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Laplace-domain solution for transient flow into a partially penetrating

well in unconfined aquifers under the constant-head test

Student:Geng-Yuan Chen Advisor:Hund-Der Yeh

Institute of Environmental Engineering

National Chiao Tung University

Abstract

The constant head test is to keep constant water level in the pumping well while the
drawdown into the observed well is measured. - This study derives a semi-analytical solution
for drawdown distribution during constant-head test at a partially penetrating well in an
unconfined aquifer. The constant-head condition is used to describe the boundary along the
screen while no-flow condition is employed to describe the boundary along the casing of the
well. In addition, a free surface condition is utilized to delineate the upper boundary of the
unconfined aquifer. The Laplace domain solution is then derived using separation of
variables and Laplace transform. This solution can be used to produce the curves of
dimensionless drawdown versus dimensionless time to investigate the effects of vertical-flow

caused by the partially penetration well and free surface boundary in an unconfined aquifer or

II



to identify the aquifer parameters from the data of constant-head test.

Keywords: Groundwater, Unconfined aquifer, partially penetrating well, constant-head test.
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CHAPTER 1 INTRODUCTION

1.1 Background

Groundwater is water stored in aquifers. A unit of rock or an unconsolidated deposit is

called an aquifer when it can yield a usable quantity of water. There are two common types

of aquifers: confined and unconfined. Confined aquifer includes upper and lower confining

beds which are of low permeability. Unconfined aquifers are sometimes also called water

table aquifers, because their upper boundary is a water table.

There are two main hydraulic parameters play a-crucial role for the aquifer system in

response to the test: transmissvity and storativity. Transmissivity describes the ease with

which water can move though an aquifer and is a product of hydraulic conductivity and

aquifer thickness. The behavior of" hydraulic conductivity is similar to transmissvity.

Hydraulic conductivity has the same unit as velocity. Storativity is defined as the

dimensionless volume of water that an aquifer releases.

Two types of tests, named constant-head test (CHT) and constant-flux test (CFT), are

usually performed to characterize an aquifer for estimating the hydraulic parameters. The

CHT is usually employed for low-transmissivity aquifers, i.e., for aquifers with clay and/or

silt formation. The drawdown/buildup should be kept at a constant value during the test

period. On the other hand, the CFT is commonly used for high-transmissivity aquifers



which are mainly composed of sand and/or gravel materials. The well discharge rate should

be kept at a constant value during the pumping period.

1.2 Literature Review

For aquifers with low-transmissivity, CHT is more suitable to apply than CFT. The

wellbore storage at the pumping well has large effect on the early time drawdown behavior at

pumping and observation wells in CFT (Renard, 2005). If a CHT is established in a short

period of time, the effect of wellbore storage is negligible under the situations that the aquifer

has low transmissivity and the well radius.is small (Chen and Chang, 2003).

In the past, many studics had been devoted to the solutions for CHT. Kirkham

(1959) derived a steady-state “solution for groundwater distribution in a bounded confined

aquifer pumped by a partially penetrating well under CHT. They simplified the complexity

of the geometry by dividing the model into two different regions. Javandel and Zaghi (1975)

considered the groundwater in a confined aquifer pumped by a fully penetrating well that is

radially extended at the bottom of the aquifer. The procedure used in their study is similar to

that in Kirkham (1959) and the steady-state groundwater solution was obtained using

separation of variables. Jones et al. (1992) and Jones (1993) discussed the practicality of

CHTs on wells completed in low-conductivity glacial till deposits. Mishra and Guyonnet

(1992) indicated the operational benefit of CHTs in situations where the total available



drawdown is limited by well construction and aquifer characteristics. They developed a

method for analyzing observation well response under a CHT. There have been numerous

studies in the literature using CHT [e.g., Wilkinson, 1968; Uraiet and Raghaven, 1980; Hiller

and Levy, 1994; Chen and Chang, 2003; Singh, 2007].

Considering a CHT performed in a partially penetrating well, Yang and Yeh (2005)

developed a time-domain solution to describe the drawdown in a confined aquifer with finite

thickness skin. The boundary conditions along the partially penetrating well are represented

by a constant-head (first kind) boundary for the screen while a no-flow (second kind)

boundary for the casing. They transformed. the first kind boundary along the screen into a

second kind boundary with ‘an unknown flux which is' time-dependent and therefore the

boundary along the partially penetrating well became uniform. The solution was then solved

by the Laplace and finite Fourier cosine transforms. Chang and Yeh (2009) used the

methods of dual series equations and perturbation method to solve the mixed boundary

problem for the CHT at a partially penetrating well. Chang and Yeh (2010) developed a new

model describing a CHT performed in flowing partially penetrating well for arbitrary location

of the well screen in a finite thick aquifer in depth. However, the studies mentioned above

are only applicable for confined aquifers.

For unconfined aquifers, Chen and Chang (2003) developed a well hydraulic theory

for CHT performed in a fully penetrating well and established a parameter estimation method.



Chang et al. (2010) extended the work of Yang and Yeh (2005) to develop a mathematical

model for an unconfined aquifer system while treating the skin as a finite thickness zone and

derived the associated solution for CHT at a partially penetrating well. For other

environmental applications, light nonaqueous phase liquids (LNAPLs) are usually recovered

by wells held at constant drawdown (Abdul, 1992; Murdoch and Franco, 1994) and a

constant-head pumping is employed to control off-site migration of contaminated

groundwater (Hiller and Levy, 1994). At LNAPL contaminant sites the pollutant forms a

pool of LNAPL in the subsurface on the top of water table. It is therefore to install a well

with the screen goes from the top of the aquifer in unconfined aquifers.

For the research of CFT in unconfined aquifers, Neuman (1972) presented a new

analytical solution for characterizing flow to a fully penetrating well in an unconfined aquifer.

He assumed the drainage above the water table occurs instantaneously. Take into account

the effect of finite diameter pumping well, Moench (1997) developed a solution in

Laplace-domain for the flow to a partially penetrating well in unconfined aquifers. Contrary

to Neuman’s assumption, he used the free-surface boundary in Boulton (1954) under the

assumption that the drainage of pores occurs as an exponential function of time in response to

a step change in hydraulic head in the aquifer. Tartakovsky and Neuman (2007) presented

an analytical solution for drawdown in an unconfined aquifer due to pumping at a constant

rate from a partially penetrating well. They generalized the solution of Neuman (1972, 1974)



by accounting for unsaturated flow above the water table and derived the solution from a

linearized Richards’ equation in which unsaturated hydraulic conductivity and water content

are expressed as exponential functions of incremental capillary pressure head relative to its air

entry value. Malama et al. (2007) utilized Laplace and Hankel transforms to obtain a

semi-analytical solution for the problem of flow with leakage in an unconfined aquifer

bounded below by an aquitard of finite or semi-infinite vertical extent. Malama et al. (2008)

further extended their previous work to a system consisting of unconfined and confined

aquifers, separated by an aquitard. The unconfined aquifer is pumped at a constant rate from

a partially penetrating well. Pasadi et al. (2008) considered the effect of wellbore storage

and finite-thickness skin and presented a Laplace-domain solution for CFT conducted in an

unconfined aquifer with a partially penetrating well.

More recently, Malama et al. (2009a) ‘developed a semi-analytic solution for a

three-layered system, consisting of an aquifer and two confining units, due to constant rate

pumping of the aquifer at a fully penetrating well. Their solution was successfully tested on

the streaming potential data presented by Rizzo et al. (2004). Malama et al. (2009b) also

developed a semi-analytic solution for a fully penetrating well in an unconfined aquifer under

constant-rate pumping. Their solution was applied to estimate aquifer parameters using data

recorded at the Boise Hydrogeophysical Research Site.



1.3 Objectives

Motivated by the literatures above, the purpose of this paper is to develop a mathematical

model for describing the drawdown distribution in an unconfined aquifer when performing

the constant-head test in a partially penetrating well. Without assuming constant-head

boundary along the screen as an unknown flux boundary, the system is separated into two

different regions and the solution of the model is directly obtained using method of separation

of variables and Laplace transform. This new solution can be used to determine the aquifer

parameters or to investigate the effects of vertical-flow caused by the partially penetration

well and free surface boundary on the drawdown distribution in unconfined aquifers.



CHAPTER 2 MATHEMATICAL DERIVATIONS

This chapter is divided into three parts. First, we develop a mathematical model for

describing the drawdown distribution due to the pumping from a partially penetrating well in

unconfined aquifers under constant-head test. The solution of the model is then derived by

Laplace transforms. Final, the Laplace-domain solution can be shown to reduce to the

solution in the case with a fully penetrating well.

2.1 Mathematical Model of Constant-Head pumping Test

The conceptual model for constant-head pumping in-an unconfined aquifer system with a

partially penetrating well is illustrated in Figure I. The well screen starts from z = z; with a

finite well radius ry. The domain is divided into two different regions. Region 1 is defined

by 0<r<r,and 0<z<7z while region 2 is bounded within r,<r<ow and 0<z<p

where 7 is the saturated thickness.

2.1.1 Governing Equations

The aquifer is assumed to be homogeneous, infinite extent in the radial direction and the

seepage face in region 2 is neglected. The governing equations in terms of drawdown in the

regions 1 and 2 can, respectively, be written as:



o’s, 10s 0’s 05,

K +—+K, —L=S " 0<r<r,, 0<z<z 1
r(c’ﬁr2 r ar) Lozt C et v ! M

and
o0%s, 105 0’s 0s

K 24 2)4+ K, —2=S 2 r,<r<ow, 0<z< 2
r(ar2 r 8r) L oz? ot v d @

The subscripts 1 and 2 denote the regions 1 and 2, respectively. The drawdown at a distance
r from the center of the well and a distance z from the bottom of the aquifer at time t is
denoted as s(r,z,t) which is equal to h,—h, where h, is the initial head and h is the
hydraulic head. The aquifer has the horizontal hydraulic conductivity K, vertical hydraulic
conductivity K;, and specific storage Ss. Assume the drawdown is small in comparison with
the saturated aquifer thickness' 77, the boundary at the free surface (z=7) can be
approximated as z=Db, where b is the initial saturated thickness. Therefore, the
governing equation for region 2 can be further expressed as

o’s, 10s 0’s 0s,

+——2)+K,—%2=S,—2,
ot r 8r) ¢ oz’ G

K, ( r,<r<o, 0<z<b (3)
2.1.2 Initial and boundary conditions

The initial condition for saturated thickness 7(r,t) is equal to b, the drawdowns are
therefore assumed to be zero initially in regions 1 and 2, that is
S,(r,2,0)=5,(r,z,0)=0 4)

The no-flow boundary condition at the bottom of the aquifer for both regions is

0s,(r,2,1)| =6’32(r,z,t)|
ol 2

-0 &)



The bottom of the well screen (z = z, ) is assumed to be sealed and the boundary condition for

s1 at this position is therefore a no-flow boundary. It is thus expressed as

0s,(r,z,t)

=0, O<r<r, (6)
0z

z=7
The three-dimensional equation describing the flow at free surface for the unconfined aquifer

can be written as (Batu, 1998, p.107)

2 2 2
Kx(a—hJ +K, oh +Kz(a—hj —Kza—h=S a—h at z=»b (7)
OX oy 0z 0z

where Sy is the specific yield,

Considering the drainage process 1s transient and the'drawdown everywhere of the system is
small in comparison to initial saturated thickness b.~ Using the linearized form that
neglecting the second-order terms  of the hydraulic’ gradient in Eq. (7) of the kinematic
boundary condition at the water table (Neuman, 1972), the condition for the top boundary of

the region 2 is
K 0s,(r,z,t) _ s 0s,(r,z,t)

, I, Sr<ow 8
’ oz z=b ’ ot z=b ( )

In addition, the boundary at r = 0 due to symmetry along the center of the well is written as:

os,(r,z,t)

p =0, 0<z<y 9)

r=0

When r approaches infinity, the influence radius does not significantly affect the drawdown

(Batu, 1998). The remote boundary is therefore taken at oo instead of the influence radius.

The boundary condition for the region 2 is



S,(0,2,t)=0 (10)
The boundary condition specified along the well is
s,(r,,z,t)=s,, z,<z<b, t>0 (11)
where s, 1is a constant drawdown in the well at any time.

At the interface between regions 1 and 2, the continuities of the drawdown and flow rate
must be satisfied:
s,(r,,z,t)=s,(r,,z,t), O0<z<z, t>0 (12)
and

os,(r,z,t)| _ os,(r,z,1)|
or |~ or

r=r, |r:rW

s 0<z<z,, t>0 (13)

2.2 Laplace-domain solution

In order to express the solutions in dimensionless form, following dimensionless
variables are defined: s =s,/s,, S,=S,/S, , c=S,/8b, v=K,/K,, p=r/r1,,
pu="1b, a,=kp’, a=a,p’, t=Kt/Sr’, {=z2/b, and £ =2 /b where s
and s, stand for the dimensionless drawdowns for regions 1 and 2, respectively, & is the
ratio between specific yield S, and the storativity S;b, x represents the dimensionless
conductivity ratio, p denotes the dimensionless radial distance, p, is the dimensionless
radius of the pumping well, 7 refers to the dimensionless time during the test,  and &,

are the dimensionless vertical distance and the dimensionless distance from the bottom of

10



aquifer to the bottom of the screen, respectively.

Taking the Laplace transform to the dimensionless governing equations of Egs. (A1) and

(A2) subject to the dimensionless boundary conditions of Egs. (A4) — (All), the

Laplace-domain solutions for the dimensionless drawdowns in regions 1 and 2 are

respectively
S8, P) = mi)Alm'( p) IOI(MH; ;’ ) cos(©,,0) (14)
and

S Lp =Y A () K;m;’ Yooty (15)

Applying the continuity conditions to Eq. (14) and Eq. (15), the coefficient A, and A,

are respectively obtained as

' _ 2le ' kd ! Sin[(le + an )§| ] Sin[(le _QZn )é,l ] 16
Alm (p) Iom|:sin(2QIm)+2QIm:| ;AN (p)k0n|: le +Q2n " le _QZn :| ( )
and
' B 2Q0,, ‘ = ' sin[(Q,, +Q,,)¢,]  sin[(Q,, —Q,,)¢}]
Ay (P) = Lin(292n)+292n} %Alm (p){ Q, +0, + Q. -Q,, }
L4 {sin(QZn)—sin(ané', )} (17)
p Sin(zgzn)+292n

where p is the Laplace variable and the symbols A, A, Q. Q. . 1,(), 1(), K,(),

K,(-), and ko are defined in Notation. The detailed derivations of Egs. (14) and (15) are

given in Appendix A.

11



2.3 Fully penetrating wells in unconfined and confined aquifers

Letting ¢, =0 in Egs. (16) and (17), the drawdown solution of Eq. (14) in region 1 is

equal to zero and the Laplace-domain solution in Eq. (15) for dimensionless drawdown in

region 2 with fully penetrating wells in unconfined aquifers is exactly the same as the solution

given in Chen and Chang (2003, Eq. (7)) when the skin factor S, equals to zero after some

algebraic manipulations. The detailed derivation for reducing the present solution to the

case of a fully penetrating well in unconfined aquifers is given in Appendix B. Furthermore,

by setting ¢, =0 and o =0, the Laplace-domain solution of Eq. (15) in region 2 can be

reduced to the solution in Hantush (1964) for-drawdown with a fully penetrating well in

confined aquifers. The detailed simplification of present solution to the situation of fully

penetrating well in confined aquifer 1s given in Appendix C.

12



CHAPTER 3 NUMERICAL EVALUATION

The numerical inversion given by Stehfest (1970) is adopted for calculating the
time-domain drawdown solutions in Egs. (14) and (15) for regions 1 and 2, respectively.
Since there might be a problem of slow convergence when evaluating the infinite sums in Egs.

(14) and (15), the Shanks method is applied to accelerate convergence for these infinite sums.

3.1 Shanks Method
The Shanks method, also called the .e—algorithm; is a non-linear sequence-to-sequence
transformation. Shanks (1955) proved that this transformation is effective when applied to

accelerate the convergence of some slowly convergent sequences.

The partial sums, S, of an infinite series may be defined as

5, =Y a, (18)

k=0

where a, is the kth term of the series. Based on the sequence of partial sums, the Shanks

transform may be expressed as (Wynn, 1956)

1 )
, —e . S = 19
el+1(Sn) elfl(Sn+1)+ ei(SnH)—ei(Sn) s I 1’2"“ ( )
where ¢,(S,)=S, and el(sn):[eo(snﬂ)_eo(sn)]-l_

It is necessary to set a certain convergence criterion when applying the Shanks transform

to evaluate a given series. Therefore, one defines a convergence factor, ERR, as

13



€5,2(Sp) —€5(S,)| <ERR (20)
The sequence of partial sums is terminated when this criterion is met and the infinite series
converges to the calculated e, _,(S, ).
This method has been successfully applied to compute the solutions arisen in the

groundwater area (see, e.g., Yang and Yeh, 2002; Peng et al., 2002).

3.2 Numerical Inversion

The Laplace transform method is used to solve differential equations along with their
corresponding initial and boundary conditions. « In many engineering problems, the
Laplace-domain solutions for mathematical models are tractable, yet the corresponding
solutions in the time domain .may. not be possibly or easily solved. Under such
circumstances, the methods of numerical Laplace inversion such as Stehfest algorithm
(Stehfest, 1970) or the Crump algorithm (Crump, 1976) may be used.

The Laplace transform of a real-valued function f(t), t>0, is define as

F(p):fe""f(t)dt 1)
And the inverse of F(p) is given by

(0= [ e"F(p)p 22)
where & 1is in the region of any singularities of F(p).

Stehfest (1970) presented algorithm for the numerical inversion of a Laplace-domain

14



expression. If F(p) is the Laplace transform, then the inverse f(t) can be approximately
computed by
N .
f(t) ~ [lni_z)}z:vn F[%} (23)
n=1

where the quantity niIn(2)/t substitutes the Laplace parameter p.

The coefficients V, are given by

min(n,N/2) kN/2(2k)|
Vn =(_1)n+(N/2) Z . (24)
& (N/2=K)1K!(k —1)!(n —k)!(2k —n)!
where N is an even number, K is the value of Floor((n+1)/2) where the function Floor(-)
maps a real number to the largest previous integer.

To use the Stehfest method, it is necessary to choose N, the number of terms to sum.
Theoretically, the larger the value of N, the more accurate the numerical solution. In fact, N
is limited by truncation errors.. Thus, the use of large N values causes subtraction of one
large number from another, with a resulting loss of accuracy. Cheng and Siduruk (1994)
suggest the range 6 <N <20. This study uses N =8 in computing the solutions, which can

obtain accurate results. Note that the use of fewer or more terms of N may create inaccurate

result.

15



CHAPTER 4 RESULTS AND DISCUSSION

4.1 Effective distance for the observation well with different specific time

Figure 2a demonstrates the dimensionless drawdown distributions for the dimensionless
distance p =1, 1.1 and 1.5 at the dimensionless time 7z = 1, while Figure 2b for p =1, 2,
and 5at r = 10° , Figure 2c for p =1,2and 7 at 7 =104, and Figure 2d for p =1, 5
and 7 at 7 =10°. The aquifer parameters used in these figures are as follows: £ =100,
k=1, S=Sb=10", S =0.1 and ¢, =0.5. These figures show that the dimensionless
drawdown at p = 1 match the boundary condition of the wellbore at different time periods.
The dimensionless drawdown-decreases with increasing -p at 7 =1, 102, 10* and 10°. In
addition, it is apparent that vertical flows occur at the water table due to the free surface

boundary as shown in Figures 2b — 2d.

4.2 Influence of specific yield

Figure 3 is plotted to examine the effect of specific yield S, of region 2 on the

dimensionless drawdown during CHT. This figure shows the response of dimensionless
drawdown in a 100 m thick aquifer at p = 50 x=1, S=10", £=0.75 and ¢, =0.5

for S, ranging from 0 to 0.3. The dimensionless drawdown decreases with increasing S, .

The typical three-stage drawdown patterns can be observed. The water releases from the
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elastic behavior of the aquifer formation at early time, i.e., the first stage. During the second
stage at the moderate times, the gravity drainage almost stabilizes the water table. Finally,
the effect of vertical flow vanishes at late times and the flow acts like Theis behavior again.
Figure 3 shows that the larger S is, the longer delayed yield stage will be. The reason might
be that larger Sy supply more water from the drainage. If S = 0, the top boundary
represented by Eq. (7) becomes the no-flow condition and the aquifer can therefore be

considered as confined condition.

4.3 Effect of screen length

Figure 4 illustrates the distributions of the dimensionless drawdown at the well screen
extends from ¢ =¢, to {=p in region 2 -when r=10°. This figure shows the
dimensionless drawdown increases with the length of well screen. The lines illustrate the
positions of the well bottom for different length of well screen. In addition, it can be
observed from the figure that large slopes of the drawdown distribution curves occur near the
free surface boundary and the edge of the screen. Therefore, vertical groundwater flows are

obviously large at these two areas.

4.4 Effective distance for the observation well

The response of dimensionless drawdown versus dimensionless time at different
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observed location is plotted in Figure 5 for p =10 and 100 with =100, x=1, S=10"

and ¢, =0.25. The S, is zero for confined aquifer and there is no vertical flow as shown

in Figure 5(a). On the other hand, the vertical flow is apparent at moderate times for

different radial distances as demonstrated in Figure 5(b) when S = 0.1. Figures 6(a) and
6(b) illustrates the spatial flow pattern for S,= 0 and 0.1 at 7 = 10* with the same
parameter values as those to draw Figure 5. Apparently, the vertical flow occurs only near
the bottom edge of the well screen when the aquifer is confined. However, for unconfined
aquifers, the flow at free surface is almost vertical and obvious vertical flows occur near both
the top and bottom edges of the well. It demonstrates that the vertical flow in the unconfined
system is induced not only by the effect of partial penetration but also the effect of free

surface boundary.

4.5 Effect of anisotropy

Figure 7 demonstrates the effect of the conductivity ratio x (=K,/K,) on the
dimensionless drawdown during CHT. The vertical axis represents the dimensionless
drawdown and the horizontal axis represents the dimensionless time. The x ranges from
10 to 1 with K =10 m/min, =100, S=10", S =0.1, and ¢ =0.5. The
dimensionless drawdown decreases with increasing x indicating that the vertical flow from

delayed gravity drainage becomes large for greater « .
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4.6 Influence of the well radius

Figure 8 illustrates the effect of the well radius on drawdown distribution in a 10 m thick
aquifer. The considered well radii are 1, 0.1 and 0.01 m with o =10, £ =0.75, ¢, =0.5
and x=1. Drawdown is calculated at the distances of 3.16, 10, or 31.6 m from the
pumping well for a= 107, 1, and 10", respectively. The drawdown decreases with
increasing distance from pumping well for different r, as demonstrated in Figures 2a-d.
The drawdown increases with r, for different value of « , indicating that the well radius has

significant effect on the drawdown distribution.

4.7 Effect of partially penetration

The effect of o on drawdown in the aquifer at ¢ =0 when the well is fully ({, =0) and
partially penetrating (£, =0.8), is plotted in Figure 9 for c=10 and x=1. The
drawdown difference between the cases of full penetration and partial penetration decreases

with increasing o . It is reasonable that o' is directly proportional to the radial distance

from the pumping well when the aquifer is isotropic and the partial penetration effect vanishes

when the radial distance goes large. Since r=a" /K , it is proved that the radial
distance influenced by the partial penetration in unconfined aquifer under CHT is proportional

to the aquifer thickness as well as the results from Hantush for confined aquifer under CFT.
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CHAPTER S5 CONCLUSIONS

A semi-analytical solution of the drawdown distribution is developed for CHT performed
in an unconfined aquifer with a partially penetrating well. The Laplace transforms and the
method of separation of variables are employed to derive the transient drawdown in the
Laplace domain for CHT. The Stehfest method is used to invert the solutions in
time-domain and the Shanks method is applied to accelerate convergence in evaluating the
infinite summations in the solution.

Large slopes of the drawdown distribution curves.can be observed near the free surface

boundary and the edge of the screen, which indicates that the vertical groundwater flows

occur at these two areas. The dimensionless drawdown decreases with increasing S, but
increases with the length of well screen.’ [ For different r,, the drawdown decreases with the
increase of radial distance from pumping well and it might produce large error in drawdown if
assuming the radius of pumping well is infinitesimal.

The present solution can be used for describing the transient drawdown distribution or
investigating the effects of specific yield and conductivity ratio on the drawdown distribution
in unconfined aquifers. In addition, the present solution can reduce to the solution for a fully

penetrating well in either confined or unconfined aquifers under CHT.
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5. (14) and (15)
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The dimensionless governing equations of Egs. (1) and (3) can be expressed as

o’s, N 1 0s, . o’s,  0s,

+ ==L 0<p<l, 0<C< Al
e Ta, T2 =T 05 £<¢ (A1)
and
ok % 2 % *
8522 i@+ Wa_sjzai, I<p<oo, 054<1 (A2)
op- pop o¢ ot

The dimensionless initial conditions for regions 1 and 2 are
5,(p,¢,0) =5,(p,£,0) =0 (A3)
and the boundary conditions at the bottom and top of the aquifer for regions 1 and 2 in terms

of dimensionless form can be written as

851 (,D,é/,T) — asz (,0: é/: T) =0 (A4)
aé’ £=0 aé/ ¢=0

&8 Dl g g<p<i (A5)
aé/ §=G

and

@Sz(PaQ/aT) :_iasz(p:é/:z.) , 1§p<OO (A6)
aé/ ¢=1 aW 82' =1

The dimensionless boundary conditions at p = 0 and infinity are respectively written as

&Hgfﬁ)za 0<C<c (A7)
0
5,(0,£,7)=0 (A8)

The dimensionless boundary condition along the screen is expressed as
S;(lsé/sr):ls é/l <é/<1’ T >O (A9)

In dimensionless form, continuity conditions become
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Sf(l,{,r)zsz(l,g,r), 0<d<d,, >0 (A10)
and

&1 (p 80| _885(p.¢.7)|

, 0<<<¢,, >0 All
op ‘ o | ¢<g (A11)
The Laplace transform is defined as:
5 (0.6, M =Lls (0.7 > pl=[ s (p,¢,)e Pdr (A12)

where §1*( p,¢,p) is the dimensionless drawdown in Laplace domain. The solution for the
dimensionless drawdown solutions can be obtained by taking Laplace transforms of

governing equations Eqs. (A1) to (A2) using the initial condition (A3) and the results are

2k ~ % 2 o*
P P op

and

2k ~ % 2o*

8685 +l(232+awaa;§:p§2*, I<p<w, 0<<] (A14)
P P op

The transformed boundary conditions at the bottom and top of the aquifer for regions 1 and 2

can be written as

& (P8P _Eplp| 0 (A15)
aé/ =0 aé/ L“:O

F PPl o g<p<l (A16)
aé/ ¢=a

and

P8P % 5 (pC=1,p) (A17)
aé/ <=1 aw
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In the same fashion, the transformed boundary conditions at o =0and oo are

FOLP g g, (A18)
op

and

5, (0,£,p)=0 (A19)

After taking the Laplace transform, the boundary condition along the well screen is

5,(,¢, p):lp, £ <¢<l, >0 (A20)
and continuity conditions become

§(LS,P) =54, p), 0<¢<( (A21)
and

& (p.C.p)| _ 3 (p.<. D)
op ‘ op

p=1 Pl

L 0<¢ <, (A22)

Assume that §1* and §2* are the product of two distinct functions, i.e.,

§1*(,Da é/a p) = I:1 (po p)G1(§: p) and §2*(pa é/: p) = F2 (p9 p)Gz (é/o p) ’ respectively.

Equations (A13) and (A14) can be, respectively, transformed as

2 2
YL B LS WP A TS (A23)
op p op ¢
and
2 2
6,0 6, 1%, 9% g, (A24)
op p op ¢

Dividing throughout Equations (A23) and (A24) by FG, and F,G,, respectively, Equations

(A23) and (A24) can then be separated into the following two systems of ordinary differential

equations after some arrangements
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0°G, o,

il ’ a G=0 (42
2
‘ F; +lﬁ—[p+w1m]ﬁ =0 (A26)
op°  pop
and
2
88 ;2 £ Png (A27)
aW
2
5_Fzz+l@_[p+a,2n]|:2 ~0 (A28)
op~  pop

where @,, and w,, are separation constants.

The solutions of (A25) and (A27) subject to the boundary in (A15) are respectively

G,(4,p)=2a,,(p)cos(€2,,) (A29)
and
G, (&, p) =a,,(p)cos(€2,,8) (A30)

where Q. =.o,/a, and" Q, =@, /la, ; a,(p) and a, (p) are constants with

respect to p. In addition, substituting (A29) into (A16) yields the following equation
Sin(Q,,¢7) = 0 (A31)
The eigenvalues Q,, in Equation (A29) can then determined by solving Equation (A31) and

the result is

_mrx

le R
¢

m=0,1,2,.. (A32)

Similarly, substituting (A30) into (A17) gives the following equation

Q, sin(Q,,) =2 pcos(Q,,), n=0, 1, 2,... (A33)
o

w

Equation (A33) can be numerically solved to obtain the eigenvalues €,, in Equation (A30).
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The general solutions of (A26) and (A28) are respectively

F (o, P)=Cn(PI(yP+a,p)+d, (DK, P+a,p) (A34)

and

F,(0, P)=Cpr (P (\ P+ @5 0) + 0, (P)K, (\ P+ @5, 0) (A35)

where ¢, (p), d,,(p), C,,(p) and d, (p) are constants.

Then, substituting (A34) into (A18) and (A35) into (A19), respectively, yields

FPR e (p)1,(0)~d,(PIK,(0) (A36)
op Y

and

FZ(Ooa p):CZn(p)IO(w)+d2n(p)K0(w) (A37)

where c,, (p) and d, (p) -ate constants. Note that d, (p) and c,,(p) equal zero

because K,(0) and I,(0) are,tespectively, equal to infinity.

The solutions of (A26) and (A28) are respectively

F(p,p)=Cn(PIl,(yP+o,p) (A38)
and
F,(p,p) =d,,(P)K(\ P+ @, 0) (A39)

The product of (A29) and (A38) gives the general solution of Equation (A23) as
S (0,4 P) = An(PI (P + B p)eos(@,)  m=0,1,2, ... (A40)
where A, (p) equals the product of a,,(p) and c,,(p). On the other hand, the product

of (A30) and (A39) forms the general solution of Equation (A24) as
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(P52 D) = A (DK (Y P+ @y p)c08(Q,,8) 1= 0, 1, 2,... (A41)

where A, (p)isthe productof a,,(p) and d, (p). Accordingly, the linear combination of
all the m’s solutions yields the complete solution for $; (p,<, p)

(9. P) = 2 A (P (P + 01 ) 05(20) (A42)

Similarly, the complete solution for §, (p,<, p) can be obtained as

5. (9.0 P) = 2 A (PIK (P + 01005010 (A43)

The coefficients A, (p) and A, (p) are unknowns at this stage and can be solved from the

following equation obtained by substituting (A42) and (A43) into (A21) and (A20),

respectively, as

> A (PIKy (/P + ) 0s(B3, I % £4¢< (A44)
and

> A (PP 01 c03(,0) = ALK (/P + 0 )08(@5,8), 0<E <& (A45)

Equations (A40) and (A41) are organized and expressed as

iAZn(p)KO(\/ P+ @, )co8(2,,¢) = iAm(p)lo(\/ P+ @y,)cos(Q,g),  0<g<g

:%, ¢, <¢g<l (A46)

In order to obtain concise solutions, we further define AZn’(p) =A,(PK,(yp+®,) and
A (p)=A. (P, (JP+@.) and (A42)can be rewritten as

> A (Peos(@,,d) = F(£), 0<& < (A47)

where
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F(O)= 2 An (Peos(@ud) 0<E <

:l, ¢, <¢g<l (A48)

p

The term on the left-hand side (LHS) of Eq. (A47) is a half-range Fourier cosine series of

the function on the right-hand side (RHS) of Eq. (A47) for the region 0<¢ <1. The

coefficient A, (p) can then be obtained from the properties of Fourier series as

: 1 £(£) d
Azn(p):joc?s(szmo ) d¢ (A49)
[ c0s*(@,,6) d¢

Carrying out the integration in (A49) and simplifying the result yields the coefficient A,,'(p)
as expressed in Eq. (17).

Similarly, substituting (A42) and (A43) into (A22), one can obtain

ZAmm)cos(lec)— ZAZH(p)\/m Kli‘ J*V; 0s(Q,0), 0<C<C, (ASO)

From (A50), the coefficient A,m’( p) can be determined as Equation (15).

Accordingly, based on the coefficients A,,'(p) and A,.'(p), the complete solution for

~*

S, and S, can be, respectively, obtained as Egs. (14) and (15).

28



APPENDIX B

Simplification of Egs. (15) and (16) to the case of fully penetrating well in unconfined
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Letting ¢, =0 in Egs. (16) and (17), the drawdown solution of Eq. (14) in region 1 is equal
to zero and the Laplace-domain solution in Eq. (15) for dimensionless drawdown in region 2

pumping from a fully penetrating well in unconfined aquifers can be expressed as

s 4 sin(Q2,,)) KW P+a®,, -p)
5, (P, p)—nz(;pLin(zgzn)Jerm} (P T o) c0s(€2,,5) (BI)

Considering the skin effect in pumping system, Chen and Chang (2003) developed a

Laplace-domain solution for describing the flow in an unconfined aquifer with pumping from

a fully penetrating well under constant-head test. The solution is expressed as

-l gm Ko (X 2) €08(£,¢)
To(p.co7) =1 {p 2K xS K ) cos(en)} (52)
op
t = B3
£ tan(s) =~ (B3)
A=1+op/B+(,’ B/ op) (B4)

where B =(K,/K)(r, /0% , p=rit, ' o=S,/S, x,=yp+pBe’ ., {=12/b,
r:(Tt)/(rWZS), g, 1s nth positive root of Eq. (B3), S, is skin factor, p is Laplace
transform parameter and L™'{} is the Laplace inversion operator.

If skin effect is negligible (S, = 0), Eq. (B2) can be rearranged as

1120 Ko(xn - p) cos(g,0)
To(p.co7) =1 {p; Ky(22) ﬂncos(en)} (B3)

Since Egs. (B1) and (B5) are both used for calculating the dimensionless drawdown in
unconfined aquifers with fully penetrating wells; these two equations should be identical. The

mathematical derivation is provided in the following section to show that Eq. (B1) is exactly
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identical to Eq. (BS).

Some definitions of variable in Eq. (B5) are different from that in Eq. (B1) and the

relations are «, =, Q,, =¢, and /p+w,, = x,. Eq.(B5) can be thus rearranged as

g z = Ko(W P+ @y, - p) cos(Q,,8)
hy(p,¢,7) =L {p; K,(Jp+ ) /Incos(an)} (B6)

Substituting (B3) into Eq. (4), one can obtain

1 =140, tan(Q, )+ —2m (B7)
tan(Q,,)

In addition, substituting (B6) into the term on the left-hand side (LHS) of Eq. (B5) results
in

1 B 1
A, cos(€2,,) {

5 (B3)
1+Q, tan(Q,. ) +——20 |cos(Q
2n ( Zn) tan(an):| ( 2n)

Using the tangent relation (i.€.,tan(:#) = sin()/ cos($).), the denominator on the right-hand

side (RHS) of Eq. (B8) can be expressed as

: Q B 1 Q, cos’(Q,,) (B9)
{1 +Q, tan(Q,,) + tan(zlnm} cos(QQ,,) cos(Q,,)+Q, sin(Q, )+ Z"SITN)M
The RHS in Eq. (B8) can be further written as
: Q, cos’(Q,.) B : cos’(Q,,) (B10)
cos(@,) + @ sin(@,,) + 2 E) o0, 40, s )+ sm@)}

Eq. (B10) can be simplified using the triangle relationship (i.e., sin’(9)+cos’($)=1) as
! - ! (B11)

cos’(Q,,) Q,,
cos(Q, )+, |sin(Q, )+ —— 221 cos(€2,,) + —
( 2n) 2n ( 2n) Sin(an) 2 SIH(QZH)

By multiplying sin(€,,)/sin(Q2,), Eq. (B11) becomes
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1 2sin(€2,,)

—— (B12)
cos(Q, )+ Q,, sin(2Q),,) +2Q,,
sin(Q,, )
From Eq. (B7) to (B11), the following relation is established
1 2sin(Q2,,) (B13)

A, cos(&,) B sin(2Q),,) +2Q,,

Furthermore, base on Q, =g, and Egs. (B6)-(B13), one can easily prove that Eq. (B1)

is identical to Eq. (BS).
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Simplification of Eq.*( trating wells in confined aquifer
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The Laplace-domain solution of Eq. (15) in region 2 for describing the flow due to pumping

from a fully penetrating well in confined aquifers can be expressed as

s 4 sin(Q2,,)) KW P+®,, -p)
(P8P =X pLin(zﬂm)szJ Kopran) e (D

Substituting o =0 (i.e., S, =0 for confined aquifers) into Eq. (A33), one can obtain

Q,,=nr n=0, 1, 2, .. (C2)

n

Substituting Eq. (C2) into Eq. (C1) and using L'Hospital's rule, Eq. (C1) is simplified as

5 (p.C,p)=——o NP P 3
(p,¢,P) R (C3)

The non-dimensional form of Eq. (C3) is

S.r, > r
- Koy =P~ )
S0 1 VK (C4)

Sw p' S.r.2
K S'W '
0(\/Kr p’)

where p'=(S,r,”/K,)p.

Eq. (C4) is further simplified as

S
| Ko(wafsp'r)
§z(p,§,p)=swg— ,S— (C5)
KO( K—Sp'l’w)
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Assuming the aquifer is confined, homogeneous and isotropic, the solution in Eq. (C5) is

identical to the Laplace-domain solution in Hantush (1964) written as

K20

§(ra p) =Sy
pKO(ﬂ’ rw)

(Co)

where A=,/(p-S,)/K .
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Fig 1. Schematic representation of an unconfined aquifer with a partially penetrating well.
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Fig 3. The effect of specific yield on the dimensionless drawdown during CHT.
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Fig 5. Relationship for dimensionless drawdown versus dimensionless time with ¢ =50, 75,

and 100 at p=10 or 100 for S, = (a) 0 and (b) 0.1
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Fig 6. Spatial flow pattern in an unconfined aquifer with a partially penetrating well for x =1,

B=100, £, =25, S=10" at 7 = 10" when S,=(a)0and (b) 0.1.
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Fig 7. The effect of conductivity ratio ( k) of region 2 on the dimensionless drawdown during

CHT.
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Fig 8. Drawdown distribution for'a well with three different well radii (r,= 1, 0.1 and 0.01 m)

with =10, £=0.75, £, =0.5 and x=1.
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Fig 9. Effect of o on drawdown in a 100 m thick aquifer when =10, k=1 at £ =0

and r=100, 31.62, and 10 mfor a = 100, 10" and 10'2, respectively.
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