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兩條平行河川間自由水層因抽水所引起的三維地下水

流通解 

研究生：黃璟勝            指導教授：葉弘德 

國立交通大學環境工程研究所 

摘要 

本研究發展一個數學模式，用以描述在兩條平行河川之間的自由含水層，因

抽水井所引起的三維地下水流之解析解。所建構的數學模式，包含一個新的地下

水流控制方程式，使所發展的解析解可適用於三種抽水井，包含垂直井、水平井、

及輻射收集井；接著採用自由液面方程式，描述液面因抽水而產生的洩降，並以

第三類邊界條件代表兩條平行河川的低透水性河床。應用積分轉換的方法，推導

出此數學模式的水力水頭解析解，此解由含特徵函數的三階無限級數所組成，其

特徵值的計算需用到尋根法；我們提出一個解析公式用來求適當的初始猜值，配

合牛頓法可有效率地求出特徵值。依據達西定律和水頭解析解，可導出描述河川

滲入率(stream depletion rate, SDR)的解析解，此解析解對現地的水平井或輻射收

集井的預測，可與現地問題量測的結果相吻合。依據解析解的模擬結果，我們得

到以下的結論：未受壓含水層中的重力排水對 SDR 有顯著的影響，在抽水中期，

SDR 不隨抽水時間增加而增加，若忽略水頭垂直方向的變化，會顯著地高估

SDR，此結論和紐西蘭 Doyleston 附近的現地實驗結果一致。此外，輻射收集井

的側臂分布對於洩降有顯著的影響，在河川滲入行為發生之前，最大洩降位於在



 

 III 

輻射井的中心；當河水開始滲入含水層，最大洩降開始遠離井中心並往內陸方向

移動。 

關鍵字： 垂直井、水平井、輻射收集井、受壓含水層、自由液面方程式、河川

滲入率(SDR)、二重積分轉換、有限複立葉餘弦轉換、拉普拉斯轉換 
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A General Analytical Solution for Three-Dimensional Groundwater 

Flow Induced by Pumping in Unconfined Aquifers Bounded by Two 

Parallel Streams 

Student：Ching-Sheng Huang    Adviser：Hund-Der Yeh 

Institute of Environmental Engineering 

National Chiao Tung University 

ABSTRACT 

This thesis develops a mathematical model for describing three-dimensional 

groundwater flow induced from a vertical well, horizontal well or radial collector well 

(RC well) in an unconfined aquifer bounded by two parallel streams. A new governing 

equation with a sink term standing for the well is presented. A simplified free surface 

equation is used to describe the depletion of water table in the aquifer. The third-type 

boundary condition is employed for the boundary condition at the interface where a 

low-permeability streambed is connected to the aquifer. The aquifer we concern is of 

finite extent; therefore, the head solution of the model, derived by integral transforms, 

can be expressed in terms of an infinite series with eigenvalues requiring a 

root-finding scheme such as Newton method. An analytical expression is developed to 

give initial guesses for the eigenvalues. The solution for stream depletion rate (SDR) 

describing filtration rate from the streams is acquired based on Darcy’s law and the 

head solution. The present solution is applied to predict the hydraulic head near a 

horizontal well or a RC well for the real-world cases. The predicted results are 

reasonable when compared with the field observed data. With the aid of the present 

solution, we have found that the gravity drainage of an unconfined aquifer has 
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significant effects on temporal SDR. The curve of temporal SDR tends to be flat due 

to the gravity drainage during the middle period of pumping time. The vertical 

groundwater flow described by the free surface equation should be used even for the 

case of a fully-penetrating well. The SDR will be overestimated if neglecting the 

vertical flow in the model. Such a result is confirmed by the comparison of SDR 

predicted from the present solution with that taken from a field SDR experiment 

executed near Doyleston in New Zealand. Additionally, lateral configurations of a RC 

well have significant effects on spatial drawdown distributions. The largest drawdown 

occurs right at the center of a RC well before the filtration and moves landward once 

the filtration starts to recharge the aquifer. 

KEYWORDS: vertical well, horizontal well, radial collector well, confined aquifer, 

free surface equation, stream depletion/filtration rate (SDR), double-integral 

transform, finite Fourier cosine transform, Laplace transform 
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NOTATION 
h : hydraulic head in an aquifer 
(x, y, z) : variables of Cartesian coordinate where x axis is perpendicular to 

streams 
t : time 

(Kh, Kv) 
: hydraulic conductivity in the horizontal and vertical direction, 

respectively 
Sy : specific yield 
Ss : specific storage 
(Wx, Wy) : aquifer width in x and y direction, respectively 
D : aquifer thickness 
T : transmissivity (Kh D) 
S : storage coefficient (Ss D) 
( '1K , '1B ) : streambed hydraulic conductivity and its thickness, respectively, on the 

left hand side of an aquifer 
1c  : )'/(' 11 BKK h  

( '2K , '2B ) : streambed hydraulic conductivity and its thickness, respectively, on the 
right hand side of an aquifer 

2c  : )'/(' 22 BKK h  
Q : pumping rate 
N : the number of laterals 
(x0, y0) : location of vertical well or the center of radial collector well 
z0 : elevation of horizontal well or radial collector well 
(Ln, nθ ) : length and counterclockwise angle from x axis, respectively, for the n-th 

lateral 
),,( 0 ki ββα  : roots of equation (20), (21), and (22), respectively 
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CHAPTER 1 INTRODUCTION 

1.1. Background 

Groundwater depletion, a key issue associated with groundwater supplies, has been 

increasing rapidly and inevitably as a result of industrial development and growing 

population since the past haft century [e.g., Konikow and Kendy, 2005; Zume and 

Tarhule, 2008; Kim, 2010; Ravazzani et al., 2011]. The average rate of groundwater 

consumption is estimated in the range of 750-800 km3/year in the whole world [Shah et 

al., 2000]. Groundwater withdrawals will induce a considerable amount of filtration 

from a reservoir to its adjacent aquifer if an abstraction well is installed near the 

reservoir. Therefore, it is worthy to review the effects of groundwater withdrawals on 

some issues such as aquatic ecosystem near streams, water quality for agricultural 

irrigation, distributions of water rights, and utilization for households and industries. 

Aquatic ecosystem near a stream will be damaged if the stream stage declines 

excessively due to a large quantity of filtration [Wen and Chen, 2006]. The balance of 

food chain could be destroyed if a specific species is removed. Some hydrophytes are, 

for example, not survival in the absence of a high-level stream stage, and herbivores are 

jointly not, either. 

Groundwater abstractions for agricultural irrigation could become contaminated 

through recharges from the stream entraining pollutants. During drought seasons, a large 
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amount of groundwater is withdrawn, and the contaminants enter the aquifer through 

filtration. During rainy seasons, the contaminants are remained in the aquifer even when 

pumping from wells ceases. After several alternations between drought and rainy 

seasons, the contaminants may eventually reach the abstraction wells, and in turn 

degrade the quality of pumped groundwater. 

    Groundwater recharge from two different surfaces sources such as streams is 

involved in distribution of water from surfaces sources regulated by water rights. The 

contribution to groundwater abstraction for a well comes from two streams. Generally 

speaking, most of the groundwater is contributed from the neighboring stream. However, 

under some conditions, all of the groundwater may be extracted almost from the other 

stream far away from the abstraction well. Accordingly, an accurate estimate of 

filtration rate plays an important role for hydrologists in the managements of water 

resources. 

In the past, to meet the water demand for domestic and industrial, dams had been 

used for storage of surface water in providing more consistent supplies. However, a 

suitable site for dam construction is scanty. Recently, awareness of environmental and 

ecological consciousness has resulted in dam removals. Groundwater utilization 

therefore becomes inevitable. 

Filtration from a reservoir prevents expressive extraction of groundwater and thus 



 

 3 

land subsidence. During the early period of pumping time, the filtration recharges the 

adjacent aquifer with parts of the groundwater extraction. The drawdown increases with 

time due to the loss of the groundwater. During the late period, the stream water 

filtration balances the groundwater withdrawal, and the drawdown becomes stabilized. 

1.2. Radial Collector Well (RC Well) 

Radial collector wells (RC wells) have been commonly designed and used to 

collect water from a nearby stream. The RC well designed by Ranney Leo was 

developed from horizontal wells in 1930s [Hunt, 2006]. A RC well generally comprises 

a central reinforced concrete caisson and several laterals under the ground surface. The 

central caisson is drilled downward with an inside diameter ranging from 3 to 6 m or 

larger, and the laterals horizontally extend from the central caisson at a proper depth in 

an aquifer. The advances in well-drilling techniques provide more practical guidance on 

well installations in aquifers. The groundwater moves through the laterals to the caisson 

if the RC well starts pumping. 

The magnitude of drawdown can be controlled artificially by adopting a RC well 

with several laterals. Compared with a traditional vertical well, for the same pumping 

rate, the RC well extracts groundwater from a wider range by extended horizontal 

laterals. The drawdown can thus be minimized as small as possible. However, the length 

of the vertical well is limited by the thickness of the aquifer. The smallest drawdown is 
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accordingly determined based on the natural situation of aquifer thickness. 

1.3. Review of Previous Solutions 

A variety of analytical and semi-analytical solutions have been developed to assess 

stream filtration induced from pumping under the condition of a fully-penetrating 

stream. They can be classified according to the dimensions of groundwater flow, namely, 

two-dimensional (2-D) flow, quasi three-dimensional (quasi 3-D) flow, and 

three-dimensional (3-D) flow, as shown in the following three sections, respectively. 

1.3.1. Two-Dimensional Flow 

Most of the solutions have been developed considering 2-D groundwater flow 

induced by a fully-penetrating well in a confined aquifer or a leaky confined aquifer 

with a nearby stream. Theis [1941] was the first to propose an analytical solution for 

stream filtration in a confined aquifer. The aquifer extends infinitely in the horizontal 

direction, and the stream generated without a low-permeability streambed by 

image-well theory is actually subject to a first-type boundary condition. The solution is 

expressed in terms of an improper integration. Glover and Balmer [1954] simplified 

Theis’ solution [1941] to a concise expression in terms of a complementary error 

function. Hantush [1965] considered the same situations as Theis [1941] but under a 

third-type stream boundary condition with a low-permeability streambed, and developed 

analytical solutions for hydraulic head and stream filtration. 
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The stream is commonly regarded as a source term in the governing equation. The 

source term is expressed in terms of the Dirac delta function, representing a zero width 

stream. Those solutions to the equation with a source term are applicable to the case of a 

low-permeability streambed. On the other hand, the stream is treated as a line source for 

the fully-penetrating stream under Dupuit assumption [Sun and Zhan, 2007]. Hunt’s 

solution [1999] might be the first analytical solution derived by treating the stream as 

the line source for a confined aquifer and was shown to be exactly the same as 

Hantush’s solution [1965] according to Sun and Zhan [2007]. His solution is valid for 

the whole domain of the aquifer divided by the stream because of the treatment of a 

stream as a source term. In contrast, based on the treatment of the stream as a boundary, 

Hantush’ solution [1965] is limited to the case of the side where a well is installed. 

Additionally, Zlotnik and Tartakovsky [2008] also treated a stream as the line source but 

considered a leaky confined aquifer. They presented an analytical solution for hydraulic 

head and stream filtration. 

To account for the effect of stream width on the model, some researchers divide an 

aquifer into three zones with different governing equations. The middle zone has a 

width equaling the stream width. Only the side zone has a fully-penetrating well treated 

as a sink term in the governing equation. Those three governing equations are coupled 

through the continuity requirement for head and flux at the boundaries between the 
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middle zone and side zones. Butler et al. [2001] used this approach to derive a 

semi-analytical solution in Laplace domain for a confined aquifer and analyzed the 

effect of stream width on stream filtration. Fox et al. [2002] considered the same model 

as Butler et al. [2001] and derived an analytical solution in time domain. 

    Some articles are proposed to treat a stream as a first-type boundary condition for a 

wedge-shaped aquifer or a triangle confined aquifer. Yeh et al. [2008] developed an 

analytical solution for describing temporal head distribution and stream filtration for a 

wedge-shaped aquifer bounded by a stream. For the triangle aquifer, Asadi-Aghbolaghi 

and Seyyedian [2010] derived an analytical solution for steady-state head distributions 

in the finite aquifer where two of the sides are a first-type stream boundary and the other 

side is either a first-type boundary or a no-flow boundary. 

    Most of the articles adopted a third-type stream boundary as a stream boundary in 

which the streambed permeability is considered but its storage is neglected. To account 

for the storage effects, some articles considered the role of a streambed in the different 

way. The streambed is treated as parts of an aquifer rather than parts of the boundary 

and has different permeability and storage from the adjacent aquifer. One-dimensional 

(1-D) groundwater flow which is perpendicular to the stream is considered in the 

streambed. Under this situation, Sun and Zhan [2007] considered two parallel streams 

for distributions by water rights and developed a semi-analytical solution for estimating 
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the distributions of stream filtration from these two streams with different hydraulic 

parameters. Intaraprasong and Zhan [2009] considered a temporal and spatial variation 

in stream stage and derived a semi-analytical solution for quantifying the effect of the 

variable stage on stream filtration. 

    The solutions mentioned above are summarized in Table 1. All of these solutions 

account for the effect of 2-D flow induced by a fully-penetrating vertical well and can 

be categorized based on the aquifer types and stream treatments. 

1.3.2. Quasi Three-Dimensional Flow 

Quasi 3-D flow model represents a multiple-layered aquifer system in which the 

flow in the aquifer is horizontal and in the aquitard is vertical. The flow in the aquifer 

system is coupled through the leakage term in their governing equations. The aquifer 

system is classified herein into a semi-confined aquifer, leaky confined aquifer, and 

two-layer aquifer system. Firstly, a semi-confined aquifer consists of a main aquifer and 

a semi-permeable confining unit on the top. The groundwater flow in the unit is treated 

to be vertical as a result of its thin thickness. Hunt [2003] developed an analytical 

solution for head and stream filtration in such a semi-confined aquifer. The stream is 

treated as the source term of zero width. Hunt [2008] also considered a semi-confined 

aquifer but considered the stream as the source term of finite width. The aquifer extends 

infinitely along the stream and is bounded by no-flow boundaries in the direction 
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perpendicular to the stream. He developed a semi-analytical solution for hydraulic head 

and stream filtration. Secondly, a leaky confined aquifer herein contains a main aquifer 

and the aquitard at the bottom. The aquitard has only vertical flow due to its thin 

thickness. Butler et al. [2007] derived a semi-analytical solution describing hydraulic 

head and stream filtration for such an aquifer. Thirdly, a two-layer aquifer system 

represents that each aquifer has horizontal flow and is coupled with the other one by the 

leakage term in the governing equation. Hunt [2009] developed a semi-analytical 

solution for such a aquifer system. The stream is treated as a source term of zero width, 

and the vertical well fully penetrates the upper aquifer. Ward and Lough [2011] 

considered the same situations but the well is installed in the lower aquifer. They 

derived a semi-analytical solution in Fourier and Laplace domain for hydraulic head and 

in Laplace domain for stream filtration. 

1.3.3. Three-Dimensional Flow 

The analytical solutions involved in predicting the stream filtration induced by 

pumping from a partially-penetrating vertical well, slanted well, horizontal well and RC 

well are reviewed herein. These solutions take account of the vertical component of 

groundwater flow even in a confined aquifer. Based on a 3-D groundwater flow 

equation, Sedghi et al. [2009] presented a semi-analytical solution for groundwater flow 

in a wedge-shaped confined or unconfined aquifer with a vertical partial penetration 
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well. Tsou et al. [2010] derived an analytical solution for temporal stream filtration 

induced from a slanted well in a confined aquifer. They found that the temporal 

filtration from a fully-penetrating stream toward a horizontal well parallel to the stream 

will reach its steady-state quickly. Huang et al. [2011] used 3-D groundwater flow 

equation along with a simplified free surface equation to represent the upper boundary 

of an unconfined aquifer and developed an analytical solution for describing temporal 

stream filtration induced from a horizontal well. Their solution can be applied to 

investigate the effect of specific yield on temporal distributions of stream filtration. 

Those two solutions regarded the stream as a first-type boundary without considering 

the presence of a streambed. Recently, Huang et al. [2012] used a third-type boundary 

condition to represent the condition at a stream with a low-permeability streambed and 

presented an analytical solution to describe temporal stream filtration induced from a 

RC well in unconfined aquifers. Those three solutions mentioned above are expressed in 

terms of a multiple integral and thus need a root search scheme and numerical 

integration to compute the solutions. 

    Some semi-analytical solutions were presented to deal with the problem with a 

horizontal well in a leaky confined aquifer underlying a water reservoir. The reservoir 

was of an infinite extent in the horizontal direction and treated as a constant-head 

boundary at the top of the aquifer. Zhan and Park [2003] presented a semi-analytical 
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solution under such a situation. The aquifer is directly connected to the overlying 

reservoir without a low-permeability aquitard in between. Sun and Zhan [2006] 

developed a semi-analytical solution under the same situation but took account for the 

presence of the aquitard with elastic storage and low permeability. 

The solutions reviewed in the previous two sections are summarized in Table 2. 

These solutions involved in quasi 3-D flow and 3-D flow are categorized based on the 

aquifer categories, well types, and stream treatments. 

1.4. Objective 

In this thesis, a general mathematical model is developed for 3-D groundwater 

flow induced by pumping in a vertical well, horizontal well or RC well in an unconfined 

aquifer near two parallel streams. The variation of water table of the aquifer is 

characterized by a simplified free surface equation. A third-type boundary condition is 

adopted at both streambeds with different permeability. The aquifer is of finite extents 

in x, y and z directions for simplifying the calculation of the solution to the model. The 

head solution is derived by double-integral transform, finite Fourier cosine transform 

and Laplace transform, and expressed in terms of series with sequences requiring a 

root-searching scheme. The appropriate initial guesses are explained graphically and 

then formulated as analytical results. Based on Darcy’s law and the head solution, the 

solution describing temporal stream filtration rate (SDR) is then developed. 
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The behaviors of hydraulic head and SDR have been investigated by the developed 

solutions. The effect of the vertical component of groundwater flow on spatial head 

distributions is examined under the condition of fully-penetrating vertical wells. Spatial 

head distributions induced by a horizontal well for various elevations are displayed 

graphically, and the predicted hydraulic head inside the horizontal well is compared 

with the observed field data of Mohamed and Rushton [2006]. The effects of the 

configuration of the laterals of the RC well on the SDR and variation in water table are 

investigated, and the predicted water levels are compared with observed field data of 

Schafer [2006] and Jasperse [2009]. Moreover, the effects of the streambed 

permeability on the SDR and variation in water table are examined. The patterns of 

temporal SDR distributions for various vertical hydraulic conductivities of an 

unconfined aquifer are demonstrated. The temporal SDR predicted from the present 

solution is compared with that observed from a field SDR experiment conducted by 

Hunt et al. [2001]. 
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CHAPTER 2 METHODOLOGY 

A 3-D mathematical groundwater flow model describing spatial and temporal 

hydraulic head distribution with appropriate boundary conditions is built in this chapter. 

Then, the solution of the model is derived based on techniques of integral transforms. 

2.1. Mathematical Model  

Consider an unconfined aquifer bounded by two parallel streams with a 

fully-penetrating vertical well and a RC well with several laterals as shown in Figures 

1(a) and 1(c), respectively. In order to avoid the solution being expressed in terms of a 

multiple integral, we consider the aquifer of the finite extents in x-, y-, and z-directions. 

The aquifer has finite widths Wx and Wy in x- and y-directions, respectively, as shown in 

Figure 1(a) and a finite thickness D in z-direction as shown in Figure 1(b). The aquifer 

can be regarded as a semi-infinite one if Wx and Wy are a large value. As such, the 

hydraulic gradient near x=Wx and/or 2/yWy ±=  maintains zero during the pumping 

period. The streambed on the left hand side (LHS) and right hand side (RHS) has a 

width '1B  and '2B , respectively, as shown in Figure 1 (a). The vertical well is located 

at (x0, y0) shown in Figure 1(a), while the bottom of the collector well is located at (x0, 

y0, z0) demonstrated in Figure 1(d). Each of laterals of the collector well has a length Ln 

and counterclockwise angle �n from positive x axis, and the subscript n represents the 

n-th lateral. 
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The governing equation describing spatial and temporal hydraulic head h(x, y, z, t) 

in response to the pumping from a fully-penetrating vertical well can be expressed as 
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where ()δ  is Dirac delta function; Kh and Kv are hydraulic conductivities in the 

horizontal and vertical directions, respectively; Ss is specific storage; Q/D is the 

constant discharge intensity along the well; t is time. On the other hand, the equation 

describing hydraulic head due to pumping at a RC well is given as [e.g., Sun and Zhan, 

2006; Sedghi et al., 2009; Tsou et al., 2010; Huang et al., 2012] 
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    Combining through the sink terms of these two equations yields a general equation 

for a fully-penetrating vertical well and RC well as  
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where both r and v are a constant of either 1 or 0. Equation (3) reduces to equation (1) 

for a fully-penetrating vertical well if r=0 and v=1. On the other hand, equation (3) 

reduces to equation (2) for a RC well if r=1 and v=0. 

    The value of hydraulic head depends on the location of a reference datum where 

the elevation head is set as zero. The level of water table serves as the reference datum 

and maintains static before pumping. The initial condition is therefore written as  

00 == tath .              (4) 
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    A partially-penetrating stream can be considered as a fully-penetrating one if the 

distance measured from the stream to the well is larger than 1.5 times aquifer thickness 

[e.g., Jacob, 1950; Todd and Mays, 2005]. The streams with the low-permeability 

streambed are therefore regarded as full penetration and treated as a third-type boundary 

condition as [e.g., Hantush, 1965; Huang et al., 2012] 
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where '1K  and '2K  are the hydraulic conductivity of the streambed on the LHS and 

RHS of the finite aquifer, respectively. 

Consideration of the aquifer extending infinitely or semi-infinitely leads to an 

expression of a multiple integral for SDR solutions [e.g., Butler et al., 2007; Tsou et al., 

2010; Huang et al., 2012], which may have difficulty in numerical evaluations. For 

example, the recent solution developed by Huang et al. [2012] involves an infinite 

series expanded by sequences and quadruple integral with three improper integrals and 

one finite integral. Moreover, the integration variables depend on the sequences which 

are the roots of nonlinear equations. For avoiding the multiple integral, we therefore 

consider the no-flow boundary condition at y-direction of the finite aquifer as 

2/0/ yWyatyh ±==∂∂ .            (7) 

Note that the numerical results calculated from the solutions of the hydraulic head and 
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SDR derived based on equation (7) should be equal to those obtained from the solutions 

with considering a remote boundary condition of 0/lim =∂∂
∞±→

yh
y

, if the half width 

Wy/2 is larger than the radius of influence due to pumping. 

    Consider the unconfined aquifer underlain by an impermeable medium which is 

treated as a no-flow boundary condition and written as   

00/ ==∂∂ zatzh .             (8) 

The decline of water table due to pumping from a well is described by a first-order free 

surface equation as [e.g. Sedghi et al., 2009; Yeh et al., 2010; Huang et al., 2011; Huang 

et al., 2012] 

Dzat
t
h

K
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z
h

v

y =
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−=
∂
∂             (9) 

where Sy is specific yield. When Sy=0, equation (9) reduces to 0/ =∂∂ zh  at z=D. 

Under such a condition, the unconfined aquifer turns into a confined aquifer with two 

no-flow boundaries at the top and bottom of the flow domain. 

2.2. Solutions for Hydraulic Head and Stream Filtration Rate (SDR) 

A general solution of the model is developed by applying double-integral transform, 

finite Fourier sine transform and Laplace transform. The detailed development is given 

in Appendix A. When r=0 and v=1, the general solution reduces to a solution for a 

vertical well as shown in sections 2.2.1 and 2.2.2. When r=1 and v=0, the general 

solution reduces to a solution for a RC well as shown in sections 2.2.3 and 2.2.4. 
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2.2.1. Hydraulic Head for Vertical Well 

The solution describing spatial and temporal hydraulic head distribution induced 

by pumping at a fully-penetrating vertical well is presented as 
























++= ∑ ∑

∞

=

∞

=

),()]
2
1(cos[)/,,,(2)0,,,(

),,,(

1 1
i

i j y
yii

y

xS
W
yjWjtzFtzF

W
Q

tzyxh

αππαα
 (10) 

with 

hhx KB
Kc

KB
Kc

ccWcc
xcxxS

'
';

'
';

)]/()[(
)sin()cos(2),(

2

2
2

1

1
12

2
2

2
2

1
2

1

1 ==
++++

+
=

αα
αααα   (11) 

















++= ∑

∞

=

)cos(),,,()cosh(),,(
2

),(),(

),,,(

1
00 ztzt

D
S

V

tzF

k
k

kk
y

s ββωαφβωαφωαφωα

ωα

 

                (12) 

DKT
T

V
hs =

+
−= ;

)(
),(),( 22 ωα

ωαωαφ          (13) 

]),(exp[
),(

),(),,( 0
00

0 tVt ωαλ
ωαηβ

ωαωαφ −=         (14) 

]),,(exp[
),,(

),(),,,( tVt k
k

k βωαλ
βωαηβ

ωαβωαφ −
−

=        (15) 

where 
)]sin()cos()[cos(),( 0100 xcxyV αααωωα +=        (16) 

)sinh()],([)cosh()2(),( 00000 βωαλββωαη DSDKSDSSDK yvsysv +++=  (17) 

)sin()],,([)cos()2(),,( ββωαλβββωαη DSDKSDSDSK kyvsysvk +++=  (18) 

])([1),,(;])([1),( 2222
0

22
0 βωαβωαλβωαωαλ vh

s
kvh

s

KK
S

KK
S

++=−+=   (19) 

The solution contains a triple series in terms of iα , j, as well as 0β  and kβ . The first 

series is expanded in terms of iα  which are eigenvalues of the following equation 

[Latinopoulos, 1985, Table I, aquifer type 1]: 
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The second series is expanded in terms of integers j from j=1, 2…∞ . The third series 

contains 0β , which is the positive root of the following equation:  

2
2

22

0
2

0

0
2

0
0 ),(;;;

),(
),()exp( i

y
i

v

h

s

y

i

i

W
jj

K
K

S
S

j
jD απαεκτ

αεκτββτ
αεκτββτβ +===

−+
++−

=  (21) 

and kβ , positive roots of the following equation:  
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The method to obtain numerical results of iα , 0β , and kβ  is discussed in section 2.3. 

    Those three terms on the RHS of equation (12) represent different physical 

phenomena. The first term, independent of time t and elevation z, describes the 

steady-state head distribution. On the contrary, the second and third terms, which 

depend on time t and elevation z, reflect the effect of specific yield Sy on vertical flow 

and the influences of Ss and Sy on the transient groundwater flow. 

2.2.2. SDR Induced from Vertical Well 

Based on Darcy’s law and equation (10), the solution for SDR describing filtration 

induced from a fully-penetrating vertical well can be written as 
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Substituting equation (10) into equations (23)-(24) and integrating them with respect to 
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y and z yields SDR solution for the LHS and RHS streams, respectively, as 
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Notice that the series in terms of integer j in equation (10) reduces to zero because of 

the integration to y. The SDR solution therefore contains a double series in terms of iα  

as well as 0β  and kβ . Such reduction improves the efficiency of calculation and is 

available only by considering no-flow boundary conditions at the two ends of the finite 

aquifer in y direction. 

2.2.3. Hydraulic Head for RC Well 

The solution describing hydraulic head distributions due to pumping at a RC well 

with N laterals can be expressed as 
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The head solution is in fact the sum of the head solution for each of laterals (n-th lateral) 

based on superposition. The head solution for a specific lateral is also expanded in a 

triple series in terms of iα , j, as well as 0β  and kβ . Note that an aquifer with a single 

horizontal well is a special case of that with a RC well when N=1.   

    The behaviour of steady-state flow in an aquifer produced by pumping from a RC 

well is different from that produced from a fully-penetrating vertical well. The first term 
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sϕ  on the RHS of equation (30) is independent of time t but depends on elevation z, 

implying that vertical flow will happen even for a very long period of pumping time. 

2.2.4. SDR Induced from RC Well 

According to equations (23)-(24) and (29), SDR solution for filtration induced 

from a RC well is expressed as 
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The SDR solution is also the sum of the SDR solution for each lateral (n-th lateral) 

based on superposition. The SDR solution for a specific lateral is expanded in a double 

series in terms of iα  as well as 0β  and kβ . 

2.3. Calculation 

By applying Newton’s method with appropriate initial guesses, the eigenvalues, 

iα , 0β  and kβ , can be obtained as consecutive positive roots from equations (20), (21) 
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and (22), respectively. Based on the patterns of the LHS function fL and RHS function fR 

in these three equations, the initial guesses can be determined analytically as 

demonstrated in the following two sections. 

2.3.1. Initial Guesses for iα   

In fact, the eigenvalue iα  lies in the intersection of the LHS and RHS functions 

of equation (20) as shown in Figure 2(a) when 0'2 ≠K  and in Figure 2(b) when 

0'2 =K  (i.e., 02 =c ). These intersection points seem near the vertical asymptotes of 

the periodical function )tan( ixW α . When 02 =K , the initial guesses for iα  are 

considered as δπ −− )2/()12( xWi  where δ  is a small value, say 810− , to prevent the 

initial guesses located right at vertical asymptotes. When 02 ≠K , there is an additional 

vertical asymptote located at 21 κκα ×=  derived from letting the denominator of the 

RHS function of equation (20) to be zero. The initial guesses for iα  are chosen as 

δπ +− )2/()12( xWi  when 21)2/()12( κκπ ×<− xWi  and as δπ −− )2/()12( xWi  

when 21)2/()12( κκπ ×>− xWi . 

    Equation (20) has analytical roots under the specific permeability condition for the 

both streambeds. The permeability is reflected by the values of 1c  and 2c  which have 

been defined as )'/(' 11 BKK h  and )'/(' 22 BKK h , respectively, in equation (11). When 

∞→1c  and ∞→2c  (i.e., 0'1 =B  and 0'2 =B ), both streambeds do not exist. This 

indicates that the two streams are in direct connection with the aquifer and can then be 
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regarded as a constant-head boundary. Under such a condition ( 0'1 =B  and 0'2 =B ), 

)tan( ixW α  in equation (20) reduces to zero (i.e., 0)tan( =ixW α ), and the root iα  can 

be obtained analytically as xi Wi /πα = . On the other hand, if ∞→1c  and 02 →c  

(i.e., 0'1 =B  and 0'2 =K ), the LHS streambed does not exist, and the RHS streambed 

is impermeable. The LHS stream can be regarded as a constant-head boundary while 

RHS boundary becomes a no-flow one. Under this a circumstance, )tan( ixW α  in 

equation (20) approaches to infinity (i.e., ∞=)tan( ixW α ). The root iα  is equal to 

)2/()12( xWi π− . 

2.3.2. Initial Guesses for 0β  and kβ  

    The eigenvalues 0β  and kβ  also lie in the intersections of the LHS and RHS 

functions of equation (21) shown in Figure 2(c) and equation (22) shown in Figure 2(d), 

respectively. In Figure 2(c), the root 0β  is close to the vertical asymptote. Note that 

equation (21) has only one positive root 0β  and one vertical asymptote lying in the 

positive x-axis. The location of the vertical asymptote can be determined analytically by 

letting the denominator of the RHS of equation (21) to be zero. The initial guess for the 

root of 0β  is considered to be δττεκ +++− )2/()411( 2  in which the first term 

represents the location of the vertical asymptote. Figure 2(d) shows that the roots of kβ  

are also close to the asymptotes of the periodical function )tan( kDβ . Similarly, the 

initial guesses for its roots are chosen as δπ +− )2/()12( Dk .  
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The values of the eigenvalues 0β  and kβ  depend on Sy. If 0≠yS , these two 

eigenvalues require a search algorithm to determine their numerical results. In contrast, 

if Sy=0, the top boundary becomes a no-flow condition, and )2exp( 0βD  and 

)tan( kDβ  in equations (21) and (22) reduce to one and zero, respectively (i.e., 

1)2exp( 0 =βD  and 0)tan( =kDβ ). Under the circumstance of Sy=0, the analytical 

expression for the roots of 0β  and kβ  is obtained as 00 =β  and Dkk /πβ = , 

respectively. 
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CHAPTER 3 RESULTS AND DISCUSSION 

In this chapter, we demonstrate spatial head distributions calculated from equation 

(10) for a fully-penetrating vertical well and from equation (29) for a horizontal well or 

RC well with different configurations of laterals. Temporal SDR distributions calculated 

from equation (25) or (26) for the vertical well and from equation (35) or (36) for the 

RC well are also demonstrated. The default values of parameters for calculation are 

given in the second column of Table 3. In addition, the results predicted by the present 

solution are compared with field observation data. 

3.1. Effects of Free Surface on Vertical Flow 

Vertical groundwater flow may be induced in an unconfined aquifer due to gravity 

drainage from the decline of water table even if adopting a fully-penetrating vertical 

well. According to equation (9), the value of Sy/Kv dominates whether or not there is a 

vertical flow. The spatial head distributions predicted from the present solution, 

equation (10), are shown in Figure 3 for various Sy/Kv of 10, 1, 0.1 and 0.01 day/m and 

Kv=0.01 m/day. For 10/ =vy KS  day/m, the contours near z=30 m are almost 

horizontal, indicating that a large quantity of vertical flow is produced from gravity 

drainage. For 1/ =vy KS  day/m, the contours near z=30 m are slanted. A large amount 

of vertical flow still takes place in the unconfined aquifer. In contrast, the contours start 

to be vertical for 1.0/ =vy KS  day/m. The groundwater flow thus has a small amount 
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of vertical component. For 01.0/ =vy KS  day/m, the contours are almost vertical, and 

accordingly the groundwater flows along the horizontal direction. Under such a 

condition, the present exact solution gives almost the same values of head as Hantush’s 

solution [1965] without considering the effect from the existing vertical flow. The 

unconfined aquifer can be regarded as a confined aquifer if adopting a fully-penetrating 

vertical well. The vertical component of groundwater flow can therefore be neglected. 

Otherwise, neglecting the vertical component of groundwater flow consequently leads 

to an underestimated hydraulic head. 

3.2. Head Distribution Induced from Horizontal Well 

In this section, we consider a single horizontal well which is located close and 

parallel to the LHS stream. Equation (29) is employed accordingly with N=1, 2/1 πθ =  

and 501 =L  m. 

3.2.1. Spatial Distribution in Vertical Dimension 

Figure 4 demonstrates spatial head distributions induced from the horizontal well 

for different elevations of z=z0 and z=D. For a fixed x and y, the head at z=D is larger 

than that at z=z0, indicating that downward flow is induced from a pumping horizontal 

well in the aquifer. The minimum head occurs at the center of the horizontal well (x=40 

m, y=0, z=z0). It is interesting to note that the head distribution shown in Figure 4 

reflects a line sink (horizontal well) obviously where the head changes dramatically. 
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3.2.2. Comparison of Predicted Head with Observed Field Data 

    Mohamed and Rushton [2006] conducted a field experiment from a horizontal well 

in a shallow aquifer in Sarawak, Malaysia. The aquifer can be considered to extend 

infinitely in the horizontal direction because the drawdown cone never reaches the 

boundary of the aquifer during early pumping period. The measured pumping rates are 

230 m3/day at 1.25 day, 160 m3/day at 3.875 day, and 280 m3/day at 4.5 day. In fact, the 

designed pumping rate is 240 m3/day for long-term water requirement. The other field 

data and aquifer parameters are listed in the third column of Table 3. Figure 5 shows the 

observed field data taken from Sarawak [Mohamed and Rushton, 2006] and the 

predicted drawdown from the present solution based on the designed pumping rate (240 

m3/day) and data given in Table 3. Note that the spatial distributions of the observed 

head are inside the well. The figure shows that the predicted drawdown from present 

solution has a good agreement with the observed drawdown at t = 6 days except at the 

middle and ends of the well (y=-150, 0, 150 m). This discrepancy may mainly arise 

from the energy loss at the caisson (middle) and the entrance loss at the ends of the field 

well. However, the predicted drawdown from present solution is obviously smaller than 

the observed drawdown at t = 3.5 days. The differences may come from the fact that the 

present solution is computed based on the designed pumping rate of 240m3/day which is 

larger than the measured early pumping rates given above. 
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3.3. Head Distribution Induced from RC Well 

In this section, we discuss the effects of lateral configurations of a RC well on the 

spatial distributions of water table. All of the laterals have the same length of 10 m. 

Equation (29) is used with N=3 for Figure 6 and with N=5 for Figure 7. In both figures, 

the thicker lines represent the laterals of the RC well. 

3.3.1. Effects of Lateral Configurations on Water Table 

The position of the lowest water table depends on the period of time over which 

filtration is from a stream to an aquifer. Figure 6 displays the contours of temporal water 

table distributions induced from pumping in three symmetrical laterals for various times 

at 0.001, 0.01, 1 and 100 days. The contours distribute over 3010 ≤≤ x  and 

1010 ≤≤− y  at t=0.001 day shown in Figure 6(a), indicating that the drawdown cone 

has not yet reached the stream, and thus filtration has not started. The lowest water table 

appears exactly at the center of the well (i.e., x=20 m and y=0), and the contours reflects 

the lateral configuration. The drawdown cone has reached the stream at t=0.01 day 

indicated in Figure 6(b) and the lowest head is still near the center of the well. As the 

time elapses, the filtration from the stream recharges the adjacent aquifer and 

consequently the lowest head moves away from the stream. The profile of the contours 

moves landward and turns into a circle as displayed in Figure 6(c) at t=1 day and in 

Figure 6(d) at t=100 day. Such a result can be attributed to the fact that the water 
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pumped by the laterals A and B comes mainly from filtration for the aquifer near the 

stream (i.e., 200 ≤≤ x ) and the drawdown in this area is therefore small. On the other 

hand, the water pumped by the lateral C comes mainly from groundwater in the inland 

area for 20≥x  and the drawdown in this region is therefore large. 

Figure 7 shows the contours of steady-state water table due to the pumping from a 

RC well in four cases with different lateral configurations. Case (a) is designed for the 

scenario with symmetrical laterals to the center of the well, case (b) for 

non-symmetrical laterals, case (c) for the laterals toward a stream, and case (d) for the 

laterals landward. Among these four cases, case (c) has the least drawdown contour 

because its laterals are closer to the stream and collect more water from the stream. 

Therefore, it can be expected that the highest SDR occurs in case (c) as demonstrated in 

Figure 8. On the other hand, case (d) has the lowest SDR because its laterals are 

landward. In addition, case (b) has a smaller drawdown contour and larger SDR in 

comparison with case (a) because the laterals A and B in case (b) are slightly closer to 

the stream than those in case (a) as shown in Figure 7. 

3.3.2. Comparison of Predicted Head with Observed Field Data 

A constant-rate pumping test was conducted by Schafer [2006] from a collector 

well with 7 laterals near Ohio River in Louisville, Kentucky. The data for the aquifer 

parameters and the well configuration are listed in the fourth column of Table 3. During 
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the pumping period of 70 days, the pumping rate Q1 was maintained about 73440 

m3/day except in the middle period from 26 to 31 days during which the pumping rate 

Q2 was increased to about 81010 m3/day as shown in Figure 9. This figure shows that 

the water level predicted by the present solution based on the pumping rate 73440 

m3/day has a good agreement with the water level observed in the caisson over the 

whole pumping period except in the middle period. This discrepancy reflects that there 

is an increase in pumping rate in that period. The slight difference at early pumping 

period may result from a larger hydraulic conductivity of the aquifer near Ohio River 

than that away from the river. 

    Jasperse [2009] also executed a constant-rate pumping test from a collector well 

with 10 laterals near Russian River in California. Figure 10 reveals the water level 

predicted by the present solution with a pumping rate of 67390 m3/day and the observed 

water level measured from the caisson and two monitoring wells: TW3 and TW11. The 

data for the aquifer parameters and the well configuration are given in the fifth column 

of Table 3. The distances measured from the caisson to TW3 and TW11 are 124 and 20 

m, respectively. The well water level predicted by the present solution fairly agrees with 

the observed water level for the cases of Caisson and TW11. However, the predicted 

water level by the present solution slightly differs from the observed one for the case of 

TW3. Such a difference may be caused by aquifer heterogeneity since the distance 
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between the caisson and TW3 is large. 

3.4. Effects of Low-Permeability Streambed on SDR 

Consider that the distance Wx between the two parallel streams is 10 km and the 

distance x0 between a vertical well and the LHS stream is 50 m. The LHS stream 

connects the aquifer with a low-permeability streambed while the RHS stream is 

directly connected to the aquifer without a streambed. The RHS stream is therefore 

regarded as a constant-head boundary condition. Under the situation, 1)tan( ixW α  in 

equation (20) leads to 1/)tan( cW iix αα −=  as ∞→2c . 

3.4.1. Steady-State SDR 

Steady-state SDR from the LHS stream depends only on the ratio of streambed 

permeability '1K  over aquifer permeability Kh. Substituting the first terms of the RHS 

of equation (28) into equation (25) yields steady-state SDR which is independent of 

time. The type curve of steady-state SDR versus the ratio of hKK /'1  is shown in 

Figure 11. When 2
1 10/' −≥hKK , the value of the steady-state SDR is one, indicating 

that the filtration from the RHS stream to the aquifer is equal to the discharge extracted 

from the well. The large drawdown therefore happens in a small area in the range of 

2000 ≤≤ x m as shown in Figure 12 for the cases of 2
1 10/' −≥hKK  and Kh=1 m/day. 

Note that there is no discontinuity in water table between the aquifer and stream as 

shown in Figure 12 for the case of 1/'1 =hKK , and the streambed can be regarded as a 



 

 31 

part of the aquifer. Under such a condition, the boundary condition (5) can be replaced 

by a constant-head boundary condition, 0=h . When 2
1 10/' −<hKK , the value of the 

steady-state SDR is less than one, indicating that the filtration from the LHS stream 

supplies parts of the well extraction, and the filtration from the RHS stream replenishes 

the residual one. This introduces deep and wide drawdown cones as shown in Figure 12 

for 2
1 10/' −<hKK . When 7

1 10/' −<hKK , the value of the steady-state SDR is zero. 

The filtration does not happen for the entire period of pumping time, and the streambed 

is indeed a no-flow boundary. The filtration from the RHS stream supplies all of the 

well extraction. Under such a circumstance, xh ∂∂ /  in equation (5) can be replaced by 

0/ =∂∂ xh . 

3.4.2. Temporal SDR 

The permeability of the streambed affects the value of SDR. Figure 13 shows the 

curves of temporal SDR from the LHS stream for various hKK /'1  and Kh=1 m/day. 

The curve with a smaller hKK /'1  has a smaller value of SDR than those with a larger 

one. The low permeability of the streambed material therefore results in a small 

filtration rate at a fixed time. For each of curves, the SDR increases with time and then 

reaches steady state at different values as expected in Figure 11. It is worth noting that 

the difference in 1/'1 =hKK  and 1
1 10/' −=hKK  between the curves is very small. 

This is because the permeability of the streambed material is close to that of the aquifer. 



 

 32 

3.5. Effects of Vertical Hydraulic Conductivity on SDR 

The vertical hydraulic conductivity of an aquifer is generally smaller than the 

horizontal one. Consider a RC well with three symmetrical laterals, and equation (35) is 

thus employed with N=3, and L1=L2=L3=10 m. The temporal distribution curves of SDR 

induced by the well for various hv KK /  and Kh=1 m/day are shown in Figure 14 which 

exhibits two different patterns of the curves. One has five stages for the cases of 

05.0/ ≤hv KK ; this has a period of zero SDR at beginning, a rapid increase at early 

time, a flat during the middle period of time, a marked increase again at late time, and 

an equilibrium state reached finally. During the first stage, water extracted by a well 

comes entirely from elastic release due to the compression of the aquifer and the 

expansion of water. The hydraulic gradient at the stream boundary maintains zero, and 

thus the SDR is zero. In the second stage, the elastic release slows or stops, and a 

drawdown cone reaches the stream boundary. The SDR therefore increases with time. 

During the third stage, gravity drainage from a decline of water table starts to supply the 

well extraction. The SDR curve therefore becomes flat. During the fourth stage, the 

gravity drainage diminishes and the SDR increases again. Finally, the groundwater flow 

reaches steady state and all the water extracted from the well is from the stream in the 

equilibrium state. For the cases of 05.0/ >hv KK , there are three stages as shown in 

Figure 14 including a period of zero SDR at early time, a conjunctive water supply from 
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the stream to the aquifer in the intermediate period, and finally the equilibrium state. In 

addition, Figure 14 also shows that the aquifer with a smaller hv KK /  has larger SDR 

than that with a larger one, indicating that a smaller hv KK /  results in less water 

collected from the gravity drainage and more water from the stream for a fixed pumping 

rate. 

3.6. Effects of Lateral Configurations on SDR 

The number of symmetrical laterals has insignificant effects on SDR. Figure 15 

illustrates temporal SDR for collector wells with different number N of a symmetrical 

lateral configuration. There is no difference between those three curves of L=10 m since 

the shortest distance between the stream and well is almost the same. The curve of L=20 

m however has a slightly larger SDR than those of L=10 m when the number of lateral 

is the same, i.e., N=5. This is because the long lateral has a shorter distance to the 

stream and results in more water collected from the stream. 

3.7. Comparison of Predicted SDR with Measured Field Data  

3.7.1. SDR Field Experiment 

Hunt et al. [2001] conducted a SDR field experiment by using a vertical well near 

Doyleston Drain away from 40 km south of Christchurch in New Zealand. The aquifer 

therein has an average thickness of 20 m. Doyleston Drain has 2.5 m width and 1.0 m 

depth of penetrating the aquifer. The distance between the pumping well and Doyleston 
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Drain is 55 m which is larger than 1.5 times aquifer thickness for avoiding the effect of 

the partial penetration of the drain. The well has pumped at a constant pumping rate 63 

m3/s for a period of 10 hours. Four observation wells are located 5 m, 29 m, 80 m, and 

88 m from Doyleston Drain. SDR is measured by two V-notched weirs installed in 

Doyleston Drain. One weir is located 200 m upstream from the well, and the other is 

located 200 m downstream from the well. The distance of 400 m between such two 

weirs reflects the main range that filtration happens on the edge of Doyleston Drain. 

The differences in stream flow rate between these two weirs are filtration rate from 

Doyleston Drain to the aquifer. Field SDR data are then obtained by dividing these 

differences into the pumping rate 63 m3/s as shown in Figure 16.  

3.7.2. Hydraulic Parameters for Aquifer and Streambed 

Hunt et al. [2001] determined transmissivity and storage coefficient for the aquifer 

by matching the dimensional drawdown data measured from each observation well with 

dimensionless drawdown curves predicted from Hunt’s solution [1999] and then by 

taking the average of the results from four observation wells. The corresponding 

transmissivity and storage coefficient are 75.6 m2/hour and 3109.1 −× , respectively. The 

hydraulic conductivity and specific storage are therefore 3.78 m/hour and 10-4 m-1, 

respectively, based on 20 m aquifer thickness. On the other hand, they determined 

hydraulic conductivity of the streambed by matching the field SDR data with 
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dimensionless SDR curves predicted from Hunt’s solution [1999] and gave a value of 

dimensionless permeability for the streambed as, in our notation, 26.0)'/(' 101 =hKBxK  

where x0, distance between the well and Doyleston Drain, is 55 m; Kh is 3.78 m/hour. 

The ratio of '/' 11 BK  is therefore 0.02 hour -1. 

The vertical hydraulic conductivity of the aquifer is estimated according to Freeze 

and Cherry [1979] (Table 2.2, pp. 604). The aquifer consists of unconsolidated sand and 

gravel; therefore, its hydraulic conductivity ranges from 0.036 m/hour to 3600 m/hour. 

The vertical hydraulic conductivity of the aquifer is regarded as 0.08 m/hour.  

The aquifer is overlain by a low permeable material which results in a small 

amount of gravity drainage on the top of the aquifer. The specific yield usually ranges 

from 0.01 to 0.3. Due to the low permeable material on the top, the smallest value of 

0.01 for the specific yield is used for the evaluation.  

The hydraulic parameters for the aquifer and streambed mentioned above are 

summarized in the sixth column of Table 3. The numerical results of temporal SDR 

predicted from the present solution, equation (25), Theis’ solution [1941] and Hantush’s 

solution [1965] are calculated based on the parameters values given in Table 3. 

3.7.3. SDR Prediction from Analytical Solutions   

    The comparison of SDR predicted from the present solution, Theis’ solution [1941] 

and Hantush’s solution [1965] with the field SDR data is displayed in Figure 16. The 
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SDR predicted from the present solution matches the field SDR data. This is because 

the present solution considers an elastic drainage rate (EDR) from the compression of 

pore and the expansion of groundwater as 
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and gravity drainage rate (GDR) from free surface as 
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The analytical results of the integration can be expressed in terms of series from 

substituting equation (10) into equations (38) and (39). It is interesting to note that the 

sum of SDR, EDR and GDR is one for the fixed time, which indicates that water 

extraction from the well equals the sum of filtration from a stream, elastic drainage from 

an aquifer and gravity drainage from water table depletion. During 10-3 hour <≤ t 10-2 

hour, SDR remains zero; EDR decreases and GDR increases with time. Accordingly, the 

water extraction comes only from elastic drainage and gravity drainage. During 10-2 

hour <≤ t 1 hour, EDR decreases dramatically, and GDR increases dramatically. Such a 

result indicates that the water extraction comes mostly from gravity drainage and thus a 

small SDR is produced at t=1 hour, which makes the prediction of SDR close to the 

field one at t=1 hour. During 1 hour ≤≤ t 2000 hours, EDR decreases slowly with time 

because GDR decreases dramatically. SDR increases dramatically with time since both 

EDR and GDR decrease. The water extraction comes mostly from the filtration. When t 



 

 37 

>2000 hours, SDR remains one, and both EDR and GDR remain zero. The water 

extraction equals the filtration. On the other hand, the figure shows that the prediction 

by Hantush’s solution [1965] overestimates SDR due to no consideration of GDR 

although it is applicable to the case of a low-permeability streambed. The prediction of 

SDR from Theis’ solution [1941] is significantly overestimated to the field SDR data 

because of neglecting the both effects of GDR and low-permeability streambed. 
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CHAPTER 4 CONCLUDING REMARKS 

A general analytical solution is developed for describing transient hydraulic head 

distribution induced from a fully-penetrating vertical well, horizontal well or RC well in 

an unconfined aquifer bounded by two parallel streams. The head solution is derived by 

means of double-integral transform, finite Fourier cosine transform, and Laplace 

transform. The boundary conditions at the interfaces where streambeds are connected to 

the aquifers are treated as third-type boundary conditions with different hydraulic 

parameters. The first-order free surface equation is used to describe the depletion of the 

water table. The aquifer is considered as a finite extent with no-flow boundary 

conditions in the y direction for the purpose of simplifying an infinite series in the SDR 

solution developed based on the head solution and Darcy’s law. The present solution is 

applied to predict the hydraulic head inside a horizontal well for the field case reported 

in Mohamed and Rushton [2006]. The solution is also applied to predict the hydraulic 

head near the caisson of the collector well for the field cases given in Schafer [2006] 

and Jasperse [2009]. The predicted results seem to be reasonable when compared with 

these observed field data. Spatial variation in hydraulic head is investigated by using the 

present solution, and major conclusions drawn from that can be summarized as follows: 

1. Depending on the ratio of Sy/Kv, the introduction of a fully-penetrating vertical well 

may result in significant vertical groundwater flow near water table during the early 

period of pumping time. Significant vertical groundwater flow is produced even if 
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the ratio is small. The transient head predicted by a model which neglects the vertical 

flow is significantly underestimated. 

2. If the ratio of the streambed permeability over the aquifer one is less than 10-2, a deep 

and wide drawdown cone is eventually produced by a long period of pumping. 

3. The RC well can produce small drawdown if the laterals are installed toward the 

stream. 

4. Before the filtration, the largest drawdown occurs right at the center of a RC well. 

Once the filtration starts to recharge the aquifer, the largest drawdown begins to 

move landward and away from the center of the well. 

Some behaviors associated with temporal distributions of SDR are also examined, and 

the conclusions drawn from those observations are summarized as follows: 

1. For an unconfined aquifer, the gravity drainage has a significant effect on temporal 

SDR. Neglecting the effect of the vertical flow described by the free surface equation 

tends to overestimate the temporal SDR. Such a conclusion is confirmed by the 

comparison of SDR predicted from the present solution with that taken from a field 

experiment executed by Hunt et al. [2001]. 

2. The ratio of '/' 21 KK  determines the distributions of filtration from the two parallel 

streams. When the boundary condition at RHS stream is regarded as a constant-head 

boundary condition, the RHS streambed has the same hydraulic conductivity as the 

aquifer ( hKK ='2 ). The steady-state SDR for the LHS stream depends only on the 

ratio of hKK /'1 . If 2
1 10/' −≥hKK , the steady-state SDR is one. If 7

1 10/' −<hKK , 

the steady-state SDR is zero. If 2
1

7 10/'10 −− ≤< hKK , the steady-state SDR increases 
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from 0 to 1 with hKK /'1 . 

3. A streambed with a lower permeability than an aquifer results in a much smaller 

SDR for a fixed time. 

4. The curve of temporal SDR for an unconfined aquifer tends to be flat over the middle 

period of time due to gravity drainage from water table. However, this flat vanishes 

gradually with increasing Kv.  

5. The collector well collects more SDR if the laterals are installed toward the stream. 

6. The effect of the lateral number on SDR is insignificant if the laterals are symmetric 

to the center of a collector well. 
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APPENDIX A DEVELOPMENTOF EQUATIONS (10) AND (29) 

    Latinopoulos [1985] presented double-integral transform including various kernel 

functions in a finite domain with any two of three boundaries such as first-type, 

second-type and third-type boundaries. Double-integral transform with the kernel 

function corresponding to a finite domain with two third-type boundaries, in our 

notation, [Latinopoulos, 1985, Table I, p. 298] is 

[ ] dxxcxxhxhh xW

iiii ∫ +=ℑ=
0 1 )sin()cos()()}({)( αααα

   
  (A.1) 

where iα  is the variable of the transform and the roots of equation (20). Applying the 

transform to a second-order differential 22 / xh ∂∂  with integration by parts and the 

boundary conditions, equations (5) and (6), results in 
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The formula for the inverse double-integral transform is   

∑
∞

=

−

++++
+

=ℑ=
1 1

2
2

2
2

2
1

2
11

)]/()[(
)sin()cos()(2)}({)(

i ixi

iii
ii cccWc

xcxhhxh
αα

ααα
αα    (A.3) 

    Three different integral transforms applied to equations (3)-(9), respectively, leads 

to an ordinary differential equation (O.D.E.). Firstly, applying the double-integral 

transform defined by equation (A.1) to variable x in equation (3) with two boundary 

conditions, equations (5) and (6), results in a partial differential equation (P.D.E.) in 

terms of variables y, z and t. Secondly, applying finite Fourier cosine transform to y in 

the P.D.E. with two boundary conditions in equation (7) yields a P.D.E. in terms of z and 
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t. Lastly, applying Laplace transform to t in the P.D.E. and equations (8)-(9) with the 

initial condition, equation (4), leads to a nonhomogeneous O.D.E. and two boundaries 

in a term of z as 
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where p is the variable in Laplace domain; ω , the variable in finite Fourier cosine 

domain, is defined as yWj /π  where j is an integer from 1, 2, 3…∞ . Due to Dirac 

delta function, equation (4) is further separated to two nonhomogeneous O.D.E. as  

Dzzfor
p

vH
z
H

a
a ≤≤=−

∂
∂

0
2

2

2 ϑλ          (A.9) 

0
2

2

2

0 zzfor
p

vH
z
H

b
b ≤≤=−

∂
∂ ϑλ          (A.10) 

The Dirac delta function introduces two required conditions at z=z0 as 
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Equation (A.11) is obtained based on head continuity requirement at z=z0. Equation 

(A.12) is derived by integrating equation (A.4) with respect to z from z=z0
- to z=z0

+ and 

reflects flux discontinuity at z=z0. 
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    Solving equations (A.9) and (A.10) with two boundary conditions, equations (A.5) 

and (A.6), as well as two required conditions, equations (A.11) and (A.12), results in the 

solution in Laplace domain as  
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    Both equations (A.13) and (A.14) are a single-value function with respect to the 

variable p. This is because the function )( pH a  or )( pHb  gives the only result to a 

specific p. On the other words, there is no discontinuity between )( +pH a  and 

)( −pH a  or between )( +pHb  and )( −pHb  for any complex number p in the 

complex plane. Let p+ and p- to be expressed in polar coordinate from the root of 

0)( =pλ  as 
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where 'r  is an arbitrary positive value; θ  is an arbitrary angle between 0 and π2 ; I 

represents imaginary unit. One can prove )()( −+ = pHpH aa  or )()( −+ = pHpH bb  

for any value of R and θ  if substituting equations (A.19) and (A.20) into equation 

(A.13) or equation (A.14). 

    Equations (A.13) and (A.14) have infinite simple poles at negative x axis in the 

complex plane. These poles are in fact the roots of the equation derived from letting the 

denominator of equation (A.13) to be zero. Note that equations (A.13) and (A.14) have 

the same denominator defined by equation (A.15). Obviously, two of these poles are 

0=p  and 
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00 ωα +−== i

s

h

S
Kpp  (A.21) 

which is found from 0)( 2 =pλ . The other poles are the roots of  

0)](sinh[)()](cosh[ =+ pDpKpDSp vy λλλ  (A.22) 

which is from equation (A.15). Equation (A.22) has only one root 0p  lying between 

p=0 and 00pp =  at negative x axis. We let 00 )( βλ =p  for an expression without a 

radical sign. Substituting 0pp =  and 00 )( βλ =p  into equation (A.22) results in 

equation (21). Note that 0β  is the root of equation (21) and reflects the value of 0p  

through 00 )( βλ =p . On the other hand, equation (A.22) has infinite roots kp  behind 

00pp =  at negative x axis. We let kk Ip βλ =)(  for an expression without I and a 

radical sign. Substituting kpp =  and kk Ip βλ =)(  into equation (A.22) results in 
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equation (22). The value of kp  depends on kβ  through kk Ip βλ =)( .  

    The inverse Laplace transform for a single-value function is the sum of its residue 

at each pole in the complex plane. The residue can be determined by the formula as 
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where )( pf  herein represents an arbitrary function; ℘ represents a simple pole. The 

residue at 0=℘=p  for )exp()()( tppHpf a=  is therefore 
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The residue at 00pp =℘=  for )exp()()( tppHpf a=  is zero. The residue at 

0pp =℘=  for )exp()()( tppHpf a=  is in the form as  
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where  
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( ) )exp( t
D

rRvVesR k
e

a
pp k

λϑ
−

+
=

=
 (A.26) 

where 



 

 49 

[ ])cos()2()sin()( kkysvkvkyskke DSDSKDKDSSD βββλλβ +−−=  (A.26a) 
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The inverse Laplace transform for )( pH a  is the sum of equations (A.24), (A.25) and 

(A.26). In a similar matter, the residue at 0=℘=p  for )exp()()( tppHpf b=  is 

obtained as 
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The residue at 00pp =℘=  for )exp()()( tppHpf b=  is also zero. The residue at 

0pp =℘=  for )exp()()( tppHpf b=  is given as  
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The residue at kpp =℘=  for )exp()()( tppHpf b=  is expressed as 
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{ }])cos[(])sin[()cos( 00 kkvkkykkb zDKzDSzR βββλββ −+−−−= . (A.29c) 

The inverse Laplace transform for )( pHb  is the sum of equations (A.27), (A.28) and 

(A.29). 

The solution in x and y domains can be obtained by the inversion of finite Fourier 

cosine transform and double-integral transform. The inversion of finite Fourier cosine 

transform is derived by the formula as 
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where )( jh


 represents the results of the inverse Laplace transform for )( pH a  or 

)( pHb . The inverse double-integral transform is obtained by the formula as equation 

(A.3).  

    The solution for a fully-penetrating vertical well or RC well depends on the values 

of v and r. If v=1 and r=0, the solution reduces to equation (10) for a fully-penetrating 

vertical well. On the other hand, the solution reduces to equation (29) for a RC well by 

substituting v=0 and r=1 into the solution, then by integrating the result with respect to 

x0 and y0 along the component of each lateral in the x and y direction, respectively, then 

by taking the sum of the result for each lateral, eventually by dividing the result by the 

sum of each lateral length. 
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Table 1. Classification of original solutions involved in two-dimensional flow induced from a fully-penetrating vertical well 
References Cited in the Text Aquifer Category Stream Treatment 

Theis [1941]a confined aquifer first-type boundary condition 
Glover and Balmer [1954]a confined aquifer first-type boundary condition 
Hantush [1965]a confined aquifer third-type boundary condition 
Hunt [1999]a confined aquifer source term of zero-width stream 
Butler et al. [2001]b confined aquifer source term of finite-width stream 
Fox et al. [2002]a confined aquifer source term of finite-width stream 
Sun and Zhan [2007]a confined aquifer divided into three region 

for two low-permeability streambeds 
two parallel streams treated as first-type boundary 

conditions 
Zlotnik and Tartakovsky [2008]a leaky confined aquifer source term of zero-width stream 
Yeh et al. [2008]a wedge-shaped confined aquifer first-type boundary condition 
Intaraprasong and Zhan [2009]a confined aquifer divided into two region for 

low-permeability streambed 
first-type boundary condition with variable stage 

Asadi-Aghbolaghi and Seyyedian [2010]a triangle-shaped confined aquifer first-type boundary condition 

The superscripts a and b represent the presentation of an analytical solution in time domain and a semi-analytical solution in Laplace domain, 
respectively. 
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Table 2. Classification of original solutions involved in quasi three-dimensional and three-dimensional flow 
References Cited in the Text Aquifer Category Well Type Stream Treatment 

quasi three-dimensional groundwater flow 
Hunt [2003]a semi-confined aquifer fully-penetrating vertical well source term of zero-width stream 

Butler et al. [2007]b leaky confined aquifer with 
considering transient vertical flow 
in the lower aquitard 

fully-penetrating vertical well source term of finite-width stream 

Hunt [2008]b semi-confined aquifer extending 
finitely with two no-flow 
boundaries 

fully-penetrating vertical well source term of finite-width stream 

Hunt [2009]b two-layer aquifer system fully-penetrating vertical well in 
the upper aquifer 

source term of zero-width stream in 
governing equation for the top aquifer 

Ward and Lough [2011]b two-layer aquifer system fully-penetrating vertical well in 
the lower aquifer 

source term of zero-width stream in 
governing equation for the top aquifer 

three-dimensional groundwater flow 

Zhan and Park [2003]b leaky confined aquifer underlying 
water reservoir 

horizontal well constant-head reservoir connecting the lower 
aquifer without low-permeability aquitard 

Sun and Zhan [2006]b leaky confined aquifer underlying 
water reservoir 

horizontal well constant-head reservoir connecting the lower 
aquifer by aquitard with effects of storage 
and low permeability 

Sedghi et al. [2009]b wedge-shaped unconfined aquifer partially-penetrating vertical 
well 

first-type boundary condition 

Tsou et al. [2010]a confined aquifer slanted well first-type boundary condition 
Huang et al. [2011]a unconfined aquifer horizontal well first-type boundary condition 
Huang et al. [2012]a unconfined aquifer RC well third-type boundary condition 

The superscripts a and b represent the presentation of an analytical solution in time domain and a semi-analytical solution in Laplace domain, 
respectively.
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Table 3. The default values and field data for aquifer parameters and well configurations 

Parameter Default Values Aquifer in Sarawak, 
Malaysia 

Aquifer near Ohio River in 
Louisville, Kentucky 

Aquifer near Russian River in 
California 

Aquifer near 
Doyleston in New 

 (Kh, Kv) (0.1 m/day, 0.1Kh) (10, 0.06) m/day (119, 40) m/day (650, 217) m/day (3.78, 0.08) m/hour 

'/' 11 BK  0.01 day-1 none 2.35 day-1 0.2 day-1 0.02 hour -1 

'/' 22 BK  0 none none none none 

Sy 0.3 0.3 0.3 0.3 0.01 

Ss 10-5 m-1 0.033 m-1 51064.3 −×  m-1 5104 −×  m-1 410−  m-1 

D 30 m 5 m 27 m 25 m 20 m 

(x0, y0, z0) (50, 0, 10) m (350, 0, 5) m (45, 0, 5) m (107, 0, 8) m (55, 0, none) m 

(x, y, z) (none, 0, 30 m) (x0, y, z0) inside the 
well 

(x0, y0, z0) for the caisson (x0, y0, z0) for the caisson 
(224, -40) m for TW3 
(119, -17) m for TW11 

(0, y, z) for the 
measured SDR 

t 10 day at 3.5 or 6 day from 0 to 70 day from 0 to 3 day from 0 to 10 hour 

Well Type none single horizontal 
well 

RC well with seven laterals RC well with ten laterals single vertical well 

Q 100 m3/day time-dependent pumping rate as described in the corresponding text 63 m3/s 
(L1, L1,…LN) none 300 m (61, 61, 61, 73, 73, 73, 73) 

m 
(21, 49, 52, 31, 27, 24, 40, 34, 

49, 43) m 
none 

( 1θ , 1θ ,… Nθ ) none 2/π  (0, 2/π , 2/3π , 10/7π , 
10/9π , 10/11π , 
10/13π ) 

( 36/5π , 18/5π , 18/11π , 
45/38π , 36/41π , 
18/23π , 2/3π , 18/29π , 
45/83π , 18/35π ) 

none 
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Figure 1. Schematic diagram of an unconfined aquifer with a vertical well or a radial collector well; (a) and (c) top view; (b) and (d) cross 
section view 
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Figure 2. The patterns of the LHS and RHS functions from equation (20) for (a) 0'2 ≠K  and (b) 0'2 =K  as well as from (c) equation (21) 
and (d) equation (22) 
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Figure 3. Contours of spatial head distributions induced from a fully-penetrating vertical well for various Sy/Kv when t=10 m/day 
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Figure 4. The spatial head distributions induced from a horizontal well for (a) 3D view and (b) top view 
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Figure 5. The predicted drawdown from the present solution and observed drawdown from Mohamed and Rushton [2006] 
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Figure 6. The contours of transient water table due to pumping in a radial collector well with three symmetrical laterals for various times 
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Figure 7. The contours of steady-state water table due to pumping in a radial collector well with four different configurations. (a) symmetry (b) 
non-symmetry (c) laterals toward stream (d) laterals landward 
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Figure 8. Temporal distribution curves of SDR for four different lateral configurations 
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Figure 9. Water levels predicted by the present solution and the observed field data from Schafer [2006] 
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Figure 10. Water levels predicted by the present solution and the observed field data from Jasperse [2009] 
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Figure 11. Type curve of steady-state SDR for the LHS stream versus hKK /'1   
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Figure 12. Steady-state water table distributions at y=0 for various hKK /'1  
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Figure 13. Temporal distribution curves of SDR for the LHS stream for various hKK /'1  
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Figure 14. Temporal distribution curves of SDR due to pumping in a radial collector well with three symmetrical laterals for various hv KK /  
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Figure 15. Temporal distribution curves of SDR for various lateral number and length 
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Figure 16. Comparison of temporal SDR predicted from the present solution, Theis’ solution [1941] and Hantush’s solution [1965] with field 
data taken from a field SDR experiment executed by Hunt et al. [2001] 
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