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摘  要 

 

 橢圓邊界值問題在凹角的地方會有奇異的行為，而這個奇異的行為對於

用有限元素法離散的精確度會受到影響。對於给定 Dirichlet 邊界條件的

Poisson 方程式和在定義域有凹角的情況之下，本論文利用一個奇異解的表

示法 
J

j=1
u=w+ j js 算出較準確的近似值，其中 1 1

1
{ }j fs dx u s dx

  
 

    在工

程上稱之為應力強度因子。這些量的精確計算在許多實際的工程問題上，

是一門很重要的課題。 
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Abstract 
 
 

Elliptic boundary value problems on domain with corners have singular 

behavior near the corners. Such singular behavior affect the accuracy of the 

finite element method throughout the whole domain. For the Poisson equation 

with homogeneous Dirichlet boundary conditions defined on a polygonal 

domain with re-entrant corners, it is well known that the solution has the 

singular function representation J

j=1
u=w+ j js ,where w is the regular part of the 

solution and js  are known as singular functions that depend only on the 

corresponding re-entrant angles. Coefficients j  known as the stress intensity 

factors in the context of mechanics can be expressed in terms of u by extraction 

formula 1

1
{j 1 }fs dx u s d

 
 

   x , where js  are known as dual singular 

funciton. Accurate calculation of these quantities is of great importance in many 

practical engineering problems. Similar singular function representations hold 

for the solutions of interface,biharmonic,elasticity, and evolution problems in [1, 

2]. 
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Introduction

The �nite element method has become one of the most popular and effective methods

for the numerical solution of partial differential equations, particularly for elliptic equa-

tions. In practice many important problems involve polygonal domains. Previously, the

geometry of a problem would be restricted so that the triangulation elements �t the polyg-

onal boundary exactly. Form a theoretical standpoint, under the assumption that solutions

were suf�ciently smooth, this case has been thoroughly analyzed. Unfortunately, in prac-

tice one is not likely to achieve the smoothness required for these previous analyses. It is

the basic behavior of elliptic equations that solutions possess singularities at corners. These

singularities substantially affect the rate of convergence of numerical approximations.

To handle this problem , here the two main procedures which have been proposed to

overcome this dif�culty. The �rst is based on mesh re�nements and has been analysed by

Babuska and kellogg [21],Raugel, Schatz and Wahlbin, Thatcher for instance. This method

may be applied to most of the practical problems since it requires only a qualitative knowl-

edge of the behaviour of the solution near the corners. The second consists in augmenting

the space of trail funcitons in which one looks for the approximate solution. This is done

by adding some of the singular solutions of the problem to the usual spaces of piecewise

polynomial funcitons. For instance, S.C. Brenner and L.Y. SUNG [9], Babuska and Rosen-

zweig [22], Kellogg, Lelievre, Djaoua and Ladeveze and Peyret.

In this thesis ,the �rst we introduce the singular element to capture the singular point

at the corner and see the accuracy reduced.The advantage of the singular element is that

1



Introduction 2

there are many small tranguler near the singular point , the solution near the singular point

can be approximation ef�ciency, but the disadvantage is that create large linear systems . To

solve the large linear systems , we introduce the Multigrid method.The second,we applied

the S.C. Brenner and L. Y. SUNG's method as a standard. The advantage of S.C. Brenner's

method is that the stress intensity factors �j can be represent by the simple expression and

correct calculation , but the disadvantage is that the lack of accuracy for the whole domain

.We will improve the accuracy by introducing the adaptive mesh-re�nement and adaptive

cut-off function .

Finite element methods and their error estimation are given in section 1. Multigrid

method are introduced in chapter 2. The Poisson equation and the singular funciton repre-

sentation are given in chapter 3. Numerical results are carried out in chapter 4.



Chapter 1
Finite Element Method

1.1 Introduction of Finite Element Method

The basic idea in any numerical method for solving a differential equation is �rst to dis-

cretize given continuous problem with in�nite degrees of freedom to a discrete problem or

with only �nite degrees of freedom such that the differential equation is transformed into a

system of linear equations which can be solved by using a computer.

Finite element method start from a reformulation of a given differential equation as

an equivalent variational problem. In the case of elliptic equations this variational problem

in basic case is a minimization problem of the form

Find u 2 V such that F (u) 5 F (v) for all v 2 V (1.1)

where V is a given set of admissible functions and F : V ! R is a functional. F (v) is

the total energy associated with v and (1:1) corresponds to an equivalent characterization

of the solution of the differential equation as the function in V that minimizes the total

energy of the considered system. In general the dimension of V is in�nite and thus in

general the problem (1:1) can't be solved exactly. To obtain a problem that can be solved

on a computer the idea in the �nite element method is to replace V by a set Vh consisting

of simple function only depending on �nitely many parameters. This leads to a �nite-

3



1.1 Introduction of Finite Element Method 4

dimensional minimization problem of the form:

Find uh 2 Vh such that F (uh) 5 F (v) for all v 2 Vh (1.2)

This problem is equivalent to a linear or nonlinear system of equations. We hope that the

solution uh of this problem is suf�ciently good approximation of the solution of the original

minimization problem (1:1). Usually one chooses Vh to be a subset of V and in this case

(1:2) corresponds to the classical Ritz-Galerkin method.

The advantage of �nite element methods as compared with �nite difference meth-

ods is that complicated geometry,general boundary conditions and variable or non-linear

material properties can be handled relatively easily.In all these cases one meets unnecces-

sary arti�cial complications with �nite difference methodology.Further,the �nite element

method has a solid theoretical foundation which gives added reliability and in many cases

makes it possible to mathematically analyze and estimate the error in the approximate �nite

element solution.

To solve a given differential or integral equation approximately using the �nite ele-

ment method, one has to go through basically the following steps:

1. variational formulation of the given problem

2. Mesh Generator

3. discretization using FEM: construction of the �nite dimensional space Vh and choose

basis function

4. Assemble the element matrix to obtain global matrix
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From step 1~4, one obtain a linear systems we will introduce at section 1.2.

1.2 Variational Formulation

We will now consider the following boundary value problem for the Poisson equation:

�
��u = f in 

u = g on @
 (1.3)

where 
 is a bounded domain in the R2 with boundary @
,g is a constant, f is a given

function, where

�u =
@2u

@x2
+
@2u

@y2
(1.4)

the equivalent variational problem is

�
Z



(�u)vdx =

Z



fvdx (1.5)

where v is test function in H1
0 (
) , vj@
 = 0 .By taking integration by parts ,

Z



OvOudx =
Z



vfdx+�!n � Ouvj@
 =
Z



vfdx (1.6)

1.2.1 Existence and Uniqueness of Solution

Let a:V � V ! R be a bilinear mapping with following properties:

(1) a(:; :) is symmetric

(2) (Continuity) a(:; :) is continuous,ie,there is a constant � > 0 such that ja(v; w)j �

�jjvjjV jjwjjV 8v; w 2 V
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(3) (Coercivity) a(:; :) is V-elliptic,ie,there is a constant � > 0 such that a(v; v) �

�jjvjj2V 8v 2 V

(4) L is continuous,ie, there is a constant� > 0 such that jL(v)j � �jjvjjV 8v 2 V

Theorem (Lax-Milgram theorem) Let V be a Hilbert space with scalar product (:; :)V

and corresponding norm jj � jjV (the V � norm): Suppose that a(:; :) is a bilinear form on

V � V and L a linear form on V such that under the assumptions (1)-(4), there exists a

unique u 2 V such that

a(u; v) = L(v); for all v 2 V

1.3 Finite Element Discretization

Let Th = fKg is a triangulation of 
 � R2, the integral equation can be rewritten as

X
K2Th(
)

Z
K

OvOudx =
X

K2Th(
)

Z
K

vfdx (1.7)

The �nite element method is then employed to discretize the terms
R
OvOudx and

R
vfdx

on element, we �rst look the germetry on an element.

The geometry of the 3-node triangle is speci�ed by the location of its three corner

nodes on the fx; yg plane. The nodes are labeled 1, 2, 3 while traversing the sides in

counterclockwise fashion. The location of the corners is de�ned by their coordinates:

xi; yi; i = 1; 2; 3
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the area of triangle is denoted by A and is given by:

2A = det

24 1 1 1
x1 x2 x3
y1 y2 y3

35 = x21y31 � x31y21
where xij = xi � xj; yij = yi � yj for i; j = 1; 2; 3 i 6= j:

Fig1.3.1

1.3.1 Linear Interpolation

One can choose a piecewise ploynomial function to approximate the exact solution u and

the test function v .For example , if one choose linear piecewise funciton ,then the function

u (x; y) may be expressed as

u (x; y) = a0 + a1x+ a2y (1.8)

where a0, a1 and a2 are coef�cients to be determined from three conditions. In �nite

element work such conditions are often the nodal values taken by u at the corners:

u1; u2; u3
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The expression in triangular coordinates makes direct use of these three values:

u (�; �) = u1(1� � � �) + u2� + u3� =
�
u1 u2 u3

� 24 1� � � ��
�

35
=

�
1� � � � � �

� 24 u1u2
u3

35 (1.9)

equation (1:9) is called a linear interpolant for u:

1.3.2 Coordinate Transformations

Consider triangular on regular triangular, points of the triangle may also be located in terms

of a parametric coordinate system �; �

Fig1.3.2

Cartesian coordinates and triangular coordinates are linked by the relation

�
x
y

�
=

�
x1
y1

�
[1� � � �] +

�
x2
y2

�
� +

�
x3
y3

�
��

x21 x31
y21 y31

� �
�
�

�
+

�
x1
y1

�
(1.10)

These simply apply the linear interpolant formula to the Cartesian coordinates: x =

x1(1� � � �) + x2� + x3� and y = y1(1� � � �) + y2� + y3�:
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Inversion of (1:10) yields�
�
�

�
=

1

2A

�
y31 x13
y12 x21

� �
x
y

�
� 1

2A

�
y31 x13
y12 x21

� �
x1
y1

�
(1.11)

1.3.3 Linear FEM Discretization

After generating mesh ej; we shall now construct a �nite dimensional subspace Vh of the

space V de�ned above consisting of piecewise linear function. We now let Vh be the set of

functions v such that v is linear on each subinterval ej , v is continuous on domain 
 and

v = 0 on @
:We observe that Vh � V: As parameter to describe a function uj = v (xj)

we may choose the values uj = v (xj) at the node points xj; j = 0; :::;m + 1: Let us

introduction the basis function �j 2 Vh; j = 0; :::;m+ 1: de�ned by

�j (xi) =

�
1 if i = j
0 if i 6= j; i; j = 1; :::;M (1.12)

Fig1.3.3
i.e., �j is the continuous piecewise linear function that take the value 1 at node point

xj and the value 0 at other node points. A function v 2 Vh then has the representation

v (x) =
mX
i=1

ui�i (x) ; x 2 
 (1.13)
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where uj = v (xj), i.e., each uj = v (xj) can be written in a unique way as a linear

combination of the basis function �j: In particular it follow that Vh is a linear space of

dimension m with basis
�
�j
	m
i=1
:

1.3.4 Partial Derivatives

From equations (1:10) and (1:11) we immediately obtain the following relations between

partial derivatives:

@x

@�
= x21;

@x

@�
= x31;

@y

@�
= y21;

@y

@�
= y31:

@�

@x
=
y31
2A
;
@�

@x
=
y12
2A
;
@�

@y
=
x13
2A
;
@�

@y
=
x21
2A
:

The derivatives of function u (�; �) is

ru =

�
@u
@x
@u
@y

�
=

"
@u
@�

@�
@x
+ @u

@�
@�
@x

@u
@�

@�
@y
+ @u

@�
@�
@y

#

=
1

2A

� @u
@�
y31 +

@u
@�
y12

@u
@�
x13 +

@u
@�
x21

�
=

1

2A

�
y31 y12
x13 x21

� � @u
@�
@u
@�

�
=

1

2A
�

� @u
@�
@u
@�

�
(1.14)

,where � =
�
y31 y12
x13 x21

�
:

Similarly,the derivatives of test function v(�; �) is

rv =

�
@v
@x
@v
@y

�
=

1

2A

�
y31 y12
x13 x21

� � @v
@�
@v
@�

�
=

1

2A

�
@v
@�

@v
@�

�
�T (1.15)

So,we let
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u =

3X
i=1

ui�i ,v =
3X
i=1

vi�i (1.16)

where �1 = 1� � � �; �2 = �; �3 = �;� @u
@�
@u
@�

�
=

"
@�1
@�

@�2
@�

@�3
@�

@�1
@�

@�2
@�

@�3
@�

#24 u1u2
u3

35
=

�
�1 1 0
�1 0 1

�24 u1u2
u3

35 = D
24 u1u2
u3

35 (1.17)

where D =
�
�1 1 0
�1 0 1

�
:

Similarity,

� @v
@�
@v
@�

�
=
�
v1 v2 v3

� 264
@�1
@�

@�1
@�

@�2
@�

@�2
@�

@�3
@�

@�3
@�

375 = � v1 v2 v3
�
DT :

for one element,we get

Z
K

rvrudx =
Z
bK
�
v1 v2 v3

�
DT�T

1

4A2
�D

24 u1u2
u3

35 jJ jd�d� (L:H:S)

(1.18)

KK =
R bK DT�T 1

4A2
�DjJ jd�d� is called element stiffness matrix.

and

Z
K

vfdx =

Z
bK
�
v1 v2 v3

� 24 �1�2
�3

35 � �1 �2 �3
� 24 f1f2

f3

35 jJ jd�d� (R:H:S)
(1.19)

MK =
R bK
24 �1�2
�3

35 � �1 �2 �3
�
jJ jd�d� is called mass matrix.
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1.3.5 Assembling the element matrix

Assembling all the element matrices KK ; Mk into global matrices,here �!u ;�!v ;
�!
f are the

global nodal vector.
P

K2Th(
)KK = K;
P

K2Th(
)MK =M . The equation (1:7) becomes

�!v �K � �!u = �!v �M � �!f ; for all v 2 Vh

As a result,we obtain a linear system

K � �!u =M � �!f (1.20)

1.4 Error Estimation

(Cea Lemma)

Let u 2 V be the solution of a(u; v) = L(v) ;8v 2 V and uh 2 Vh � V:Then

jju� uhjjV �
�

�
inf jju� vhjjV 8vh 2 Vh (1.21)

where � is coercivity scalar and � is continuity scalar.

For a typical elliptic problem satisfying the conditions (1)-(4) in the section 1.2.1,we

choosing vh = �hu 2 Vh to be a suitable interpolant of u and estimate the interpolation

error jju� �hujjV :

1.4.1 Interpolation Error with Piecewise Linear Functions

We �rst consider the case V = H1(
) and Vh = fvh 2 V : vhjK 2 P1(K);8K 2 Thg

where Th = fKg is a triangulation of 
 � R2,ie,Vh is the standard �nite element space of

piecewise linear functions on triangles K.For K 2 Th we de�ne
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hk = the dimeter of K=the longest side of K;

�k = the dimeter of the circle inscribed in K;

h = max
K2Th

hK :

We shall assume that there is a positive constant � independent of h ,such that

�K
hK
� � 8K 2 Th (1.22)

This condition means that the angles of the triangles K are not allowed to be arbitrarily

small;the constant � is a measure of the smallest angle in anyK 2 Th:LetNi; i = 1; :::;M;

be the nodes of Th:Given u 2 C0(
) we de�ne the interpolant

�hu(Ni) = u(Ni) i = 1; :::;M (1.23)

,thus �hu is the piecewise linear function agreeing with u at the nodes of Th:

Fig1.4.1
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For j=1,2 and x2 K we have
3X
i=1

�i(x) = 1; (1.24)

3X
i=1

pi(x)�i(x) = 0; (1.25)

3X
i=1

@

@xj
�i(x) =

@

@xj

3X
i=1

�i(x) = 0; (1.26)

3X
i=1

pi(x)
@�i
@xj

(x) =
@v

@xj
(x): (1.27)

Theorem 1 Let K 2 Th be a triangle with vertices ai,i=1,2,3.Given v 2 C0(K);let the

interpolant �v 2 P1(K) be de�ned by

�v(ai) = v(ai); i = 1; 2; 3: (1.28)

then

jjv � �vjjL1(K) � 2h2K maxj�=2j
jjD�vjjL1(K); (1.29)

max
j�=1j
jjD�(v � �v)jjL1(K) � 6

h2K
�K
max
j�=2j
jjD�vjjL1(K); (1.30)

where

jjvjjL1(k) = max
x2K
jv(x)j: (1.31)

Proof. Let �i; i = 1; 2; 3; be the basis functions for P1(K):A general function w 2 P1(K)

then has the representation

w(x) =

3X
i=1

w(ai)�i(x); x 2 K; (1.32)

so that in particular

�v(x) =

3X
i=1

v(ai)�i(x); x 2 K; (1.33)
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since �v(ai) = v(ai); we now using the Taylor expansion at x 2 K :

v(y) = v(x) +

2X
j=1

@v

@xj
(x)(yj � xj) +R(x; y); (1.34)

where

R(x; y) =
1

2

2X
i;j=1

@2v

@xi@xj
(�)(yi � xi)(yj � xj); (1.35)

is the remainder term of order 2 and � is a point on line segment between x and y.In

particular by choosing y = ai;we have

v(ai) = v(x) + pi(x) +Ri(x) (1.36)

where

pi(x) =
2X
j=1

@v

@xj
(x)(aij � xj); ai = (ai1; ai2);

Ri(x) = R(x; ai): (1.37)

Since

jaij � xjj � hK ; i = 1; 2; 3; j = 1; 2; (1.38)

the estimate of the remainder term Ri(x)

Ri(x) � 2h2K maxj�j=2
jjD�vjjL1(K); i = 1; 2; 3: (1.39)

Now (1:33) and (1:36) combine to give

�v(x) = v(x)
3X
i=1

�i(x) +
3X
i=1

pi(x)�i(x) +
3X
i=1

Ri(x)�i(x); x 2 K: (1.40)

By(1:24) ,(1:25) in Lamma 2 and(1:40) ,we have

�v(x) = v(x) +

3X
i=1

Ri(x)�i(x); (1.41)
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which gives us the following representation of the interpolation error:

v(x)� �v(x) = �
3X
i=1

Ri(x)�i(x): (1.42)

Since 0 � �i(x) � 1;if x 2 K; i = 1; 2; 3;we can use the previous estimate (1:39) of the

remainder term Ri to get

jv(x)� �v(x)j �
3X
i=1

jRi(x)jj�i(x)j

� max
i
jRi(x)j

3X
i=1

j�i(x)j � 2h2K maxj�j=2
jjD�vjjL1(K); x 2 K:(1.43)

we proves (1:29) :

Proof. To prove (1:30) we differentiate (1:33) with respect to x1 to get

@�v

@x1
(x) =

3X
i=1

v(ai)
@�i
@x1

(x); (1.44)

which together with (1:36) shows that

@�v

@x1
(x) = v(x)

3X
i=1

@�i
@x1

(x) +
3X
i=1

pi(x)
@�i
@x1

(x) +
3X
i=1

Ri(x)
@�i
@x1

(x): (1.45)

Hence,by (1:26) and (1:27) we have

@�v

@x1
(x) =

@v

@x1
(x) +

3X
i=1

Ri(x)
@�i
@x1

(x); (1.46)

which gives the following representation o the error @v
@x1
� @�v

@x1
:

@v

@x1
(x)� @�v

@x1
(x) = �

3X
i=1

Ri(x)
@�i
@x1

(x); x 2 K: (1.47)

and

max
x2K
j@�i
@x1

(x)j � 1

�K
; (1.48)

which together with (1:39) �nally gives

j @v
@x1

(x)� @�v
@x1

(x)j � 6h
2
K

�K
max
j�=2j
jjD�vjjL1(K): (1.49)
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In the same way we estimate @v
@x2
� @�v

@x2
and thus (1:30) follows.The proof of the theorem is

now complete once the lemma is established.

Theorem 2 Under the assumptions of Theorem 1 there is an absolute constant C such

that

jjv � �vjjL2(K) � Ch2K jvjH2(K); (1.50)

jv � �vjH1(K) � C
h2K
�K
jvjH2(K): (1.51)

Theorem 3 The global interpolation errors

jju� �hujjH1(
) � ChjujH2(
); (1.52)

jju� �hujjL2(
) � Ch2jujH2(
) (1.53)

Proof. We have by summing over K 2 Th;

jju� �hujj2L2(
) =
X
K2Th

jju� �hujj2L2(K) �
X
K2Th

C2h4K juj2H2(K)

� C2h4
X
K2Th

juj2H2(K) = C
2h4juj2H2(
); (1.54)

and similarly using (1:22) ,ie,
hK
�K
� 1

�
;

jju� �hujj2H1(
) �
X
K2Th

C2
h4K
�2K
juj2H2(K) �

X
K2Th

C2
h2K
�2
juj2H2(K)

� C2
h2

�2
juj2H2(
) (1.55)

so that

jju� �hujjH1(
) �
Ch

�
jujH2(
) = ChjujH2(
); (1.56)
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if the constant � is included in the constant C;and

jju� �hujjL2(
) � Ch2jujH2(
): (1.57)

1.4.2 A Priori Error Estimation

The bilinear form a(u; v) =
R
OuOvdx, the �nite element space of piecewise linear ele-

ment isH1 (
) = V , the test function space isH1
0 (
). The priori error estimate of Possion

equation

jju� uhjjH1(
) � ChjujH2(
)

Proof. by Céa Lamme, so the inequality is

jju� uhjjH1(
) �
�

�
inf jju� vhjjH1(
) for all vh 2 Vh

where � is coercivity scalar and � is continuity scalar ,than we choose vh = �hu, where

�hu is interpolant by the piecewise linear basis function

�

�
inf jju� vhjjH1(
) �

�

�
jju� �hujjH1(
)

by interpolation error estimate

�

�
jju� �hujjH1(
) � C

�

�
hjujH2(
) = C2hjujH2(
)
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1.4.3 A Posterior Error Estimation and Adaptive Mesh-Re�nement
Techniques

On the other way to re�ne the mesh ,we introduce a posterior error estimation and the

adaptive mesh-re�nement techniques. Before presenting the a posteriori error estimators,

we introduce some notations.

For any open subset ! of 
 with Lipschitz boundary 
 ,we denote by L2(!) ,Hk(!);

and L2(
) ,k � 1, the standard Lebesque and Sobolev spaces ,respectively,equipped with

the norms jj � jj0;! := jj � jjL2(!), jj � jjk;! := jj � jjHk(!), jj � jj0;
 := jj � jjL2(
).

For T 2 T h we denote byE(T ) andN(T ) the set of its edges and vertices,respectively.Let

Eh :=
[
T2Th

E(T ); Nh :=
[
T2Th

N(T );

be the set of all edges and vertices,respectively,in the triangulation. We split Eh and Nh in

the form

Eh = Eh;

[
Eh;D; Nh = Nh;


[
Nh;D;

with

Eh;D : = fE 2 Eh : E � �Dg

Nh;D : = fx 2 Nh : x � �Dg

For T 2 T h andE 2 Eh, we denote by hT and hE their diamter and length,respectively.

For T 2 T h and E 2 Eh and x 2 Nh ,let

!T :=
[

E(T )\E(T 0)6=0

T 0; !E :=
[

E2E(T 0)

T 0; !x :=
[

x2N(T 0)

(T 0);
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Figure1.4.2: Domain !T ; !E and !x
and put

VT : = f� 2 C(T ) : � 2
Y

max(k+1;3);2
; �jE 2

Y
k+1;1

;8E 2 E(T ) (1.58)

�(x) = 0;8x 2 N(T ); �jE = 0;8E 2 E(T ) \ Eh;Dg;

Vx := f� 2 C(!x) : �jT 0 2 VT 0 ;8T 0 � !xg: (1.59)

Given E 2 Eh;
 and � 2 L2(!E) with �jT 0 2 C(T 0);8T 0 � !E;we denote by [�]E the

jump of � across E in an arbitrary,but �xed direction.Put

RE(uh) :=

(
�[@uh
@n
]E; 8E 2 Eh;
 ;

0; 8E 2 Eh;D :
(1.60)

and

RT :=
Y

T
f +4uh; 8T 2 T h; (1.61)

where
Q
T is the L2 projectors of L2(
) onto the space of piecewise constant functions

with respect to T h:

The �rst error estimator simply is a weighted combination of the residuals RT (uh)

and RE(uh): It is given by

�T;R := fh2T jjRT (uh)jj20;T +
X

E2E(T )nEh;D

hEjjRE(uh)jj20;Eg1=2; 8T 2 T h (1.62)

The second error estimator is based on the solution of local Dirichlet problems. For

any x 2 Nh;
 , it is given by

�x;D := jjr(ux;D � uh)jj0;! ; (1.63)
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For more detialed proof of the lower bound and upper bound for the error estimators is in

[17].

According to the error estimator �T we obtained above, we want to decide a re�ne-

ment of T; there is a strategy that we re�ne all T with �T � 
maxT2Th �T :Here 0 � 
 � 1

is a given threshold,typically 
 = 0:5 . This strategy is very cheap and often satisfactory

results.

Having decided which elements should be re�ned, we re�ne them by connecting

the mid-points of their edges.Triangles may be cut into four new ones by connecting the

mid-points of their edges .

Figure1.4.3: triangles with adaptive mesh-re�nement

1.5 Finite Element Approximation for Singular Funcitons

The problem on hand is to devise singular elements within which the �eld variable would

vary as Rt(0 � t � 1) where R is the radial distance from the point where the derivative

of the function would have a singularity of the type Rt�1.For example,let (x1; y1) be the

desired points of singularity in two-dimensional problem,such thatR is equal to [(x�x1)2+
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(y � y1)2]1=2:The singularity may be introduced in the geometric transformation between

(x; y) and (�; �) systems.

1.5.1 Lagrange Interpolation

For one-dimensional domain, consider a straight line along x-axis in a Cartesain reference,

such that x0 � x � xM :Consider the dimensionless coordinate � = (x � x0)=(xM � x0)

such that 0 � � � 1:A mth-order polynomial F (m)(�) can be represented by interpolating

the discrete values of the function at (m + 1) equidistant points �i[i = 0; :::;m; �i(i=m)]

using the Lagrange interpolation function, L(m)i (�), as

F (m)(�) =

mX
i=o

FiL
(m)
i (�) (1.64)

where

L
(m)
i (�) =

mY
j=0;j 6=i

(
� � �j
�i � �j

): (1.65)

It is seen that the functions in (1:65) have the property that

L
(m)
i (�k) = �ik (1.66)

where �ik = 0 (i 6= k) and �ik = 1(i = k):

For a simple example, let we consider second-order polynomial F (2)(�) and the trans-

formation reduces to

Fig1.5.1: x and � coordinate systems



1.5 Finite Element Approximation for Singular Funcitons 23

(x� x0) = (xM � x0)� (1.67)

the Lagrange function can be represent as

L
(2)
0 = 2(� � 1

2
)(� � 1)

L
(2)
1 = �4�(� � 1)

L
(2)
2 = 2�(� � 1

2
)

1.5.2 Singular Element

Apart from problems of fracture,at a given point in the domain,say P,the solution funciton

F,whould have a singularity in its derivative.If R is the radial length measured from the

point P,the solution function F would behave as R� (0 < � < 1);so that the �rst derivative

of F at P would be in�nite. Such singularities may arise at re-entrant corners, tips of sharp

crack,etc.

For One-dimensional cases,consider a straight line along the x-axis,x0 � x � xM :Let

the geometry of this line be described by an rth-order polynomial as

x =
rX
i=o

xiL
(r)
i (�) (1.68)

where xi = x(�i) and �i = (i=r)(i = 0; 1; :::; r) are (r + 1) equidistant points in the

parametric domain 0 � � � 1:(xi themselves may not necessarily be equidistant).Also let

the dependent variable,say u,be represented by an mth-order polynomial.

u(�) =

mX
j=0

ujL
(m)
j (�) (1.69)
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where uj = u(�j); but now �j = (j=m)(j = 0; :::;m) are (m + 1) equidistant points in

0 � � � 1:

If the geometric transformation is de�ned by

(x� x0) = (xM � x0)�t (1.70)

where t is a positive integer greater than unity, the function u(x) corresponding to u(�)

of Eq.(1:69) would be an mth-order polynomial in the variable (x � x0)1=t or R1=t,and

hence the derivative (@u=@x) has a term which varies as R(1�t)=t,for t > 1,would have a

singularity at x = x0:

For instance when r = 2 and t = 2; the positioning of nodes at x = x0;x =

x0 + (xM � x0)(12)
2 = x0 + (xM � x0)(14), and x = xM :it would lead to x � �

2 and hence

@u=@x would have a singularity of the type R�1=2:

In general,singularities in (@u=@x) of the type R(1�t)=t; t � r (t and r are integer),can

be created by suitably choosing the valus xi in an rth-order geometric transformation of the

type (1:68) :

For two-dimensional domain, consider a standard dimensionless triangle (0 � �; � �

1) as shown in Fig1.5.2. The triangle P1P2P3 with Cartesain coordinate (xi; yi)(i = 1; 2; 3)

is then mapped into the standard triangle ,through the relations:

(x� x1) = (x2 � x1)� + (x3 � x1)�

(y � y1) = (y2 � y1)� + (y3 � y1)� (1.71)
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Fig1.5.2: Triangular element in (x; y) and (�; �) coordinate systems
Consider (m+ 1) equidistant point along the line � = 0 and � = 0;respectively,such

that �i = (i=m) and �j = (j=m) (i; j = 0; 1; :::;m):A mth-order polynomial (m being an

integer) , F (m)(�; �); can be represented by interpolating the values of the function in the

standard triangle,as:

F (m)(�; �) =
mX
i=0

m�iX
j=0

FijL
(m)
ij (�; �) (1.72)

where

L
(m)
ij =

"
i�1Y
r=0

�
� � �r
�i � �r

�#"j�1Y
s=0

�
� � �s
�j � �s

�#24m�(i+j+1)Y
t=0

�
1� (� + �)� (t=m)
1� (�i + �j)� (t=m)

�35 :
(1.73)

The function also have the property that

L
(m)
ij (�k; � l) = �ik�jl: (1.74)

For the detail of singular element geometric transformation in two-dimensional do-

main, see the reference [8].



Chapter 2
Multigrid Method

2.1 Introduction of Multigrid Method

Multigrid methods(MG) are among the most ef�cient methods of solving the linear sys-

tems arising from discretization of eilliptic partial differential equations. There has been

intensive research on the convergence of MG since it was introduced by Fedorenko. For

symmetric positive-de�nite eilliptic problems, thanks to many researchers, such as Bank,

Brandt, Braess, Bramble, Dupont, Hackbusch, Mandel and McCormick, etc, the conver-

gence theory has matured. The major ingredients for convergence analysis of MG are

called the approximation property and the smoothing property. One approach for con-

vergence analysis is the so-called compact perturbation technique, which relies on a

strong approximation property and treats the lower order terms as a small perturbation of

the symmetric positive de�ne term. The technique has been successfully applied to diffu-

sion problems and Bramble, Pasciak, Wang, Xu have shown robust MG uniform conver-

gence. In these studies, uniform convergence of MG can be established with one step of

standard Jacobi or Gauss-Seidel smoothing even without regularity assumptions. Another

approach requires a strong smoothing property to compensate for poor approximation prop-

erty. In this direction, it is very important to �nd a robust smoother.Robust smoothers such

as the block Jacobi , block Gauss-Seidel method and the incomplete LU factorization (ILU)

method are commonly used.

26



2.2 Relaxation Process 27

The ef�ciency of the multigrid algoritthm is achieved from an elegant combination

of the smoothing procedure and the coarse grid correction procedure. The smoothing pro-

cedure plays the role of reducing highly oscillatory error modes, and the coarse grid is used

to correct the remaining smooth error modes. Hackbusch and Braess give the �rst rigor-

ous proof on the multigrid convergence and identify that the smoothing property and the

approximation property are the cornerstones for the convergence analysis of multigrid

methods. The smoothing property achieved by stationary iterative method. The approxi-

mation property is achieved by choosed intergrid interpolation operator.

In general,the stationary iterative methods can effective eliminating the high-frequency

or oscillatory components of the error,but leave the low-frequency or smooth components

of the error as we will shown in experiment 1 in section 2.6.This process is called the re-

laxation process in MG. Moreover, the smooth error modes on a �ne grid appear more

oscillatory on the coarse grid. As a result, repeating the relaxation process may conse-

quently remove various oscillartory modes of error. To achieve the ef�ciency of the MG

algorithm, we only have to concern how to restrict smooth error to the coarse grid and how

to prolong the errors remained in coarse grid to the �ne grid. This process is called the

inter-grid interpolation, we will introduce the relaxation and interpolation process in the

�llowing sections.

2.2 Relaxation Process

For relaxation process, we introduce the stationary iteration methods.Stationary iterative

methods solve a linear system with an operator approximating the original one and based
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on a measurement of the error in the result (the residual), form a "correction equation" for

which this process is repeated. While these methods are simple to derive, implement, and

analyze, convergence is only guaranteed for a limited class of matrices. Examples of sta-

tionary iterative methods are the Jacobi method, Gauss�Seidel method and the Successive

over-relaxation method.

2.2.1 Jacobi Mehtod

One of the methods to solve the linear system is the Jacobi method . The Jacobi method is

derived by examining each of the N � 1 equations in the linear system Av = f in isolation

.If in the i� th equation
N�1X
j=1

ai;jvj = fi; (2.75)

we solve for the value of vi while assuming the other entries of v remain �xed ,we obtain

vi = (fi �
X
j 6=i

ai;jvj)=ai;i ; 1 � j � N � 1 (2.76)

this suggests an iterative method de�ned by

v
(k)
i = (fi �

X
j 6=i

ai;jv
(k�1)
j )=ai;i ; 1 � j � N � 1 (2.77)

which is the Jacobi method.

In matrix terms, the de�nition of the Jacobi method can be expressed as

v(k) = D�1(L+ U)v(k�1) +D�1f; (2.78)

where the matricesD;�L and�U represent the diagonal, the strictly lower-triangular,

and the strictly upper-triangular parts of A,respectively.
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The pseudocode for the Jacobi method is given by following

Choose an initial guess v(0) to the solution u
for k = 1; 2; � � �
for i = 1; 2; � � � ; N � 1
vi = 0
for j = 1; 2; � � � ; i� 1; i+ 1; � � � ; N � 1
vi = vi + ai;jv

(k�1)
j

end
vi = (fi � vi)=ai;i

end
v(k) = v
check convergence;continue if necessary

end

There is a simple modi�cation which can be made to the Jacobi iteration.

v�j = (fi �
X
j 6=i

ai;jv
(k�1)
j )=ai;i ; 1 � j � N � 1

However,v�j is now only an intermediate value. The new approximation is given by

the weighted average

v
(k)
j = (1� !)v(k�1)j + !v�j ; 1 � j � N � 1

where ! 2 R is a weighting factor which may be chosen.This iteration is called

weighted Jacobi method.

2.2.2 Gauss-Seidel Method

Consider again the linear systems Av = f;now assume that the equations are examined

one at a time in sequence,and that previously computed results are used as soon as they are

available ,we obtain the Gauss-Seidel method:

v
(k)
i = (fi �

X
j<i

ai;jv
(k)
j �

X
j>i

ai;jv
(k�1)
j )=ai;i ; 1 � j � N � 1 (2.79)
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In matrix form,

Dv(k) � Lv(k) � Uv(k�1) = f

(D � L)v(k) = Uv(k�1) + f

v(k) = (D � L)�1Uv(k�1) + (D � L)�1f

where the matricesD;�L and�U represent the diagonal, the strictly lower-triangular, and

the strictly upper-triangular parts of A,respectively. The pseudocode for the Gauss-Seidel

method is given by following

Choose an initial guess v(0) to the solution u
for k = 1; 2; � � �
for i = 1; 2; � � � ; N � 1
vi = 0
for j = 1; 2; � � � ; i� 1
vi = vi + ai;jv

(k)
j

end
for j = i+ 1; � � � ; N � 1

vi = vi + ai;jv
(k�1)
j

end
vi = (fi � vi)=ai;i

end
v(k) = v
check convergence;continue if necessary

end

2.2.3 Successive Overrelaxation Method

The Successive OverrelaxationMethod, or SOR ,is devised by applying extrapolation to the

Gauss-Seidel method. This extrapolation takes the form of a weighted average between the
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previous iterate and the computed Gauss-Seidel iterate successively for each component:

v
(k)
i = !vi

(k) + (1� !)v(k�1)i (2.80)

,wherevi(k) denotes a Gauss-Seidel iterate ,and ! is the extrapolation (weighting)

factor.The idea is to choose a value for ! that will accelerate the rate of convergence of the

iterates to the solution.

In matrix form, the SOR is written as

Dv(k) = !Dv(k) + (1� !)Dv(k�1)

= ![f + Lv(k) + Uv(k�1)] + (1� !)Dv(k�1)

=) (D � !L)v(k) = [!U + (1� !)D]v(k�1) + !f

v(k) = (D � !L)�1[!U + (1� !)D]v(k�1) + (D � !L)�1!f

where the matricesD;�L and�U represent the diagonal, the strictly lower-triangular, and

the strictly upper-triangular parts of A,respectively.

If the extrapolation factor ! is choosing by one,the SOR method simpli�es to the

Gauss-Seidel method.If 0 < ! < 1,its called underrelaxation.If 1 < ! < 2, its called

overrelaxation and SOR fails to converge when ! is outside the interval (0; 2).
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The pseudocode for the SOR method is given by following

Choose an initial guess v(0) to the solution u
for k = 1; 2; � � �
for i = 1; 2; � � � ; N � 1
� = 0
for j = 1; 2; � � � ; i� 1
� = � + ai;jv

(k)
j

end
for j = i+ 1; � � � ; N � 1

� = � + ai;jv
(k�1)
j

end
� = (fi � �)=ai;i
v
(k)
i = v

(k�1)
i + !(� � v(k�1)i )

end
check convergence;continue if necessary

end

2.3 Inter-grid Interpolation : Restriction and Prolongation

First,we consider the linear prolongation, the operator will be denoted Ih2h.It takes coarse

grid vectors and produces �nd grid vectors according to the rule Ih2hv2h = vh

vh2j = v2hj

vh2j+1 =
1

2
(v2hj + v

2h
j+1), 0 � j � N

2
� 1 (2.81)

Figure 2.3.1: Prolongation of a vector on the coarse grid to the �ne grid.



2.3 Inter-grid Interpolation : Restriction and Prolongation 33

At even-numbered �ne grid points ,the values of the vector are transferred directly

from 
2h to 
h. At odd-numbered �nd grid points,the value of the vector is the average of

the adjacent coarse grid values.

For the case N = 8; this operator has the form

Ih2hv
2h =

1

2

266666664

1
2
1 1
2
1 1
2
1

377777775
24 v1v2
v3

35
2h

=

266666664

v1
v2
v3
v4
v5
v6
v7

377777775
h

= vh

The second ,we consider moving vectors from a �ne grid to a coarse grid.There are

called restriction operators and are denoted by I2hh :It is de�ned by I2hh vh = v2h,where

v2hj =
1

4
(vh2j�1 + 2v

h
2j + v

h
2j+1); 1 � j � N

2
� 1: (2.82)

Figure 2.3.2: Restriction by full weighting of a �nd grid vector to the coarse grid.

the values of the coarse grid vector are a weighted average of values at neighboring

�nd grid points.
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In the case of N = 8,the operator has the form

I2hh v
h =

1

4

24 1 2 1
1 2 1

1 2 1

35
266666664

v1
v2
v3
v4
v5
v6
v7

377777775
h

=

24 v1v2
v3

35
2h

= v2h:

2.4 Multigrid Algorithm

After kowning the procedure , we compose all the components aobve to make the correction

scheme. First , relaxation on the �ne grid will eliminate the oscillatory components of

the error,leaving a relatively smooth error,then transfer the residual on the �ne grid to the

coarse grid an solve the residual equation exactly on the 
2h.Since the error is smooth on

the 
2h,we can prolongation the error accurately back to the �ne grid.Finally, relaxation on

the �ne grid use the better initial which is correction before.

The procedure is given by following

vh  MG(vh; fh)
Relax �1 times on Ahuh = fh on 
h with initial guess vh:
Compute r2h = I2hh (fh � Ahvh):
Solve A2he2h = r2h on 
2h:
Correct �ne grid approximation : vh  vh + Ih2he

2h:
Relax �2 times on Ahuh = fh on 
h with initial guess vh:

Here,in practice, the number of relaxation times �1 and �2 are often 1,2 or 3.

Moreover, the correction scheme is not just two level, it can be more level,by re-

cursive within itself.The algorithm is called the V � cycle.The de�nition which is given
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by

V-cycle Scheme
vh  MV h(vh; fh)

1.Relax �1 times on Ahuh = fh with a given initial guess vh:
2.If 
h = coarsest grid, then go to 4.
Else f 2h  I2hh (f

h � Ahvh):
v2h = 0
v2h  MV 2h(v2h; f2h):

3.Correct vh  vh + Ih2hv
2h:

4.Relax �2 times on Ahuh = fh with initial guess vh:

The V � cycle is just one of a family of multigrid cycling schemes.The entire family

is called the �� cycle method and is de�ned by

�-cycle Scheme
vh  M�h(vh; fh)

1.Relax �1 times on Ahuh = fh with a given initial guess vh:
2.If 
h = coarsest grid, then go to 4.
Else f 2h  I2hh (f

h � Ahvh):
v2h = 0
v2h  M�2h(v2h; f2h) � times.

3.Correct vh  vh + Ih2hv
2h:

4.Relax �2 times on Ahuh = fh with initial guess vh:

If � = 1,which gives the V � cycle and � = 2 is called theW � cycle:

Here are other ideas,if it starts on the coarsest discretization with an exact solver, the

results are interpolated to the next �ner grid with a few cycles (V or W) of the multigrid

method are applied .The result is again interpolated to the next �ner grid, where again a

few cycles of multigrid method are applied.If this is used recursively, the so-called full �

multigrid method.The algorithm with V � cycle is given by
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Full Multigrid V-cycle Scheme
vh  FMV h(vh; fh)

Initialize fh,f 2h,...;vf ,v2h,...to zero.
Solve or relex on coarsest grid

...
v4h  v4h + I4h8hv

8h

v4h  MV 4h(v4h; f4h)
v2h  v2h + I2h4hv

4h

v2h  MV 2h(v2h; f2h)
vh  vh + Ih2hv

2h

vh  MV h(vh; fh)

Figure 2.4.1: Schedule of grids for (a) V-cycle, (b) W-cycle and (c) FMV scheme
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2.5 Complexity

There are various method to solve the linear systems,including stationary iterative methods

or nonstationary iterative methods ,the following table gives us the complexity of various

method :
Table 3.3

Complexity of Various Methods
Method 2D 3D
JM O(N2) O(N

5
3 )

GS O(N2) O(N
5
3 )

SOR O(N
3
2 ) O(N

4
3 )

CG O(N
3
2 ) O(N

4
3 )

Multigrid O(N logN) O(N logN)

2.6 Numerical Experiments

Experiment 1

In this experiments we consider the weighted Jacobi method with ! = 2=3 applied

to the one-dimensional problem Au = 0 on a grid N=48. We use an initial guess,

vhj =
1

2

�
sin(

12j�

N
) + sin(

30j�

N
)

�
the results of this calculation are given in Figs 2.6.1(a)-(e). The initial guess is shown in Fig

2.6.1(a) . In Fig 2.6.1(b), the approximation vh after one relaxation sweep is superimposed

on the initial guess. Much of the oscillatory component of the initial guess has already been

removed. The maximum norm of the error has decreased signi�cation. Fig. 2.6.1(c) shows

the approximation after three relaxation sweeps, superimposed on the previous approxima-

tions. Further relaxations on the �ne grid would provide only a slow improvement at this
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point. This signals that it is time to move to the coarse grid.Fig. 2.6.1(d) shows the �ne

grid error after one relaxation sweep on the coase grid and the error after three coarse grid

relaxation sweeps is shown in Fig. 2.6.1(e)

Figure 2.6.1(a): jjejj = 0:8536 Figure 2.6.1(b): jjejj = 0:4300

Figure 2.6.1(c): jjejj = 0:2607 Figure 2.6.1(d): jjejj = 0:1564

Figure 2.6.1(e): jjejj = 0:0243
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Experiments 2

Consider the following two-point boundary value problem. It is given by the second-

order ordinary differential equation�
(�(2 + cos(�x))u

0
(x))

0
= f(x); 0 < x < � ; � and � are constant.
u(0) = 0; u(�) = �2

(2.83)

we use �nite difference method to discrete the domain.The domain of the problem

fx : 0 � x � �g is partitioned into N subintervals by introducing the grid points xj =

jh,where h = �=N is the constant width of the subintervals. At each of the N � 1 in-

terior grid points, the differential equation is replaced by a second-order �nite difference

approximation. We also introduce vj as an approximation to the exact solution u(xj):8>>>><>>>>:
[2�+ � cos(�xj� 1

2
)]vj�1 � [4�+ � cos(�xj+ 1

2
) + � cos(�xj� 1

2
)]vj

h2
+

[2�+ � cos(�xj+ 1
2
)]vj+1

h2
= f(xj); 1 � j � N � 1:
v0 = 0; vN = �

2

(2.84)

Let a represent the entry 4� + � cos(�xj+ 1
2
) + � cos(�xj� 1

2
); b represent the entry

2� + � cos(�xj+ 1
2
); c represent the entry 2� + � cos(�xj� 1

2
);the system can be represent

in matrix form as Av = f:

1

h2

266664
a b
c a b
. . . . . . . . .

c a b
c a

377775
266664

v1
:
:
:

vN�1

377775 =
266664

f1
:
:
:

fN�1

377775
The matrix A is tridagonal,symmetric positive de�nite and has dimension (N � 1)�

(N � 1):

We use multigrid method to solve the linear system.There are several comments in

order.First, we choose � and � the constant one.Second, we use three level v � cycle and
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the number of relaxation times �1 and �2 is the constant three.Third, we use v = �x as an

initial guess.

The solution of this boundary value problem is u(x) = x2 :The error eh is de�ned by

eh = jjuh � vhjjL2 ,where uh is the exact solution and vh is the approximation on 
h:The

rate of convergence � is computed by

� =
e2h

eh
(2.85)

Table2.6.1
N e �
128 2.7315e-004
256 6.8301e-005 3.9992
512 1.7076e-005 3.9998

The results are tabulated in above .The theoretical convergence rate is 4 for �:

Experiments 3

In experiment two , we consider the boundary value problem in two-dimension given

by

�4 u = f in 
 : [0; 1]� [0; 1]

u = 0 on boundary (2.86)

and �nite element method is used to discretize the domain.To solve the linear sys-

tems Ax = b,we applied the Jacobi Method,Gauss-Seidel Method,Successive Overrelax-

ation Method, Conjugate Gradient Method and Multigrid Method. Compare the iteration

numbers and the relative residual error between the multigrid method and other methods

,we can �nd the advantages of using multigrid method as the linear systems solver.
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The exact solution is

u(x; y) = sin(2�x) sin(4�y) (2.87)

The tolerance is 10e-16.The error is de�ned by

error = jjuex � bujj1 (2.88)

and the relative residue is de�ned by

Relative residue =
jjb� Axjj
jjbjj (2.89)

Figrue2.6.2: Approximate solutions
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Figure3.6.1 show the exact solution and �ve kinds of approximation.

Figure2.6.3: Iteration numbers of �ve methods
Figure3.6.2 show us the relation between the number of iteration and the log relative

residue.With �ve kinds of iteration method, Multigrid Method gets the best performance.



Chapter 3
Research Method

Let 
 be a bounded polygonal domain in R2 with re-entrant angle.Consider the Pois-

son equation with homogeneous boundary condition

�
��u = f in 

u = 0 on @
 (3.90)

where f 2 L2(
):

When (3:90) is solved by the P1 �nite element method on a quasi-uniform grid ,the

convergence rate in the energy norm is therefore of order O(h(�=!)��); where h is the mesh

size of the triangulation and ! is the re-entrant angle.

In 1996, S.C.Brenner improves the convergence rate developed in [3].It is based on

the full multigrid iteration technique and the following singular function representation of

u [4, 5, 6, 7]

u = �s+ w (3.91)

where w 2 H2(
) and the s are the singular function associated with the re-entrant angle.

Note that the coef�cient � is known as stress intensity factors in elasticity problems.

The multigrid method in [3] computes a solution of (3:91) in the form of

uh = �hs+ wh

where wh is a piecewise linear function.It is shown in [3] that

ju� uhjH1(
) � Chjjf jjL2(
); (3.92)

43
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j�� �hj � Ch1+�=!��jjf jjL2(
): (3.93)

In 1997 ,S.C.Brenner and L.-Y.Sung [9] extend the results in [3] and [10] to the case

of a polygonal domain with crack in R2(i.e. the re-entrant angle ! = 2�:)

Figure3.1: A polygonal domain with cracks.

Let p be the vertice of 
 such that the angle ! associated with p satis�es ! > � (i.e. the

vertice F in the �gure1.1).Let polar coordinates (r; �) be chosen at the vertex p so that the

angle ! is spanned by the two rays � = 0 and � = !:

The singular function s is de�ned by

s(r; �) = �(r)r�=! sin(
�

!
�) (3.94)

where �(r) is smooth cut-off function which equal 1 identically in a neighborhood of 0,and

the supports of the � is small enough so that the singular function s vanish identically on

@
:

Then the solution u has the representation

u = �s+ w (3.95)
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The stress intensity fractors � can be expressed in terms of u by the following extraction

formula

� =
1

�

�Z



fs�1dx+

Z



u4 s�1dx
�
; (3.96)

where the dual singular function s�1 is de�ned in the polar coordinate system (r; �) as

s�1(r; �) = �(r)r
��=! sin(

�

!
�)

([5, 7, 11, 12, 13, 14, 15, 16]).

There is a idea that we will take advantage of the singular function representation.

We substitute the representation (3:95) into (3:90) to obtain the following boundary-value

problem for w : �
�4 w = f + �4 s in 


w = 0 on @
 (3.97)

If the �were known,we could solve (3:97) using piecewise linear �nite element method.Unfortunately

the � is unknown,so we apply the �nite element method on the kth level to the following

varational problem:

Find wk 2 H1
0 (
) such that

Z



r bwkrvdx = Z



(f + �k 4 s) vdx 8v 2 H1
0 (
) (3.98)

where the approximate stress intensity factors �k is computed by the extraction formula

(3:96) using the approximate solution uk�1 obtained in the (k � 1)st level, i.e.,

�k =
1

�

�Z



fs�1dx+

Z



uk�14 s�1dx
�
: (3.99)

We obtain, on the kth level, a piecewise linear approximate solution wk to bwk by applying
the kth level iteration n times using wk�1 as the initial guess.The approximate solution uk
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to u is de�ned to be

uk = �ks+ wk: (3.100)

In other words we are really computing the regular partw of the solution. The improvement

in the convergence rate is possible because w has better regularity than u:

The algorithm of S.C.Brenner's method is given by the following

for l = 1:level
for k = 1:m
if l = 1 , k= 1

�l;k = 0
else

�l;k =
1
�

�R


fs�1dx+

R


ul;k�14 s�1dx

	
endR


r bwl;krvdx = R
 (f + �l;k 4 s) vdx

direct solve bwl;k
ul;k= �s+ bwl;k

end
end

Although we known that the singular function can replace the solution at the sigular

point well, but there still have some problem we can observe.After leaving the singular

point, the singular function is now not a correct solution ,so the error occured on this cut-

off region.To improve this problem, we introduce two strategys,adaptive mesh-re�nement

techniques and adaptive cut-off function.

For the �rst strategy,adaptive mesh-re�nement techniques, there is a relationship be-

tween the converge rate and the error estimator,we should �nd suitable order of h for the

error estimator.The converge rate in the ragular domain is

jju� uhjjL2(
) � Ch2jujH2(
)

jju� uhjjH1(
) � ChjujH2(
); (3.101)



3 Research Method 47

the order of error estimator is choose by

E(K) = �jjh(f � au)jjK + �(
1

2

X
�2@K

h� [n� � (cruh)]2)1=2 (3.102)

Now,in the sigular domain ,we also want to �nd the same relationship between the converge

rate and the error estimator. Since the converge rate in singular domain is

jju� uhjjL2(
) � Ch(3=2)��jujH2(
)

jju� uhjjH1(
) � Ch(1=2)��jujH2(
); (3.103)

the order of error estmator is choose by

E(K) = �jjh(3=4)(f � au)jjK + �(
1

2

X
�2@K

h(1=4)� [n� � (cruh)]2)1=2 (3.104)

we use this order as the rules of adaptive mesh-re�nement techniques.

For the second strategy,adaptive cut-off function .Since we realize that the singular

function replaced the solution successfully only near the singular point,so the range of cut-

off function may affect the error.If we choose the range of cut-off function is too wide, most

solution replace by the singular function , that is not a correct .Otherwise, if we choose the

range of cut-off functions is too small, the error still big near the singular point.So, this

adaptive cut-off function strategy is �nd the suitable cut range and move forward slowly

.On the one hand, the error will not so big . On the other hand, the solution replace by the

singular function more precision with respect to the mesh-re�nement steps.

The adaptive cut-off funciton is de�ned by

�(r) = a0 + a1r + a2r
2 + a3r

3 + a4r
4 + a5r

5 (3.105)
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�nd the coef�cient a0; a1;a2; a3; a4; a5 which is satisfy8<:
�( 1

3+i
) = 1 , �( 2

3+i
) = 0

�0( 1
3+i
) = 0 , �0( 2

3+i
) = 0

�00( 1
3+i
) = 0 , �00( 2

3+i
) = 0

(3.106)

where 1
3+i
� r � 2

3+i
; i = 0; 1; 2 is the mesh-re�nement steps.

The purpose of this range we choose is that we want the interval of cut range is reduce

and close to singular point,also the cut range is move forward slowly.

From the two strategy above , we can hold the stress intensity factorys and also

improve the accuracy of the global error.The results shown in the experiment 4 in chapter

4.



Chapter 4
Numerical Results

In this chapter we report the result of some numerical experiments. The �rst ex-

periment we show the error arise from the singular point associated with the re-entrant

angle.We consider the following boundary value problem:�
��u = f in 

u = 0 on @
 (4.107)

where 
 is the circle with four angle ! = �=2; 3�=2; 7�=4 and �=0:51, ! is the maximun

re-entrant angle.

4:1a 4:1b

4:1c 4:1d
Figure4.1:Circle with four kinds angle.

Let the exact solution u be

u = (1� r2)r� sin(��) (4.108)

49
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where 0 < r < 1; 0 < � < !; � =
�

!
; ! is the maximun re-entrant angle.When is solved

by piecewise linear �nite element method on a quasi-uniform grid, the error is shown in the

following:

4:2a 4:2b

4:2c 4:2d
Figure4.2:Error with four kinds of angle

Table 4.1 Results for four kinds of angle

! =
�

2
! =

3�

2
! =

7�

4
! =

�

0:51
jju� uhjjH1(
) 2.6377E-02 4.1243E-02 7.0759E-02 9.6003E-02
# of points 2205 6469 7791 8323

we can see the Fig4.2a is not a re-entrant angle , so the error of Fig4.2a didn't have peak at

the origin,but the others have.We also can �nd when the maximun re-entrant angle ! arise,

the error also arise with the !:

The second experiment we will concern about the mesh-re�nement strategy.There

are three different mesh-re�nement strategy we used. The �rst strategy is uniform mesh
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with uniformly re�nement,the second is singular element mesh with uniformly re�nement

and the last is uniform mesh with adaptive short cut-region re�nement.

The �rst mesh-re�nement strategy is like as we re�ne mesh as usual.The second

strategy , we changed the uniform mesh to the singular mesh. According to our mentioned

in the singular element ,here the approach is like singular element,we put the exponential

grid points (x; y) in the way�
(x; y) = (2�i; 0)

(x; y) = (2�i cos!; 2�i sin!)
; i = 1; :::; 10 (4.109)

on the two rays.This may couse many grid points located near the singular point.The third

strategy is using uniform mesh, but not re�ne the whole domain, only re�ne the region with

radius r = 0:5j form the center points (0; 0) , where j represent the times of re�nement.

We consider the maximun re-entrant angle ! =
�

0:51
case with three different mesh-

re�nement strategys .The times of mesh-re�nement steps is 2, means that we have the

original corasest domain 
4h; �nd domain 
2h and 
h:

Type A Type B Type C
Figure4.3: Error of three types of mesh-re�nement

we caculate the H1-norm error and L2-norm in the following table

Table4.1
Type A Type B Type C

jju� uhjjH1(
) 9.6003E-02 2.9259E-02 1.3185E-01
jju� uhjjL2(
) 3.1643E-03 2.3718E-04 4.9345E-03
# of points 8323 15085 1373
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From the Table4.1, we discuss some phenomena. In the second strategy, there are many

points around of center.When we re�ne the mesh, the points around the center of all will

be re�ned.Although we reduced the error, but we also pay a high price since too many

points cause the large matrix systems.In the third strategy, we only re�ne the points inside

the cut-region, the error outside the cut-region still not be reduced, therefore, the accuracy

performance is not good. The convergence rate for type A and type B in theH1� norm is

therefore of order O(h(�=!)��):(i:e:the theoratical convergence rate is 1.42)

Table4.2

 Type A ratio A Type B ratio B Type C ratio C

4h 2.3184E-01 1.1065E-01 2.1384E-01

2h 1.4147E-01 1.5116 5.6813E-02 1.9476 1.6135E-01 1.3253

h 9.6003E-02 1.4737 2.9259E-02 1.9417 1.3185E-01 1.2237

Simultaneously, we apply the multigrid method for solving the linear systems and observed

the bene�ts for three dif�erent mesh-re�nement. For the multigrid parameter, we apply

V-cycle 2th level iteration and we choose the weight-Jacobi method to relaxation, the max-

imum relaxation number is 2.For the restriction operator ,we use full weighting as a restric-

tion operator,and for the interpolation operator, we consider linear interpolation.

Type A Type B Type C
Figure4.4: Multigrid bene�ts for three different mesh-re�nement

From the Figure4.4 shown in above,we can observe that although the mesh size is dif�erent,

the slope almost not changed,meens that the converge rate of multigrid method is inden-

pentent of mesh size.
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The third experiment we use the method with S.C.Brenner and L.-Y.Sung.The singu-

lar function for 
 is

s(r; �) = �(r)r�=0:51 sin(
�

0:51
�) (4.110)

where the cut-off function �(r) is de�ned to be8<: 1; 0 � r � 1
3

�1458r5 + 3645r4 � 3510r3 + 1620r2 � 360r + 32; 1
3
� r � 2

3
0; 2

3
� r

(4.111)

The �k are obtained by the extraction formula

�k =
1

�

�Z



fs�1dx+

Z



uk�14 s�1dx
�
: (4.112)

where

s�1(r; �) = �(r)r
��=0:51 sin(

�

0:51
�): (4.113)

Here,for the approximate stress intensity factors �k,we choose 3-th level (l = 3) and itera-

tion 5 times (m = 5)

The error is shown in the following


4h 
2h 
h

Figure4.5: Error of three level mesh
The theoretical number for the stress intensity factorys � is 1.

Table4.3

 � jju� uhjjH1(
) # of points

4h 9.9399E-01 2.3664E-01 556

2h 9.9815E-01 1.5423E-01 2128

h 9.9944E-01 1.0451E-01 8323

The fourth experiment we improve the method by including adaptive mesh-re�nement

techniques and adaptive cut-off function.The following table shown the stress intensity fac-
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torys � and the error in H1 � norm:
Table4.4


 � jju� uhjjH1(
) # of points
1 9.9399E-01 2.3664E-01 556
2 1.0017E+01 2.0107E-01 913
3 9.9098E-01 1.7432E-01 1359
4 9.8648E-01 1.4946E-01 1842
5 9.8810E-01 1.3034E-01 2196
6 9.8722E-01 1.2721E-01 2747
7 9.8841E-01 1.1381E-01 3207
8 9.9204E-01 1.0953E-01 3533
9 9.9492E-01 1.0199E-01 4522
10 9.9341E-01 9.8286E-02 5494
11 9.9306E-01 9.7071E-02 6178
12 9.9560E-01 9.5075E-02 7217
13 9.9534E-01 9.5117E-02 7708
14 9.9596E-01 9.3322E-02 9533
15 9.9626E-01 9.3082E-02 10568

we can clearly compare the jju � uhjjH1(
) with these two results above.Fixed points on

both sides of almost equal,we can clearly see the improvement in error in H1 � norm:
Table4.5

S.C.Brenner Experiment

 jju� uhjjH1(
) # of points 
 jju� uhjjH1(
) # of points
1 2.3664E-01 556 1 2.3664E-01 556
2 1.5423E-01 2128 4 1.4946E-01 1842
3 1.0451E-01 8323 13 9.5117E-02 7708
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