero stability margin is that the foothold positions, the 
support states of the legs, and the sequence of transferment of the legs 
are as shown in Table I with stride length 

X(s)=2A(O)=2A(s) l ,=o (1) 

and duty factor 

where A(0)  = P. 

Proof: Note that the “0” and “I”  on Fig. 2(a) denote the front- 
end and rear-end foothold positions of each leg, respectively. The 
front-end position of leg 2 (denoted ”0”) is adjacent to the rear-end 
position of leg 1 (denoted “ I ” ) .  From Fig. 2(b), it can be observed 
that the sequence of lifting and placing the feet as given by Table I 
docs indeed guarantee a zero stability margin. Furthermore, the body 
moves 2A (0) during a complete locomotion cycle, hence 

h(s) = 2.4 (0) = 2 P 

and the duty factor 

Q.E.D.  
Theorem I can be extended to generate the gait for straight-line 

walking with a prescribed stability margin S.  In fact, if the body 
(center of gravity) moves a distance S before the start of the liftoff of 
the feet, and the body moves a distance A (S). where A (S) = P - 
2 S ,  while the transfer legs swing in the air. then the tripod gait with 
prescribed stability margin S is obtained. Theorem 2 states the result. 
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(h) 
Fig. 2. (a) Schematic top view showing front-end foothold positions 

(denoted by “0”) and rear-end positions (denoted by “1”) of each leg. (b) 
The tripod gait with zero stability margin in a locomotion cycle. 

TABLE I 

STABILITY MARGIN 
SUPPORT STATES AND SUPPORT SEQUENCE OF TRIPOD GAIT WITH ZERO 

Phase I 2 3 4 

Where (i, j) i footholds position ( i  = 0, 1) 
j support state 

j = I for support leg 
j = 0 for transfer leg 

x all are support legs. 

Theorem 2 

+ x direction) with stability margin S is that 
The tripod gait of a hexapod for straight-line locomotion (in the 

1) the foothold positions are as shown in Fig. 3(a); 

3) the stride length 

(3) h(s) = 2 s  + 2 A  (s) 

4) the duty factor 

where 

P = A ( s ) + 2 S .  

Proo) Note that the “0,” “1,” “2,”  and “3” on Fig. 3(a) denote 
the foothold positions of each leg. The front-end foothold position of 
leg 2 (denoted “0”) is adjacent to the rear-end foothold position 
(denoted “3”) of leg 1 .  From Fig. 3(b), it can be observed that the 
specified sequence of movement of legs and body do provide a tripod 
gait with the stability margin S > 0. In order to characterize the 
movement of the legs, the movement of the body (center of gravity), 
and the foothold positions at each instant of this tripod gait, Fig. 
3(b), are expressed in a general table, as given by Table 11. Indeed, if 
B I  = B3 = S ,  and B2 = B4 = A (s), then Table I1 summarizes all the 
information required to characterize the hexapod tripod gait with 
stability margin S .  

From Table I1 and using B1 = B3 = S and B2 = B4 = A @ ) ,  it 
follows that the stride length 

h(s) = 2A (s) + 2 s  

since 

P =  A (s) + 2s 
therefore 

h(s)=2P-2S ( 5 )  

and the duty factor 

P P  1 p=-=- 
h(s) 2 P - 2 s  2 

Q.E.D. 
Remark 3: The maximal statical stability margin of the hexapod 

tripod gait occurs when A (s) = 0, i.e., P = 2 s .  Hence S,,, = P / 2 .  

I v .  TRIPOD GAIT FOR CRAB WALK ON EVEN TERRAIN 
The above results derived for straight-line walking can be further 

extended to cover the case for crab walk. In this section, the standard 
gait for crab walking will be derived. Crab walking of a quadruped 
has been defined and investigated by Hirose [9] .  According to [9], 
crab walking is defined as a walking motion with the direction of 
locomotion different from, or equal to, the longitudinal axis of the 
vehicle’s body. The angle between the longitudinal axis and the 
direction of motion is the crab angle, denoted by a. In the case of a 
= O ” ,  crab walking corresponds to straight-line walking. 

Since the configuration of the vehicle is symmetric with respect to 
both the X and Y axes; it is sufficient to determine the standard gait 
for a crab angle a in the range 0 5 (Y 5 90” [9]. 

From Fig. 4, the stroke length n(a)  of a leg is given by 

P/cos a, 

Q/sin a, 
for 0 5 a 5 tan-’ ( Q / P )  
for tan-’ ( Q / P )  5 01 5 90”. (7) n(a)= 

In order to specify the standard tripod gait for crab walk, we 
assume that the trajectory of each leg must pass through the central 2) the sequenceof movement for body (center of gravity) and legs 

are given by Table 11, in which B I  = B3 = S ,  and B2 = B4 = 
A (s) where A (s) = P - 2 s ;  

point c, of the reachable area R, as shown on-Fig. 4. Now, it appears 
that the reachable area of each leg for the crab walking should be 



430 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. 4, NO. 4, AUGUST 1988 

Phose I Phase 2 

B o d y  A2,f 1 ~ r o n s f e r  l e g s  2 . 4 , 6 .  
( M o v e  Body A i s 1  

Phase 3 Phase 

T r a n s f e r  l e g  fi{ :M",1." B o d y  A ( S I  I 

(b) 
Fig. 3. (a) The foothold position of legs with triangular support pattern showing the tripod gait having stability margin S. (b) The 

tripod gait with stability margin S during a complete locomotion cycle. 

TABLE I1 -P- Eyi THE FOOTHOLD POSITIONS, SUPPORT STATES, AND TRANSFER LEGS OF 
HEXAPOD TRIPOD GAIT WITH STABILITY MARGIN s 

R I  

Phase 1 2 3 4 

Fig. 4. The stroke motion of a leg at various crab angles. 
k g  1 (0, 1) (1, 1) (2, 1) (3, 0) 

Where ( i ,  j) i foothold position (i = 0, 1, 2, 3) 
j support state 

j = 1 for support leg 
j = 0 for transfer leg 

x all are support legs. 

redefined. To see this, let us consider the critical support pattern 
ADEF as shown on Fig. 5. Notice that when any of the three vertices 
of triangular support pattern ADEF is located inside the shaded 
regions, denoted by diagonal cross-hatch, the hexapod is unstable. 
Therefore, these regions denoted by the diagonal cross-hatched area 
are the forbidden regions for the support pattern ADEF. Similarly, 
there are forbidden areas corresponding to the other three critical 
support patterns AGHI, AFDK, and AHJG denoted by parallel 
cross-hatched, vertical cross-hatched, an diagonal cross-hatched 
areas, respectively, as shown in Fig. 5. 

Combining all forbidden regions of these four critical support 
patterns, one obtains Fig. 6, where shaded areas are forbidden areas 
of leg 2 (or leg 5) [9]. Note that 

6(a)=AB= [ ( X ,  -Xe)2+ ( Y, - Yg)2]"2 (8) 
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Fig. 5 .  The triangular critical support patterns of their corresponding 
forbidden regions of tripod gait while crab walking. 

where (&, Y,) and (,YE, Y E )  denote the Cartesian coordinates of 
points A and B,  respectively. It can be shown that 

i) When CY < tan-'  ( Q / P )  

and 

Y,= (Ap) x, 
x2-, 

\ A /  

where X 2  and Y2 are the positions of the center of gravity of 
reachable area R2. 

i i)  When a > tan- '  ( Q / P )  

(10) 
Y2 - (tan a ) X 2  

tan a 
X ,  = 

y2 

x2-7 

-- 
P 
,2 

Now we are ready to derive the following theorem for crab walk. 

Theorem 3 
Assume a hexapod i s  walking on a flat terrain (0 = 0). The crab 

walk tripod gait of the hexapod, at crab angle a and with zero stability 
margin, is as follows: 

1) The sequence of the movement of the body (center of gravity) 
and the transfer legs are as shown in Table 11, in which 

Bl = B3 = 6(a) and B2 = B4 = A  (0, a) 

where A (0, a)  + 26(a) = n(a) ,  and the foothold positions denoted 
by 0, 1 ,  2, and 3 are as shown on Fig. 7. 

2) The stride length 

X(0, a)=2A(O, a)+26(a). (1 1) 

3) The duty factor 

A (0,  a )  + 26(a) 
p(O, a ) = 2 A ( 0 ,  a)+26(a) . 

0 

3 

M o t i o n  d l rec t lon  

, 
0 

3 0 D e n o t e  I n i t i a l  

3 3 Footho ld  Poslt lon 

Fig. 7. The foothold positions of each leg of tripod gait having zero stability 
margin while crab walking. 0: Initial foothold position. 

n n 

,' v- M o t i o n  d i r e c t i o n  
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I 
x 
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l e g  6,' l (q '5  ' l e g  4 
0 0  0' 

0 

3 3 

0 l n l l l a l  f o o t h o l d  p o s i t ~ o n  

Fig. 8. The foothold positions of tripod gait having stability margin S while 
crab walking. U: Initial foothold position. 

Proof: The proof is similar to that of Theorem 2, expect for the 
foothold positions as shown on Fig. 7 and Bl  = B3 = 6(a), B2 = Bd 
= A ( 0 ,  a).  Hence, the proof is omitted. 

Q.E.D. 
Note that Theorem 3 can be further extended to generate the tripod 

gait of the hexapod for crab walking with stability margin S. In fact, 
if the foothold positions denoted by 0, I ,  2, 3, are as given by Fig. 8, 
and if the body (center of gravity) moves a distance Bl = B3 = S t- 
6(a) during phase 1 and phase 3, and a distance B2 = B4 = A ( S ,  a) 
during phase 2 and phase 4 (where A (s, a)  = n(a)  - 2S - 26(a)) 
then we have the crab-walk tripod gait with stability margin S. 
Hence, we have the following result. 

Theorem 4 

Assume a hexapod is to walk on a flat terrain (0 = 0). The crab 
walk tripod gait of a hexapod, at crab angle a and with stability 
margin S > 0, is as follows: 

1) The sequence of movement of the body and legs is as shown on 
Table 11, in which 

B l = B j = S + 6 ( a )  and B 2 = B 4 = A ( S ,  a)  

and the foothold positions are as shown on Fig. 8.  
2) The stride length 

X(S, a ) = 2 A ( S ,  a)+2S+26(CY). 

3) The duty factor 

A (0, a)  + 26(CY) 
2 A  (0,  a )  + 26(a) - 2s p(S9  
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where 

A ( S ,  a )  = n(a)  - 2 s -  26(a). 

Remark 4: Similarly to Remark 2, it is easy to show that the 
maximal stability margin that the crab walking tripod gait can 
possible achieve is 

v. THE TRIPOD GAITS ON A CONSTANT-SLOPE TERRAIN 

Consider a hexapod walking with a crab angle a on a constant- 
slope terrain, as shown in Fig. 9. Now it is easy to see that the center 
of gravity of the hexapod will shift a distance h tan 0, where 0 is the 
slope angle and h is the height between q( t )  and the sloped plane, 
away from the horizontal plane. As a result, the critical support 
patterns of the tripod gait for crab walking on the sloped plane will 
also shift a distance A(0) = h tan 0 compared to that on the perfectly 
flat terrain, as illustrated by Fig. 9. Furthermore, the forbidden areas 
for the triangular support pattern are redefined as shown on Fig. 10. 

Based on the above observations, the tripod gaits for straight-line 
walking over flat terrain can be generalized to cover the case of tripod 
gaits on constant slope terrain. Thus we have the following theorem: 

Theorem 5 
Assume a hexapod is to walk on a constant slope plane with slope 

angle 0. The tripod gait for straight-line walking with stability margin 
S is as follows: 

1 )  The foothold positions are as shown on Fig. 3(a). 
2)  The sequence of movement for body and legs is as given by 

B l = B 3 = S + A ( 0 )  and B 2 = B 4 = A ( S ,  0, 0) (16) 

Table 11, in which 

where 

A(S, 0, 0)=P-2S-2A(O). (17) 

3) The stride length 

h(S,  0, 0) = 2A (S, 0,  6) + 2S+  2A(O). (18) 

4) The duty factor 

A(S,  0, 0)+2A(0) 
p(s ’07  ‘)=2A(S, 0,  0)+2S+2A(8) ’ 

Similarly, for crab walk on a slope plane, the forbidden areas for 
the triangular support pattern could be redefined as shown in Fig. 1 1, 
and we have the following hexapod tripod gait as given by Theorem 
6. 

Theorem 6 
Assume a hexapod is to walk on a constant slope plane with slope 

angle 8. The crab-walk tripod gait of a hexapod, at crab angle a and 
with stability margin S, is as follows: 

1) The foothold positions are as shown on Fig. 8.  
2) The sequence of movement for body and legs is as given in 

Table 11, in which 

Bl=B,=S+6(a)+A(0)  and B 2 = B 4 = A ( S ,  a, 0) (20) 

where 

3) The stride length 

JK l l  
Fig. 9. The hexapod walks on the constant slope plane 

T r i a n g u l a r  suppor t  ,,/ s t o n  di rec t ion  
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I 

A(@,’, t e r r a i n  

Fig. 10. The support patterns of crab walk tripod gait on constant slope 
plane and flat terrain with stability matgin S. 

n 

Fig. 11. The forbidden area of crab walk tripod gait on a constant slope 
plane, where S(a) = AB and A(0) = E. 

4) The duty factor 

(23) 
A (0, a ,  0) + 2A(O) + 26(a) 

2A(0, a ,  0)+2A(0)-2S+26(a) ‘ 
P(S,  a ,  e ) =  

Remark 5: Theorem 6 is a very general result that quantitatively 
characterizes the foothold positions, the stability margin, and the 
sequence of movement of body and legs. In fact, Theorems 1-5 are 
all special cases of Theorem 6. Any of Theorems 1-5 can be derived 
from Theorem 6 by substituting suitable values of 0 and a. 

Remark 6: The maximal stability margin that the crab-walk tripod 
gait of a hexapod can possibly achieve is 

Fig. 12 shows how the stability margin, the stride length, and duty 
factor of a hexapod tripod gait are related to one another as a function 
of 0, the slope angle of the terrain, and a ,  the crab angle. In this 
figure the dimensions are P = 60 cm, Q = 40 cm, h = 65 cm, W = 
10 cm, and D = 40 cm. From this figure, the required stride length 
and duty factor that corresponds to a regular tripod gait for crab walk 
with a specified stability margin, slope angle, and crab angle can be 
easily obtained without any further calculation. 

Since the slope angle 0 affects the stability margin of the support 
pattern of the hexapod, there must be some specific value of 0 that 
causes zero stability margin. In the following, we will investigate the 
maximal slope angle, Omax, so that the hexapod can walk without 
causing instability. The following theorem shows the result. 

Theorem 7 
The maximal slope angle, Omax, that the crab-walking tripod gait of 
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Fig. 12. (a) The relation between stride length and stability margin as a function of slope angle and crab angle. (b) The relation 

between duty factor and stability margin as a function of slope angle and crab angle. 

a hexapod can walk stably at is VI. CONCLUSIONS 

Proof: Since the maximal slope angle for a crab-walking tripod 
gait occurs at S,,, = 0, therefore 

A (0,  a ,  ~ n l a , )  = 0 

or 

?(a) - 
2 A(@,,, = h tan Om,, = 

Thus 

Remark 7: In the case of walking straighforward (i.e., a = O), 
then 6(a)  = 0, and ~ ( a )  = P .  Therefore 

P 
e,,,=tan-' - 

2 h  

Results have been generated which quantitatively characterize the 
stability margins of the hexapod tripod gaits. In particular, the 
mathematical expression representing the relations between the 
stability margin, the stride length, and the duty factor are formulated. 

The tripod gait of the hexapod for crab walking over perfectly flat 
terrain and over constant slope terrain are derived, respectively. We 
reiterate that these results are obtained based on the assumptions that 
1 )  the hexapod has a symmetrical structure, 2) the reachable area of 
each leg is a rectangular region, 3) the initial foothold positions 
should be specified before the locomotion starts, and 4) the sequence 
for liftoff and placing the feet are as specified. It should be noted that 
by simply combining derived tripod gaits for moving straightforward 
and crab walking, one can achieve obstacle avoidence path planning 
and, possibly, the suitable gaits for a hexapod walking over irregular 
surface which can be approximated by the piecewise segments of 
perfect flat terrain and the constant slope terrain. Thus far, some 
preliminary results have been obtained. The complete solutions to 
this problem are still under investigation. 
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second one is based on a Euler rotation representation. The quaternion 
vector approach leads to a linear feedback control law for which the 
global asymptotic convergence of the orientation error is readily estab- 
lished. The Euler rotation approach also results in asymptotic error 
convergence in the large except for a singularity where the hand 
orientation differs from its desired orientation by a rotation of 180”. 

I. INTRODUCTION 
Manipulators with six or  more degrees of freedom are generally 

required to follow preplanned paths of hand position and orientation 
defined as a function of time in Cartesian (or task space) coordinates. 
For closed-loop control of resolved motion, the instantaneous motion 
of the hand, or  end-effector, must be monitored continuously either 
by using direct endpoint sensing techniques (e.g., [ I ] )  or  via a 
kinematic model of the manipulator which computes the hand 
position and orientation from the joint variables. This information is, 
in turn, used to produce corrective control action from the joint 
actuators in the manipulator (Fig. I ) .  

The hand position and orientation of a manipulator are typically 
represented by the position vector and rotation matrix, respectively, 
between reference coordinate frames fixed to the base and the last 
link of the manipulator [2]. The rotation matrix has the general form 

&fj= In s a] (1) 

where n,  s, and a are the normal, slide, and approach (unit) vectors 
of the hand frame expressed in base frame coordinates. 

It is clear that the position vector p and its derivatives ( j  and p 
for velocity and acceleration, respectively) completely describe the 
translational motion of the hand. The position tracking error may be 
defined as 

e, = p  -Pd (2) 

where P d  denote the desired hand position vector. The velocity and 
acceleration errors can be defined accordingly as e, = ( j  - j d )  and 
e,= ( p  - j d ) ,  respectively. 

If o and G denote the angular velocity and acceleration of the hand, 
then the corresponding error terms may be defined as eo = (w  - o[j) 

and e o =  (G - Gd),  where wd and denote the desired angular 
velocity and angular acceleration, respectively, of the hand. The 
question that arises now is: What is an appropriate counterpart for p 
which represents i o dt in the following definition of orientation 
tracking error? 

This question takes on particular significance in the context of closed- 
loop manipulator control since the position and orientation errors of 
the hand are used explicitly in the feedback loop. 

When the manipulator is controlled in its joint coordinates 13, ch. 
71, there is no need to generate the hand orientation error as in (3) 
since the desired traiectorv. reDresented by the hand position and -..... .~~~ ~ ~~ . , d .  
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rotation matrix, may be converted directiy into a corresponding 
trajectory in the joint coordinates. The inverse kinematic models used 
for such a conversion, however, are typically very complex and exist 
as closed-form solutions only for manipulators with special configu- 
rations, such as parallel adjacent joints or  spherical wrists [3, ch. 31. 

Abstract-Euler parameters, a form of normalized quaternions, are 
used here to model the hand orientation errors in resolved rate and 
resolved acceleration control of manipulators. The quaternion formula- 
tion greatly simplifies the stability analysis of the orientation error 
dynamics. Two types of quaternion feedback have been considered. The 
first type uses only the vector portion of the quaternion error, while the 

For orientation error feedback, the rotation matrix representation 
of ( 1 )  is clearly impractical simply because there are too many 
elements in the matrix. More importantly, not all of its elements 
(which are direction cosines) are independent due to the requirement 
of orthogonality among the unit vectors n, s, and a. 

Despite their nonuniqueness, Euler angles are frequently used to 
represent orientation [4, ch. 2 .1 .  I ]  mainly because of their physical 
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