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考慮井部分貫穿效應之定水頭試驗在非侷限含水層的解 

 

研究生：陳庚轅           指導教授：葉弘德 

 

國立交通大學環境工程研究所 

 

摘 要 

 

進行定水頭試驗時，需在抽水井中維持固定的水位高，並同時測量觀測井內洩降隨

時間的變化。本研究考慮在非侷限含水層裡有一部分貫穿井作定水頭試驗，推導水層水

位分佈之半解析解。本研究首先將部分貫穿井濾管部分設為定水頭邊界、盲管部分設為

不透水邊界，接著以自由液面條件來描述非侷限含水層的上邊界，最後利用分離變數法

及拉普拉斯轉換，推導得半解析解。此解可用來產生無因次洩降與時間之關係曲線，探

討部分貫穿井在水層中所造成的垂直流問題，亦可利用試驗數據來推求水層的參數。 

 

關鍵詞：地下水，非侷限含水層，部分貫穿，定水頭試驗 
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Laplace-domain solution for transient flow into a partially penetrating 

well in unconfined aquifers under the constant-head test 

 

Student:Geng-Yuan Chen         Advisor:Hund-Der Yeh 

 

Institute of Environmental Engineering  

National Chiao Tung University 

 

Abstract 

The constant head test is to keep constant water level in the pumping well while the 

drawdown into the observed well is measured.  This study derives a semi-analytical solution 

for drawdown distribution during constant-head test at a partially penetrating well in an 

unconfined aquifer.  The constant-head condition is used to describe the boundary along the 

screen while no-flow condition is employed to describe the boundary along the casing of the 

well.  In addition, a free surface condition is utilized to delineate the upper boundary of the 

unconfined aquifer.  The Laplace domain solution is then derived using separation of 

variables and Laplace transform.  This solution can be used to produce the curves of 

dimensionless drawdown versus dimensionless time to investigate the effects of vertical-flow 

caused by the partially penetration well and free surface boundary in an unconfined aquifer or 



 III

to identify the aquifer parameters from the data of constant-head test. 

Keywords: Groundwater, Unconfined aquifer, partially penetrating well, constant-head test. 
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CHAPTER 1  INTRODUCTION 

 

1.1 Background 

Groundwater is water stored in aquifers.  A unit of rock or an unconsolidated deposit is 

called an aquifer when it can yield a usable quantity of water.  There are two common types 

of aquifers: confined and unconfined.  Confined aquifer includes upper and lower confining 

beds which are of low permeability.  Unconfined aquifers are sometimes also called water 

table aquifers, because their upper boundary is a water table. 

There are two main hydraulic parameters play a crucial role for the aquifer system in 

response to the test: transmissvity and storativity.  Transmissivity describes the ease with 

which water can move though an aquifer and is a product of hydraulic conductivity and 

aquifer thickness.  The behavior of hydraulic conductivity is similar to transmissvity.  

Hydraulic conductivity has the same unit as velocity.  Storativity is defined as the 

dimensionless volume of water that an aquifer releases. 

Two types of tests, named constant-head test (CHT) and constant-flux test (CFT), are 

usually performed to characterize an aquifer for estimating the hydraulic parameters.  The 

CHT is usually employed for low-transmissivity aquifers, i.e., for aquifers with clay and/or 

silt formation.  The drawdown/buildup should be kept at a constant value during the test 

period.  On the other hand, the CFT is commonly used for high-transmissivity aquifers 
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which are mainly composed of sand and/or gravel materials.  The well discharge rate should 

be kept at a constant value during the pumping period.     

 

1.2 Literature Review 

For aquifers with low-transmissivity, CHT is more suitable to apply than CFT.  The 

wellbore storage at the pumping well has large effect on the early time drawdown behavior at 

pumping and observation wells in CFT (Renard, 2005).  If a CHT is established in a short 

period of time, the effect of wellbore storage is negligible under the situations that the aquifer 

has low transmissivity and the well radius is small (Chen and Chang, 2003).   

In the past, many studies had been devoted to the solutions for CHT.  Kirkham 

(1959) derived a steady-state solution for groundwater distribution in a bounded confined 

aquifer pumped by a partially penetrating well under CHT.  They simplified the complexity 

of the geometry by dividing the model into two different regions.  Javandel and Zaghi (1975) 

considered the groundwater in a confined aquifer pumped by a fully penetrating well that is 

radially extended at the bottom of the aquifer.  The procedure used in their study is similar to 

that in Kirkham (1959) and the steady-state groundwater solution was obtained using 

separation of variables.  Jones et al. (1992) and Jones (1993) discussed the practicality of 

CHTs on wells completed in low-conductivity glacial till deposits.  Mishra and Guyonnet 

(1992) indicated the operational benefit of CHTs in situations where the total available 
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drawdown is limited by well construction and aquifer characteristics.  They developed a 

method for analyzing observation well response under a CHT.  There have been numerous 

studies in the literature using CHT [e.g., Wilkinson, 1968; Uraiet and Raghaven, 1980; Hiller 

and Levy, 1994; Chen and Chang, 2003; Singh, 2007]. 

Considering a CHT performed in a partially penetrating well, Yang and Yeh (2005) 

developed a time-domain solution to describe the drawdown in a confined aquifer with finite 

thickness skin.  The boundary conditions along the partially penetrating well are represented 

by a constant-head (first kind) boundary for the screen while a no-flow (second kind) 

boundary for the casing.  They transformed the first kind boundary along the screen into a 

second kind boundary with an unknown flux which is time-dependent and therefore the 

boundary along the partially penetrating well became uniform.  The solution was then solved 

by the Laplace and finite Fourier cosine transforms.  Chang and Yeh (2009) used the 

methods of dual series equations and perturbation method to solve the mixed boundary 

problem for the CHT at a partially penetrating well.  Chang and Yeh (2010) developed a new 

model describing a CHT performed in flowing partially penetrating well for arbitrary location 

of the well screen in a finite thick aquifer in depth.  However, the studies mentioned above 

are only applicable for confined aquifers.   

For unconfined aquifers, Chen and Chang (2003) developed a well hydraulic theory 

for CHT performed in a fully penetrating well and established a parameter estimation method.  
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Chang et al. (2010) extended the work of Yang and Yeh (2005) to develop a mathematical 

model for an unconfined aquifer system while treating the skin as a finite thickness zone and 

derived the associated solution for CHT at a partially penetrating well.  For other 

environmental applications, light nonaqueous phase liquids (LNAPLs) are usually recovered 

by wells held at constant drawdown (Abdul, 1992; Murdoch and Franco, 1994) and a 

constant-head pumping is employed to control off-site migration of contaminated 

groundwater (Hiller and Levy, 1994).  At LNAPL contaminant sites the pollutant forms a 

pool of LNAPL in the subsurface on the top of water table.  It is therefore to install a well 

with the screen goes from the top of the aquifer in unconfined aquifers. 

For the research of CFT in unconfined aquifers, Neuman (1972) presented a new 

analytical solution for characterizing flow to a fully penetrating well in an unconfined aquifer.  

He assumed the drainage above the water table occurs instantaneously.  Take into account 

the effect of finite diameter pumping well, Moench (1997) developed a solution in 

Laplace-domain for the flow to a partially penetrating well in unconfined aquifers.  Contrary 

to Neuman’s assumption, he used the free-surface boundary in Boulton (1954) under the 

assumption that the drainage of pores occurs as an exponential function of time in response to 

a step change in hydraulic head in the aquifer.  Tartakovsky and Neuman (2007) presented 

an analytical solution for drawdown in an unconfined aquifer due to pumping at a constant 

rate from a partially penetrating well.  They generalized the solution of Neuman (1972, 1974) 
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by accounting for unsaturated flow above the water table and derived the solution from a 

linearized Richards’ equation in which unsaturated hydraulic conductivity and water content 

are expressed as exponential functions of incremental capillary pressure head relative to its air 

entry value.  Malama et al. (2007) utilized Laplace and Hankel transforms to obtain a 

semi-analytical solution for the problem of flow with leakage in an unconfined aquifer 

bounded below by an aquitard of finite or semi-infinite vertical extent.  Malama et al. (2008) 

further extended their previous work to a system consisting of unconfined and confined 

aquifers, separated by an aquitard.  The unconfined aquifer is pumped at a constant rate from 

a partially penetrating well.  Pasadi et al. (2008) considered the effect of wellbore storage 

and finite-thickness skin and presented a Laplace-domain solution for CFT conducted in an 

unconfined aquifer with a partially penetrating well. 

More recently, Malama et al. (2009a) developed a semi-analytic solution for a 

three-layered system, consisting of an aquifer and two confining units, due to constant rate 

pumping of the aquifer at a fully penetrating well.  Their solution was successfully tested on 

the streaming potential data presented by Rizzo et al. (2004).  Malama et al. (2009b) also 

developed a semi-analytic solution for a fully penetrating well in an unconfined aquifer under 

constant-rate pumping.  Their solution was applied to estimate aquifer parameters using data 

recorded at the Boise Hydrogeophysical Research Site.  
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1.3 Objectives 

Motivated by the literatures above, the purpose of this paper is to develop a mathematical 

model for describing the drawdown distribution in an unconfined aquifer when performing 

the constant-head test in a partially penetrating well.  Without assuming constant-head 

boundary along the screen as an unknown flux boundary, the system is separated into two 

different regions and the solution of the model is directly obtained using method of separation 

of variables and Laplace transform.  This new solution can be used to determine the aquifer 

parameters or to investigate the effects of vertical-flow caused by the partially penetration 

well and free surface boundary on the drawdown distribution in unconfined aquifers. 
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CHAPTER 2  MATHEMATICAL DERIVATIONS 

 

    This chapter is divided into three parts.  First, we develop a mathematical model for 

describing the drawdown distribution due to the pumping from a partially penetrating well in 

unconfined aquifers under constant-head test.  The solution of the model is then derived by 

Laplace transforms.  Final, the Laplace-domain solution can be shown to reduce to the 

solution in the case with a fully penetrating well. 

 

2.1  Mathematical Model of Constant-Head pumping Test 

The conceptual model for constant-head pumping in an unconfined aquifer system with a 

partially penetrating well is illustrated in Figure 1.  The well screen starts from z = zl with a 

finite well radius rw.  The domain is divided into two different regions.  Region 1 is defined 

by wrr ≤≤0 and lzz ≤≤0  while region 2 is bounded within ∞<≤ rrw  and η≤≤ z0  

where η  is the saturated thickness.   

 

2.1.1  Governing Equations 

The aquifer is assumed to be homogeneous, infinite extent in the radial direction and the 

seepage face in region 2 is neglected.  The governing equations in terms of drawdown in the 

regions 1 and 2 can, respectively, be written as: 
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The subscripts 1 and 2 denote the regions 1 and 2, respectively.  The drawdown at a distance 

r from the center of the well and a distance z from the bottom of the aquifer at time t is 

denoted as ),,( tzrs  which is equal to hh −0 , where 0h  is the initial head and h  is the 

hydraulic head.  The aquifer has the horizontal hydraulic conductivity Kr, vertical hydraulic 

conductivity Kz, and specific storage Ss.  Assume the drawdown is small in comparison with 

the saturated aquifer thickness η , the boundary at the free surface ( η=z ) can be 

approximated as bz = , where b  is the initial saturated thickness.  Therefore, the 

governing equation for region 2 can be further expressed as 

bzrr
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2.1.2  Initial and boundary conditions 

The initial condition for saturated thickness ),( trη  is equal to b , the drawdowns are 

therefore assumed to be zero initially in regions 1 and 2, that is 

0)0,,()0,,( 21 == zrszrs  (4) 

The no-flow boundary condition at the bottom of the aquifer for both regions is 

0),,(),,(
0

2

0

1 =
∂

∂
=

∂
∂

== zz z
tzrs

z
tzrs  (5) 
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The bottom of the well screen ( lzz = ) is assumed to be sealed and the boundary condition for 

s1 at this position is therefore a no-flow boundary. It is thus expressed as  

w
zz

rr
z

tzrs

l

≤<=
∂

∂

=

0,0),,(1  (6) 

The three-dimensional equation describing the flow at free surface for the unconfined aquifer 

can be written as (Batu, 1998, p.107) 
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where Sy is the specific yield.  

Considering the drainage process is transient and the drawdown everywhere of the system is 

small in comparison to initial saturated thickness b.  Using the linearized form that 

neglecting the second-order terms of the hydraulic gradient in Eq. (7) of the kinematic 

boundary condition at the water table (Neuman, 1972), the condition for the top boundary of 

the region 2 is 

∞<≤
∂

∂
−=

∂
∂

==

rr
t

tzrsS
z

tzrsK w
bz

y
bz

z ,),,(),,( 22  (8)  

In addition, the boundary at r = 0 due to symmetry along the center of the well is written as: 

l
r

zz
r

tzrs
<<=

∂
∂

=

0,0),,(

0

1  (9)  

When r approaches infinity, the influence radius does not significantly affect the drawdown 

(Batu, 1998).  The remote boundary is therefore taken at ∞  instead of the influence radius.  

The boundary condition for the region 2 is 
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0),,(2 =∞ tzs  (10)  

The boundary condition specified along the well is 

0,,),,(2 ><<= tbzzstzrs lww  (11)  

where ws  is a constant drawdown in the well at any time. 

At the interface between regions 1 and 2, the continuities of the drawdown and flow rate 

must be satisfied: 

0,0,),,(),,( 21 ><<= tzztzrstzrs lww  (12)  

and 

0,0,),,(),,( 21 ><<
∂

∂
=

∂
∂

==

tzz
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r
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l

rrrr ww

 (13)  

 

2.2 Laplace-domain solution 

In order to express the solutions in dimensionless form, following dimensionless 

variables are defined: wsss /1
*
1 = , wsss /2

*
2 = , bSS sy /=σ , rz KK /=κ , wrr /=ρ , 

brww /=ρ , 2
ww κρα = , 2ραα w= , 2/ wsr rStK=τ , bz /=ζ , and bzll /=ζ  where *

1s  

and *
2s  stand for the dimensionless drawdowns for regions 1 and 2, respectively, σ  is the 

ratio between specific yield yS  and the storativity bSs , κ  represents the dimensionless 

conductivity ratio, ρ  denotes the dimensionless radial distance, wρ  is the dimensionless 

radius of the pumping well, τ  refers to the dimensionless time during the test, ζ  and lζ  

are the dimensionless vertical distance and the dimensionless distance from the bottom of 
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aquifer to the bottom of the screen, respectively.  

  Taking the Laplace transform to the dimensionless governing equations of Eqs. (A1) and 

(A2) subject to the dimensionless boundary conditions of Eqs. (A4) – (A11), the 

Laplace-domain solutions for the dimensionless drawdowns in regions 1 and 2 are 

respectively 
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Applying the continuity conditions to Eq. (14) and Eq. (15), the coefficient ′
mA1  and ′

nA2  

are respectively obtained as 

⎥
⎦

⎤
⎢
⎣

⎡
Ω−Ω
Ω−Ω

+
Ω+Ω
Ω+Ω′⋅⎥

⎦

⎤
⎢
⎣

⎡
Ω+Ω

Ω
−=′ ∑

∞

= nm

lnm

nm

lnm
n

n
n

mm

m
omm kpAipA

21

21

21

21
0

0
2

11

1
1

])sin[(])sin[()(
2)2sin(

2)( ζζ  (16) 

and 

⎥
⎦

⎤
⎢
⎣

⎡
Ω−Ω
Ω−Ω

+
Ω+Ω
Ω+Ω′⋅⎥

⎦

⎤
⎢
⎣

⎡
Ω+Ω

Ω
=′ ∑

∞

= nm

lnm

nm

lnm

m
m

nn

n
n pApA

21

21

21

21

0
1

22

2
2

])sin[(])sin[()(
2)2sin(

2)( ζζ  

⎥
⎦

⎤
⎢
⎣

⎡
Ω+Ω
Ω−Ω

+
nn

lnn

p 22

22

2)2sin(
)sin()sin(4 ζ   (17) 

where p is the Laplace variable and the symbols ′
mA1 , ′

nA2 , m1Ω , n2Ω , )(0 ⋅I , )(1 ⋅I , )(0 ⋅K , 

)(1 ⋅K , and k0 are defined in Notation.  The detailed derivations of Eqs. (14) and (15) are 

given in Appendix A.   
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2.3 Fully penetrating wells in unconfined and confined aquifers 

Letting 0=lζ  in Eqs. (16) and (17), the drawdown solution of Eq. (14) in region 1 is 

equal to zero and the Laplace-domain solution in Eq. (15) for dimensionless drawdown in 

region 2 with fully penetrating wells in unconfined aquifers is exactly the same as the solution 

given in Chen and Chang (2003, Eq. (7)) when the skin factor kS  equals to zero after some 

algebraic manipulations.  The detailed derivation for reducing the present solution to the 

case of a fully penetrating well in unconfined aquifers is given in Appendix B.  Furthermore, 

by setting 0=lζ  and 0=σ , the Laplace-domain solution of Eq. (15) in region 2 can be 

reduced to the solution in Hantush (1964) for drawdown with a fully penetrating well in 

confined aquifers.  The detailed simplification of present solution to the situation of fully 

penetrating well in confined aquifer is given in Appendix C. 
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CHAPTER 3  NUMERICAL EVALUATION 

 

The numerical inversion given by Stehfest (1970) is adopted for calculating the 

time-domain drawdown solutions in Eqs. (14) and (15) for regions 1 and 2, respectively.  

Since there might be a problem of slow convergence when evaluating the infinite sums in Eqs. 

(14) and (15), the Shanks method is applied to accelerate convergence for these infinite sums.   

 

3.1 Shanks Method 

The Shanks method, also called the ε –algorithm, is a non-linear sequence-to-sequence 

transformation.  Shanks (1955) proved that this transformation is effective when applied to 

accelerate the convergence of some slowly convergent sequences.   

The partial sums, nS , of an infinite series may be defined as 

∑
=

=
n

k
kn aS

0

                                                  (18) 

where ka  is the kth term of the series.  Based on the sequence of partial sums, the Shanks 

transform may be expressed as (Wynn, 1956)  

,...2,1,
)()(

1)()(
1

111 =
−

+=
+

+−+ i
SeSe

SeSe
nini

nini                              (19) 

where nn SSe =)(0  and [ ] 1
0101 )()()( −

+ −= nnn SeSeSe . 

It is necessary to set a certain convergence criterion when applying the Shanks transform 

to evaluate a given series.  Therefore, one defines a convergence factor, ERR, as 
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ERRSeSe nini ≤−−+ )()( 2122                                                (20) 

The sequence of partial sums is terminated when this criterion is met and the infinite series 

converges to the calculated )( 122 −+ ni Se .  

This method has been successfully applied to compute the solutions arisen in the 

groundwater area (see, e.g., Yang and Yeh, 2002; Peng et al., 2002). 

 

3.2 Numerical Inversion 

The Laplace transform method is used to solve differential equations along with their 

corresponding initial and boundary conditions.  In many engineering problems, the 

Laplace-domain solutions for mathematical models are tractable, yet the corresponding 

solutions in the time domain may not be possibly or easily solved.  Under such 

circumstances, the methods of numerical Laplace inversion such as Stehfest algorithm 

(Stehfest, 1970) or the Crump algorithm (Crump, 1976) may be used.   

The Laplace transform of a real-valued function )(tf , 0≥t , is define as 

dttfepF pt∫
∞ −=

0
)()(                                                     (21) 

And the inverse of )( pF  is given by 

dppFe
i

tf pt∫
∞+

∞−
=

ξ

ξπ
)(

2
1)(                                                  (22) 

where ξ  is in the region of any singularities of )( pF . 

Stehfest (1970) presented algorithm for the numerical inversion of a Laplace-domain 
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expression.  If )( pF  is the Laplace transform, then the inverse )(tf  can be approximately 

computed by 

∑
=

⎥⎦
⎤

⎢⎣
⎡ ⋅

⎥⎦
⎤

⎢⎣
⎡≈

N

n
n t

nFV
t

tf
1

)2ln()2ln()(                                                 (23) 

where the quantity tn /)2ln(  substitutes the Laplace parameter p . 

The coefficients nV  are given by 

∑
+=

+

−−−−
−=

)2/,min(

2/)1(

2/
)2/(

)!2()!()!1(!)!2/(
)!2()1(

Nn

nk

N
Nn

n nkknkkkN
kkV                              (24) 

where N is an even number, k is the value of )2/)1(( +nFloor  where the function )(⋅Floor  

maps a real number to the largest previous integer. 

To use the Stehfest method, it is necessary to choose N, the number of terms to sum.    

Theoretically, the larger the value of N, the more accurate the numerical solution.  In fact, N 

is limited by truncation errors.  Thus, the use of large N values causes subtraction of one 

large number from another, with a resulting loss of accuracy.  Cheng and Siduruk (1994) 

suggest the range 206 ≤≤ N .  This study uses N =8 in computing the solutions, which can 

obtain accurate results.  Note that the use of fewer or more terms of N may create inaccurate 

result.   



 16

CHAPTER 4  RESULTS AND DISCUSSION 

 

4.1 Effective distance for the observation well with different specific time 

Figure 2a demonstrates the dimensionless drawdown distributions for the dimensionless 

distance ρ  = 1, 1.1 and 1.5 at the dimensionless time τ  = 1, while Figure 2b for ρ  = 1, 2, 

and 5 at τ  = 102 , Figure 2c for ρ  = 1, 2 and 7 at τ  =104, and Figure 2d for ρ  = 1, 5 

and 7 at τ  =106.  The aquifer parameters used in these figures are as follows: 100=β , 

1=κ , 410−== bSS s , 1.0=yS  and 5.0=lζ .  These figures show that the dimensionless 

drawdown at ρ  = 1 match the boundary condition of the wellbore at different time periods.  

The dimensionless drawdown decreases with increasing ρ  at τ  = 1, 102, 104 and 106.  In 

addition, it is apparent that vertical flows occur at the water table due to the free surface 

boundary as shown in Figures 2b – 2d. 

 

4.2 Influence of specific yield 

Figure 3 is plotted to examine the effect of specific yield yS  of region 2 on the 

dimensionless drawdown during CHT.  This figure shows the response of dimensionless 

drawdown in a 100 m thick aquifer at ρ  = 50 1=κ , 410−=S , 75.0=ζ  and 5.0=lζ  

for yS  ranging from 0 to 0.3.  The dimensionless drawdown decreases with increasing yS .  

The typical three-stage drawdown patterns can be observed.  The water releases from the 
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elastic behavior of the aquifer formation at early time, i.e., the first stage.  During the second 

stage at the moderate times, the gravity drainage almost stabilizes the water table.  Finally, 

the effect of vertical flow vanishes at late times and the flow acts like Theis behavior again.  

Figure 3 shows that the larger Sy is, the longer delayed yield stage will be.  The reason might 

be that larger Sy supply more water from the drainage.  If yS = 0, the top boundary 

represented by Eq. (7) becomes the no-flow condition and the aquifer can therefore be 

considered as confined condition.  

 

4.3 Effect of screen length 

Figure 4 illustrates the distributions of the dimensionless drawdown at the well screen 

extends from lζζ =  to βζ =  in region 2 when 610=τ .  This figure shows the 

dimensionless drawdown increases with the length of well screen.  The lines illustrate the 

positions of the well bottom for different length of well screen.  In addition, it can be 

observed from the figure that large slopes of the drawdown distribution curves occur near the 

free surface boundary and the edge of the screen.  Therefore, vertical groundwater flows are 

obviously large at these two areas. 

 

4.4 Effective distance for the observation well 

The response of dimensionless drawdown versus dimensionless time at different 
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observed location is plotted in Figure 5 for ρ  = 10 and 100 with 100=β , 1=κ , 410−=S  

and 25.0=lζ .  The yS  is zero for confined aquifer and there is no vertical flow as shown 

in Figure 5(a).  On the other hand, the vertical flow is apparent at moderate times for 

different radial distances as demonstrated in Figure 5(b) when yS = 0.1.  Figures 6(a) and 

6(b) illustrates the spatial flow pattern for yS = 0 and 0.1 at τ  = 104 with the same 

parameter values as those to draw Figure 5.  Apparently, the vertical flow occurs only near 

the bottom edge of the well screen when the aquifer is confined.  However, for unconfined 

aquifers, the flow at free surface is almost vertical and obvious vertical flows occur near both 

the top and bottom edges of the well.  It demonstrates that the vertical flow in the unconfined 

system is induced not only by the effect of partial penetration but also the effect of free 

surface boundary.  

 

4.5 Effect of anisotropy 

    Figure 7 demonstrates the effect of the conductivity ratio κ )/( rz KK=  on the 

dimensionless drawdown during CHT.  The vertical axis represents the dimensionless 

drawdown and the horizontal axis represents the dimensionless time.  The κ  ranges from 

210−  to 1 with 410−=rK  m/min, 100=β , 410−=S , 1.0=yS , and 5.0=lζ .  The 

dimensionless drawdown decreases with increasing κ  indicating that the vertical flow from 

delayed gravity drainage becomes large for greater κ . 
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4.6 Influence of the well radius 

Figure 8 illustrates the effect of the well radius on drawdown distribution in a 10 m thick 

aquifer.  The considered well radii are 1, 0.1 and 0.01 m with 310=σ , 75.0=ζ , 5.0=lζ  

and 1=κ .  Drawdown is calculated at the distances of 3.16, 10, or 31.6 m from the 

pumping well for =α  10-1, 1, and 101, respectively.  The drawdown decreases with 

increasing distance from pumping well for different wr  as demonstrated in Figures 2a-d.  

The drawdown increases with wr  for different value of α , indicating that the well radius has 

significant effect on the drawdown distribution. 

 

4.7 Effect of partially penetration 

The effect of α  on drawdown in the aquifer at 0=ζ  when the well is fully ( 0=lζ ) and 

partially penetrating ( 8.0=lζ ), is plotted in Figure 9 for 310=σ  and 1=κ .  The 

drawdown difference between the cases of full penetration and partial penetration decreases 

with increasing α .  It is reasonable that 2/1α  is directly proportional to the radial distance 

from the pumping well when the aquifer is isotropic and the partial penetration effect vanishes 

when the radial distance goes large.  Since κα /2/1 br = , it is proved that the radial 

distance influenced by the partial penetration in unconfined aquifer under CHT is proportional 

to the aquifer thickness as well as the results from Hantush for confined aquifer under CFT. 
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CHAPTER 5  CONCLUSIONS 

 

A semi-analytical solution of the drawdown distribution is developed for CHT performed 

in an unconfined aquifer with a partially penetrating well.  The Laplace transforms and the 

method of separation of variables are employed to derive the transient drawdown in the 

Laplace domain for CHT.  The Stehfest method is used to invert the solutions in 

time-domain and the Shanks method is applied to accelerate convergence in evaluating the 

infinite summations in the solution.   

Large slopes of the drawdown distribution curves can be observed near the free surface 

boundary and the edge of the screen, which indicates that the vertical groundwater flows 

occur at these two areas.  The dimensionless drawdown decreases with increasing yS  but 

increases with the length of well screen.  For different wr , the drawdown decreases with the 

increase of radial distance from pumping well and it might produce large error in drawdown if 

assuming the radius of pumping well is infinitesimal. 

The present solution can be used for describing the transient drawdown distribution or 

investigating the effects of specific yield and conductivity ratio on the drawdown distribution 

in unconfined aquifers.  In addition, the present solution can reduce to the solution for a fully 

penetrating well in either confined or unconfined aquifers under CHT.   
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APPENDIX A 

Detailed derivations of Eqs. (14) and (15)
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The dimensionless governing equations of Eqs. (1) and (3) can be expressed as 

lw
ssss ζζρ
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∂
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and 
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The dimensionless initial conditions for regions 1 and 2 are 

0)0,,()0,,( *
2

*
1 == ζρζρ ss                                               (A3) 

and the boundary conditions at the bottom and top of the aquifer for regions 1 and 2 in terms 

of dimensionless form can be written as 
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The dimensionless boundary conditions at ρ  = 0 and infinity are respectively written as 

l
s ζζ

ρ
τζ

<<=
∂

∂ 0,0),,0(*
1                                               (A7) 

0),,(*
2 =∞ τζs                                                           (A8) 

The dimensionless boundary condition along the screen is expressed as 

0,1,1),,1(*
2 ><<= τζζτζ ls                                          (A9) 

In dimensionless form, continuity conditions become 



 23
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The Laplace transform is defined as: 

∫
∞ −=→=

0
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*
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p                        (A12) 

where ),,(~*
1 ps ζρ  is the dimensionless drawdown in Laplace domain.  The solution for the 

dimensionless drawdown solutions can be obtained by taking Laplace transforms of 

governing equations Eqs. (A1) to (A2) using the initial condition (A3) and the results are 
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The transformed boundary conditions at the bottom and top of the aquifer for regions 1 and 2 

can be written as 
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In the same fashion, the transformed boundary conditions at ρ = 0 and ∞  are 

l
ps ζζ

ρ
ζ
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and 
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After taking the Laplace transform, the boundary condition along the well screen is  
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2 ><<= τζζζ lp

ps                                       (A20) 

and continuity conditions become 
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Assume that *
1

~s  and *
2

~s  are the product of two distinct functions, i.e., 
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*
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*

2 pGpFps ζρζρ = , respectively.  

Equations (A13) and (A14) can be, respectively, transformed as 
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and 
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Dividing throughout Equations (A23) and (A24) by 11GF  and 22GF , respectively, Equations 

(A23) and (A24) can then be separated into the following two systems of ordinary differential 

equations after some arrangements 
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where m1ω  and n2ω  are separation constants.   

The solutions of (A25) and (A27) subject to the boundary in (A15) are respectively 

)cos()(),( 111 ζζ mm papG Ω=                                                (A29) 

and 

)cos()(),( 222 ζζ nn papG Ω=                                                (A30) 

where m1Ω = wm αω /1  and n2Ω = wn αω /2 , )(1 pa m  and )(2 pa n  are constants with 

respect to p .  In addition, substituting (A29) into (A16) yields the following equation  

0)sin( 1 =Ω lmζ                                                           (A31) 

The eigenvalues m1Ω  in Equation (A29) can then determined by solving Equation (A31) and 

the result is 

,1
l

m
m
ζ
π

=Ω    m = 0, 1, 2, …                                              (A32) 

Similarly, substituting (A30) into (A17) gives the following equation 

)cos()sin( 222 n
w

nn p Ω=ΩΩ
α
σ ,  n= 0, 1, 2,…                                 (A33) 

Equation (A33) can be numerically solved to obtain the eigenvalues n2Ω  in Equation (A30).   
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The general solutions of (A26) and (A28) are respectively 

)()()()(),( 1011011 ρωρωρ mmmm pKpdpIpcpF +++=                          (A34) 

and 

)()()()(),( 2022022 ρωρωρ nnnn pKpdpIpcpF +++=                          (A35) 

where )(1 pc m , )(1 pd m , )(2 pc n  and )(2 pd n  are constants. 

Then, substituting (A34) into (A18) and (A35) into (A19), respectively, yields 
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ρ
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and 

)()()()(),( 02022 ∞+∞=∞ KpdIpcpF nn                                        (A37) 

where )(1 pc m  and )(2 pd n  are constants.  Note that )(1 pd m  and )(2 pc n  equal zero 

because )0(1K  and )(0 ∞I  are, respectively, equal to infinity.  

  The solutions of (A26) and (A28) are respectively 

)()(),( 1011 ρωρ mm pIpcpF +=                                             (A38) 

and 

)()(),( 2022 ρωρ nn pKpdpF +=                                            (A39) 

The product of (A29) and (A38) gives the general solution of Equation (A23) as 

)cos()()(),,(~
11011

* ζρωζρ mmmm pIpAps Ω+=    m = 0, 1, 2, …                (A40) 

where )(1 pA m  equals the product of )(1 pa m  and )(1 pc m .  On the other hand, the product 

of (A30) and (A39) forms the general solution of Equation (A24) as 
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where )(2 pA n is the product of )(2 pa n  and )(2 pd n .  Accordingly, the linear combination of 

all the m’s solutions yields the complete solution for ),,(~*
1 ps ζρ  
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Similarly, the complete solution for ),,(~*
2 ps ζρ can be obtained as 
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The coefficients )(1 pA m  and )(2 pA n  are unknowns at this stage and can be solved from the 

following equation obtained by substituting (A42) and (A43) into (A21) and (A20), 

respectively, as 
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Equations (A40) and (A41) are organized and expressed as 
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In order to obtain concise solutions, we further define )()()( 2022 nnn pKpApA ω+=′  and 

)()()( 1011 mmm pIpApA ω+=′  and (A42) can be rewritten as 
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where  
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The term on the left-hand side (LHS) of Eq. (A47) is a half-range Fourier cosine series of 

the function on the right-hand side (RHS) of Eq. (A47) for the region 10 << ζ .  The 

coefficient )(2 pA n
′  can then be obtained from the properties of Fourier series as 
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Carrying out the integration in (A49) and simplifying the result yields the coefficient )('2 pA n  

as expressed in Eq. (17). 

Similarly, substituting (A42) and (A43) into (A22), one can obtain 
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From (A50), the coefficient )(1 pA m
′  can be determined as Equation (15). 

Accordingly, based on the coefficients )('1 pA m  and )('2 pA n , the complete solution for 

*
1

~s  and *
2

~s  can be, respectively, obtained as Eqs. (14) and (15). 
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APPENDIX B 

Simplification of Eqs. (15) and (16) to the case of fully penetrating well in unconfined 

aquifers
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Letting 0=lζ  in Eqs. (16) and (17), the drawdown solution of Eq. (14) in region 1 is equal 

to zero and the Laplace-domain solution in Eq. (15) for dimensionless drawdown in region 2 

pumping from a fully penetrating well in unconfined aquifers can be expressed as 
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Considering the skin effect in pumping system, Chen and Chang (2003) developed a 

Laplace-domain solution for describing the flow in an unconfined aquifer with pumping from 

a fully penetrating well under constant-head test.  The solution is expressed as 
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where )/)(/( 22 brKK wrz=β , wrr /=ρ , SS y /=σ , 2
nn p βεχ += , bz /=ζ , 

)/()( 2SrTt w=τ , nε  is nth positive root of Eq. (B3), kS  is skin factor, p is Laplace 

transform parameter and {}1−L  is the Laplace inversion operator. 

If skin effect is negligible ( 0=kS ), Eq. (B2) can be rearranged as 
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Since Eqs. (B1) and (B5) are both used for calculating the dimensionless drawdown in 

unconfined aquifers with fully penetrating wells; these two equations should be identical. The 

mathematical derivation is provided in the following section to show that Eq. (B1) is exactly 
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identical to Eq. (B5).   

Some definitions of variable in Eq. (B5) are different from that in Eq. (B1) and the 

relations are βα =w , nn ε=Ω2  and nnp χω =+ 2 .  Eq. (B5) can be thus rearranged as 
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Substituting (B3) into Eq. (4), one can obtain  
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In addition, substituting (B6) into the term on the left-hand side (LHS) of Eq. (B5) results 

in 
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Using the tangent relation (i.e., )cos(/)sin()tan( ϑϑϑ = ), the denominator on the right-hand 

side (RHS) of Eq. (B8) can be expressed as 
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The RHS in Eq. (B8) can be further written as 
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Eq. (B10) can be simplified using the triangle relationship (i.e., 1)(cos)(sin 22 =+ ϑϑ ) as  
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By multiplying sin(Ω2n)/sin(Ω2n), Eq. (B11) becomes  
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From Eq. (B7) to (B11), the following relation is established  
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Furthermore, base on nn ε=Ω2  and Eqs. (B6)-(B13), one can easily prove that Eq. (B1) 

is identical to Eq. (B5).   
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APPENDIX C 

Simplification of Eq. (15) to the case of fully penetrating wells in confined aquifer



 34

The Laplace-domain solution of Eq. (15) in region 2 for describing the flow due to pumping 

from a fully penetrating well in confined aquifers can be expressed as 
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Substituting 0=σ  (i.e., 0=yS  for confined aquifers) into Eq. (A33), one can obtain  

...,2,1,02 ==Ω nnn π                                               (C2) 

Substituting Eq. (C2) into Eq. (C1) and using L'Hospital's rule, Eq. (C1) is simplified as  
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The non-dimensional form of Eq. (C3) is 
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where pKrSp rws )/( 2=′ . 

Eq. (C4) is further simplified as 
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Assuming the aquifer is confined, homogeneous and isotropic, the solution in Eq. (C5) is 

identical to the Laplace-domain solution in Hantush (1964) written as  
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where KSp s /)( ⋅=λ .   
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Fig 1. Schematic representation of an unconfined aquifer with a partially penetrating well. 
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   (a)                                           (b) 

  

(c)                                           (d) 

Fig 2. The dimensionless drawdown distributions at τ  = (a) 1 , (b) 102 , (c) 104 , and (d) 

106 . 
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Fig 3. The effect of specific yield on the dimensionless drawdown during CHT. 
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Fig 4. The dimensionless drawdown distributions at the well screen extended from lζζ =  to 

βζ =  in region 2. 
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(a) 

 

 (b) 

Fig 5. Relationship for dimensionless drawdown versus dimensionless time with 50=ζ , 75, 

and 100 at 10=ρ  or 100 for yS = (a) 0 and (b) 0.1 
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(a) 

 

(b) 

Fig 6. Spatial flow pattern in an unconfined aquifer with a partially penetrating well for 1=κ , 

100=β , 25=lζ , 410−=S  at τ  = 104 when yS = (a) 0 and (b) 0.1. 
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Fig 7. The effect of conductivity ratio (κ ) of region 2 on the dimensionless drawdown during 

CHT. 
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Fig 8. Drawdown distribution for a well with three different well radii ( wr = 1, 0.1 and 0.01 m) 

with 310=σ , 75.0=ζ , 5.0=lζ  and 1=κ . 
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Fig 9. Effect of α  on drawdown in a 100 m thick aquifer when 310=σ , 1=κ  at 0=ζ  

and r = 100, 31.62, and 10 m for α  = 100, 10-1 and 10-2, respectively. 

 


