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ABSTRACT

We consider the freeform surface design problem. Fully nonlinear partial
differential equations asderived by the Schruben for model. Thepartial differential
equation is the form of well knowMonge-Ampére equation. We following Prof.
Feng’s idea to solve Monge-Ampére equation by adding a'vanish moment biharmonic
term. As a result the original fully nonlinear equation is change into quasi-linear
equation. We using finite element method to-solve this equation. Its well knows that
the traditional BCIZ element can effectively deal 'with biharmonic item and compute
the curvature of the solution. Which is usually required in a optical systems. We
descritize the nonlinear equation by the Newton’s method. The numerical studies in
this thesis show that our approach is efficient and accurate.
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Introduction

The Monge-Ampére equation is a important problem in differential geometry, opti-
mal control, mass transportation, geostrophic fluid, meteorology and optimal design [1][2][3][4][5].
In this thesis, we focus on the optical free-form design problem. People study optical prob-
lems for a long time, thank for that the Mathematical fundation of the free-form design is
more and more complete, we can try to solve the problem numercally. Now, what’s optical
free-form design problem? Given a light source and intensity in a optical system, and the
illumination distribution on the target plane, the-main problem of optical free-form design
problem is design a optical system such that the transportantion form the light source to the
target plane throught the designed-system will not have energy loss. The optical system is
generally consisted pf as following reflector amd refractor, etc. .

The general form of Monge-Ampere equation

det(D?u) + F (%, uy Dy D*u) =00 (1.1)

where D?u = ( 8325; ) 1S the Hessian of the function u at x € Q.
i9%5 ) i.i=1,4m

.....

Suppose coefficients in (1.19) depending on variables x, y, and the unknown function

u(x,y), (1.19) can be rewritten as following
det(D?*u) = e + by, + cuy, + ¢ (1.2)

The Monge-Ampere equation can be either ellip, parabilic or hyperbolic depending on the

sign of A

A =¢+ac+b? (1.3)
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If A > 0, then the Monge-Ampére equation is of elliptic type, if A < 0 it is of hyperbolic
type and if A = 0 it is of parabolic type. A non-linear elliptic partial differential equation.
It is well know that the solution of the Monge-Ampere equation is not unique unless we
confines our attention to the convex solutions. The existence and uniqueness of the convex
solution of the Monge-Ampére equation satisfies version of the maximum principle, and in
particular solutions with given Dirichlet condition is proved by Pogorelov in [2, 6] general
result on the existence and unquenss are later obtained by Oliker and Wang etc. .

the free-form surface is the solution of Monge-Ampere equation in three dimension
space. In 1972 [7], ‘Schruben described the reflector is the solution of the Monge-Ampere
equation. He derived the partial differential equation from the integral equation of the en-
ergy conservation. In 1993, Oliker and Newman also derived the Monge-Ampere equation
in reflector problem. Since the Monge-Ampere equation, a fully non-linear elliptic par-
tial differential equation, is hard to solve. So if we wanted to use it, we must add some
condition such that the equation:is more simplify.

until 1990, Benitez , Juan, et al. develoed of the Simltaneous Multiple Surface (SMS)
method, for the design of 2D profiles of non-imaging optical devices (SMS2D). It was a
breakthrough in a field dominated by bulky designs. In 2004, SMS non-imaging method
generated free-form optical surfaces in 3D (SMS3D) [8], which is a major extension of
SMS2D. In the SMS method, the free-form surface is constructed first by defining the
incoming wavefront and outgoing wavefront, instead of the source and receiver, and then

deciding the basic point and optical path length. In order to find the outgoing wavefront,
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one must solve the Monge-Ampére equation. So, a numerical method is desired for solving
the Monge-Ampere equation.
Glowinski, Benamou etc., Gerard Awanou and Feng and Neilan consider the follow-

ing Monge-Ampere equation:

det [D*u] = finQ (1.4)

u =g on 0f) (1.5)

where Q) is a convex 'domain with-smooth boundary 9 and D?*u = { Z” Zry } is the
Yy vy

Hessian of the function v at x-€-(.
Two method are employed by Benamou, Froese and Oberman [10] to solve the
Monge-Ampere equation. One is an-explicit finite difference method, The equ (1.4) is

using discretized asfollowing standard central difference ona uniform Cartesian grid.

(D2 ) (DZus) =D u; ) = f; (1.6)
where
D} uij = = (wis1j + wio1; — 2ui;)
h2
Dzyuij = % (Wi j1 + wijo1 — 2u; ;) (1.7)
D?cyuij = # (ui+1,j+1 + Uis1 -1 — Uj—1541 — ui+1,j71)

The equ (1.6) is further rewrote the a quadratic equation for u; ;, as following

1 1 1
Uij = ) (a1 + az) — 5\/(&1 - 612)2 + 4 (az — 614)2 +hifi; (1.8)
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where

a1 = (Uip1j +ui—1y) /2

ay = (Wijp1+uijo1)/2

ar = (Uiprj41 + Uim15-1) /2 (1.9)
ar = (Wim1j1 + Uir1-1) /2

The other method employed by Benamou, Froese and Oberman is solving u = 7" (u)

by fixed point iteration where

T(u)=A"" (\/(Au)2 +2(f — det(D2u))) (1.10)

the itervates v ™! = T'(w") is obtained by solving

rl U % 2 ) 2 (L1

Dean and Glowinski [11, 12, 13]. They first consider the Monge—Ampére equation as
a saddle-point problem where a suitable augmented Lagrangian has to he chosen. To solve
this saddle-point problem, they advocate an Uzawa—Douglas—Rachford algorithm. The
second approach Dean and Glowinski used is to combine non-linear least-square method
and operator-splitting. A mixed finite element discretization is used in their formulation.

Feng and Neilan [15, 16] add —e/A2u¢ to regularize the Monge-Ampere equation.

An artifical a boundary condition Au¢ = € is introfuced on 0f2. The quasilinear forth order
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pde,
—eA*u +det (D*u) = f, inQ (1.12)
u® = gondf) (1.13)
Au® = €eondf) (1.14)

is then separated into coupled second order partial difference equations system

ot = DU p= 0

—eAtr (a°).+det (o) = f (1.15)

A mixed finite element is the empolyed to solve the above equations.

Gerard Awanou [30], takes a similar approch as feng and Neilan, by adding — %A%e
to the Monge-Ampere equation and-adding a boundary condition. Au¢ = €2 on 9. The
corresponding variational problem is: to find uf € H? () ,u =g, Au = €2 on 99 such

that
e/ AuAvdz —I—/ (cof (DQue) Due) Do dzx = —n/ fodr Yo € HE () (1.16)
Q Q Q

where

cof (D*uf) = { _ugiy _u“y } (1.17)
Again, Awanou employ the mix finite element to approximate the partial differential equa-
tion.

In free-form design problem, we must determine the control point and the normal

vector. Following this ideal, in this paper, we solve the regularized equ(1.12) which is

basically a biharmonic equation with low order nonlinear term, so we solve this regularized
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equation direatly instead of devoupling the equation into a couple low order system as Feng
and Neilan did. We employee the Newton iterative method to linearite the nonlinear part,
since Newton’s method is well known in finding successively better approximations to the
zeros of a real-valued nonlinear function. Newton’s method can often converge quickly, if
the iteration have a good initial point. we choose BCIZ element. BCIZ element is one of the
simplest Kirchhoff plate bending elements was presented by Bazeley, Cheung, Irons and
Zienkiewicz at the 1965 Wright-Patterson Conference [17]. The “BCIZ element” is named
after the authors initials. Thiselement can be derived from the cubic interpolation which
basically has 10 degrees of freedom. The variable in the element centroid is condensed out
using a kinetic constraint in such-a way that the curvature completeness is maintained.
The biharmonic equation, besides providing a benchmark problem for various ana-
lytical and numerical methods, arises‘in many particular applications. For example, the

bending behaviour of a thin elastic plane.



Chapter 1
Mathematical Modeling of Optical design

In this chapter, we derive the Monge-Ampére equation follow Schruben in 1972. He
consider that a point source though a reflector to target plane, he describing the free-form
surface is the solution of Monge-Ampére equation in three dimension space.

The light source is assumed to have some arbitrary directional intensity distribution
I and dimensions that emits are negligible compared to the fixture size. Distances are
normalized such that the distance from the source to the (u,v) plane is unity. The target
area on (u, v) plane that is to be illuminated:

Since the intensity of the source is directional, / may defined as a function of posi-
tion on the unit sphere centered at the source. Spherical coordinates could be used, but it
is preferable to employ parametric coordinates (u,v) of the unit sphere. These may be ob-
tained as stereographic coordinates, as illustrated.in Fig. 1.2, by projecting the unit sphere
from its point of tangency.to.(x, y) plane onto the plane(u; ©) plane parallel to (x, y) plane
and also tangent to the sphere. The stereographic coordinates of a point on the sphere so
projected are the rectangular (u, v) coordinates of the corresponding point on (u, v) plane.

Defined a function L = L(z,y), which is the desired pattern of reflected illumination
on the target plane. This is defined as the desired pattern of total illumination at a point
(x,y) on the target plane from which has been subtracted the direct illumination of the

source at (x, y) which can be obtained directly from the intensity distribution /. by energy



(u,v) plane

Fig. 1.1. point source of light
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conservation

//U(Q)L(ﬂc,wdﬁcdy://Ql(u,v)dﬁ (1.18)

where (2 is solid angles and v (2) is the target area.
Define a vector mapping & that maps a point (u, v) on the u, v plane to a vector (light
ray) from the orgin (light source) to a point (z’, 4/, z’) on the unit sphere.

the explicit form of this map is

1\ 1
Z(u,v) = (1 + sz) (u,v, N sz) (1.19)

where w? = u? 4 v?*, where the % (u,v) is-not unique, under different problem we can
change the coordinate. In 1993, Oliker and Newman proved that the formulation has exis-
tence and uniqueness solution.

The differential solid angle df2 is area on the unit sphere and is related to differential

area on the uv— plane by the equation
dQ = |z, X x| dudv (1.20)

Differentiation of equation (1.19) yields

1 ,\ 77 1 1 1

Ty (u,v) = (1 + ZwQ) (1 + sz — Zuz, —guv, —u) (1.21)
1\ 2/ 1 1 1

Ty (u,v) = (1 + Zw2> <—§uv, 1+ 4_102 — ZUQ, —v) (1.22)

therefore

1 —2
d§) = <1 + Zw2> dudv (1.23)
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Fig. 1.2. stereographic coordinates

10
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Reflector

\L (x,y) plane

b

X

Fig. 1.3. Reflection geometry

Substituting this into equation.(1.18), then

//v(m L(z,y)dedy = //Q I (u,v) (1 + }le) B dudv (1.24)

We can describe the reflector by an equation p = p (u, v) where p is the length of a ray with
stereographic coordinates (u,v) from the origin to the reflecting surface. We now shall
transform the integral equation (1.24) for the reflection function w to a partial differential
equation for the surface function p.

Let A be a vector with stereographic coordinates (u, v) that strikes the reflector p =

p (u,v). Then A = pi&, where 7 is given by Eq. (1.19). Suppose this ray is reflected to the



1 Mathematical Modeling of Optical design

12

point (x, y) on xy plane, then the vector X from the source to this point has the coordinates

(z,y,—1) in the 2/, ¢/, 2’ coordinate system.

The vector N = A, X A, is an outward normal vector to the surface p = p (u,v) at

A. Since A = pz,
N = (pr + pry) % (g2 + pxy)

where p = p, and ¢ = p,,.

We find
1 -2
N = p2 (1 + Zw2) L= PpLy — GpLy
As is illustrated in Figure, the law of reflection requires that

AD TA X 9N(A - )

+ =
Al X =AL AN

then

X=A+|X—-A|[#—-2N(#-N)/|N|?

since A/ |A| = &

So the x, y can be show as

r = uG+2pp,F

y = vG+2pp,F

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)
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where

—p? 1—|—1w2 -
4

1 -1
0+ 0y = p (pyu+ pyv) (1 + ;le)

1 —1

(1.31)

1
F =

Lt p (1= ) (14 Jut)
(1-1w?) [,02 (1+ iw2)_2 —p2 - pf,} +2p (pyu+ pyv) (1+ Lw?)

The integration over x and y in the left-hand side of (1.24) may be transformed to

—1.32)

integration over u and v by multiplication-by-the Jacobian

Ty tlu@ptPuu%p, & Puvp,
Yt Pulp T Puulpy t Puvlpy

Ly -+ Pulp & PouTp, T PouTp,
Yo 1 Polpt Puillp, T Puulp,

D:

(1.33)

The a reflector p = p(u, v) with continuous second derivatives, the integral equation

(1.24) is equivalent to the partial differential equation

1 -2
L (2 (u, v, p, pu, Po) Y0 0305 Py i) P = I (u, v) (1 + Zw2> (1.34)

Expanding the jacobian

D = oo, (Pubiw = 0m) T (Tow + PuTp0) Prua
+ (oo + Jup + Puop + PuTps) Puv
+ (Jup, + PuTpupy) Pow + Juv + Lo + PyTup (1.35)
where

Jap = Tolys — TaYa for o, B € {u,v,p, p,, py} (1.36)
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The leading term of the differential equation is (p 0., — p2,), SO it €asy to see the
equation is Monge-Ampere type.
We consider the ideal case

(puup'uv - p?w) = f (137)

in our study.




Chapter 2
Finite Element Method

The basic idea in any numerical method for a differential equation is to discretize the
given continuous problem to obtain a discrete problem or system of equations with only
finitely many degrees of freedom such that the differential equation can be solved by using
a computer.

Finite element method start from a reformulation of the given differential equation as
an equivalent variational problem. Inthe case of elliptic equations this variational problem

in basic case is a minimization problem of the form
Findwu € V such that F (u) = (v) forallw,cV (2.38)

where V' is a given set of admissible functions-and /' : V' = R'is a functional. F'(v) is
the total energy associated with v and (2.38) corresponds to an equivalent characterization
of the solution of the differential equation as-the function in V' that minimizes the total
energy of the considered system. In general the dimension of V' is infinite and thus in
general the problem (2.38) can’t be solved exactly. To obtain a problem that can be solved
on a computer the idea in the finite element method is to replace V' by a set V}, consisting
of simple function only depending on finitely many parameters. This leads to a finite-

dimensional minimization problem of the form:

Find u, € Vj, such that F (up) < F (v) forallv €V, (2.39)

15
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Fig. 2.4. mesh of two dimension domain

This problem is equivalent to a linear or non-linear system of equations. We hope that the
solution wy, of this problemis sufficiently good approximation of the solution of the original
minimization problem (2.38). Usually one chooses 1/}, to be a subset of 1/ and in this case
(2.39) corresponds:to the classical Ritz-Galerkin method.

To solve a'given differential or integral equation approximately using the finite ele-

ment method, one has to go through basically the following steps:

1. Variational formulation of the given problem

2. Discretization using FEM: construction of the finite dimensional space V),

3.  Generating Mesh

4.  Choose basis function

5. Assembling

6.  Solve the linear system
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2 Finite Element Method
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2.1 Variational formation

In this section we will give two example for variation formulation. One is Poisson equation,

other is biharmonic equation.

2.1.1 Poisson Equation

Consider the following boundary value problem for the Poisson equation, the second order

differential equation:

—V (AVu)= [ in )
{ uw=0 on o) (2.40)

where (2 is a bounded open.domain in the plane R? with boundary 052, A is a matrix, fis a

given function and as usual,

Pu  O*u

. 1 oan
“ 8x2+8y2

(2.41)

A number of problems in physies and mechanics are modelled by (2.40); v may represent
for instance a temperature, an electro-magnetic potential or the displacement of an elastic
membrane fixed at the boundary under a transversal load of intensity f.

We shall now give a variational formulation of problem (2.40) . We shall first show
that if u satisfies (2.40) , then u is the solution of the following variational problem:

- / vV - (AVu)de = / VuAVudr — @Ubg = / vfdz (2.42)
Q Q on Q

where v is test function in H} () , v = 0 on 9.
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2.1.2 Biharmonic Equation

Consider the following boundary value problem for the biharmonic equation, the fourth

order differential equation:

~A?u=f in Q
u=0 ondf2 (2.43)
g—z =0 onof2

where  is a bounded open domain in the plane R? with boundary 9€2, fis a given function

and as usual,

o0t M 0*u
2, L
3 oxr* - 28x2(‘9y2 / oy*

A number of problems in physics and mechanics are modelled by (2.43); u may represent

(2.44)

the solution of Stokes flows or the displacement of plane bending problem.

YA
_/UAzudx = /VvVAudx—a U'U’(?Q
0 e on
ov

= —/AvAuda:—Au—|@Q
0 3?7,

= / ufdz (2.45)
Q

where v is test function in Hy () , v = 0 on 99, g—fL = 0 on 0f).
Case in point, regularization Monge-Ampére equation, it has second order and fourth

order differential term. We will introduction it in chapter 3.
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2.2 Existence and Uniqueness of Solution

Definition  Let H be a Hilbert space. A bilinear form a : H x H — R is called continuous

provided there exists C' > 0 such that
la (u,v)| < C'|ul| ||v|| forallu,v € H

A symmetric continuous bilinear form a is called-H-elliptic, or short elliptic or coercive,

provided for some o > 0,
a(v,v) > alv| forallv e H
clearly, every H-elliptic bilinear form.a induces.a norm via
[v]lq = Va (u50) (2.46)

This is equivalent to the norm of the Hilbert space H. The norm (2.46) is called the energy
norm.
As usual, the space of continuous linear functions on a normed linear space V' will

be denoted by V.

Example Consider the boundary value problem of Poisson equation:

—V-(Vu)=f in Q
{ : (2.47)
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One variational formulation for this is: Take

V = H'(Q)
a(u,v) = /(Vu-Vv)dx (2.48)
Fv) = (fv)

(2.49)

-)), a continuous, coercive
e exists aunique u € V'
such that

(2.50)
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2.3 Estimates for General Finite Element Approximation

Let u be the solution to the variational problem and w;, be the solution to the approximation

problem. To estimate the error ||u — up|y, .

Céa Lemma  Suppose the bilinear form a is V-elliptic with H§* (2) C V. C H™ (Q).
In addition, suppose v and uy, are the solution of the variational problem in V' and V},,
respectively, Then
" wlly < © it Jucd @s1)
w—u — inf |[[u—w .
rllv = Q. vpEVy " ¢/

where C'is the continuity constant and « is the coercivity constant of a (-, -) .
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2.4 Finite Element Space

Finite element have two type, conforming finite element and nonconforming finite element,
in the theory of conforming finite element it is assumed that the finite element spaces lie
in the function space in which the variational problem is posed. Moreover, we also require
that the given bilinear form a (-, -) can be computed exactly on the finite element spaces.
The Finite element space of nonconforming finite element do not lie in function space.

Now we follow Ciarlet’s definition of a finite element (Ciarlet 1978).

Definition Let

K C Q C R” be a bounded closed set with non-empty interior and piecewise smooth

boundary (the element domain),
‘P be a finite-dimensional space of functions on /< (the space of shape function) and

N = {Ny, Ny, ..., Ni} be abasis for P’ (the set'0f nodal variable).

Then (K, P,N) is called a finite element.

Definition Let (K, P, ) be a finite element. The basis {¢;, @, ..., ), } of P dual to N/

is called the nodal basis of P.

After generating Mesh, we construct a finite dimensional subspace V), of the space
V' defined consisting of piecewise linear function. We now let V}, be the set of functions

v such that v is linear on domain €2, v is continuous on domain €2 and v = 0 on 9).We



2.4 Finite Element Space 24

observe that V}, C Vi As parameter-to describe a function NV; = v (z;) we may choose the
values N; = v (z;) at the node-points @5, j.= 0, ...,sn + 1. Let us introduction the basis

function ¢; € Vjzy =0, ...;m + 1. defined by

i.e., ¢; is the continuous piecewise linear function that take the value 1 at node point z; and

the value 0 at other node points: A function.v-€ 'V}, then has the representation

v() =Y me;(x), v€Q (2.53)
=1

where N; = v (z;), i.e., each N; = v (x;) can be written in a unique way as a linear
combination of the basis function ¢;. In particular it follow that V}, is a linear space of
dimension m with basis {(pj }z 1

We consider the shape function of K, because we need to compute the solution on
computer. We give some example of Finite Element, and how to connect the global coor-

dinate with local coordinate.



2.4 Finite Element Space 25

(7‘3:}’3)

(xl’ylj (7‘2:}’2)

Fig. 2.7. labeled number

2.4.1 Triangular Finite Element

In two dimension domain, we can generate mesh by triangular or rectangular. We use the
BCIZ triangular element to approximate the Monge-Ampére equation, more detail about
BCIZ element will be introduction in Chapter 3. First of all, we introduction the relation-

ship between two ‘coordinates, second part is triangular finite element .

Geometry:

The geometry of the 3-node triangle show in Figure 2.4 is specified by the location
of its three corner nodes on the {x, y} plane. The nodes are labeled 1, 2, 3 while travers-
ing the sides in counterclockwise fashion. The location of the corners is defined by their
coordinates:

(xi,y) 1=1,2,3

the area of triangle is denoted by A and is given by:

1 1 1
2A=det | 1 Ty T3 | = To1yz — Ta1Yn (2.54)
Y1 Y2 Ys

Wherexij =T — T, Y = Yi —Yj fori,j: 1,2,327&‘]
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(3

1131?3} 4

(0,1)

G—p

&

v

(0,0 (1,0)

(x2,y1) {xz,y2)

Properties of Triangular Coordinates:

Consider triangular on regular triangular, points of the triangle may also be located

in terms of a parametric coordinate System:

C17C2ac3

this is a local coordinate.

Represent a set of straight lines parallel to the side opposite to the 7" corner. See
Figure. The equation of sides 12, 23 and 31 are ¢; = 0, ¢, = 0 and 3 = 0. respectively.
The three corners have coordinates (0,0, 1), (0,1,0) and (1, 0,0) .The three midpoints of
the sides have coordinates, (3, 3,0), (0,2, %) and (1,0,1) , the centroid (3, 1, %) , and so

on. The coordinates are not independent because their sum is unity:

GG+l +Cs=1 (2.55)
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Coordinate Transformations:

Quantities which are closely linked with the element geometry are naturally ex-
pressed in triangular coordinates. On the other hand, quantities such as displacements,
strains and stresses are often expressed in the Cartesian system z,y. We therefore need
transformation equations through which we can pass from one coordinate system to the
other.

Cartesian and triangular coordinates are linked by the relation

1 1 1 1 ¢,
x| = | @i o®y L3 Co (2.56)
y oY Ys C3

The first equation‘says that the sum of the three coordinates is one. The second and third
express X and y linearly as homogeneous forms in the triangular coordinates. These simply
apply the linear interpolant formula to the Cartesian coordinates: & = x1(; + x2(y + 23(5

and y = y1(; + 205 + y3(3:

Inversion of (2.56) yiclds

Gy 10| P2y ="T3Ya Y23, T32 1
G | = A T3y = T1Ys. Ys1 T13 x (2.57)
§3 T1Y2 — T2Y1 Y12 T21 Yy

Partial Derivatives:

From equations (2.56) and (2.57) we immediately obtain the following relations be-

tween partial derivatives:

% _ %
S

)

= y; (2.58)

a¢; _ Yir ¢ _ Tkj
or 24" 0y 24

(2.59)
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where j and & denote the cyclic permutations of ¢. For example, ifi=3,thenj=1and k=
2. The first derivatives of a function w ({;, (5, (5) with respect to z or y follow immediately

from (2.59) and application of the chain rule:

ow 1 [ ow ow ow
X - <_acly23 + S+ o yu) (2.60)
ow 1 [ ow ow ow
_8y = 92 (_3C1 T30 + _(%2 T13 + —8C3~’E21) (2.61)

which matrix form is

(2.62)
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Triangular Finite Element

Let K be any triangle. Let P, denote the set of all polynomials in two variables of

degree < k.

1. Linear Lagrange triangle

Let P = Py. Let N1 = { Ny, Ny, N3} (dim P; = 3)Note that “e” indicates the nodal

variable evaluation at the -l
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Cubic Hermite triangle

Let P = Ps. Let N3 = {Ny, Ny, ..., Nig} (dim P3 = 10)Note that “e” indicates the

nodal variab denote

luation at ion of the gradient at the

center of the circle

\X 1896
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Quadratic Lagrange triangle

Let P = P,. Let N = {N1, Ny, ..., N6} (dimPg = 6)

Fig. 2.11. Cubic Lagrange triangle

31
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2.5 The Interpolant

Consider a function w (z,y) that varies linearly over the triangle domain. In terms of

Cartesian coordinates it may be expressed as
w (,y) = a0 + a1z + asy (2.63)

where ag, a; and ay are coefficients to be determined from three conditions. In finite

element work such conditions are often the nodal values taken by /V at the corners:
N- 1 N. 2, N. 3

The expression in triangular coordinates.makes direct use of these three values:

¥1
w (0, Paxtpy) ‘= Mgy + Nowy + Nspg= [INF NoguNs | | ¢, (2.64)
¥3
M
= [901 P2 903] Ny
N3

equation (2.64) is called a linear interpolant for w.

Definition  Given a finite element (K, P, ), let the set {p, : 1 < i < k} C P be the
basis dual to V. If v is a function for which all N; € N,i = 1, ..., k are defined, then we

define the local interpolant by

w(v) =3 Ni (V) (2.65)
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Interpolant of Triangular Finite Element

1. Linear Lagrange triangle

(2.66)
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2. Cubic Hermite triangle

vs = (3 (ynls —y21Cr) + (Y21 — ¥s2) (1CaCs
pr = (5(3¢ +3C +C3) — T¢1¢aCy

ps = C3(2130; — £32C5) + (32 — 713) €1CaCs
po = G (Wl — y2l) + (Y32 — y13) G1GoGa

P10 = 27¢1(5C3 (2.67)
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2.6 Derive the element matrix

The variation formulation of Possin equation

/Q Vovuds = /Q vfdx (2.68)

let { K;}, is nonoverlapping triangular domain, and U}, K; = €2, then

/ VoVudr = / Vovudz (2.69)
Q i—1 Yei

on each element K; the global coordinate z,¥ transfor into local (, (s, (5 the linear La-

Ny
grange interpolation of w in the local interpolant w = Ny@y4 Nows+N3p; =@ | Ny | =
N3
DN,
i . e [6)
V = ZV<1,<27C3, where Z = ﬁ % %
dy oy dy
/ VoVudr = / VVg@TZTZV§777(I)./\/’|JI dCod( (2.70)

where (; =1 — (5 = (.

the local element'matrixis [, V¢, ®" Z"ZV ., & J|d&dn



Chapter 3
Numerical Method of Monge-Ampére
Equation

We follow the Feng’s method, that is adding a vanishing biharmonic term such that
the fully non-linear Monge-Ampére equation become regular. The elliptic regularization

Monge-Ampére equation:
—eN*yf det (D2u€) = f,in{)
u® =" g.on Jf) (3.71)

Aut = eondf)

where 2 is a bound domain-in the R? with a smooth boundary J€, f is a given function

3.1 Linearization Regularization Monge-Ampére equation

the function of regularization Monge-Ampére equation

MA [u] = =e*u + det (Du) (3.72)
variation of M A [u] is
DMA[u] = (Dyyu) (Dez) + (Dagtt) (Dyy) = 2 (D) (D) — €A?
= V- (cof(D*u)V) — eA? (3.73)

the linearization regularization Monge-Ampére equation

—eN*u+ V- (cof (D*u)Vu) = f (3.74)

36
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3.2 Variation formulation

the equivalent variational problem

—/EAQUEUdQ? + / v - (cof(D2u)Vu) vdr = /fvdm in ) (3.75)

the weak formulation of the biharmonic term — [ eA*u‘vdz and Auf = €

—E/AQU%dx = e/ er-n—e/Aueﬁvdx
Q o0 Q

= e/ Ve‘nv—e/AuéAvda:
a0 Q

= —G/AUGA’Ud.’IZ (3.76)
Q

where v = 0 on 92 and the second boundary condition same as A = 0 on 0.

the weak formulation of the fully non-linear term

/Q v (cof (D?u) Vu)ull = /a (cof (DEay i) mods / (cof (D*u) V) Voda

Q

NG / (cof (D) 9)F vda (3.77)
Q

So the equivalent variational problem of equation (3.71) is

—e/QAueﬁvdx — /Q (cof (DQU) Vu) Vodr = /fvdx in () (3.78)

3.3 Non-linear iteration

For non-linear problem, we usually use iterative method such as fixed-point iteration,
Newton’s iteration etc.. Iteration method can be classified by the rate of convergence,

q-quadratically, g-superlinearly, and g-linearly.
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3.3.1 Fixed-Point Iteration

Many non-linear equation are naturally formulated as fixed-point problem
r =K (z) (3.79)

where K, the fixed-point map may be non-linear. A solution Z of (3.79) called a fixed point

of the map K. The fixed-point iteration is given by
T = K (22) (3.80)
This iterative methods also called non=linear-Richardson iteration, Picard iteration, or the

method of successive substitution:

3.3.2 Newton’s method
The Newton’s iteration is

Tnpr = Tn — F' (2,) " Fay) (3.81)
sometimes the F” (x,,) " is not easy to find, then we can consider use approximate the term,

such as chord method, Shamanskii method or secant method etc..

3.3.3 Non-linear iteration of regularization Monge-Ampére equation
The regularization Monge-Ampére equation
Flu] = f + eA*u — det (D) (3.82)

the D, F [u] is

D,F[u] = =V - (cof (D*u)V) + eA? (3.83)
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Newton’s iteration of F’

't =" — D, F [u"] " F [u"] (3.84)




3.4 Basis function of BCIZ element 40

Fig. 3:12. BCIZ truangular element

3.4 Basis function of BCIZ element

To build the necessary technical tools, we shall derive and present a detailed study of the
linearization of the-elliptic regularization Monge-Ampere equation and its BCIZ finite el-
ement approximation.  Introduction to the BCIZ element, BCIZ element is conforming
element, it can calculus the curvature easily, and its approximation is very well. But the
basic BCIZ element has a problem, if the-mesh is non-uniform mesh, then the numeri-
cal result is lost the accuracy. So many people propose the revise BCIZ element such that
numerical result has good approximation on non-uniform mesh.

BCIZ element:

Let P = Ps. Let N = {Ny, Ny, ..., No}

In the free-form design problem, we must to consider that the first differential of the
solution, so we choose BCIZ finite element approximation. It can easy the calculus the first

differential and curve of each element.
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The visible degree of freedom of the the element collected in v are

vl = [ wy Oy 9y1 Wy Oy 9y2 w3 Oy3 0y3 :| (3.85)
where the 6, and 0, is consider rotation, that is different from u, under Cartesian coordinate

U=w,uy = 0y,u, = —0,.

Ya1 + Ys2) (1CaCs

¥s

Qo = (F(wa(y + w32(,) + % (731 + 732) (1CC5 (3.86)

where (, are triangular coordinate.
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Let

(I):[901 P2 P3 Py ¥5 Ps P7r P8 §09] (3.87)

and

w (Gq:C9,C3) = Pv (3.88)

Derive the element matrix Derive the element matrix of the variation equation (3.78) with

BCIZ element

3.4.1 The linearization of non-linear term and element matrix

Change coordinate from the global coordinate to the local coordinate, the relationship of

vz7y and v<13C2a<3 iS

Ow
Jw Cy
{ ff, } — (3.89)
oy Bw
9¢3
where
1 —Y3s2 —Yiz —Ya
J = — 3.90
24 [ T3z  T13 T2 (3.90)

the w use BCIZ element to approximation, w = v

ow 22

9Cy a¢

U R R O (3.91)
w 0%

(3 93
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where
2¢; (3 —2¢y) — 2¢3 + 2¢oC5 2¢,C5
—2C; (—y21C — Y31C3) + 5 (Y21 + 31) (o€ Clyar + 2 (o1 + 31) GG
2¢; (—221(y — 31(3) — % (w21 + x31) C5C5 —(irg — % (w21 + 31) (1C3
2<2<3 2C2 (3 - 2<2> - 2<§ + 2C1<3
B = —C3yor + 3 (ys2 — y21) (oCs —2Co (—ys2€3 + y21¢1) + 5 (Y32 — y21) €13
Corar + 3 (—@32 + m21) (4¢3 20y (=320 + 221¢y) — 5 (w32 — T21) (1€
2¢5C5 2¢1C5
—C3ys1 — 3 (Ys1 + y32) CoCs —Cyzo — 3 (y31 + ys2) (1G5
| Gt + 5 (w31 + 732) (oG5 C3mso + 5 (w31 + w32) (13
2, !

Clyst + 2 (01 +931) 616o
—(lwg = % (a1 + z31) (1Cs
2C1Cs
(o2 (ys="1p1) 1o
—C3wsy — 1 (wsz—101) G115
205 (87— 20 =20 RH261(3
—2C3 (Y3381 + Ys2Ca) — 5 (Us1 + ¥s2) €1 G5
205 (z31€) + 3205) + % (731 + 232) (1Co |

so the Vv = Z Bu, then the element matrix of — [, (cof (D*u) Vu) Vodz is
Ko = — / BT ZTCyZ B |J|d¢qdc, (3.93)
where C} is cof (D*u)

3.4.2 biharmonic term

for biharmonic term DA?u where D = T’iﬂ)

1 v 0 6—22
2 9?2 9?2 0?2 1 %Jé
=2 2 zm] v 0 = (3.94)
0 0 (1-v) 9_0°
2 Ozxdy

(3.92)
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The second derivative of a function w ({y, (5, (5) with respect to x or y from (2.59)

and application of the chain rule:

2
0*w 1 < 0 Ow 0 Ow 0 Ow ) (3.95)

02~ 2a\ac, 0:7B T ag, a2V T o, an U
Pw ,  Pw ,

L 8w2+2 0w P 0w P 0w
= acg 5 Y3 T 8C2 Vs T 8C2 Y12 —8C18C2 Y31Y23 —8C16C3 Y12Y23 —0C28C3 Y12Y31

0*w 1 < 0 Ow N 0 awx r 0 Ow ) (3.96)
—_— = — ——m S = )
o 24 \0¢, oy " L ac, dy g oy
1 <82w2+8w2+82w2+2 Q*w 49 0*w 49 0*w )
= X13T32 A o 121732 A o 221713
o¢3 & ¢ 1 ac: o 0C10Gs 0¢10C5 0C20C
82w_1 0 Ow +88w +88w
dzdy  2A.\0C, 9y YRTNaC, 0y P At 0y
1 *w " 2w fl 2w N | < 2w ( n )
= s —x — T T
acg 32Y23 8C2 13Y31 8C3 21Y12 aG,0C, 13Y23 32Y31
+ 82 ( 4 g2 o\ ) (3.97)
— Nz i —— (z i .
3C15C3 21Y23 32Y12 8{28C3 21Y31 13Y12
which matrix form is
- 2y
_T Bz
Yss T3y 2232123 D
2w Ui T 2713Y31 a3
0g? 1 2 2 0w
Py | _ L | Y T 202112 s (3.98)
2%%w 4A% | 2ya3ys1 2739713 2(T32y31 + T13Y23) ?Z“’C
Oz0y 2y31Y12 2713721 2(x13y12+3321y31) ]2 :
[ 2y19Y23 2091730 2 (T21ys2 + T32012) 8%?53
| 0¢10¢3
let
_ _T
?J%z x%z 2732923
Ya T35 2713Y31
S = L Yia 5 2721912

4A2 | 2yo3ys1 2%32713 2 (T32y31 + T13Y03)
2ys1y12 2x13%91 2 (T13Y12 + T21Y31)
L 2Y12Y23 2721732 2 (x21y32 + 33323/12) i
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the w use BCIZ element to approximation, w = v

2w
a3
w
2

2
iy | =T
98¢, 0¢
8]21112
9¢,0¢
8221113

L 9¢19¢;

where
i 6 —12¢, 0
2921 + 293103 0
—21’21{2 — 2£L'31C3 0
6 — 12¢,
2y32C3 —2921(y
—21‘32(2 =F 21’21{3 0
0 6 — 12(3

OO O O O

o O oo oo

X 2¢, 12C2
5 (o1 +y31) ¢ 2y31C; + 5 (Y21 + y31) Qo
— 2 (@21 4 231) ¢ —2231C, — 5 (Za1 + 731) G
2¢4 2G5
2y32Cs + 5 (Ya2—121) Gy % (Y32 — y21) o
2739y — 5 (w82 —w21) (4 —3 (w32 —a91) Gy
2y 20y
—2y32(3 — % (y31 — y32) Civn—2Y3183= % (y31 - y32) Co
2w35C5 + % (w31 + 232) €, [228:1C5 + % (w31 + x32) Cy

so the Av = SWv, then the element matrix of —e fQ AuAvdz is

T
Ko = — / UTSTCLSW || d¢ydC,

0 ~2031¢5 = 2Y32C,
| O 21331C1 =+ 21’32{2

45

(3.99)

2¢5
2921Cy + % (Y21 + y31) (3
=221y — 5 (w1 + w31) (5
2C5
—2y21Cq + % (Y32 — y21) (3
2021Cy — 5 (T30 — T21) (s
X 2¢5
3 (y31 - y32) Cs
5 (31 4+ 739) (5

(3.100)

(3.101)
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In this thesis, we will follow this algorithm

Given a initial ug, € and tolerance T’
Fixed €
Newton’s iteration if ||u"™! — u™|| < T then it converge, if not the iteration is diverge

if € < h? where h is mesh size then out the algorithm

let € = €¢/c where ¢ is.a



Chapter 4
Numerical Study

The numerical result will be given, These are three part of this chapter: Poisson

equation ,biharmonic equation and Monge-Ampére equation.

4.1 Poisson Equation

Poisson Equation:
Au = finf)
uloa: =o g

where f and ¢ are obtained from a given analytical solution u.. We use Linear element and
BCIZ element to approximate the Poisson equation. We compute the Poisson equation on
different mesh size. Our calculation domain is [0, 1] X [0, 1] : The boudary condition are

Dirchlet type.

47



4.1.1 Example:

4.1 Poisson Equation

48

The analytical solution u = e*™¥, f = 2¢""¥ and ¢ = e**Y. we use linear element to

approximate the Poisson equation in this case.

@ Note new toolbar buttons: dats hrpshing & linked plots ‘ff @ Play video

Computed solution wuy,

4

% 10°

i, | [0 —dinllog I = lls | 1 =unll
1710, 597E-03 | 828E:04 |/ 2:04E-01
1720 [\ 1.98E-03 | 221E-04 | " 1.02E-01
/4077 628E-04 | 5.68E-05 | 5.10E-02
1/80 | 1.91E-04 | T44E05 | 2.55E-02
1/160 | 5.65E05 | 3.61B-06 | 1.28E-02

Table 1. Change of ||u — uy|| w.r.t. h

* o Note new toolber buttons: dats broshing & linked plots jf Ij Plav wideo

The convergence rate of L? norm is second order and H' norm is first order. This

result is same as error estimates of the biharmonic equation using BCIZ element approxi-

mation.
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4.1.2 Example:

The analytical solution v = sin (27x) sin (27y) , f = —87%sin (27x) sin (27y) and g = 0.

we use BCIZ element to approximate the Poisson equation in this case.

R

05 0E

Computed solution uy, Error
I | 1107 = unlle | M= tnflpe | w2 ]l o
g 1.23E-3 8.03E-4 437E-2
27 1.67E-4 7.54E-5 4.19E-3
27° 1.32E-5 7.24E-6 5.32E-4
276 8.83E-7 7.85E=T 1.18E-4

Table 2. Change of ||u — up|| w.r.t. h

The convergence rate of L? norm is third order and H' norm is second order. This
result is same as error estimates of the biharmonic equation using BCIZ element approxi-

mation.
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4.2 Biharmonic Equation

Biharmonic Equation:

A% = finQ
ulpg = g
VU'TL|QQ = h

where f, g and h are obtained from a given analytical solution u. We use BCIZ element to
approximate the Biharmonic equation. We compute the Biharmonic equation on different
mesh size. Our calculation domain is [0, 1] x [0, 1] . The boudary condition are Dirichlet
type and Neumann type. Because of the Biharmonic equation is-fourth order equation, so

the approximation of linear clement maybe not have a high accuracy.
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4.2.1 Example:

cos(z)e¥ — zsin(x)e?

1 1 — Y — — Y —
The analytical solution u = x cos(x)e?, f = 0,9 = x cos(z)e¥ and Vu v cos(x)e!

¥ 107

NI,
AR
IR o
I LRas
MR s
R AR
RN AR e
T St
NN
NI I

Computed solution uy, Error

b | oo Tl = unll e | v = ] o
2721 0.002971694 | 0.001206162 | 0.499530706
2-3 | 0.00065049 |0:000273676 | 0.242128734
27171.0.000155176 | 6.32838E-05 | 0:.119339924
27° 1. 3.78495E-05 | 1.51706E-05 [10.059270777
27°1.9.32505E-06 | 3.71417E-06 | 0.02954046
277 | 2.31532E-06-}-9.1924E-07 [ 0.014747201

Table 3. Change of ||u — uy|| w.r.t. h

The convergence rate of L? norm is second order and H? norm is first order. This
result is same as error estimates of the biharmonic equation using BCIZ element approxi-

mation.
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4.2.2 Example:

52

The analytical solution u = (cos(2mz) — 1) (y? — 2¢° + y*), f = 0,9 = wcos(x)e? and

h = 0.

wiot

Computed solution wuy,

R | (10 = wllos [ = wnllze | [[u? = unllye
2-21 0.01171965 | 0.004154116 | 0.645238157
277 1.0.004269365 | 0.001568274 |10:307797116
27%10.001169401 | 0.000445123 | 0.150571686
27° 1 0.000302368-.0.000116688 | 0.074556331
276 | 7.67083E-05 | 2.97733E-05 | 0.037111559
277 | 1.93091E-05 | 7.5141E-06 | 0.018516197

Table 4. Change of ||u — uy|| w.r.t. h

2]

=y

sy
e

25
25

Eaw,

Fat,
iy
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oy

kv,

75
vl
R,

vy
S,
iy

iy
v

The convergence rate of L? norm is second order and H? norm is first order. This

result is same as error estimates of the biharmonic equation using BCIZ element approxi-

mation.



4.3 Monge-Ampére 53

4.3 Monge-Ampére

Regularization Monge-Ampére Equation:

—eA%u + det (D2u€) = f,in{)
u® = gondf)

AuS. = €ondf

where f and g are obtained from a given analytical solution u. We use BCIZ element to
approximate the Monge-Ampére-equation. We compute the Poisson equation on different
parameter ¢ with.fixed mesh size-h. The boudary condition are Dirchlet type. In this
section, we provide several 2-D numerical experiments of BCIZ element. And the initial

condition is given by zero. The e start from 1 to 7.



4.3 Monge-Ampére

4.3.1 Example:

This test, we calculus ||u® — ug || for fixed mesh size h = 278, while varying ¢ in order to
approximate ||u® — u¢||. We use BCIZ element and set to solve problem (3.71) with the
analytical solution u = 2% + 9% , f = 2422 and g = 2* + 32, Our calculation domain € is

0,1] % [0,1].

05.) ]

06

".,vn":.l-'ht.g‘ﬁ-

M
e
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s
e
S

T
¥
e

X
D

0 a2l 0%
solution error

€ T =l [T — uglle [ o — e | ter

1 3.05E-1 1.61E-1 5.32 6
22 2.30E-1 1.21E-1 4.67 10
24 1.13E-1 5.71E-2 3.63 10
276 4.23E-2 1.90E-2 2.71 8
28 1.45E-2 5.67E-3 1.99 8
2-10 4.50E-3 1.60E-3 1.44 8
2~ 12 1.29E-3 4.33E-4 1.03 9
2~ 14 3.48E-4 1.13E-4 7.33E-1 10

Table 5. Change of ||u® — u§ || w.rt. € (h = 27%)

AT
LT
DT
e raT
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0 €
A P

0 €
[0~ |l 2

0.160842924

5.319207667

0.482036757

6.609013597

0.913779843

7.268095576

1.218354047

7.670044224

1.450567862

7.955838131

1.637202829

8.133261803

1.772707203

8.235401948

1.85193153

8.290262971

Table 6. Change of ||u® — u§ || w.r.t. € (h = 279)
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4.3.2 Example:

This test, we calculus ||u® — ug || for fixed mesh size h = 278, while varying ¢ in order to
approximate ||u® — u¢||. We use BCIZ element and set to solve problem (3.71) with the
analytical solution u = 202% 4 4% , f = 180002*y* and g = 202 + 5, Our calculation

domain 2 is [0, 1] x [0, 1].

T AT

R RO

5&*@1‘.&%},1.1;
ey

solution error

€ T =l [T — uglle [ Ta” — wglle | ter
4 6.43 2.88 177.28 5
1 5.22 2.17 167.40 9
272 3.31 1.19 148.99 10
21 1.79 6.20E-1 125.31 10
26 8.72E-1 2.57E-1 101.97 10
2-8 4.02E-1 9.17E-2 82.10 10
2-10 1.80E-1 3.22E-2 65.25 11
2-12 7.93E-2 1.11E-2 51.21 13
2~ 3.45E-2 3.74E-3 39.77 20

Table 7. Change of ||u — uf|| w.r.t. € (h = 278)
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0 €
A P

0 €
[0~ |l 2

0.720510991

125.3567907

2.165121991

167.3973101

4.758836554

210.7002103

9.926086663

250.6286892

16.4590354

288.4238466

23.47587569

328.3874835

32.93384144

369.1038869

45.33800541

409.6430813

61.24535142

449.9969415
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4.3.3 Example:

This test, we calculus ||u® — ug || for fixed mesh size h = 278, while varying ¢ in order to

approximate ||u® — u¢||. We use BCIZ element and set to solve problem (3.71) with the

2?4y

z2 2 2 i
analytical solution u =e¢" 2", f = (1+22+y2)e” ¥ and g = e =, Our calculation

domain 2 is [0, 1] x [0, 1].

04

02

]
solution error
¢TI — el [T — gl [ e — gl e [ ter
1 1.78E-1 1.01E-1 3.03 29
22 1.41E-1 8.17E-2 2.72 48
24 7.14E-2 4.45E-2 2.13 38
276 2.26E-2 1.56E-2 1.57 9
278 6.30E-3 4.52E-3 1.13 8
2-10 1.81E-3 1.22E-3 8.00E-1 8
2-12 5.00E-4 3.16E-4 5.67E-1 8
2~ 14 1.33E-4 8.00E-5 4.01E-1 9

Table 9. Change of ||u — u§ || w.r.t. € (h = 27%)
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0 €
A P

0 €
[0~ |l 2

0.100518486

3.026105949

0.32688765

3.840967403

0.71238757

4.259311736

0.99970787

4.434163657

1.157804247

4.506118399

1.24700059

4.527808719

1.294427725

4.534697517

1.309904805

4.53757113

Table 10. Change of ||u — u§ || w.r.t. € (h = 278)
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4.3.4 Example:

This test, we calculus ||u® — ug || for fixed mesh size h = 278, while varying ¢ in order to
approximate ||u® — u¢||. We use BCIZ element and set to solve problem (3.71) with the
2\/§(w2+y2)% \/§($2+y2)%

2 .
analytical solution v = ————, f = —L__ and ¢ = =~~~ Our calculation
[ 42 4y2 3

domain 2 is [0, 1] x [0, 1]. Where f has a singular point at (0,0) .

solution error
€ T =l [T’ — uglle [ o — e | ter
1 1.41E-1 7.89E-2 2.16 5
22 1.23E-1 6.93E-2 2.01 19
24 7.59E-2 4.48E-2 1.64 9
276 2.78E-2 1.81E-2 1.22 10
278 8.01E-3 5.57E-3 8.95E-1 8
2-10 2.12E-3 1.55E-3 6.51E-1 8
2-12 5.57E-4 4.08E-4 4.68E-1 9
2~ 14 1.44E-4 1.04E-4 3.34E-1 11

Table 11. Change of ||u — u§ || w.r.t. € (h = 279)
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0 €
A P

0 €
[0~ |l 2

0.078906702

2.164987734

0.277330363

2.843363264

0.717285822

3.275360039

1.15590166

3.442870121

1.425652095

3.57845558

1.583580447

3.680240848

1.671089711

3.747674023

1.709884392

3.773972909

Table 12. Change of ||u — u§ || w.r.t. € (h = 278)
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4.3.5 Example:

62

This test, we calculus ||u® — ug || for fixed mesh size h = 278, while varying ¢ in order to

approximate ||u® — u¢||. We use BCIZ element and set to solve problem (3.71) with the

analytical solution u = /22442, f = {

0 if (z,y) # (0,0)

7 if (z,y) = (0,0)

and g = y/x2 + y2, Our

calculation domain € is [—1,1] x [—1,1]. Where f has a singular point at (0, 0), and our

guess the value of f at (0,0) is 30.

Al
B

A A

raVdva 4
VAT TATATATAYA Y,
%ﬁv‘-‘—, e, =

solution error
¢ T = il [T = wgllya [ " — gl | fter
1 8.17E-1 6.00E-1 8.65 5
272 5.51E-1 3.72E-1 8.82 9
24 2.48E-1 1.42E-1 9.27 10
26 9.77E-2 5.31E-2 9.72 11
28 4.151E-2 2.56E-2 10.09 14
2-10 2.08E-2 1.49E-2 10.32 19
2-12 9.28E-3 6.92E-3 10.51 28
2-13 3.59E-3 1.95E-3 10.66 21

Table 13. Change of ||u — uf,|| w.r.t. € (h = 1/127)
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0 € 0_, €
[ P O A |

€
1 ]0.599947604 | 8.652542689
2| 1.48793695 | 12.4786026
—* 12278636795 | 18.53711229
6
8

3.398612852 | 27.50569621
6.546636298 | 40.36922514

2710 [ 15.30464406 | 58.38278827
27121 28.35360433 | 84.08190819
27131 16.00805235 | 101.4092367

Table 14. Change of ||u — u§ || w.r.t. € (b = 1/127)
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Compared with Feng’s and Oberman’s result:

1:2 2
casel: u=c"2" , f=(1+a%+y2) e

Ours Feng’s
c [Tl | e [Tu—wl,.
2-1 10.093580805 | 0.5 0.038717
272 10.081721912 | 0.25 0.040988
273 10.064370429 | 0.1 0.032218
271 10.044524223 | 0.05 0.022259
2 6
2 9

0.015620435 | 0.0125 | 0.007817
0.002361013

0.001864
0.000405




4.3 Monge-Ampére 65

case 2: u = /a2 + 42, f = { g g Ei’g;

[N
—~
oo
=R=)
N~—

Ours

Feng’s

€ lu — Uan2

€ | Ju — UZ”L2

0.504058

0.371984

0.239381

0.053103

1
2
3
~1T [ 0.142415
6
9

0.014946

none

sroup. And the case have



Chapter 5
Conclusion

The error of ||u — uj || ;. of the Monge-Ampére is O (€) from test cases. The error of

u — uf || ;- of the Monge-Ampére is O (+/¢) from test cases.
hllE

In numerical simulation of the elliptic regularization Monge-Ampére, the ¢ > h?,

where h is mesh size.

In the singular case, we can shift the grid point such that the singular point locate in a

element.

66
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