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Multi-state and Multi-stage Synchronization of

Hindmarsh-Rose Neurons
with Chemical and Electrical Synapses

Student: Fang-Jhu Jhou Advisors: Jonq Juang

Institute of Mathematical and Scientific Computing
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Hsinchu, Taiwan, R.O.C.

Abstract

The multi-state synchronization, the coexistence of stably chaotic and periodic/steady-
state synchronization, and multi-stage synchronization of Hindmarsh-Rose(HR) neurons
with both chemical and electrical: synapses over the complex network are analytically
studied. The synchronization regions forpboth global and local stability of the com-
pletely synchronous state in'such networks of HR neurons are explicitly obtained. The
coexistence of the stably multi-state synchronization, including chaotic synchronization
and periodic/steady-state synchronization; is-provided with the presence of both chem-
ical and electrical synapses in_the network. This.is‘in contrast with Coupled Oscillator
Systems or Coupled Map Lattices where only single-state synchronization is found. For
local synchronization, we are able to show that even without electrical coupling, the
coupled neurons may reach stably steady-state synchrony regardless of how sparsely
the chemically coupling networks is coupled and that the minimum chemically coupling
bound as predicted is inversely proportional to the number of signals each neuron re-
ceives. Moreover, we provide a measurement of how densely coupled the system should
be so as to have the chemical synapses to play an enforcing role in achieving the syn-
chrony of the system. We establish the bounded dissipation of the coupled HR neurons,
followed by the attainment of its global synchronization region. Such a result can be
applied to a general class of single neuron models and the complex networks. Our
method employed here is quite general. For instance, it can be immediately applied to
other single neuron models such as the FitzHugh-Nagumo model. The analytical tools
and concepts needed include coordinate transformations, matrix measures, monotone

dynamics and time averaging estimates.
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1 Introduction

The fundamental building block of every nervous system is the neuron. There is an increasing
trend towards studying the dynamical behavior of relatively large networks of neurons, and model-
ing/emulating such networks is also on the rise. Neural synchronization has been suggested as par-
ticularly relevant for neuronal signal transmission and coding in the brain. Brain [1, 2, 3, 4, 5, 6, 7]
oscillations that are ubiquitous phenomena in all brain areas eventually get into synchrony and
consequently allow the brain to process various tasks from cognitive to motor tasks. Indeed, it
is hypothesized that synchronous brain activity is the most likely mechanism for many cognitive
functions such as attention, feature binding, learning, development and memory function. In this
paper, the phenomena of multi-state and multi-stage synchronization of Hindmarsh-Rose neurons
with chemical and electrical synapses over complex network are analytical studied. These are in
contract with coupled oscillator systems or coupled map lattices where only single-state synchro-
nization is found. It should be noted that chemical synapses or electrical synapses alone can not
produce such new phenomena. Our melthod employed here is quite general. For instance, it can be
applied to other single neuron models stuch as-the FitzHugh-Nagumo model.

Many biological neuron models have been developed in the last decades for an accurate descrip-
tion and prediction of biological phenomena. The early works of Hodgkin and Huxley surely represent
a milestone. Since such a model turns out to be quite complex, simpler approximations, namely,
second order systems such as the FitzHugh-Nagumo(FN), Morris-Lecar and Hindmarsh-Rose(HR)
neuronal models have been proposed. ‘However, the second order model is not able to reproduce
some interesting phenomena such as terminating itself by triggering a set of stable firings. Hence,
the HR model was added a third dynamical component, whose role is to tune the above subsystem
over the mono- and bistability regions in order to activate or terminate the neuronal response. Such
model of HR has turned out to be accurate in capturing both qualitative and quantitative aspects
of experimental data [9, 10, 11, 12]. Furthermore, it has been shown that the HR neuron model
is capable of producing major neuronal behaviors such as spiking, bursting, and chaotic regime
[12, 13, 14].

0'9 neurons with an approximate 10 links between them, all packed in a

There are about 1
human brain. Although neurons are sparsely connected, they are within only a few synaptic steps
from all other neurons and their underlying network has small-world property [8]. Neurons in a
population synchronize their activity using electrical (via gap junctions) and chemical synapses with
other neurons in the same population as well as with neurons from other populations. In the first
case, the coupling through gap junctions is linear and directly dependent on the difference of the

membrane potentials. In the second case, the coupling is pulsatile and often modeled as a static

sigmoidal nonlinear input-output function with a threshold and saturation.



In this work, we study the multi-state synchronization and multi-stage synchronization in en-
sembles of electrically and chemically coupled Hindmarsh-Rose neurons whose connection topology
with respect to the electrical coupling is allowed to be complex including, e.g., Newman-Wattts
networks, and whose couplings through chemical synapses are unidirectional from presynaptic cell
to the postsynaptic cell. By multi-state synchronization, we mean the coexistence of stably chaotic
and periodic/steady-state synchronization, depending on the choice of initial conditions. By varying
a certain parameters, if the corresponding coupled neurons yield different types of synchronization
such as chaotic, periodic or steady-state synchronization, then it is said that the system of the cou-
pled neurons exhibits the multi-stage synchronization. Our main results contain the following. The
regions in terms of chemically and electrically coupling strengths for both local and global stability
of the completely synchronous state in such networks of HR neurons are explicitly obtained. The
regions depend on the details of the topology of the electrically connected network, the second largest
eigenvalue of its associated connection matrix. However, they only depend on the number of sig-
nals each neuron received, independent of all other details of chemically coupling network topology.
Moreover, with the presence of both chemical and electrical synapses in the network, the coexistence
of the stable multi-state synchronization including chaeti¢ synchronization and periodic/steady-state
synchronization, is provided. This.is in contrast with Coupled Oscillator Systems or Coupled Map
Lattices where only single-state synchronization is observed.« It should be noted that without the
chemical synapses between neurons, the multi-state synchronization would be impossible. It is also
shown that for any kgs > 0, where k is.the number-of signals each neuron received and g, the strength
of chemical synapses, there exists a minimum. strength of electrical synapses so that the coupled HR
neurons synchronize. Since on the synchronous manifold, the dynamics of the synchronous equation
goes from chaotic (bursting) to periodic (spiking) to steady-state. Consequently, the phenomena
of the multi-stage synchronization is also observed. The above described scenarios can not exist
without the presence of electrical synapses between neurons. For local synchronization, we are able
to show that even without the electrical coupling, the coupled neurons may reach stably steady-
state synchrony regardless of how sparsely the chemically coupling network is coupled and that the
minimum chemically coupling bound as predicted is inversely proportional to the number of signals
each neuron received. If, in addition, the network is also electrically coupled, then the minimum
electrically coupling bound to reach even stably bursting (chaotic) and multi-state synchronization
can also be explicitly computed. Moreover, we provide a measurement of how densely coupled the
system should be so as to have the chemical synapses to play an enforcing role in achieving the
synchrony of the system. For global synchronization, we first establish the bounded dissipation of
the coupled HR neurons. The synchronization region is also obtained. Such a result can be ap-
plied to a general class of single neuron models and the complex networks. Our method employed

here is quite general. For instance, it can be immediately applied to other single neuron models



such as the FitzHugh-Nagumo model. The analytical tools and concepts needed include coordinate
transformations, matrix measures, monotone dynamics and time averaging estimates.

The most closely related works to ours are those done by Jalili [15], Kopell and Ermentrout
[16] and Belykh, Lange and Hasler [17]. In [16], the single neuron model is a quadratic integrate
and fire. They obtained that the chemical and electrical coupling play complementary roles in
the coherence of rhythms in inhibitory networks. In [17], densely coupled bursting HR neurons
with only chemical coupling was studied. They demonstrated the bound of the minimum chemical
strength for obtaining the steady-state synchronization only depends on the numbers of signals each
neuron receives, independent of all other details of the network topology. These two works used
both numerical and analytical techniques to address local synchronization. Whereas the results in
[15], though the same model as ours was studied, was numerical. The surprising phenomena of
multi-state synchronization was not mentioned there.

The paper is organized as follows. Section 2 is to lay down the foundation of our paper, which
includes the formulation and needed preliminaries, including coordinate transformations, matrix
measures, monotone dynamics as well as time averaging estimates. The main results are contained
in Section 3. Their detailed applications concerning coupled HR neurons and some concluding

remarks are recorded in Section 4«

2 Formulation

The HR model may be seen either as.a generalization of the FitzHugh-Nagumo equations or as a
simplification of physiologically realistic model proposed by Hodgkin and Huxley. The motion of the

model reads as follows:

= f(r)+y—2z+g,

y=—y—bx’+1, (1)
Z2 = pu(b(z — x9) — 2).

Here f(z) = az? — 23, x is the membrane potential, y and z are the recovery(fast) and the
adaptation(slow) current, respectively. The roles played by the system parameters are roughly the
following. ¢ mimics the membrane input current for biological neurons; a allows one to switch be-
tween bursting and spiking behaviors and to control the spiking frequency; p controls the speed
of variation of the slow variable z, and in the presence of spiking behaviors, it governs the spiking
frequency, whereas in the case of bursting, it affects the number of spikes per burst; b governs adap-
tation; a unitary value of b determines spiking behavior without accommodation and subthreshold

adaptation, whereas around b = 4 give strong accommodation and subthreshold overshoot, or even



oscillations; x sets the resting potential of the system. Hereafter, the parameters are chosen and
fixed as follows: zg = —1.6, u = 0.01, b = 4, ¢ = 4, and a = 2.6. The dynamics of the neuron
with such set of parameters is bursting and chaotic (see, e.g. [11]). Moreover, the dynamics on the
corresponding synchronous manifold of the coupled HR neurons may generate multistability region
(see equation (10) and Table 1) such as chaotic attractor, stable periodic solutions and stable fixed
point.

Neuronal synaptic connections are either chemical or electrical, and chemical connections might
be excitatory or inhibitory. Moreover, the electrical coupling through gap junctions is bidirectional,
whereas chemical synapses is unidirectional from the presynaptic cell to the postsynaptic cell. In
fact, the current ¢;; injected from the presynaptic cell j to the postsynaptic cell i, is a nonlinear
function of the membrane potential x; of the presynaptic cell and a linear function of the membrane

potential z; of the postsynaptic cell. The current ¢;; has the following form

¢ij = gs(v — x;)p(x;) (2a)

where g; is the strength of chemical coupling and v = 2 is the synaptic reversal potential. If v > z;,
the current injected to the cell is positive'and depolarizes it, thus the coupling is excitatory. On the
other hand, for v < z;, the injected current to.the cell is negative and consequently hyperpolarizes
it, thus introducing inhibitory coupling. The synaptic coupling function is modeled by the sigmoidal

function
1

s A e N~ 0,)}
where 6, = —0.25 is the threshold and A= 10:~The threshold is chosen so that every spike in the

(2b)

single neuron burst can reach the threshold. In the limit A — oo, the above sigmoid function reduces
to a Heaviside step function.

We are now in a position to consider a network of n excitatory HR neurons with bidirectional
electrical coupling and unidirectional chemical coupling. The equations of motion are the following.

For,i=1,...,n

n n
Bi=f@) +yi—z+ta+oY gz —gs(@i—0) Y cip()),
=1

i=1
= (@) tyi— 2zt a+0 Y gir5 — gsh(zi — v)p(x:) — gslwi —v) Y clp(xy), (3)
i=1 i=1

vi = —yi = 5aj + 1,
Zi = p(b(z — zo) — 2i),
where

n
cij=0o0r1, c; =0, Y cj=k forall i, (4a)
j=1



and

Cl = (cjj), and cjj = —k b=y (4b)

cj ifi# g

Here k represents the number of signals each neuron receives. Moreover, o is the coupling strength
for electrical synapses via gap junctions, and coupling matrix G =: (g;;), is a symmetric matrix with
vanishing row sums and nonnegative off-diagonal entries. It should be noted that the symmetry of
G is a biological assumption. From the mathematical side, our analysis here is capable of treating
unsymmetrical matrix with both positive and negative off-diagonal entries. C =: (¢;;) is the connec-
tion matrix of the chemical coupling which is not necessarily symmetric; ¢;; = 1 if neuron ¢ receives
synaptic current(via chemical synapses) from neuron j, otherwise ¢;; = 0. The matrix Cch = (c;fj)
has all row sums being zero and nonnegative off-diagonal entries.

The notions of global and local synchronization are to be distinguished. Coupled network (3)

synchronizes globally if for any solution we have
max{|z;(t) — x;(t)], |yi(t) — y;(t)|, |z (t) — z;(t)|]} — 0 as t — oo for any 4,5 € {1,2,...,n}. (5)

Coupled network (3) is said to be locally synchronized. if there exists an £ > 0 such that for any

solution with
max{|z;(0)= ; (0);{2:(0) = y5(0)}, [2i(0) — 2;(0)[} <e,
we have (5) holds true.
To isolate the synchronous manifold, we need to make a coordinate transformation. Specifically,
let Ty =z — 21, ¥; = Yi — Y1, Zi = % — 210 = 2,...,n< Then for i =2,...,n,
n
T = f(a) — f@) + T —Zi+0 > (9 — 915)7;
j=1

— sk [p(i)(zi — 1) + (21 — 0)(p(z:) — p(x1))]

n

— gs(i —v) > (el = )p(x)) — gs(wi — 21) Y e p(x)
j=1

j=1

= f'(s))Ti +7; —Zi+o Z(Qij — g15)T; — gsklp(z:)Ti + (21 — v)p' () T4]
=2

n
— gs(wi —v) Y (el — )/ ()5 — 9.7 Y e} 0 (u))T5. (6a)
j=2 j=2

The last equality above is justified by using the Mean Value Theorem and the fact that all row sums

of matrices G and C' are zero. Moreover,
and

E.i = ,ubE, - Mzi. (60)



The following notations are needed to set up the vector-matrix form of (6a-6¢). Let

X = (ml,...,ajn)T, y = (yl,...,yn)T, zZ = (21,...,zn)T,
X=(To,.. s Tn) s = a3 Tp) ., Z= (Zo,....7Z0) .
Set e = ﬁ(m, DT,
-1 1 0 0
-1 0 1 I E
E, = A= "], and E| =ET(E,ET).  (7a)
: : 0 eT
-1 0 0

(n—1)xn

Then A~ = (EI, e). For any matrix K € R"*" whose row sums are all equal to zero, we have that

. E/KE] 0
AKx = AKA "Ax = Ax
* 0
E,KE| 0 X E,KE/x Kx ()
0 N B
x Z; NG + +

Therefore, in vector-matrix form, {(6a-6¢)-become

X = {Dl(t) +0G — gs[kD2(t)+ k(z1 — v)D3(t)+ D4 (t)CiDs(t) + D5(t)C*D3(t)]} <iy_z

—HH)X+y -2 (8a)
Y =5Dg(t)x - 7, (8b)
and
Z = pbx — |iZ. (8¢)
Here,

D; = diag(f'(s2(t)), .-, f'(s0(t))), D2 = diag(p(x2(t)), ..., p(zn(t))),

D; = diag(p/ (ua(t)), ..., ' (un(t))), Dy = diag(wa(t) — v, ..., zn(t) — v),

D; = diag(z2(t) — 21(t), .., 2n(t) — 21(t)), Dg = diag(a1(t) + z2(t), ., 21 (t) + 2a(t),  (8d)
cl2 €13 ... Cin

C* =

Clg2 €C13 ... Cin

G and CT are defined as in (7b). From here on, an (n— 1) x n full-rank matrix with all its row sums
being zero is to be termed as coordinate transformation. Matrix Eq, as given in (7a), is an example

of coordinate transformation.



To study the global synchronization of (3) is then equivalent to showing that the origin of (8a-8c)

is globally, asymptotically stable. For local synchronization of (3), D;(t), i = 1, ...,6, are reduced to

Dy (t) = f(x(t))L, Da(t) = p(x(t))L, Ds(t) = p'(z(t)I,

Dy(t) = (x(t) — v)L, Ds(t) = 0, Dg(t) = 2z(4)I (9)

where x(t) lies on the synchronous manifold of (3). Specifically, z(t), y(t) and z(¢) satisfy the

synchronous equation

b= f(x)+y—2+q—kgs(z —v)px),

Z2 = p(b(z — xo) — 2).

In our derivation of synchronization of system (3), we need the concepts of matrix measures,
a function being of type K, which generates a monotone dynamics, and a Lyapunov order number
of the system of linear differential equations. For completeness and ease of the references, we also

recall the definitions of the above described concepts and their properties [20, 19, 18].

Definition 1. ([18]) Let || - ||; be ‘an induced matrix norm on R™*". The matrix measure of matrix
I+ eK|l; —1
K on R™ " is defined to be u;(K) = lim+ w
e—0 &
Lemma 1. ([18]) Let ||-||x be ananduced k-norm on R"*" where k = 1,2,00. Then each of matrix

measure pui(K), k=1,2,00, of matriz K = (k;;) on R?*™ s, respectively,
Hoo(K) = m?x{kii + %; |kijl
VE=)

1 (K) = mjax{kjj + 3 |kijl},
i#

and

2(K) = Anax (KT 4+ K) /2.

Here Apax(K) is the mazimum eigenvalue of K.

Theorem 1. ([18]) (i) pi(aA) = ap;(A), V a >0 (i) pi(A +B) < p;(A) + p;(B). (i) If X is an
eigenvalue of A, then Re\ < pu(A). (i) Consider the differential equation %x(t) = K(t)x(t) + v(t),
t >0, where x(t) € R", K(t) € R™™", and K(t),v(t) are piecewise-continuous. Let || - ||; be a norm
on R™, and || - ||;, u; denote, respectively, the corresponding induced norm and matriz measure on
R™*"  Then whenever t > tg > 0, we have

(0 < lixto)lexp { [ t (s} + [ exp {/ t K (1) § V(o).

0 0



Let R? = {x = (z1,22,...,2,)T € R": 2; > 0,i = 1,...,n} be the nonnegative cone. Let

a,b € R". We write a < b if b—-a € R’.

Definition 2. We say that a function f = (f1,..., fn) : D C R™ — R" is of type K on D if, for each
i, fi(a) < fi(b) whenever a = (ay,...,a,) and b = (by,...,b,) are in D with a < b and a; = b;.

The following theorem amounts to saying that a vector field being of type K is a sufficient

condition to generate a monotone dynamics.

Theorem 2. ([19]) Let £(t,x) be of type K on R™ for each fized t and let x(t) be a solution of
x(t) = f(t,x) on [a,b]. Let z(t) be continuous on [a,b] and satisfy Dyz(t) < f(t,z). Then z(t) < x(t)
for a <t <b provided that z(a) < x(a).

Consider a function y(¢) for ¢ > 0. A number 7 is called a Lyapunov order number [20] for y ()

if, for every € > 0, there exist positive constants c; . and ¢z such that

Iy ()] < e1,e7T9 for all large ¢,

lly ()] > cz,ee(T_e)t for-some. arbitrary large t.

Consider linear system of differential equations in the homogeneous case

y =A(t)y. (11a)

Here A(t) is a d x d matrix. Clearly, the nontrivial solutions of (11a) have d Lyapunov order numbers
Tlye.o,Td. Let Tyax = max{7,...,7g}s ~Then Tya¢ 1S called the Lyapunov order number of the
system. The Lyapunov order number of linear system of differential equations in the inhomogeneous
case

Y = A(t)y +£(t) (11b)

is to be defined similarly.

Proposition 1. ([20]) (i) If y(t) # O for all large t, then the Lyapunov order number for y(t) is
||.Y( I

equal to lim ———~"—

t—oo

(1) If A(t) is contmuous fort >0, then a suﬂicz’ent condition for every nontrivial solution y(t) of

)||d (A(s))d
fo || s)llds be bounded, in which case, T < hmM

t— o0 t

(11a) to possess an order number T is that

3 Main Results

We begin with the study of the bounded dissipation of coupled system (3), which is needed in proving

the global synchronization of (3). The following coupled system, which is slightly more general than



that of in (3), is considered. For i = 1,...,n,
n n
i = ha(x:) + boyi + bszi + 0 Y gy — gs(zi —v) > ciypla;),
j=1 j=1
Yi = —coyi + ha(x;), (12a)
Zi = —c32; + ha(x;).
Suppose (x(t),y(t), z(t)) lies on the synchronous manifold of (12a), then it satisfies the synchronous

equation
& = hi(z) + boy + bgz — kgs(x — v)p(z),
Y = —coy + ho(2), (12b)
Z = —c3z + hs(x).

Here k and p(x) are defined as in (4a) and (2b). Clearly, if (z¢, Ye, 2c) is an equilibrium of (12b),

then

cacshi(ze) + bacgha(xe) + bacahs(z.)
s = s 12¢
g epesk(ae —=v)p(x.) (2

provided xz. # v. To obtain the bounded dissipation of system (12a), we first prove that z. is
bounded for all g; > 0.

Lemma 2. Let g1(z) = hy(x) + Z—zhg(l‘) + lc’—,ihg(x). Assume.that g1(v) < 0, and lim g¢(z) = 0.
r——00
Then there exists an equilibrium (&, Yey ze) 0f (12b) so that x. € (di, v) for some constant dy,

independent of gs > 0.

Proof. From the assumption on g;(x), there is'a'd; with d; < v such that g1(dy) > 0. Let go(x) =
(x —v)p(z). Since g2(v) = 0 and ga(z) < 0 whenever & < v, there is an intersection point x. of

y = g1(x) and y = kgsgo(x) whose z-coordinate lies in (dy,v) for all g5 > 0. It implies g;(x.) —

L
’ 3

kgs(x. —v)p(x.) = 0. Consequently, (z., éhg(l‘c) hs(x.)) is an equilibrium of (12a). O

Theorem 3. Let (x., Y, z.) be an equilibrium of (12b). Assume that

. , . ki4c;xhy ()
Th ts a k1 > 0 such that 1 / < -
(i) ere exists a ki > 0 such that lim k‘%b?:nz T 2lbyoh; (2) h?(iﬂ) <

and | llim |k1bjx + hj(x)| = oo where j = 2,3. (13a)
(ii) co, c3 > 0, (13b)
and
(11i) . is bounded by a constant, which is independent of gs > 0. (13c¢)

Suppose the matriz measure p2(G) of G = (gi5) is nonpositive and C = (c;5) is a nonnegative matriz
in the componentwise sense. Let p(x) be a nonnegative, bounded function. Then the corresponding

coupled system (12a) is bounded dissipative for all o > 0 and all g5 > 0.



Proof. Consider an energy function V' of the form V(x,y,z) = % S (2 — w)? + %Z:;l(yl -
Ye)? + 157" 1 (2i — z¢)%. Then the time derivative of V along (12a) has the following form

n

V klz _330332“‘2 ycyz"i'z _Zc

i=1
=— Zc _ (ha( xl) + kiba(z; — 330) + caye) | B Zn:c L (ha(z) + kibs (i — xc) + c320) |
2 202 £ 3 ) 263
h 7 k? b i — Le c 2
+ Z [kl —xe)hi (i) — yeho(zi) — zcha(x;) + (ha(2:) + ki 255;2 Tc) + C2ye) .

h i k1b i e c 2 = =
( 3(517 ) + K1 35;1;3 X ) + c3%, ) :| + k‘lo'XTGX o gskl Z (332 o xc)(ﬂjz o U) Zcijp($j)
i=1 j

=1, + Iy + Is+ Iy + I5, where I, = kjox’ Gx < 0. (14)

It follows from (13a-13c) that I3 — —oo whenever ||x|| — oo. Moreover,

n

Te+ U Te+ v “
Iy < —gskn » 4 ( 5 (5 — )Y cipla))

i=1 j=1
(v — x.)? [CQCghl (@e) 4 bacsha(ze) + b362h3($0):|
< n(kk
M) caoshla — v)p(e.)

= —nkl

v — &g [C2C3h1(:vc) + bacsha(ze) + b362h3($c)] (15)

4 c2¢3p(Zc)
Therefore, if either || y || or || z-||— oo, then Iy + I> +'I5 — —oo. We then conclude that if the
energy level of V is sufficiently large, then ¥ along-the solution trajectory of (12a), whenever lying
in the outside the ellipsoid V(x,y,z) =, is strictly negative for any ¢ > 0 and any g5 > 0. O

Tremendous progress (see e.g.,[21] and the work cited therein) has been made in the theory of
global synchronization of coupled chaotic systems, i.e., gs = 0. To obtain such global synchronization,
one needs to assume the bounded dissipation of the coupled chaotic systems. However, to the
best of our knowledge, no general theorem until now is developed to check if the coupled systems
are bounded dissipative. Moreover, our approach is quite general. For instance, if the individual
oscillator is governed by the FitzHugh-Nagumo equation, then (13a-13b) are satisfied.

If the single neuron is governed by HR model, then ¢; = 1, ¢3 = p, bo = 1, b3 = —1, hy(z) =
ax? — 23 + q, ho(x) = =522 4+ 1 and hs(x) = pb(x — xg). For j = 2, it is easy to see that the first

limit in (13a) tends to 2;‘“ as x tends to +oo. For j = 3, the first limit in (13a) tends to —oo as z
tends to £o0o. The second limit in (13a) is obviously satisfied. The assumptions of Theorem 3 are
then satisfied. Hence, the coupled system is bounded dissipative for all ¢ > 0 and for all g, > 0. It
also can be easily checked that if the single neuron is satisfied by FitzHugh-Nagumo equations, then
the corresponding coupled system still enjoys the property of being bounded dissipative.

The following propositions, which, among other things, makes use of time average estimates,

plays a critical step in obtaining our main results.
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Proposition 2. Suppose £(t), n(t) and ((t) are nonnegative functions on [0,00) satisfying the fol-

lowing inequalities

&(t) < aon(t,0) +/0 ¢1(t, 5)(aa(s)n(s) + as(s)C(s))ds, (16a)
n(t) < boga(t,0) +/0 Pa(t, s)(as(s)E(s) + az(s)C(s))ds, (16b)
() < cogs(t,0) +/0 ¢3(t, )(as(s)E(s) + ag(s)n(s))ds. (16¢)

Here a;(t), i = 4,5,...,9, are nonnegative functions on [0,00) and ¢;(t,s) = efst‘”(T)dT,z' =1,2,3.

. . —— ¥ ua(A(s))ds
Then &(t), n(t), and ((t) converge to zero ezponentially provided that lim “--2"——=— <

t—oo

—r, for some

r > 0, where

At)=| as(t) a2(t) ar(t) (17)

Proof. Let £(t), 7i(t) and ((t) satisfy the following equation.

€ = a(t)€ +as(Oi] Fas ()G, E(0) = £(0),
7 = ag(HE+aa(E + a7, 7(0) = 1(0),
¢ = Gs(t)€ + g+ as(t)C, T(O) = ¢(0).

It is easily checked that the above system is of type K. Henee, £(t) > £(t), (t) > n(t), and ((t) > (),

Vt > 0. Using Proposition 1-(ii), and Theorem-2; we see that the proposition holds as claimed. [

Proposition 3. (i) Let x = A(t)x. Here A(t) is an n x n matriz. Suppose lim A(t) = A. Then
t— oo

x(t) converges to zero exponentially provided that pe(A) < 0. (i) If, in addition, the eigenvalues of

A are distinct and their real parts are negative, then x(t) converges to zero exponentially.

Proof. To prove the first assertion of the proposition, we see that A(t) = A + (A(t) — A), and so,

— — — A _A\T — A _A\T
12 (A1) < po(B) 1o (A1) ~A) = p(A)+ Aoy | AU—AITAOAT] ) (K) 4y, [AOAVHAGA)

We have used Theorem 1-(iii) to justify the last inequality. To complete the proof of the first part

- [ s)—A s)—A)T)ds
of the proposition, one needs to show that lim Jo 11 ((AG) A):(A( )=A)")d

t—oo

< 0, which is the case

provided that limw = 0, for all 7. To see this, let € > 0 be given, there exists a t. such

t—o0

that |a;;(s) — @;;| < € whenever ¢ > ¢.. And so, fot laij(s) — @ijlds < fots 0i5(5) — Gislds + =(t — £.).
— i — Qi

Hence, limw

t—oo

= 0. The first assertion of the proposition now follows. To conclude the

second part of the proposition, we first make a suitable change of variables so that PAP~! is a

11



diagonal matrix. Thus

ol
sy

= (PAP '+ P(A(t) - AP )P

- -
TN

Now,

Tl n2(PAPT 4 P(AG) ~ AP Nds _ o ia(P(A(s) — AJP~ds

t—oo t t—o0 t

= )\maxy

where A\pmax is the largest real part of the eigenvalues of A. We have used the similar techniques,
as given in the proof of the first part of the proposition, to justify the above equality. We have

completed the proof of proposition. O

In view of (8a), it is apparent that the more negative the matrix measure of H(t) is, the easier the
origin of the system (8a-8c¢) is to be made asymptotically stable. However, the choice of a coordinate
transformation [21] will greatly influence how negative the matrix measure of G and ET, as appeared

in (8a), could be. In the earlier works, the.choice of coordinate transformations is either E; or

1 —1920 0
0—1 -1

0
0 01 -1

The drawback for the above choices is that even if G.isthe diffusive matrix with periodic boundary
conditions, the corresponding matrix measure of G is positive whenever n > 7 (see Table 1 of [21]).

Therefore, a better choice of transformation is needed. Let
¢ = {C e R™D*" . C s full rank, and all its row sums are zeros}.

and O C € be such that

C
PD=<¢Ce C: is orthogonal
o7

Proposition 4. The following hold for any E1 and Ey € O.

(i) BoEIE| = Eo. (i) E\EIE, = Ey. (iii) (EsEDG(EE!) ™! = E,GEL =: G. (iv) 0(G) =
o(G) = o(G) — {0}, where o(G) is the spectrum of G.

E,

Proof. We have, via (7a), that the inverse of A = . is A~ = ( Ei,e ) Hence I =
e
1 Eq T T T T .
A A = ( ELe > . = E|E; +ee’, and so EJE; = I —ee’. The first assertion of the
e

12



proposition now follows since the row sums of Eo are all zeros. The proof of the second asser-
tion of the proposition is similar, and thus omitted. To complete the proof of the third assertion
of the proposition, we first note, via (i), that (EgED_l = ElE; Hence (EgEDG(EgEI)_l =
EgEIEl GEJ{ElE; =E,G(I— eeT)Eg = EgGE; The last assertion of the proposition follows from

-1
E; E; G 0

E
the fact that ! G = G ( ELe > = where E; € O.
el el el * 0

O

Proposition 5. ([21]) Assume that all eigenvalues of the coupling matriz G have nonpositive real
parts. Then infoeg ji2(CGCH) > ReXy(G). Here ReMo(QG) is the second largest real part of eigen-
values of G. If, in addition, G is symmetric, then the above equality can be achieved by choosing

any C in 9.

Proposition 6. (/21]) Assume that G is a node-balancing matriz, i.e., its row sums and column

sums are equal. Then
—) (18)

whenever all eigenvalues of G + G _are nonpositive.
We are now in a position to make a better‘coordination transformation. Letting

x7 Y1 21

where Eo € ©, multiplying E2E]{ on both sides of equation (8a), we get

X = EElH(t)(E.EN X +5 - 2.

We have used Proposition 4-(ii) to justify the above equation. Applying Proposition 4-(iii), we have
that

x=H{)x+y —1z, (19a)

where

H(t) = {]51('5) +0G+ gs|—kDa(t) — k(z1(t) — v)Ds(t) — ]54('5)%]53('5) - ]55(,5)('3?]53(,5)]}
(19b)
= {Di() + oG + g Hi (1)}

Here D;(t) = EgEIDi(t)(EgEJ{)_l, and all other terms on the right-hand side of (19¢) with ™ on

the top are defined accordingly. Using Proposition 4-(iii) and Proposition 5, we see that the matrix

13



measure of G remains negative regardless the number of neurons involved. The dynamics of the

motion for y and z is, respectively,

y = —5Dg(H)X — ¥, (19¢)

and

z = ubX — iz. (19d)

Theorem 4. (i) Assume that pa(H(t)) < A < 0 and limsup{5||Dg(t)||} = d. If =X > d + b, then
the origin is globally, asymptotically stable with respect to equations (8a-8c).

(ii) Assume that p2(G) is nonpositive. Let Xy be the second largest eigenvalue of (G + GT). Let
di = limsup pa(D1(t)) and hy = limsup pa(Hy(t)). Then the coupled HR system (3) is globally
synchronized provided that

(—)\2)0 + (—h1)gs >d+b+dy. (20)

Proof. Using the inequality in Theorem_1-(iv), we get

I < JRplettor | @UB5G) + 1El)ds. (21a)
0
Moreover
17T [Tallenter / g=0— )l (s) ) ds, (21b)
0
and
120 < Zolle™ + / e~ E=9) (ub|[%(s) | . (21¢)

Applying Proposition 2, we see that the first part of assertion of Theorem 4 holds true provided the

real parts of the eigenvalues of

A1
B=|ad -1 0 (22)
po 0 —p

are negative. Now, the characteristic polynomial g(z) of B is q(z) = 23 + asz? 4+ a1x + ag, where
as =—-A+p+1,a1 =—-A—d—pb—Au+p and ag = —Ap — dp — bu. The Routh-Hurwitz Criterion
asserts that all roots of ¢(x) have negative reals parts if and only if ag > 0, ag > 0, and ajas > ap.
A direct computation yields that ajas > ag provided that ag > 0, which is equivalent to —\ > d+b.
The first part of the theorem thus follows.

From (19b), we have uy(H(t)) < pa(Dy(t)) + ng(é) + gopa(Hi(t)) < di + Ago + h1gs. Hence,
if (=X\2)o + (—h1)gs > d + b+ dy, the coupled system is globally synchronized.

14



Theorem 5. Let x(t) satisfies synchronous equation (10). Let ro be the second largest eigenvalue

of CT, as defined in (4b). Let o =:1+ 22 and

Pigy.a(z) = f(x) + kgs [—p(az) + (v — az)p/(az)a] . (23a)

Set

ha)kgs  if kgs # 0,
Sup g, () = (ha)kgs if kgs # (23b)
x dy if kgs =0,
where he, is a constant and d; = max f'(z) ~ 2.253. Let d = sup10|z(t)| < 20. Then coupled HR
Te x(t)
system (3) is locally synchronized provided that

(=X2)o + (—hqa)kgs > d+b=2040, for kgs >0, and

—Xoo >d+ b+ dy =~ 26.253, for kgs = 0. (23c)

Proof. Since we consider excitatory HR neurons, z(t) < v = 2 for all ¢. From (9) and (19b), we then

have pa(H(t)) < Moo + (—hqa)gsk. By Proposition 2, the assertion of the theorem holds true. O

If the network is globally coupled,.then "k =mn—1y 1o = —n, and so « is negative. It can be
computed that the denser the network is-coupled, the smaller « is. Hence, « is an indicator of how
densely coupled the system is. Note also that —1-< a_< 1. We shall call « the density of the

coupling network.

4 Applications

In the section, we shall focus on obtaining synchronization theories for coupled HR neurons (3). To
this end, one needs to have information on the dynamics of synchronous equation (10). Its dynamics
is to be provided numerically. The theoretical study of (10) is to be addressed in a forthcoming paper.
For g =4, a=2.6, xo = —1.6, 4 = 0.01, b = 4 and v = 2, the single HR neuron model, i.e., gs = 0, is
capable of producing major neuronal behaviors such as spiking, bursting, and chaotic regimes. (see
e.g., [14]). Furthermore, such neuron is excitatory, i.e., z(t) < v = 2 for all t > 0. We shall treat kg
as a bifurcation parameter. The corresponding dynamical behavior of equation (10) is summarized
in Table 1. On the synchronous manifold, the solution trajectory x(¢) of (10), depending on initial
conditions and kg, may settle into various stable states. Figure 1 provides the maximum Lyapunov
exponent (MLE) of synchronous equation (10) versus kgs. There is a set of initial conditions with
positive measure for which their corresponding MLE is positive for 0 < kgs; < 0.84. On the same
range of parameters kg, there is also a set of initial conditions with positive measure for which its
corresponding MLE is negative. For instance, if 0.809 < kgs < 0.813, then there are sets of initial

conditions with positive measure so that the solution trajectories of (3) converge to a stable periodic
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solution (see Fig.2) and chaotic attractor (see Fig.3), respectively. Specifically, let (x.,yc, z.) be
the steady state of (10), and let C, = {(z,y,2) : |[x — 2| < 1|y —ye| < 7, and |z — z.| < 7},
and I, = {(z,y,2) : | — x| > r|y —ye| > r, and |z — 2| > r}. In fact, our numerical results
suggest that the following hold. Pick, for instance, kg; = 0.812. If the initial condition (zg, 3o, 20)
is randomly chosen form Cy g2 (resp., I1), then its trajectory converges to a periodic orbit (resp., a
chaotic attractor) (see Figs. 2,3). Similarly, for kgs € [0.814,0.84], synchronous equation (10) also
exhibits rich dynamics showing the coexistence of stable multi states. Moreover, if kg, > 0.814,
the numerical results suggest that the corresponding steady state is locally stable. If one performs
linearized stability at the steady-state (zc,¥e, 2c), then one sees that (z,ye., z.) is stable whenever
kgs > 0.814 (see Fig.4). Such analysis of linearized stability provided some supportive evidence for
the validity of Table 1.

gk H gsk < 0.808 0.809 < gok < 0.813 | 0.814 < gsk < 0.84 gsk > 0.87

Chaotic attractor Chaotic attractor
Types Chaotic attractor Stable steady state

Stable periodic solution | Stable steady state

Table 1: The dynamics of synchronous equation (10) with various range of kgs. The multi-

stability of (10) is observed with kgs.€-[0.809, 0:84].

0.04 : ——

0.03- / T~

4 —
2 0.02); \
0.01F

Figure 1: The maximum Lyapunov exponent (MLE) of synchronous equation (10) is com-
puted for various kgs. For 0 < kg, < 0.84, MLE> 0 for a set of initial conditions with
positive measure. For kg, € [0.809,0.84], there is also a set of initial conditions for which its

corresponding MLE< 0.

In summary, the numerical results suggest that on the synchronous manifold, for kg, small, the
chaotic behavior of single HR persists. For kg; in an intermediate range, the multistability of equa-
tion (10) occurs. Depending on initial conditions, the coexistence of multi stability states including
a chaotic attractor and a stable periodic solution/a stable fixed point could be observed. When
kgs becomes large, equation (10) has a globally asymptotically stable fixed point. Such complex
dynamical behavior of synchronous equation (10) leads to the possibility of stable multi-state syn-

chronization of coupled HR neurons (3). If the initial conditions and the range of kgs are so chosen
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Figure 2: The solution trajectory with randomly chosen initial conditions form Cj gy converges

to a stable periodic orbit. Here kgs = 0.812.

x©y®).2(0)

Figure 3: The solution trajectory with randomly chosen initial conditions form I; converges

to a stable chaotic attractor. Here kg, = 0.812.

that the corresponding synchronous equation leads to a chaotic solution, then the associated coupled
HR neurons (3) achieves stably chaotic synchronization. Likewise, we define stably periodic syn-
chronization and stably steady-state synchronization accordingly. As we can see, via Table 1, that
for 0.809 < k < 0.84, the coexistence of stable multi-state synchronization of coupled HR neurons

(3) could be observed.
(I) Local synchronization

We next turn our attentions to the local synchronization of coupled HR neurons, from which

much more information can be extracted.
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Figure 4: The maximum eigenvalue of the linearized operator with respect to the synchronous

equation (10) is computed for various kgs.

Sync. Region
15

0.87 :

kgs

06044 — — = — - ————————— — —
05t

10 20 26.253 30 40
— )\20’

Figure 5: The shaded area is the synchronization region satisfied by (25) and kg > 0.87.

(a) Neurons with only chemical synapse.

In [17], a local steady-state synchronization of bursting neurons with no electrical coupling is
studied without providing mathematical details. Moreover, their approach fails to see if synchro-
nization of neurons can be achieved when the networks are intermediately and sparsely coupled.
Their major contribution was to prove that the bound for achieving synchronization of HR neurons
depends only on the number k£ of signals each neuron received, and is independent of all other de-
tails of the network topology. Form (23a) and (23c), it is clear that the smaller the density « of the
network is, the greater chance coupled HR neurons (3) gets synchronized. In the following, we shall
prove that the system of coupled HR neurons (3) achieves steady-state synchronization regardless

how sparsely the network is coupled provided that kgs > 0.87.
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Figure 6: The time series of x1(t) —x2(t) and z;(t) The graphs demonstrate the stable periodic
synchronization. Here o = 30, kg5 = 0.812, initial = [0.26459¢ — 1 + r,0.996499 + r, 6.5058 +
r,0.26459¢ — 1 — r,0.996499 — r, 6.5058 — r] and r = 0.001.
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Figure 7: The time series of z1(t) —x2(t) and z1(t). The graphs demonstrate the stable chaotic
synchronization. Here o = 30, kgs = 0.812, initial= [0.26459¢ — 1 + r,0.996499 + r, 6.5058 +
r,0.26459 — 1 —,0.996499 — r,6.5058 — r] and r = 1.

To this end, we begin with the study of equations (8a-8¢c) and (9) with 0 = 0. A coordination
transformation, such as the one performed in the proof of Proposition 3-(ii), is applied on those

equations, their resulting equations can be written as follows.

. &i &
7| | = Ait) | m |
Gi Gi

where A;(t) = —10x(t) -1 0 ,1=2,..,n.

19



0.87

kgs

0.604 -

05 I I I I I
0 0.2 0.4 0.6 0.67 0.8 1
(%

Figure 8: Turning points of h,,.

Here hi(z(t)) = kgs [—p(z(t)) + (v — (t)p'(z(t))(1 + %))], where r;, i = 2,...,n, are eigenvalues
of Cf with 7y > 73 > ... > r,,. The problem of showing synchronization of system (8a-8c) and (9)
with 0 = 0 is then equivalent to proving that-(&;,1;,.¢), i = 2,...,n, converge to zero. Upon using
Proposition 3, we conclude that for ‘kgs > 0.814, (Z(t),y(t);Z(t)) converges to zero with a certain set

of initial conditions with positive measure provided that \pax(Az) < 0, where

fiwe)Fho(z.) 1 "1
Ay= —10z, “17 0
pb 0 —u
Note that A is also the linearized matrix of (10) at (¢, ye, 2.). Form Fig.4, we see that Apax(Az) < 0

whenever kgs > 0.814. Consequently, we have the following conclusion.

Coupled HR neurons (3) achieves the steady-state local synchronization whenever kgs > 0.87
regardless how sparsely the network is coupled and only depends on the number of signals each neu-
ron received. We are unable to prove that the existence of chaotic synchronization. However, for
these ranges of kgs we can show, as demonstrated earlier, that coupled neurons (3) may achieve
the steady-state synchronization on a set of initial conditions near (x,ye, zc). Numerically, we also
observed that coupled two HR meurons achieves synchronization, whenever kgs > 0.809. No syn-
chronization occurs for kgs < 0.808. For kgs € [0.809,0.84], chaotic synchronization can only be
detected whenever initial conditions of two neurons are identical. Otherwise, for kgs € [0.809,0.813]
(resp., [0.814,0.84]) stably periodic (resp., steady-state) synchronization is discovered whenever ini-
tial conditions of two neurons are distinct. It should be noted that without the presence of electrical

synapses the gemeric multi-state synchronization is not possible.
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(b) Neural synchronization with only electrical synapse.

For g; = 0, we obtain stable chaotic synchronization with o > =: Omin. Consider, for

d+b+dr
o

instance, a ring of 2/-nearest neighbor mutually coupled networks, the predicted minimum electrical

coupling strength o, is computed with the number n of neurons and [ being given. The results

are listed in Table 2. Note that in such case

l . . 1\ 27 ta T
L _2E_S1n((l+§)7)—smﬁ_
Ao = —4 ;_1 sin® — = in £ 2. (24)
n 11 | 102+1] 10°+1 10t +1

[ = 1, the nearest-neighbor coupling. | 82.69 | 6790 | 6.67 x 10° | 6.66 x 107
l= ["T_l] 17.66 1.4 0.144 0.0144
[ = ”T_l, the globally coupled network. | 2.4 0.26 0.0262 0.0026

Table 2: The table gives the minimum electrical coupling strength o,,;,. For instance, with
n=10%+1,1= ["T_l] = 25, the predicted minimum electrical coupling strength is o, = 1.4.

(¢) Neural synchronization with. both-electrical and chemvical synapses.

In this subsection, networks with both electrical and chemical connections are considered. To
this end, we first observe that ro <0, () < v andp"(z(t)) > 0 for all t. So h,, defined in (23b), is
increasing in «. If

(=A2)o +(=h1)kgs > d+b, (25)

then (23c) is also satisfied. The synchronization region satisfying (25) and kgs > 0.87 is demon-
strated in Fig.5. That is to say, if (A20,kgs) is chosen from the shaded region in Fig. 5, then
multi state or single state synchronization can be realized depending on the range of kg, and ini-
tial conditions. Consider, for instance, coupled two HR neurons. Let ¢ = 1,2 and kgs; = 0.812. If
(240, Yio, zio) € Co.02 (resp., I1) and are distinct, then the stably periodic (resp., chaotic) synchroniza-
tion occurs (see Figs. 6,7). We further observe that there exists a t; such that hy < 0 (resp., hy > 0)
whenever kgs € [0,t1) =: I (resp., kgs € (t1,0.87] =: I5) (see Fig.5). Here t; ~ 0.644. Hence, both
chemical and electrical synapses enforce the synchronization phenomena whenever kg, € I;. For
kgs € Io, the chemical synapses play a dragging role to reach synchrony. To synchronize, the electri-
cal synapses have to be strong enough to suppress the dragging force created by chemical synapses.
Such t; is called a turning point for h;. We are then led to compute turning points for h, (see
Fig 8). For o < 0.67 the corresponding turning points are kgs = 0.87. Hence, for 0 < kgs < 0.87,
if the density of the coupling network is at least 0.67, then chemical synapses can also enforce the

synchrony of the system. From the Figure 5, it is clear that for any kg, > 0, there exists a minimum
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predicted o, omin, so that local synchronization can be achieved. This, in turns, gives that a sta-
ble multi-state synchronization, including stable chaotic, periodic state/steady-state, or multi-state

synchronization can be achieved.

To summarize, a synchronization region is obtained in Fig. 5. Particularly, multi-state syn-
chronization of coupled HR neurons can be realized whenever kgs € [0.809,0.84] and (—M\20, kgs)
lies in the synchronization region. Numerically, it should be mentioned that no generic multi state
synchronization can be achieved without the presence of electrical synapses. It is also obvious that
the system of the coupled neurons with only electrical synapses is incapable of producing multi-state
synchronization. Hence, multi-state synchronization can only be achieved with both presence of elec-
trical and chemical synapses. Furthermore, for 0 < kgs < 0.87, if the density of the coupling network
is at least 0.67, then chemical synapses can enforce the synchrony of the system.

(IT) Global synchronization

To study global synchronization of HR neurons, we shall explicitly find a rectangle region where

coupled system (3) is bounded dissipation.

Proposition 7. Consider HR neurons (3) with-a = 2.6, b’ =4, ¢ = 4, u = 0.01 and o = —1.6.
Let (xc,ye, 2c) be the equilibrium_of (10). Let the energy function V' be as the form considered in
Theorem 3 with ki = 7. Then V(X,y, 2) < 0 whenever (x,y,z) lies in the outside of the rectangle
TegLoNn,

S={(x,y,2) : |z;| <m, |yl L ma, |z <mg,Vi=1,...,n}

where my = 53y/n, my = %m% + %ml + 16 + 1375y/n, and ms = 348my + 711 + 1375y/n. Moreover,

xi, Vi =1,...,n, will eventually stay in the ball B, (0), where the radius e. is given in the following
ec = V3n - (max{mq, mg, mg} + 19) + 2.

Proof. Tt can be seen that coupled HR neurons (3) is of the form of (12a) with by = 1, b3 = —1,
co =1, c3 = u, hi(r) = ax? — 2% + q, ha(z) = 1 — 522, and hg(x) = pb(xr — ). Let the energy
function V' be the same as in the proof of Theorem 3 with k1 = 7, i.e.,

n n n
7

V(vavz) = 5 Z(xz - xc)z + % Z(yl - yc)2 + % Z(Zz - 20)2'

i=1 =1 =1
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Then from equations (14), (15), we have

. - 1—53:224-7:13@-—:% + Ye 2 - blx; — x0) — T(x; — x0) + W2 2
VS_Z[%_ (2 ) y] _ZM[%_M( 0) ( )+ w

1=1
n

+y [m — 2e) - (aa? — 28+ q) — el1 — 522) — zepb(wi — 70) +
=1
b T -7 i — dec 02 = - -z} c *c
bl —a0) = oy ) "], $p—lomt —ab ezt

+

3
3
3
3

Since x. € [—%, 2] for all gs > 0, it can be computed directly that J; < 20. Now J3(x),

3, (T s (122009 7 5 \ ,
J3(x) = i +<10+7xc>a: —i—( 100 10a:c+2yc>a:

<2307 4921 7 88 > -

950 g tetgl¥eT 55%

_l’_

8 1 8 1 \?
-2 c Ye T THE~C —(1 - c 02 2 Tor c Tnn~C
8x. —y 195 +4( Txe +ye)” + 5<125+7a: +1002>]

1 1
< —Z:E4 + 1890000 < —Z(x‘* —53%).

Hence, V < 0, whenever |z;| > 53¢/n =+mj forsome i =1,...,n. If |y;| > Smi+ Img +16 +

1375y/n =: mg, and |z;| < my for some i = 1;..<,n, then Jj(z;,y;) < —1890020n. Consequently,
V < 0. Hence, if |y;| > my, for some i'= lyverymythen V< 0. Similarly, if |2z > 348m; + 711 +
1375y/n =: mg, for some i = 1,...,m;then V < 0. Thus, V(x,y,z) < 0 whenever (x,y,z) lies in

the outside of the rectangle region
S ={(x,y,2) : |zi| <ma, |yi| <ma, |zi| <mg,Vi=1,...,n}.
Moreover, it can be proved easily that the region of V' < V., where
Ve = an (max{mq,ma, m3} + 19)?,
contains the rectangle region S. It then follows that |z;(t)] < e, for i = 1,...,n and large ¢t. where
ee = V/3n - (max{my, ma, mz} +19) + 2.
We have just completed the proof of the proposition. O

We are now in a position to further simplify the inequality in (20). Let e =|| EQE.{ Il (EQED_l I|.
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Using Proposition 4-(iii), we see that

169
75

max (D1 (t)) < max | Di(t) ||< emax f'(z) = ——e,

max iz (~Da(t)) < e max(—p(a) < 0.
2 ((=h(@1 () = 0))Ds (1)) < ehlec +v)ey,
pz (~Di1CTDA(1) ) = e (B2 (~D:TTD) (B2En) ) < el + )y | T .

12 (—155(15)@153(15)) < 2eece, | CF .

where e, = max p’(z). Combining the above, we arrive at the following conclusion.
xr

HR neurons (3) achieves global synchronization provided that

(=X2)o — (ek(ec +v)e, || CF || +2eeceprs | C H) gs >d+b+di. (26)

5 Conclusions

Synchronization of coupled HR neurons over complex networks with chemical and electrical synapses
is analytical studied. Particularly; multi-state and-multi-stage synchronizations are observed with
the presence of both of chemical and electrical synapses.” A measurement for the density of the
network is introduced to ensure that chemical synapses play a positive effect on the synchronization
of the system of coupled neurons. We conclude this work by mentioning the possible future work. It
would be interesting to analytically study the rich dynamical behavior of synchronous equation (10).
Numerically, one sees that coupled HR neurons are capable of producing multi-stage synchronization
even without the help of electrical synapses. It is worthwhile to give a rigorous proof. The inequality
(26) is unsatisfactory since the coefficient of g5 in (26) is negative. This inequality suggests that the
chemical synapses play a dragging role in the process of reaching synchrony. And only the electrical
synapses play positive effect on the synchronization of the system. It is certainly an interesting task
to overcome some technical difficulties to obtain an inequality of (26) type with the coefficient of g

being positive.
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