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Multigrid and Adaptive Methods for Computing Singular

Solutions of Laplace Equation on Corner Domains
Student: Wei-Jen Lee Advisor: Chin-Tien Wu

Institute of Mathematical Modeling and Scientific Computing

National Chiao Tung University

Abstract

Elliptic boundary value problems on domain with corners have singular
behavior near the corners. Such singular behavior affect the accuracy of the
finite element method throughout the whole domain. For the Poisson equation
with homogeneous Dirichlet boundary conditions defined on a polygonal
domain with re-entrant corners, it is well known that the solution has the

singular function representation u:w+Zj:lst where w is the regular part of the

j 1
solution and s, are known as singular functions that depend only on the

corresponding re-entrant angles. Coefficients «; known as the stress intensity

factors in the context of mechanics can be expressed in terms of u by extraction

1 :
formula «; =={[ fs ,dx+[uAs ,dx} , where s are known as dual singular
Q Q

T
funciton. Accurate calculation of these quantities is of great importance in many
practical engineering problems. Similar singular function representations hold
for the solutions of interface,biharmonic,elasticity, and evolution problems in [1,
2].
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Introduction

The finite element method has become one of the most popular and effective methods
for the numerical solution of partial differential equations, particularly for elliptic equa-
tions. In practice many important problems involve polygonal domains. Previously, the
geometry of a problem would be restricted so that the triangulation elements fit the polyg-
onal boundary exactly. Form a theoretical standpoint, under the assumption that solutions
were sufficiently smooth, this case has been thoroughly analyzed. Unfortunately, in prac-
tice one is not likely to achieve the smoothness required for these previous analyses. It is
the basic behavior of elliptic equations that solutions possess singularities at corners. These
singularities substantially affect the rate of convergence of numerical approximations.

To handle this problem , here the two main procedures which have been proposed to
overcome this difficulty. The first is based on mesh refinements and has been analysed by
Babuska and kellogg [21],Raugel, Schatz and Wahlbin, Thatcher for instance. This method
may be applied to most of the practical problems since it requires only a qualitative knowl-
edge of the behaviour of the solution near the corners. The second consists in augmenting
the space of trail funcitons in which one looks for the approximate solution. This is done
by adding some of the singular solutions of the problem to the usual spaces of piecewise
polynomial funcitons. For instance, S.C. Brenner and L.Y. SUNG [9], Babuska and Rosen-
zweig [22], Kellogg, Lelievre, Djaoua and Ladeveze and Peyret.

In this thesis ,the first we introduce the singular element to capture the singular point

at the corner and see the accuracy reduced.The advantage of the singular element is that
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there are many small tranguler near the singular point , the solution near the singular point
can be approximation efficiency, but the disadvantage is that create large linear systems . To
solve the large linear systems , we introduce the Multigrid method.The second,we applied
the S.C. Brenner and L. Y. SUNG’s method as a standard. The advantage of S.C. Brenner’s
method is that the stress intensity factors «; can be represent by the simple expression and
correct calculation , but the disadvantage is that the lack of accuracy for the whole domain
.We will improve the accuracy by introducing the adaptive mesh-refinement and adaptive
cut-off function .

Finite element methods and their error estimation are given in section 1. Multigrid
method are introduced in chapter 2. The Poisson equation and the singular funciton repre-

sentation are given in chapter 3. Numerical results are carried out in chapter 4.



Chapter 1
Finite Element Method

1.1 Introduction of Finite Element Method

The basic idea in any numerical method for solving a differential equation is first to dis-
cretize given continuous problem with infinite degrees of freedom to a discrete problem or
with only finite degrees of freedom such that the differential equation is transformed into a
system of linear equations which can be solved by using a computer.

Finite element method start from a reformulation of a given differential equation as
an equivalent variational problem. In the case of elliptic equations this variational problem

in basic case is a minimization problem of the form

Findu € V such that F (u) £ F (v) forallveV (1.1)

where V' is a given set of admissible functions and F' : V' — R is a functional. F'(v) is
the total energy associated with v and (1.1) corresponds to an equivalent characterization
of the solution of the differential equation as the function in V' that minimizes the total
energy of the considered system. In general the dimension of V' is infinite and thus in
general the problem (1.1) can’t be solved exactly. To obtain a problem that can be solved
on a computer the idea in the finite element method is to replace V' by a set V), consisting

of simple function only depending on finitely many parameters. This leads to a finite-
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dimensional minimization problem of the form:

Find uy, € Vj, such that F (u,) £ F (v) forallv eV, (1.2)

This problem is equivalent to a linear or nonlinear system of equations. We hope that the
solution uy, of this problem is sufficiently good approximation of the solution of the original
minimization problem (1.1). Usually one chooses V}, to be a subset of ' and in this case
(1.2) corresponds to the classical Ritz-Galerkin method.

The advantage of finite element methods as compared with finite difference meth-
ods is that complicated geometry,general boundary conditions and variable or non-linear
material properties can be handled relatively easily.In all these cases one meets unnecces-
sary artificial complications with finite difference methodology.Further,the finite element
method has a solid theoretical foundation which gives added reliability and in many cases
makes it possible to mathematically analyze and estimate the error in the approximate finite
element solution.

To solve a given differential or integral equation approximately using the finite ele-

ment method, one has to go through basically the following steps:

variational formulation of the given problem

Mesh Generator

discretization using FEM: construction of the finite dimensional space V}, and choose

basis function

4.  Assemble the element matrix to obtain global matrix
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From step 1~4, one obtain a linear systems we will introduce at section 1.2.

1.2 Variational Formulation

We will now consider the following boundary value problem for the Poisson equation:

—Au=f inQ
{ u=g onJf) (1.3)

where ) is a bounded domain in the R? with boundary 02,g is a constant, f is a given

function, where

Pu  Pu
= | E[S i Ay 1.4
4= B2 X 0y? (1.4)
the equivalent variational problem is
—/(Au)vdm s § / fudzx (1.5)
Q Q
where v is test function in H3 () , v|gn = 0 .By taking integration by parts ,
/ VoVudr = / vfdr + 0 - Vuv|sg = / vfdx (1.6)
Q Q Q

1.2.1 Existence and Uniqueness of Solution

Leta:V x V' — R be a bilinear mapping with following properties:
(1) a(.,.) is symmetric
(2) (Continuity) (., .) is continuous,ie,there is a constant 5 > 0 such that |a(v, w)| <

Bllvllvlwlly  VYv,w eV
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(3) (Coercivity) af.,.) is V-elliptic,ie,there is a constant « > 0 such that a(v,v) >
alv|}  YweV

(4) L is continuous,ie, there is a constant A > O such that |L(v)| < Aljv||y VYo eV

Theorem (Lax-Milgram theorem) Let V' be a Hilbert space with scalar product (., .)y
and corresponding norm || - ||y (the V' — norm). Suppose that a(.,.) is a bilinear form on
V x V and L a linear form on V such that under the assumptions (1)-(4), there exists a

unique © € V' such that

a(u,v) = L(v), forallv eV

1.3 Finite Element Discretization

Let T}, = {K} is a triangulation of Q C R?2, the integral equation can be rewritten as

VoVudr = vfdx (1.7)
> ), > ),

KeT,(Q) KeTy,(2)

The finite element method is then employed to discretize the terms [ VoVudz and [ v fdx
on element, we first look the germetry on an element.

The geometry of the 3-node triangle is specified by the location of its three corner
nodes on the {x,y} plane. The nodes are labeled 1, 2, 3 while traversing the sides in

counterclockwise fashion. The location of the corners is defined by their coordinates:

Tiy Yi, 1= 17273
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the area of triangle is denoted by A and is given by:

1 1 1
2A=det | 1 X2 T3 | = To1Y31 — T31Y01
Y Y2 Y3

wherexij =T; — L5, Y5 = VYi — Yy fori,j: 1,2,32#]

(FERTEY

(x2,¥2)

(x1.y1)
Figl 3.1

1.3.1 Linear Interpolation

One can choose a piecewise ploynomial function to approximate the exact solution u and
the test function v .For example , if one choose linear piecewise funciton ,then the function

u (x,y) may be expressed as

u(z,y) = ap + mz + agy (1.8)

where ag, a; and a, are coefficients to be determined from three conditions. In finite

element work such conditions are often the nodal values taken by u at the corners:

Uy, U2, U3
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The expression in triangular coordinates makes direct use of these three values:

1-=C—n
w(Cn) = wm(l—=C=n)+usC+ugn=_|u uy uz] ¢
n
Uy
= [1-C—n ¢ n]| w (1.9)
Uug

equation (1.9) is called a linear interpolant for w.

1.3.2 Coordinate Transformations

Consider triangular on regular triangular, points of the triangle may also be located in terms

of a parametric coordinate system ¢, n

(x2y:2) n
{0,1)

(%2,y2)

P
IIDrDl' (1,0} ~
{xa,y1])

Figl.3.2

Cartesian coordinates and triangular coordinates are linked by the relation

T T T2 T3
{y] {yl}[ i [yz}g {ys}”
alElG)
Yo1 Y31 n Y1
These simply apply the linear interpolant formula to the Cartesian coordinates: z =

21(1 =C—n)+ 22 +agnandy = y1(1 — ¢ — 1) + y2C + yan.
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Inversion of (1.10) yields
¢ _ i Y31 Ti3 T | i Y31 T13 il (1.11)
n 2A | Y12 T Yy 2A | Y12 T2 Y1 '

1.3.3 Linear FEM Discretization

After generating mesh e;, we shall now construct a finite dimensional subspace V}, of the
space V' defined above consisting of piecewise linear function. We now let V), be the set of
functions v such that v is linear on each subinterval e;, v is continuous on domain €2 and
v = 0 on 0N2.We observe that V}, C V. As parameter to describe a function u; = v (z;)
we may choose the values u; = v (x;) at the node points z;,7 = 0,...,m + 1. Let us
introduction the basis function ¢; € Vj,,j = 0, ..., m + 1. defined by

1ifi = j

¢; (@) = { 0ifi£j,4,j=1,.,M (1.12)

Figl.3.3
L.e., ¢, 1s the continuous piecewise linear function that take the value 1 at node point

x; and the value 0 at other node points. A function v € V), then has the representation

v(z)=> g (r), v€Q (1.13)
=1
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where u; = v (x;), i.e., each u; = v (x;) can be written in a unique way as a linear
combination of the basis function ¢;. In particular it follow that V}, is a linear space of

dimension m with basis {(bj }z 1

1.3.4 Partial Derivatives

From equations (1.10) and (1.11) we immediately obtain the following relations between

partial derivatives:

0r_ 0r_ 0y Oy
3C_ 21’677_ 31,8C—y21,an—y31‘

0C _ys1 On _ e 0C_ w15 O _ w0
Or 2A°0x 2A°dy 2A° 9y 2A°
The derivatives of function u (¢, 1) is
Ju Qu ¢ 4 Oudn
SN E BI=sE 4

9y ¢ ay " 9ndy

153 %931 + g—j;yu
A g—zmg + 3—21‘21

1 du
_ = | Y Y2 aC
2A[$13 1’21}[2—:;}

ou
_ 1g ac (1.14)
24 | g

[\)

where ® = Ys1 Y12 .
’ r13 T21

Similarly,the derivatives of test function v((, n) is

o 1 Y31 Y12 3—2
v pu— :11‘)‘ = — {’U
v {g—y} 2A[I13 $21]{g—n}
1 v v
= 51 [ g_C g_n }CI)T (1.15)

So,we let
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3 3
w=Yuwd, = v, (1.16)
i=1 i=1
Where¢1:1_<q_na¢2:<qa¢3:na
u [ 0¢1  O¢y D¢ uy
on | In on on Uus
(51 Uy
-1 1 0
us Us
-1 1 0
where D = [ 10 1 ]
Similarity,
9¢y 09,
2 & ,
[%12[01 U2 Us] % o :[vl Vg Ug]D.
on 03 Od3
ac oy
for one element,we get
1 t
/ VoVudr = / [ v vy w3 | DT®T—®D | uy | |J|d(dn (L.H.S)
% e 4A? s

(1.18)

Kk = [ DT®T 5 ®D|J|d(dn is called element stiffness matrix.

and

b 3
/vﬂxzfjmw o] b | [ o 60 01| o | ldCaY (RE.S)
K K ¢3 f3
(1.19)
"

Mg=[z| & | [ &1 &2 &3 ||J|dCdn is called mass matrix.
o
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1.3.5 Assembling the element matrix

H
Assembling all the element matrices Ky, M, into global matrices,here u’, v, f are the

global nodal vector.y o7, ) Kx = K, > xer, @) Mx = M. The equation (1.7) becomes

7-K-7=7-M~?, forallv € Vj,

As a result,we obtain a linear system

K-7=M-Ff (1.20)

1.4 Error Estimation

(Cea Lemma)

Let u € V be the solution of a(u,v) = L(v) ,Yv €V andu, € V;, C V.Then
B
Hu—uthgameu—vhHV Y, € Vj, (1.21)

where « is coercivity scalar and 3 is continuity scalar.
For a typical elliptic problem satisfying the conditions (1)-(4) in the section 1.2.1,we
choosing v, = m,u € V} to be a suitable interpolant of u and estimate the interpolation

error ||u — mhul|y.

1.4.1 Interpolation Error with Piecewise Linear Functions

We first consider the case V = H'(Q) and V;, = {v;, € V : v|x € P(K),VK € T,}
where T}, = {K'} is a triangulation of Q C R?,ie,V}, is the standard finite element space of

piecewise linear functions on triangles K .For K € T}, we define
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hy, = the dimeter of K'=the longest side of K,
pi, = the dimeter of the circle inscribed in K
h = max hg.

KeTy

We shall assume that there is a positive constant 3 independent of h ,such that

PK > 53 VK eT, (1.22)
This condition means that the angles of the triangles K are not allowed to be arbitrarily
small;the constant (3 is a measure of the smallest angle in any K € T),.Let N;,i =1, ..., M,
be the nodes of T},.Given u € C°(§2) we define the interpolant

mpu(Ny) =w(N;) i=1,... M (1.23)

,thus 7,1 is the piecewise linear function agreeing with u at the nodes of 7},.

Figl.4.1
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For j=1,2 and x€ K we have

21@(90) = 1, (1.24)
ipi(ﬂf)qﬁi(ﬂﬁ) = 0, (1.25)
i a%j@(ff) = %i@(w):@, (1.26)
imx)gf;(x) - . (127)

Theorem 1 Let K € Tj, be a triangle with vertices a',i=1,2,3.Given v € C°(K),let the

interpolant mv € Py (K) be defined by

then

where

Proof. Let ¢,,1

mu(a') = v(a'),i =1,2,3. (1.28)
||U—’/T’UHLoo(K) SQhﬁ(lﬂlngHDaUHLoo(K), (129)
hic
max||DO‘(U — 7TU)||Loo(K) S 6— max ||Da1}||Loo(K), (130)
|a=1] Prc la=2|
v]|zoory = glef}gdv(ffﬂ- (1.31)

= 1,2, 3, be the basis functions for P,(K).4 general function w € P;(K)

then has the representation

3

w(z) = Zw(ai)qﬁi(aj), r e K, (1.32)

=1

so that in particular

3

mu(x) = Zv(ai)gbi(x), r e K, (1.33)

i=1
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since Tv(a') = v(a'), we now using the Taylor expansion at x € K :

0ly) = v(a) + 3 G @) = ) + Ria.y),
where
Rlo.s) = 5 3 o (€ =)y = )

15

(1.34)

(1.35)

is the remainder term of order 2 and & is a point on line segment between x and y.In

particular by choosing y = a',we have

v(a') = v(2) + pi(z) + Ri()

where
2. v
pi(z) = E:E;@M% ), a" = (ay, ay),
=P
Ri(z) = R(x,a)
Since

|} — 2] < hg,i=1,2,3, j=12,

the estimate of the remainder term R;(x)
RZ<£C) < Qh% ‘mla)é HDQU‘ ‘LOO(K), 7 = 1, 2, 3.

Now (1.33) and (1.36) combine to give

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)

(1.41)
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which gives us the following representation of the interpolation error:

v(z) —mv(r) = = ) Ri(x)d, (). (1.42)
Since 0 < ¢,(z) < lL,ifz € K,i = 1,2,3,we can use the previous estimate (1.39) of the

remainder term R; to get

3

[o(x) = mu(@)] < Y |Ri(2)llé(x)]

=1

IN

max |R;(z |Z |p;(2)| < 2h3 I11‘21>2(||Dav||Loo(K),x € K(1.43)

we proves (1.29). R

Proof. To prove (1.30) we differentiate (1.33) with respect to x; to get

omv : 9,
T @) = D v(@)g (@), (1.44)

which together with (1.36) shows that

87?1} 3 0o, 0,
7, @ Z 5o, @)+ ;pi(x)a—m(x) +3 " Ri() 5o (©) (1.45)

Hence,by (1.26) and (1.27) we have

Z—Z( (%1 Z Ri(x &El (1.46)
which gives the following representation o the error 68”1 g—;rf :
g—;(x) - ZZ Z Ri(x 6$1 € K. (1.47)
and
w52 (0)] < -, (1.48)

h2
o, )~ Gy @) < 6 max [ D%l e (1.49)
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In the same way we estimate 59—;2 — g—g;’ and thus (1.30) follows.The proof of the theorem is

now complete once the lemma is established. R

Theorem 2 Under the assumptions of Theorem 1 there is an absolute constant C such
that

v = 70| 1a(r) < O] 2(50),s (1.50)

2
"U—T("U‘HI(K) < C—K’U|H2(K) (151)
Pk

Theorem 3 The global interpolation errors

|lu — mpul| @) < Chlulp2q), (1.52)

||u o 7Thu||L2(Q) S Chzfu‘HQ(Q) (153)

Proof. We have by summing over K € T},

|Ju — Wh“”%%n) = Z [Ju — WhUH%%K) < Z Czhi\“ﬁﬂ(f{)
KeTy, KeTy,
< O Y i = C*h*ulizg), (1.54)
KeTy,
. . . hx 1
and similarly using (1.22) ,ie, — < —,
Pk~ P

h3 h?
v — mhullfn g < Z CQp—gK’Uﬁ#(K) < Z 025—2(’“@12(1()
KeT), K KeTy,
h2
< 02?@@]2(0) (1.55)
so that
Ch
v — Tl o) < 7|U|H2(Q) = Chlu|p2(q), (1.56)
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if the constant 3 is included in the constant C',and

Hu—ﬂhuHLz(Q) < C’h2|u]H2(Q). (157)

1.4.2 A Priori Error Estimation

The bilinear form a(u,v) = [ VuVwvdz, the finite element space of piecewise linear ele-
ment is H' (Q) = V, the test function space is H} (£2). The priori error estimate of Possion

equation
||u = uh”Hl(Q) S C’h|u|H2(Q)

Proof. by Céa Lamme, so the inequality is
s
u — up|| o) < > inf ||u — vp||m1(@) forall v, €V},

where « is coercivity scalar and [ is continuity scalar ,than we choose v, = m,u, where

mpu s interpolant by the piecewise linear basis function
B g
—inf [Ju — va||m () < =||u — Thul|p1@)
o o

by interpolation error estimate

EHU — 7ThU||H1(Q) S Cah|U|H2(Q) = 02h|U|H2(Q)
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1.4.3 A Posterior Error Estimation and Adaptive Mesh-Refinement
Techniques

On the other way to refine the mesh ,we introduce a posterior error estimation and the
adaptive mesh-refinement techniques. Before presenting the a posteriori error estimators,
we introduce some notations.

For any open subset w of € with Lipschitz boundary ~ ,we denote by L?(w) ,H*(w),
and L?(v) ,k > 1, the standard Lebesque and Sobolev spaces ,respectively,equipped with
the norms || - {low == [| - |2y I - [k = I - lazsys 1+ oy == 11 - Hz2¢y)-

For T € T}, we denote by E(T") and N (T) the set of its edges and vertices,respectively.Let

E,= |J E@M, Nu:= ] ND),
TET), TET),
be the set of all edges and vertices,respectively,in the triangulation. We split £/, and N, in

the form
E), = Eh,Q UEh,Da Ny = Nh,Q U Nh,Da
with
Eh,D : :{EEE}ZZECFD}

Nh,D : :{JIGNhZZECFD}

ForT € T), and E € E;, we denote by hp and h their diamter and length,respectively.

ForT € T, and E € E, and x € N, ,let

Wy 1= U T, wg:= U T, wy = U (T"),
) z€N(T')

E(T)NE(T")#0 EcE(T’
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Figurel.4.2: Domain wp, wg and w,
and put

Vi ={peC(l):0e Hmax(mm, olp € Hm,l’VE e E(T) (1.58)

p(z) = 0,Yo € N(T),¢|lp =0,VYE € E(T)NE,p},

Ve ={¢p € Cw,): dlr € Vi VT’ C w,}. (1.59)
Given E € Ejq and ¢ € L*(wg) with |z € C(T"),VT' C wp,we denote by [¢] the

jump of ¢ across E in an arbitrary,but fixed direction.Put

8uh —
Re(up) := { Zgwtic: VIS o (1.60)
0, VE € Eh7D .
and
Ry = HTerAuh, VT €Ty, (1.61)

where [], is the L? projectors of L?(©2) onto the space of piecewise constant functions
with respect to 17,
The first error estimator simply is a weighted combination of the residuals R (uy,)

and Rg(uy). It is given by

nrg = 0 Re(un)lfr + Y. hellRe(u)l5 )% VT €Ty (162)

EEE(T)\E}%D

The second error estimator is based on the solution of local Dirichlet problems. For

any x € Ny q , itis given by

Nep = ||V (U0 — un)|ow (1.63)
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For more detialed proof of the lower bound and upper bound for the error estimators is in
[17].

According to the error estimator 7, we obtained above, we want to decide a refine-
ment of 7', there is a strategy that we refine all 7" with ), > v maxy 7, np. Here 0 <y <1
is a given threshold,typically v = 0.5 . This strategy is very cheap and often satisfactory
results.

Having decided which elements should be refined, we refine them by connecting
the mid-points of their edges.Triangles may be cut into four new ones by connecting the

mid-points of their edges .

Figurel.4.3: triangles with adaptive mesh-refinement

1.5 Finite Element Approximation for Singular Funcitons

The problem on hand is to devise singular elements within which the field variable would
vary as R(0 < t < 1) where R is the radial distance from the point where the derivative
of the function would have a singularity of the type R'~!.For example,let (1, ;) be the

desired points of singularity in two-dimensional problem,such that R is equal to [(z—x1)?+
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(y — v1)?]*/2.The singularity may be introduced in the geometric transformation between

(z,y) and ((,n) systems.

1.5.1 Lagrange Interpolation

For one-dimensional domain, consider a straight line along x-axis in a Cartesain reference,
such that zy < x < x3,.Consider the dimensionless coordinate £ = (z — zo)/(xp — o)
such that 0 < ¢ < 1.A mth-order polynomial F™(¢) can be represented by interpolating
the discrete values of the function at (m + 1) equidistant points &,;[i = 0, ...,m;&,(i/m)]

using the Lagrange interpolation function, Lgm) (&), as

Fim(e) = 3" KLM(¢) (1.64)
where
L) = 1] (%» (1.65)
j=0j4#i > I

It is seen that the functions in (1.65) have the property that
LY™(€,) = 6, (1.66)

where 0;, = 0 (1 # k) and 05, = 1(i = k).
For a simple example, let we consider second-order polynomial () (¢) and the trans-

formation reduces to

L 4
-
[ ]
Ty

Figl.5.1: x and £ coordinate systems



1.5 Finite Element Approximation for Singular Funcitons 23

(z —x0) = (2 — 20)¢ (1.67)

the Lagrange function can be represent as

I = 2Ae-HE-1)
LY = —4g¢-1)
I = 2% 3)

1.5.2 Singular Element

Apart from problems of fracture,at a given point in the domain,say P,the solution funciton
F,whould have a singularity in its derivative.If R is the radial length measured from the
point P,the solution function F would behave as R* (0 < X < 1),so that the first derivative
of F at P would be infinite. Such singularities may arise at re-entrant corners, tips of sharp
crack,etc.

For One-dimensional cases,consider a straight line along the x-axis,xq < = < x),.Let

the geometry of this line be described by an rth-order polynomial as

r= oL (€) (1.68)

where x; = x(§;) and £, = (i/r)(z = 0,1,...,7) are (r + 1) equidistant points in the
parametric domain 0 < ¢ < 1.(x; themselves may not necessarily be equidistant).Also let

the dependent variable,say u,be represented by an mth-order polynomial.

u(@) =" uL™ () (1.69)
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where u; = u(¢;), but now &; = (j/m)(j = 0,...,m) are (m + 1) equidistant points in
0<¢<1

If the geometric transformation is defined by

(x — 20) = (xar — 20)&" (1.70)

where t is a positive integer greater than unity, the function u(x) corresponding to u(§)
of Eq.(1.69) would be an mth-order polynomial in the variable (z — x)*/* or R**,and
hence the derivative (Ou/0x) has a term which varies as R/t for t > 1,would have a
singularity at © = x.

For instance when » = 2 and ¢ = 2, the positioning of nodes at x+ = xg;x =
2o+ (zar — 20)(3)? = 2o + (zar — 20)(3), and = = x.it would lead to z ~ & and hence
Ou/0z would have a singularity of the type R~1/2.

In general,singularities in (Ou/0z) of the type R('=)/t ¢ < r (t and r are integer),can
be created by suitably choosing the valus z; in an rth-order geometric transformation of the
type (1.68) .

For two-dimensional domain, consider a standard dimensionless triangle (0 < 7, { <
1) as shown in Figl.5.2. The triangle P; P, P3 with Cartesain coordinate (x;, y;)(i = 1,2, 3)

is then mapped into the standard triangle ,through the relations:

(x—z1) = (22— 21)C+ (23 — 1)1

W—w) = (W—vy)(+(ys—y1)n (1.71)



1.5 Finite Element Approximation for Singular Funcitons 25

n
Y4 P, 15) 4
p.|(0.1)
P1Ex1=}'1j Pi(x,.v5)
, P P,
X (0.0} (1.0} -

Figl.5.2: Triangular element in (z, y) and ((, n) coordinate systems
Consider (m + 1) equidistant point along the line = 0 and ¢ = 0,respectively,such

that 7, = (i/m) and (; = (j/m) (i,j = 0, 1,...,m).A mth-order polynomial (m being an
integer) , '™ (n, ), can be represented by interpolating the values of the function in the

standard triangle,as:

o Z Fy L (n (1.72)
i=0 j=0
where
i i— m—(i+j+1)
m:[ﬁ(n—m)l [H(C_C)] H (1—(n+C)—(t/m)>
’ o \i =1 o \G6j — G =0 1—(n; +¢;) — (t/m)

(1.73)

The function also have the property that
LY (04, ) = dud. (1.74)

For the detail of singular element geometric transformation in two-dimensional do-

main, see the reference [8].



Chapter 2
Multigrid Method

2.1 Introduction of Multigrid Method

Multigrid methods(MG) are among the most efficient methods of solving the linear sys-
tems arising from discretization of eilliptic partial differential equations. There has been
intensive research on the convergence of MG since it was introduced by Fedorenko. For
symmetric positive-definite eilliptic problems, thanks to many researchers, such as Bank,
Brandt, Braess, Bramble, Dupont, Hackbusch, Mandel and McCormick, etc, the conver-
gence theory has matured. The major ingredients for convergence analysis of MG are
called the approximation property and the smoothing property. One approach for con-
vergence analysis is the so-called compact perturbation technique, which relies on a
strong approximation property and treats the lower order terms as a small perturbation of
the symmetric positive define term. The technique has been successfully applied to diffu-
sion problems and Bramble, Pasciak, Wang, Xu have shown robust MG uniform conver-
gence. In these studies, uniform convergence of MG can be established with one step of
standard Jacobi or Gauss-Seidel smoothing even without regularity assumptions. Another
approach requires a strong smoothing property to compensate for poor approximation prop-
erty. In this direction, it is very important to find a robust smoother.Robust smoothers such
as the block Jacobi , block Gauss-Seidel method and the incomplete LU factorization (ILU)

method are commonly used.

26
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The efficiency of the multigrid algoritthm is achieved from an elegant combination
of the smoothing procedure and the coarse grid correction procedure. The smoothing pro-
cedure plays the role of reducing highly oscillatory error modes, and the coarse grid is used
to correct the remaining smooth error modes. Hackbusch and Braess give the first rigor-
ous proof on the multigrid convergence and identify that the smoothing property and the
approximation property are the cornerstones for the convergence analysis of multigrid
methods. The smoothing property achieved by stationary iterative method. The approxi-
mation property is achieved by choosed intergrid interpolation operator.

In general,the stationary iterative methods can effective eliminating the high-frequency
or oscillatory components of the error,but leave the low-frequency or smooth components
of the error as we will shown in experiment 1 in section 2.6.This process is called the re-
laxation process in MG. Moreover, the smooth error modes on a fine grid appear more
oscillatory on the coarse grid. As a result, repeating the relaxation process may conse-
quently remove various oscillartory modes of error. To achieve the efficiency of the MG
algorithm, we only have to concern how to restrict smooth error to the coarse grid and how
to prolong the errors remained in coarse grid to the fine grid. This process is called the
inter-grid interpolation, we will introduce the relaxation and interpolation process in the

fillowing sections.

2.2 Relaxation Process

For relaxation process, we introduce the stationary iteration methods.Stationary iterative

methods solve a linear system with an operator approximating the original one and based



2.2 Relaxation Process 28

on a measurement of the error in the result (the residual), form a "correction equation" for
which this process is repeated. While these methods are simple to derive, implement, and
analyze, convergence is only guaranteed for a limited class of matrices. Examples of sta-
tionary iterative methods are the Jacobi method, Gauss—Seidel method and the Successive

over-relaxation method.

2.2.1 Jacobi Mehtod

One of the methods to solve the linear system is the Jacobi method . The Jacobi method is
derived by examining each of the NV — 1 equations in the linear system Av = f in isolation

If in the ¢ — th equation

N-1
Z amvj = fi; (275)
j=1

we solve for the value of v; while assuming the other entries of v remain fixed ,we obtain

v, = (fz — ZCLL]"UJ‘)/CLLZ‘ ,1 Sj S N —1 (276)
J#
this suggests an iterative method defined by
v = (fi - Zai,jvﬁk_l))/ai,i I<j<N-1 (2.77)
J#
which is the Jacobi method.

In matrix terms, the definition of the Jacobi method can be expressed as
o™ = DYL + U)o* Y + D71 f, (2.78)

where the matrices D, — L and —U represent the diagonal, the strictly lower-triangular,

and the strictly upper-triangular parts of A,respectively.



2.2 Relaxation Process 29

The pseudocode for the Jacobi method is given by following

Choose an initial guess v to the solution u
fork=1,2,---
fori=1,2,--- ,N—1
Ui:O
fory=1,2,---,o—1,2+1,--- ,N—1
(k=1)

Vi = U; + ai,jvj

end
vi = (fi —vi)/ai,
end
o#) — 4
check convergence;continue if necessary

end

There is a simple modification which can be made to the Jacobi iteration.
k—1 :
vi = (fi— Zai,j?}](- Na; 1<j<N-1
J#i
However,v} is now only an intermediate value. The new approximation is given by

the weighted average

v(-k):(l—w)v(k_l)—l—wv;‘ I1<ji<N-1

J J

where w € R is a weighting factor which may be chosen.This iteration is called

weighted Jacobi method.

2.2.2 Gauss-Seidel Method

Consider again the linear systems Av = f,now assume that the equations are examined
one at a time in sequence,and that previously computed results are used as soon as they are
available ,we obtain the Gauss-Seidel method:

v = (fi — Zai,j%(‘k) - Zaz’,j%('k_l))/ai,z’ 1<j<N-1 (2.79)

1<t 7>
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In matrix form,

Du®) — Ly®) — k=l = ¢

(D — L)yo®™ = gp®*=Y 4 f

v® = (D — L)7'Uv* Y (D - L)~ f
where the matrices D, — L and —U represent the diagonal, the strictly lower-triangular, and

the strictly upper-triangular parts of A,respectively. The pseudocode for the Gauss-Seidel

method is given by following

Choose an initial guess v() to the solution u

fork=1,2,---
fore=1,2,--- / N—1
V; = 0
fory=1,2,--- ;1 —1
Vi = Uy + ai,jvj(-k)
end
fory=i+1,--- ,N—-1
Vi = U; + CL,‘J‘U(vk_l)
end
v = (fi —vi)/ai
end
v =y
check convergence;continue if necessary

end

2.2.3 Successive Overrelaxation Method

The Successive Overrelaxation Method, or SOR ,is devised by applying extrapolation to the

Gauss-Seidel method. This extrapolation takes the form of a weighted average between the
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previous iterate and the computed Gauss-Seidel iterate successively for each component:

(k) _ (k—1)

v = wi® + (1 — w)o, (2.80)

,wherew;(*) denotes a Gauss-Seidel iterate ,and w is the extrapolation (weighting)
factor.The idea is to choose a value for w that will accelerate the rate of convergence of the
iterates to the solution.

In matrix form, the SOR is written as

Dv® = wDT® 4 (1 —w)Dy*Y

= wf + Lv® + U Y] 4 (1 — w)Dy*Y

— (D —wL)w® = [wU + (1 —w)Djo* Y +wf

v® = (D —wL)wU 4 (1 —w)Dw* ) 4 (D —wL)wf

where the matrices D, — L and —U represent the diagonal, the strictly lower-triangular, and
the strictly upper-triangular parts of A,respectively.

If the extrapolation factor w is choosing by one,the SOR method simplifies to the
Gauss-Seidel method.If 0 < w < 1,its called underrelaxation.If 1 < w < 2, its called

overrelaxation and SOR fails to converge when w is outside the interval (0, 2).
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The pseudocode for the SOR method is given by following

Choose an initial guess v to the solution u
fork=1,2,---
forir=1,2,--- ,N—1
oc=0
forj=1,2,---,1—1

— (k)
0 =0+ a;;V;

end
fory=:+1,--- ,N—1
oc=o0+ a”vj(-k*l)
end
o= (fi—0)/ai
vi(k) = vz(k*l) +w(o vlgk 1))
end
check convergence;continue if necessary

end

2.3 Inter-grid Interpolation : Restriction and Prolongation

First,we consider the linear prolongation, the operator will be denoted I2, .1t takes coarse

grid vectors and produces find grid vectors according to the rule I}, v?" = v

vy = v
1 . _N
Vi = §(U§h+v§$1), 0<j=5 - (2.81)

2,

Figure 2.3.1: Prolongation of a vector on the coarse grid to the fine grid.
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At even-numbered fine grid points ,the values of the vector are transferred directly
from Q2" to Q. At odd-numbered find grid points,the value of the vector is the average of
the adjacent coarse grid values.

For the case NV = 8, this operator has the form

01
V2
U1 U3
(%) = V4 =
U3 Us
Vg
U7

[N

h ,2h __

N
>

2h

—_ N =

The second ,we consider moving vectors from a fine grid to a coarse grid.There are

called restriction operators and are denoted by 72" 1t is defined by 20" = v?" where

1
U?h — Z('Ug’j_l + 21)3’]. + Ugj—f—l)’ 1 S] < — —1. (282)

Figure 2.3.2: Restriction by full weighting of a find grid vector to the coarse grid.

the values of the coarse grid vector are a weighted average of values at neighboring

find grid points.



2.4 Multigrid Algorithm 34

In the case of N = 8,the operator has the form

U1
(%

1
[,3hvh:Z 121 vy | = | v = 2",
1 21 Us (%]
Ve
v7

2h

2.4 Multigrid Algorithm

After kowning the procedure , we compose all the components aobve to make the correction
scheme. First , relaxation on the fine grid will eliminate the oscillatory components of
the error,leaving a relatively smooth error,then transfer the residual on the fine grid to the
coarse grid an solve the residual equation exactly on the 22".Since the error is smooth on
the 2", we can prolongation the error accurately back to the fine grid.Finally, relaxation on
the fine grid use the better initial which is correction before.

The procedure is given by following

vt — MG@O", )
Relax v, times on A"u" = f" on Q" with initial guess v".
Compute 72" = [2'(fh — Ahoh).
Solve A?he?h = p2h on (2,
Correct fine grid approximation : v « v + I e,
Relax v, times on A"u” = f" on Q" with initial guess v".

Here,in practice, the number of relaxation times v, and v5 are often 1,2 or 3.
Moreover, the correction scheme is not just two level, it can be more level,by re-

cursive within itself.The algorithm is called the V' — cycle.The definition which is given
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V-cycle Scheme
vt = MV, )
1.Relax v, times on A"u" = f" with a given initial guess v".
2.If Q" = coarsest grid, then go to 4.
Else f2h « I2M(fh — AMoM).

v =0

UQh — Mv2h (’U2h, f2h)-
3.Correct v «— v 4 I3, v?".
4 Relax vy times on A"y = f* with initial guess v".

The V' — cycle is just one of a family of multigrid cycling schemes.The entire family

is called the ;1 — cycle method and is defined by

p-cycle Scheme
o Myt (b, M
1.Relax v; times on A"u" = f" with a given initial guess v".
2.If Q" = coarsest grid, then go to 4.
Else f2" « I2h(fh — Ahoh).
v =0
v — Mp2h(v?h, f21) u times.
3.Correct v «— v + Il v?".
4 Relax vy times on A"u" = f" with initial guess v".

If » = 1,which gives the V' — cycle and p = 2 is called the W — cycle.

Here are other ideas,if it starts on the coarsest discretization with an exact solver, the
results are interpolated to the next finer grid with a few cycles (V or W) of the multigrid
method are applied .The result is again interpolated to the next finer grid, where again a
few cycles of multigrid method are applied.If this is used recursively, the so-called full —

multigrid method. The algorithm with V' — cycle is given by
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Full Multigrid V-cycle Scheme

v — FMV(vh, fh)
Initialize f", f?",...;v7 v?",.. .to zero.
Solve or relex on coarsest grid

ey <_ vih 4 Iél}IZUSh
,U4h — MV4h(v4h,f4h)
v2h 2 4 L%;]ZUM
U2h — MVQh(v%,f%)
Ly Iélhv%
vt — MV (" fh)

(a)

b

4h

gh
{c)

Figure 2.4.1: Schedule of grids for (a) V-cycle, (b) W-cycle and (c) FMV scheme
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2.5 Complexity

There are various method to solve the linear systems,including stationary iterative methods

or nonstationary iterative methods ,the following table gives us the complexity of various

method :
Table 3.3
Complexity of Various Methods
Method 2D 3D
M O(N?) O(N3)
GS O(N?) O(N3)
SOR O(Nz) O(N3)
CG O(N?2) O(N3)
Multigrid | O(Nlog N) | O(Nlog N)

2.6 Numerical Experiments

Experiment 1

In this experiments we consider the weighted Jacobi method with w = 2/3 applied

to the one-dimensional problem Au = 0 on a grid N=48. We use an initial guess,

1 127 307
U;L =3 sin(%) + Sm(%

)

the results of this calculation are given in Figs 2.6.1(a)-(e). The initial guess is shown in Fig
2.6.1(a) . In Fig 2.6.1(b), the approximation v" after one relaxation sweep is superimposed
on the initial guess. Much of the oscillatory component of the initial guess has already been
removed. The maximum norm of the error has decreased signification. Fig. 2.6.1(c) shows

the approximation after three relaxation sweeps, superimposed on the previous approxima-

tions. Further relaxations on the fine grid would provide only a slow improvement at this
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point. This signals that it is time to move to the coarse grid.Fig. 2.6.1(d) shows the fine
grid error after one relaxation sweep on the coase grid and the error after three coarse grid

relaxation sweeps is shown in Fig. 2.6.1(e)

o Nl |
3 WA
Figure 2.6.1(a): ||e|| = 0.8536 Figure 2.6.1(b): ||e|| = 0.4300

02 o2y

o 0

Figure 2.6.1(c): ||e|| = 0.2607 Figure 2.6.1(d): ||e|| = 0.1564

02}/
o

02

04

AR A f\J”\
YATAVATLY

0 5 w 15 A B W B M s 2D

06

08

-1

Figure 2.6.1(e): ||e|| = 0.0243
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Experiments 2

Consider the following two-point boundary value problem. It is given by the second-

order ordinary differential equation

{ ((2 4 cos(Bz))u'(x)) = f(z), 0<x<m, aandf are constant.

u(OJ; =0, u(r) = a2 (2.83)

we use finite difference method to discrete the domain.The domain of the problem
{z :0 <x <} is partitioned into N subintervals by introducing the grid points z; =
jh,where h = 7 /N is the constant width of the subintervals. At each of the N — 1 in-
terior grid points, the differential equation is replaced by a second-order finite difference

approximation. We also introduce v; as an approximation to the exact solution u(x;).

2a +«a cos(ﬁxj_%)]vj_l — [da+« cos(ﬁijr%) +a cos(ﬁxj_%)}vj .

12
20 + avcos(fBr, 1)|v; 2.84
[ = ]+2]]+1:f(l‘j), 1§j§N—1. ( )

2

v=0,vy =7

Let a represent the entry 4o + o cos(8x; %) + o cos(ﬁxjfé), b represent the entry

2a + acos(f; +%), c represent the entry 2a + « cos(ﬁmj_%),the system can be represent
in matrix form as Av = f.

b U1 f1
a . .

c a UN-1 fN—l

The matrix A is tridagonal,symmetric positive definite and has dimension (N — 1) X
(N —1).
We use multigrid method to solve the linear system.There are several comments in

order.First, we choose o and [ the constant one.Second, we use three level v — cycle and
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the number of relaxation times v; and v4 is the constant three.Third, we use v = 7z as an
initial guess.

The solution of this boundary value problem is u(z) = 22 .The error " is defined by
el = |Ju" — vh|| 2,where u” is the exact solution and v" is the approximation on Q".The

rate of convergence o is computed by

o= (2.85)

Table2.6.1
N e o
128 | 2.7315e-004
256 | 6.8301e-005 | 3.9992
512 | 1.7076e-005 | 3.9998

The results are tabulated in above .The theoretical convergence rate is 4 for o.

Experiments 3

In experiment two , we consider the boundary value problem in two-dimension given

~Au = f in Q:[0,1] x [0,1]

v = 0 on boundary (2.86)

and finite element method is used to discretize the domain.To solve the linear sys-
tems Axr = b,we applied the Jacobi Method,Gauss-Seidel Method,Successive Overrelax-
ation Method, Conjugate Gradient Method and Multigrid Method. Compare the iteration
numbers and the relative residual error between the multigrid method and other methods

,we can find the advantages of using multigrid method as the linear systems solver.
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The exact solution is
u(zx,y) = sin(27z) sin(47y) (2.87)
The tolerance is 10e-16.The error is defined by
error = ||tuey — Ul|oo (2.88)

and the relative residue is defined by

[|b — Azl
1ol

Relative residue =

(2.89)

("R T u | i T L e | e Y ]
[}

Figrue2.6.2: Approximate solutions
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Figure3.6.1 show the exact solution and five kinds of approximation.

. FEM peharmi with pi= S esrablBl
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; b SOR (omaga] &)

s 05
w™ ax
W

Murndser of deraticn

Figure2.6.3: Iteration numbers of five methods

Figure3.6.2 show us the relation between the number of iteration and the log relative

residue. With five kinds of iteration method, Multigrid Method gets the best performance.
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Research Method

Let 2 be a bounded polygonal domain in R? with re-entrant angle.Consider the Pois-

son equation with homogeneous boundary condition

—Au=f in Q
{ u=0 onodf2 (3.90)

where f € L*(Q).

When (3.90) is solved by the P; finite element method on a quasi-uniform grid ,the
convergence rate in the energy norm is therefore of order O(h(™/“)=¢) where h is the mesh
size of the triangulation and w is the re-entrant angle.

In 1996, S.C.Brenner improves the convergence rate developed in [3].1t is based on

the full multigrid iteration technique and the following singular function representation of

u [4, 5, 69 7]
U=KS+w (3.91)

where w € H?(Q) and the s are the singular function associated with the re-entrant angle.
Note that the coefficient  is known as stress intensity factors in elasticity problems.

The multigrid method in [3] computes a solution of (3.91) in the form of
Up = KpS + W
where wy, is a piecewise linear function.It is shown in [3] that

lu —un|me) < Chl|f|]r2(0), (3.92)

43
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|k — k| < CR™97| | 120, (3.93)

In 1997 ,S.C.Brenner and L.-Y.Sung [9] extend the results in [3] and [10] to the case

of a polygonal domain with crack in R?(i.e. the re-entrant angle w = 27.)

B A
F E
C D

Figure3.1: A polygonal domain with cracks.
Let p be the vertice of €2 such that the angle w associated with p satisfies w > 7 (i.e. the
vertice F in the figurel.1).Let polar coordinates (7, 6) be chosen at the vertex p so that the
angle w is spanned by the two rays # = 0 and 0 = w.

The singular function s is defined by
s(r,0) = p(r)r™/* sin(zﬁ) (3.94)
w

where ¢(r) is smooth cut-off function which equal 1 identically in a neighborhood of 0,and

the supports of the ¢ is small enough so that the singular function s vanish identically on
o).

Then the solution u has the representation

U=KS+w (3.95)
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The stress intensity fractors x can be expressed in terms of u by the following extraction

K= % {/Qfs_ldx%—/guﬁs_ldx}, (3.96)

where the dual singular function s_; is defined in the polar coordinate system (r, §) as

formula

7

s_1(r,0) = gb(r)r’“/“’ sin(;@)

([5,7,11, 12, 13, 14, 15, 16]).
There is a idea that we will take advantage of the singular function representation.
We substitute the representation (3.95) into (3.90) to obtain the following boundary-value

problem for w :

{—Aw:f—i—nAs in (3.97)

w =20 on 0f)

If the ~ were known,we could solve (3.97) using piecewise linear finite element method.Unfortunately
the x is unknown,so we apply the finite element method on the kth level to the following
varational problem:

Find wy, € H{ () such that

/ VwpVodr = / (f + kx A s)vdr Yo € Hy(Q) (3.98)
Q Q
where the approximate stress intensity factors xj is computed by the extraction formula

(3.96) using the approximate solution u;_; obtained in the (k — 1)st level, i.e.,

1
K = — {/ fs_1dx + / Up_1 A s_ldm} . (3.99)
™ Q Q

We obtain, on the kth level, a piecewise linear approximate solution wy, to wy, by applying

the kth level iteration n times using wy_; as the initial guess.The approximate solution wuy
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to w 1s defined to be

U = KiS + wWy. (3.100)

In other words we are really computing the regular part w of the solution. The improvement
in the convergence rate is possible because w has better regularity than u.

The algorithm of S.C.Brenner’s method is given by the following

for 1= 1:level

fork=1:m
if1=1,k=1
Rk = 0
else
ke =~ { [o, fsoide + [ w1 A s_yda}
end

Jo V. Vude = [, (f + ki O s) vde
direct solve wy
U = RS + I/U\l?k
end
end

Although we known that the singular function can replace the solution at the sigular
point well, but there still have some problem we can observe.After leaving the singular
point, the singular function is now not a correct solution ,so the error occured on this cut-
off region.To improve this problem, we introduce two strategys,adaptive mesh-refinement
techniques and adaptive cut-off function.

For the first strategy,adaptive mesh-refinement techniques, there is a relationship be-
tween the converge rate and the error estimator,we should find suitable order of /h for the

error estimator.The converge rate in the ragular domain is

Hu—uhHLz(Q) S Ch2‘U|H2(Q)
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the order of error estimator is choose by
E(K) = o||h(f — av)||x + B(= Z he[n. - (cVuy)]?)V? (3.102)
TE@K
Now,in the sigular domain ,we also want to find the same relationship between the converge

rate and the error estimator. Since the converge rate in singular domain is

|u —upl||r2@) < Ch2=¢|u| 2(
lu—unllm@) < ChY2 ™ ulgq), (3.103)
the order of error estmator is choose by
E(K) = o||h®/Y(f —au)||x + B(5 Z AV n, - (cVuy)]?)V? (3.104)
TeaK
we use this order as the rules of adaptive mesh-refinement techniques.

For the second strategy,adaptive cut-off function .Since we realize that the singular
function replaced the solution successfully only near the singular point,so the range of cut-
off function may affect the error.If we choose the range of cut-off function is too wide, most
solution replace by the singular function , that is not a correct .Otherwise, if we choose the
range of cut-off functions is too small, the error still big near the singular point.So, this
adaptive cut-off function strategy is find the suitable cut range and move forward slowly
.On the one hand, the error will not so big . On the other hand, the solution replace by the
singular function more precision with respect to the mesh-refinement steps.

The adaptive cut-off funciton is defined by

o(r) = ap + arr + asr® + agr’® + agr* + asr® (3.105)
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find the coefficient ag, a1, a2, as, as, as which is satisfy

cb(;%#) =1, ¢(35)=0
‘b,(?’_ifi) =0, ¢(35)=0 (3.106)
¢"(555) =0, ¢"(3%5) =0

1 2 . .
where 5 <7 < 32,9 =0,1,2 is the mesh-refinement steps.

The purpose of this range we choose is that we want the interval of cut range is reduce
and close to singular point,also the cut range is move forward slowly.

From the two strategy above , we can hold the stress intensity factorys and also

improve the accuracy of the global error.The results shown in the experiment 4 in chapter

4.



Chapter 4
Numerical Results

In this chapter we report the result of some numerical experiments. The first ex-
periment we show the error arise from the singular point associated with the re-entrant

angle.We consider the following boundary value problem:

“Au=f inQ
{782 oo @107

where € is the circle with four angle w = /2,37 /2, 77 /4 and 7/0.51, w is the maximun

re-entrant angle.

oy o
& R W 7 e
v, LR
A e .

b
R e e R

4.1c 4.1d
Figure4.1:Circle with four kinds angle.

Let the exact solution u be

u = (1 —7r*)r"sin(50) (4.108)

49
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T . . .
where 0 < 7 < 1,0 < 0§ < w, = —,w is the maximun re-entrant angle.When is solved
w

by piecewise linear finite element method on a quasi-uniform grid, the error is shown in the

following:
4.2a 4.2b
]
]
4.2¢ 4.2d
Figure4.2:Error with four kinds of angle
Table 4.1 Results for four kinds of angle
T 3T T T
w = — W = — w = — W= —
2 0.51
llu — up|| (o) | 2.6377E-02 | 4.1243E-02 | 7.0759E-02 | 9.6003E-02
# of points 2205 6469 7791 8323

we can see the Fig4.2a is not a re-entrant angle , so the error of Fig4.2a didn’t have peak at
the origin,but the others have.We also can find when the maximun re-entrant angle w arise,
the error also arise with the w.

The second experiment we will concern about the mesh-refinement strategy. There

are three different mesh-refinement strategy we used. The first strategy is uniform mesh
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with uniformly refinement,the second is singular element mesh with uniformly refinement
and the last is uniform mesh with adaptive short cut-region refinement.

The first mesh-refinement strategy is like as we refine mesh as usual.The second
strategy , we changed the uniform mesh to the singular mesh. According to our mentioned
in the singular element ,here the approach is like singular element,we put the exponential

grid points (z, y) in the way

{ (z.9) (:ng)io(fw? ’29)2- dnw) =110 (4.109)
on the two rays.This may couse many grid points located near the singular point.The third
strategy is using uniform mesh, but not refine the whole domain, only refine the region with
radius 7 = 0.5’ form the center points (0, 0) , where j represent the times of refinement.
We consider the maximun re-entrant angle w = ()Wﬁ case with three different mesh-

refinement strategys .The times of mesh-refinement steps is 2, means that we have the

original corasest domain Q*". find domain %" and Q"

Type A Type B Type C
Figure4.3: Error of three types of mesh-refinement

we caculate the Hl-norm error and L2-norm in the following table

Table4.1
Type A Type B Type C
v — up||m1o) | 9-6003E-02 | 2.9259E-02 | 1.3185E-01
|[u — un||r2) | 3.1643E-03 | 2.3718E-04 | 4.9345E-03
# of points 8323 15085 1373




4  Numerical Results 52

From the Table4.1, we discuss some phenomena. In the second strategy, there are many
points around of center. When we refine the mesh, the points around the center of all will
be refined.Although we reduced the error, but we also pay a high price since too many
points cause the large matrix systems.In the third strategy, we only refine the points inside
the cut-region, the error outside the cut-region still not be reduced, therefore, the accuracy
performance is not good. The convergence rate for type A and type B in the H* — norm is

therefore of order O(h(™/«)=¢).(i.e.the theoratical convergence rate is 1.42)

Table4.2
Q Type A ratio A Type B ratio B Type C ratio C
Q4 [ 2.3184E-01 1.1065E-01 2.1384E-01
Q2" [ 1.4147E-01 | 1.5116 | 5.6813E-02 | 1.9476 | 1.6135E-01 | 1.3253
Q" [ 9.6003E-02 | 1.4737 | 2.9259E-02 | 1.9417 | 1.3185E-01 | 1.2237

Simultaneously, we apply the multigrid method for solving the linear systems and observed
the benefits for three diffierent mesh-refinement. For the multigrid parameter, we apply
V-cycle 2th level iteration and we choose the weight-Jacobi method to relaxation, the max-
imum relaxation number is 2.For the restriction operator ,we use full weighting as a restric-

tion operator,and for the interpolation operator, we consider linear interpolation.

o

Type A Type B
Figure4.4: Multigrid benefits for three different mesh-refinement

From the Figure4.4 shown in above,we can observe that although the mesh size is diffierent,
the slope almost not changed,meens that the converge rate of multigrid method is inden-

pentent of mesh size.
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The third experiment we use the method with S.C.Brenner and L.-Y.Sung.The singu-

lar function for 2 is

s(r,0) = ¢(r)r™/O5 SiH(LQ) (4.110)
0.51
where the cut-off function ¢(r) is defined to be
L0<r<3i
—1458r° + 3645r* — 3510r® + 162072 — 360r + 32, % <r< % (4.111)
0,2<r
’3 —

The xj, are obtained by the extraction formula

Kp = l {/ fs_1dx + / Up—1 D slda:} . (4.112)
™ Q Q

s_1(r,0) = ¢(r)r—™/051 sin(oﬂﬁﬁ). (4.113)

where

Here,for the approximate stress intensity factors «x,we choose 3-th level (I = 3) and itera-
tion 5 times (m = 5)

The error is shown in the following

Q4h Q2h Qh
Figure4.5: Error of three level mesh

The theoretical number for the stress intensity factorys « is 1.

Table4.3
Q K || — up|| 1) | # of points
Q% [ 9.9399E-01 | 2.3664E-01 556
02" 1 9.9815E-01 | 1.5423E-01 2128
Q" [ 9.9944E-01 | 1.0451E-01 8323

The fourth experiment we improve the method by including adaptive mesh-refinement

techniques and adaptive cut-off function.The following table shown the stress intensity fac-
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torys « and the error in H' — norm.

Table4.4

Q K ||lu — up|| 1) | # of points
1 | 9.9399E-01 2.3664E-01 556
2 | 1.0017E+01 2.0107E-01 913
3 | 9.9098E-01 | 1.7432E-01 1359
4 | 9.8648E-01 1.4946E-01 1842
5 | 9.8810E-01 1.3034E-01 2196
6 | 9.8722E-01 1.2721E-01 2747
7 | 9.8841E-01 1.1381E-01 3207
8 | 9.9204E-01 | 1.0953E-01 3533
9 | 9.9492E-01 1.0199E-01 4522
10 | 9.9341E-01 9.8286E-02 5494
11 | 9.9306E-01 9.7071E-02 6178
12 | 9.9560E-01 | 9.5075E-02 7217
13 | 9.9534E-01 9.5117E-02 7708
14 | 9.9596E-01 9.3322E-02 9533
15 | 9.9626E-01 9.3082E-02 10568

54

we can clearly compare the ||u — uy||g1(q) With these two results above.Fixed points on

both sides of almost equal,we can clearly see the improvement in error in H' — norm.

Table4.5
S.C.Brenner Experiment
Q| Ju—up||gr) | #ofpoints | | ||u — up||g1(q) | # of points
1 2.3664E-01 556 1 2.3664E-01 556
2 1.5423E-01 2128 4 1.4946E-01 1842
3 1.0451E-01 8323 13 | 9.5117E-02 7708
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