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Monge-Ampére方程的數值方法與其在非成像光學上的應用 

學生：蔡玉麟 

 

指導教授：吳金典 

 
 

國立交通大學應用數學系數學建模與科學計算碩士班 

摘 要       

  本論文介紹光學設計中自由型曲面的設計方法，我們探討了自由型曲面設計

藉由偏微分方程來求得，其中的偏微分方程由 Schruben推導而來，其偏微分方

程的形式為 Monge-Ampére方程式，我們考慮簡化型 Monge-Ampére方程式，藉由

馮教授所使用的方法，加上一個四次微分的消散項，可以使得原來的方程式是一

個完全非線性的方程式轉變成類線性方程式改變了方程式的特性，使得在偏微分

方程上有較好的特性，我們用有限元素法來做為我們的計算方法，挑選 BCIZ有

限元可以有效的處理四次微分項且並且可以簡單的求得曲面的曲率的計算，也可

以滿足光學系統的所需要的一些特性，只需要解一個線性方程式和使用牛頓疊代

法求做求解用的工具，以獲得較高的計算效率。 
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ABSTRACT 

We consider the freeform surface design problem. Fully nonlinear partial 

differential equations as derived by the Schruben for model. The partial differential 

equation is the form of well knowMonge-Ampére equation. We following Prof. 

Feng’s idea to solve Monge-Ampére equation by adding a vanish moment biharmonic 

term. As a result the original fully nonlinear equation is change into quasi-linear 

equation. We using finite element method to solve this equation. Its well knows that 

the traditional BCIZ element can effectively deal with biharmonic item and compute 

the curvature of the solution. Which is usually required in a optical systems. We 

descritize the nonlinear equation by the Newton’s method. The numerical studies in 

this thesis show that our approach is efficient and accurate. 
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Introduction

The Monge-Ampère equation is a important problem in differential geometry, opti-

mal control, mass transportation, geostrophic �uid, meteorology and optimal design [1][2][3][4][5].

In this thesis, we focus on the optical free-form design problem. People study optical prob-

lems for a long time, thank for that the Mathematical fundation of the free-form design is

more and more complete, we can try to solve the problem numercally. Now, what's optical

free-form design problem? Given a light source and intensity in a optical system, and the

illumination distribution on the target plane, the main problem of optical free-form design

problem is design a optical system such that the transportantion form the light source to the

target plane throught the designed system will not have energy loss. The optical system is

generally consisted pf as following re�ector amd refractor, etc. .

The general form of Monge-Ampère equation

det(D2u) + F
�
x; u;Du;D2u

�
= 0 in 
 (1.1)

where D2u =
�

@2u
@xi@xj

�
i;j=1;:::;n

is the Hessian of the function u at x 2 
.

Suppose coef�cients in (1:19) depending on variables x; y; and the unknown function

u (x; y) ; (1:19) can be rewritten as following

det(D2u) = auxx + buxy + cuyy + � (1.2)

The Monge-Ampere equation can be either ellip, parabilic or hyperbolic depending on the

sign of4

4 = �+ ac+ b2 (1.3)

1
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If4 > 0, then the Monge-Ampère equation is of elliptic type, if4 < 0 it is of hyperbolic

type and if4 = 0 it is of parabolic type. A non-linear elliptic partial differential equation.

It is well know that the solution of the Monge-Ampère equation is not unique unless we

con�nes our attention to the convex solutions. The existence and uniqueness of the convex

solution of the Monge-Ampére equation satis�es version of the maximum principle, and in

particular solutions with given Dirichlet condition is proved by Pogorelov in [2, 6] general

result on the existence and unquenss are later obtained by Oliker and Wang etc. .

the free-form surface is the solution of Monge-Ampère equation in three dimension

space. In 1972 [7], Schruben described the re�ector is the solution of the Monge-Ampere

equation. He derived the partial differential equation from the integral equation of the en-

ergy conservation. In 1993, Oliker and Newman also derived the Monge-Ampere equation

in re�ector problem. Since the Monge-Ampere equation, a fully non-linear elliptic par-

tial differential equation, is hard to solve. So if we wanted to use it, we must add some

condition such that the equation is more simplify.

until 1990, Benitez , Juan, et al. develoed of the Simltaneous Multiple Surface (SMS)

method, for the design of 2D pro�les of non-imaging optical devices (SMS2D). It was a

breakthrough in a �eld dominated by bulky designs. In 2004, SMS non-imaging method

generated free-form optical surfaces in 3D (SMS3D) [8], which is a major extension of

SMS2D. In the SMS method, the free-form surface is constructed �rst by de�ning the

incoming wavefront and outgoing wavefront, instead of the source and receiver, and then

deciding the basic point and optical path length. In order to �nd the outgoing wavefront,
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one must solve the Monge-Ampère equation. So, a numerical method is desired for solving

the Monge-Ampere equation.

Glowinski, Benamou etc., Gerard Awanou and Feng and Neilan consider the follow-

ing Monge-Ampère equation:

det
�
D2u

�
= f in 
 (1.4)

u = g on @
 (1.5)

where 
 is a convex domain with smooth boundary @
 and D2u =

�
uxx uxy
uxy uyy

�
is the

Hessian of the function u at x 2 
.

Two method are employed by Benamou, Froese and Oberman [10] to solve the

Monge-Ampere equation. One is an explicit �nite difference method, The equ (1:4) is

using discretized as following standard central difference on a uniform Cartesian grid.

�
D2
xxuij

� �
D2
yyuij

�
�
�
D2
xyuij

�2
= fij (1.6)

where

D2
xxuij =

1

h2
(ui+1;j + ui�1;j � 2ui;j)

D2
yyuij =

1

h2
(ui;j+1 + ui;j�1 � 2ui;j) (1.7)

D2
xyuij =

1

4h2
(ui+1;j+1 + ui�1;j�1 � ui�1;j+1 � ui+1;j�1)

The equ (1:6) is further rewrote the a quadratic equation for ui;j; as following

ui;j =
1

2
(a1 + a2)�

1

2

r
(a1 � a2)2 +

1

4
(a3 � a4)2 + h4fi;j (1.8)
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where

a1 = (ui+1;j + ui�1;j) =2

a2 = (ui;j+1 + ui;j�1) =2

a1 = (ui+1;j+1 + ui�1;j�1) =2 (1.9)

a1 = (ui�1;j+1 + ui+1;j�1) =2

The other method employed by Benamou, Froese and Oberman is solving u = T (u)

by �xed point iteration where

T (u) = 4�1
�q

(4u)2 + 2 (f � det(D2u))

�
(1.10)

the itervates un+1 = T (un) is obtained by solving

4un+1 =
q
(unxx)

2 +
�
unyy
�2
+ 2

�
unxy
�2
+ 2f (1.11)

Dean and Glowinski [11, 12, 13]. They �rst consider the Monge�Ampére equation as

a saddle-point problem where a suitable augmented Lagrangian has to he chosen. To solve

this saddle-point problem, they advocate an Uzawa�Douglas�Rachford algorithm. The

second approach Dean and Glowinski used is to combine non-linear least-square method

and operator-splitting. A mixed �nite element discretization is used in their formulation.

Feng and Neilan [15, 16] add ��42u� to regularize the Monge-Ampere equation.

An arti�cal a boundary condition4u� = � is introfuced on @
: The quasilinear forth order
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pde,

��42u� + det
�
D2u�

�
= f; in 
 (1.12)

u� = g on @
 (1.13)

4u� = � on @
 (1.14)

is then separated into coupled second order partial difference equations system

�� �D2u� = 0

��4tr (��) + det (��) = f (1.15)

A mixed �nite element is the empolyed to solve the above equations.

Gerard Awanou [30], takes a similar approch as feng and Neilan, by adding� �
n
42u�

to the Monge-Ampere equation and adding a boundary condition 4u� = �2 on @
: The

corresponding variational problem is: to �nd u� 2 H2 (
) ; u� = g;4u� = �2 on @
 such

that

�

Z



4u�4vdx+
Z



�
cof

�
D2u�

�
Du�

�
�Dv dx = �n

Z



fvdx 8v 2 H2
0 (
) (1.16)

where

cof
�
D2u�

�
=

�
uyy �uxy
�uxy uxx

�
(1.17)

Again, Awanou employ the mix �nite element to approximate the partial differential equa-

tion.

In free-form design problem, we must determine the control point and the normal

vector. Following this ideal, in this paper, we solve the regularized equ(1:12) which is

basically a biharmonic equation with low order nonlinear term, so we solve this regularized
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equation direatly instead of devoupling the equation into a couple low order system as Feng

and Neilan did. We employee the Newton iterative method to linearite the nonlinear part,

since Newton's method is well known in �nding successively better approximations to the

zeros of a real-valued nonlinear function. Newton's method can often converge quickly, if

the iteration have a good initial point. we choose BCIZ element. BCIZ element is one of the

simplest Kirchhoff plate bending elements was presented by Bazeley, Cheung, Irons and

Zienkiewicz at the 1965 Wright-Patterson Conference [17]. The �BCIZ element� is named

after the authors initials. This element can be derived from the cubic interpolation which

basically has 10 degrees of freedom. The variable in the element centroid is condensed out

using a kinetic constraint in such a way that the curvature completeness is maintained.

The biharmonic equation, besides providing a benchmark problem for various ana-

lytical and numerical methods, arises in many particular applications. For example, the

bending behaviour of a thin elastic plane.



Chapter 1
Mathematical Modeling of Optical design

In this chapter, we derive the Monge-Ampére equation follow Schruben in 1972. He

consider that a point source though a re�ector to target plane, he describing the free-form

surface is the solution of Monge-Ampére equation in three dimension space.

The light source is assumed to have some arbitrary directional intensity distribution

I and dimensions that emits are negligible compared to the �xture size. Distances are

normalized such that the distance from the source to the (u; v) plane is unity. The target

area on (u; v) plane that is to be illuminated.

Since the intensity of the source is directional, I may de�ned as a function of posi-

tion on the unit sphere centered at the source. Spherical coordinates could be used, but it

is preferable to employ parametric coordinates (u; v) of the unit sphere. These may be ob-

tained as stereographic coordinates, as illustrated in Fig. 1:2, by projecting the unit sphere

from its point of tangency to (x; y) plane onto the plane (u; v) plane parallel to (x; y) plane

and also tangent to the sphere. The stereographic coordinates of a point on the sphere so

projected are the rectangular (u; v) coordinates of the corresponding point on (u; v) plane.

De�ned a function L = L(x; y), which is the desired pattern of re�ected illumination

on the target plane. This is de�ned as the desired pattern of total illumination at a point

(x; y) on the target plane from which has been subtracted the direct illumination of the

source at (x; y) which can be obtained directly from the intensity distribution I . by energy

7



Fig. 1.1. point source of light

8
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conservation ZZ
v(
)

L (x; y) dxdy =

ZZ



I (u; v) d
 (1.18)

where 
 is solid angles and v (
) is the target area.

De�ne a vector mapping �x that maps a point (u; v) on the u; v plane to a vector (light

ray) from the orgin (light source) to a point (x0; y0; z0) on the unit sphere.

the explicit form of this map is

�x (u; v) =

�
1 +

1

4
w2
��1�

u; v; 1� 1
4
w2
�

(1.19)

where w2 = u2 + v2; where the �x (u; v) is not unique, under different problem we can

change the coordinate. In 1993, Oliker and Newman proved that the formulation has exis-

tence and uniqueness solution.

The differential solid angle d
 is area on the unit sphere and is related to differential

area on the uv� plane by the equation

d
 = jxu � xvj dudv (1.20)

Differentiation of equation (1:19) yields

�xu (u; v) =

�
1 +

1

4
w2
��2�

1 +
1

4
v2 � 1

4
u2;�1

2
uv;�u

�
(1.21)

�xv (u; v) =

�
1 +

1

4
w2
��2�

�1
2
uv; 1 +

1

4
v2 � 1

4
u2;�v

�
(1.22)

therefore

d
 =

�
1 +

1

4
w2
��2

dudv (1.23)
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Fig. 1.2. stereographic coordinates
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Fig. 1.3. Re�ection geometry

Substituting this into equation (1:18), then

ZZ
v(
)

L (x; y) dxdy =

ZZ



I (u; v)

�
1 +

1

4
w2
��2

dudv (1.24)

We can describe the re�ector by an equation � = � (u; v) where � is the length of a ray with

stereographic coordinates (u; v) from the origin to the re�ecting surface. We now shall

transform the integral equation (1:24) for the re�ection function w to a partial differential

equation for the surface function �.

Let A be a vector with stereographic coordinates (u; v) that strikes the re�ector � =

� (u; v). Then A = ��x, where �x is given by Eq. (1:19). Suppose this ray is re�ected to the
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point (x; y) on xy plane, then the vectorX from the source to this point has the coordinates

(x; y;�1) in the x0; y0; z0 coordinate system.

The vector N = Au � Av is an outward normal vector to the surface � = � (u; v) at

A. Since A = �x,

N = (px+ �xu)� (qx+ �xv) (1.25)

where p = �u and q = �v:

We �nd

N = �2
�
1 +

1

4
w2
��2

x� p�xu � q�xv (1.26)

As is illustrated in Figure, the law of re�ection requires that

A

jAj +
A�X
jX � Aj =

2N (A �N)
jAj jN j2

(1.27)

then

X = A+ jX � Aj
�
�x� 2N (�x �N) = jN j2

�
(1.28)

since A= jAj = �x

So the x; y can be show as

x = uG+ 2��uF (1.29)

y = vG+ 2��vF (1.30)
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where

G = �

�
1 +

1

4
w2
��1

+ F

"
��2

�
1 +

1

4
w2
��2

+�2u + �
2
v � � (�uu+ �vv)

�
1 +

1

4
w2
��1#

(1.31)

F =
1 + �

�
1� 1

4
w2
� �
1 + 1

4
w2
��1�

1� 1
4
w2
� h
�2
�
1 + 1

4
w2
��2 � �2u � �2vi+ 2� (�uu+ �vv) �1 + 1

4
w2
��1(1.32)

The integration over x and y in the left-hand side of (1:24) may be transformed to

integration over u and v by multiplication by the Jacobian

D =

���� xu + �ux� + � uux�u + �uvx�vyu + �uy� + � uuy�u + �uvy�v
xv + �vx� + �vux�u + �vvx�v
yv + �vy� + �vuy�u + �vvy�v

���� (1.33)

The a re�ector � = �(u; v) with continuous second derivatives, the integral equation

(1:24) is equivalent to the partial differential equation

L (x (u; v; �; �u; �v) ; y (u; v; �; �u; �v))D = I (u; v)

�
1 +

1

4
w2
��2

(1.34)

Expanding the jacobian

D = J�u�v
�
� uu�vv � �2uv

�
+
�
J�uv + �vJ�u�

�
� uu

+
�
J�vv + Ju�u + �uJ�� + �vJ�v�

�
�uv

+
�
Ju�v + �vJ�u�v

�
�vv + Juv + �uJ�v + �vJu� (1.35)

where

J�� = x�y� � x�y� for �; � 2 fu; v; �; �u; �vg (1.36)
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The leading term of the differential equation is (�uu�vv � �2uv), so it easy to see the

equation is Monge-Ampere type.

We consider the ideal case

�
� uu�vv � �2uv

�
= f (1.37)

in our study.



Chapter 2
Finite Element Method

The basic idea in any numerical method for a differential equation is to discretize the

given continuous problem to obtain a discrete problem or system of equations with only

�nitely many degrees of freedom such that the differential equation can be solved by using

a computer.

Finite element method start from a reformulation of the given differential equation as

an equivalent variational problem. In the case of elliptic equations this variational problem

in basic case is a minimization problem of the form

Find u 2 V such that F (u) 5 F (v) for all v 2 V (2.38)

where V is a given set of admissible functions and F : V ! R is a functional. F (v) is

the total energy associated with v and (2:38) corresponds to an equivalent characterization

of the solution of the differential equation as the function in V that minimizes the total

energy of the considered system. In general the dimension of V is in�nite and thus in

general the problem (2:38) can't be solved exactly. To obtain a problem that can be solved

on a computer the idea in the �nite element method is to replace V by a set Vh consisting

of simple function only depending on �nitely many parameters. This leads to a �nite-

dimensional minimization problem of the form:

Find uh 2 Vh such that F (uh) 5 F (v) for all v 2 Vh (2.39)

15
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Fig. 2.4. mesh of two dimension domain

This problem is equivalent to a linear or non-linear system of equations. We hope that the

solution uh of this problem is suf�ciently good approximation of the solution of the original

minimization problem (2:38). Usually one chooses Vh to be a subset of V and in this case

(2:39) corresponds to the classical Ritz-Galerkin method.

To solve a given differential or integral equation approximately using the �nite ele-

ment method, one has to go through basically the following steps:

1. Variational formulation of the given problem

2. Discretization using FEM: construction of the �nite dimensional space Vh

3. Generating Mesh

4. Choose basis function

5. Assembling

6. Solve the linear system
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Fig. 2.5. mesh of three dimension domain

Fig. 2.6. uniform mesh
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2.1 Variational formation

In this section we will give two example for variation formulation. One is Poisson equation,

other is biharmonic equation.

2.1.1 Poisson Equation

Consider the following boundary value problem for the Poisson equation, the second order

differential equation:

�
�O � (AOu) = f in 


u = 0 on @
 (2.40)

where 
 is a bounded open domain in the plane R2 with boundary @
; A is a matrix, f is a

given function and as usual,

�u =
@2u

@x2
+
@2u

@y2
(2.41)

A number of problems in physics and mechanics are modelled by (2:40); u may represent

for instance a temperature, an electro-magnetic potential or the displacement of an elastic

membrane �xed at the boundary under a transversal load of intensity f.

We shall now give a variational formulation of problem (2:40) : We shall �rst show

that if u satis�es (2:40) ; then u is the solution of the following variational problem:

�
Z



vO � (AOu) dx =
Z



OvAOudx� @u
@n
vj@
 =

Z



vfdx (2.42)

where v is test function in H1
0 (
) , v = 0 on @
.
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2.1.2 Biharmonic Equation

Consider the following boundary value problem for the biharmonic equation, the fourth

order differential equation: 8<: ��2u = f in 

u = 0 on @

@u
@n
= 0 on @


(2.43)

where 
 is a bounded open domain in the plane R2 with boundary @
; f is a given function

and as usual,

42u =
@4u

@x4
+ 2

@4u

@x2@y2
+
@4u

@y4
(2.44)

A number of problems in physics and mechanics are modelled by (2:43); u may represent

the solution of Stokes �ows or the displacement of plane bending problem.

�
Z



v42udx =

Z



OvO4udx� @4u
@n

vj@


= �
Z



4v4udx�4u@v
@n
j@


=

Z



vfdx (2.45)

where v is test function in H2
0 (
) , v = 0 on @
; @v@n = 0 on @
.

Case in point, regularization Monge-Ampére equation, it has second order and fourth

order differential term. We will introduction it in chapter 3.
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2.2 Existence and Uniqueness of Solution

De�nition Let H be a Hilbert space. A bilinear form a : H � H ! R is called continuous

provided there exists C > 0 such that

ja (u; v)j � C kuk kvk for all u; v 2 H

A symmetric continuous bilinear form a is called H-elliptic, or short elliptic or coercive,

provided for some � > 0,

a (v; v) � � kvk for all v 2 H

clearly, every H-elliptic bilinear form a induces a norm via

kvka :=
p
a (v; v) (2.46)

This is equivalent to the norm of the Hilbert space H. The norm (2:46) is called the energy

norm.

As usual, the space of continuous linear functions on a normed linear space V will

be denoted by V 0:

Example Consider the boundary value problem of Poisson equation:

�
�O � (Ou) = f in 


u = 0 on @
 (2.47)
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One variational formulation for this is: Take

V = H1 (
)

a (u; v) =

Z



(Ou � Ov) dx (2.48)

F (v) = (f; v)

To prove a (�; �) is continuous, observe that

ja (u; v)j � j(u; v)H1j � kukH1 kvkH1 (2.49)

The Lax-Milgram Theorem Given a Hilbert space (V; (�; �)), a continuous, coercive

bilinear form a (�; �) and a continuous linear functional F 2 V 0, there exists a unique u 2 V

such that

a (u; v) = F (v) 8v 2 V (2.50)
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2.3 Estimates for General Finite Element Approximation

Let u be the solution to the variational problem and uh be the solution to the approximation

problem. To estimate the error ku� uhkV :

Céa Lemma Suppose the bilinear form a is V-elliptic with Hm
0 (
) � V � Hm (
) :

In addition, suppose u and uh are the solution of the variational problem in V and Vh,

respectively, Then

ku� uhkV �
C

�
inf
vh2Vh

ku� vhkV (2.51)

where C is the continuity constant and � is the coercivity constant of a (�; �) :
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2.4 Finite Element Space

Finite element have two type, conforming �nite element and nonconforming �nite element,

in the theory of conforming �nite element it is assumed that the �nite element spaces lie

in the function space in which the variational problem is posed. Moreover, we also require

that the given bilinear form a (�; �) can be computed exactly on the �nite element spaces.

The Finite element space of nonconforming �nite element do not lie in function space.

Now we follow Ciarlet's de�nition of a �nite element (Ciarlet 1978).

De�nition Let

1. K � 
 � Rn be a bounded closed set with non-empty interior and piecewise smooth

boundary (the element domain),

2. P be a �nite-dimensional space of functions on K (the space of shape function) and

3. N = fN1; N2; :::; Nkg be a basis for P 0 (the set of nodal variable).

Then (K;P ;N ) is called a �nite element.

De�nition Let (K;P ;N ) be a �nite element. The basis f'1; '2; :::; 'kg of P dual toN

is called the nodal basis of P .

After generating Mesh, we construct a �nite dimensional subspace Vh of the space

V de�ned consisting of piecewise linear function. We now let Vh be the set of functions

v such that v is linear on domain 
, v is continuous on domain 
 and v = 0 on @
:We
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observe that Vh � V: As parameter to describe a function Nj = v (xj) we may choose the

values Nj = v (xj) at the node points xj; j = 0; :::;m + 1: Let us introduction the basis

function �j 2 Vh; j = 0; :::;m+ 1: de�ned by

�j (xi) = �ij (2.52)

i.e., �j is the continuous piecewise linear function that take the value 1 at node point xj and

the value 0 at other node points. A function v 2 Vh then has the representation

v (x) =

mX
i=1

�i�i (x) ; x 2 
 (2.53)

where Nj = v (xj), i.e., each Nj = v (xj) can be written in a unique way as a linear

combination of the basis function �j: In particular it follow that Vh is a linear space of

dimension m with basis
�
'j
	m
i=1
:

We consider the shape function of K, because we need to compute the solution on

computer. We give some example of Finite Element, and how to connect the global coor-

dinate with local coordinate.
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Fig. 2.7. labeled number

2.4.1 Triangular Finite Element

In two dimension domain, we can generate mesh by triangular or rectangular. We use the

BCIZ triangular element to approximate the Monge-Ampére equation, more detail about

BCIZ element will be introduction in Chapter 3. First of all, we introduction the relation-

ship between two coordinates, second part is triangular �nite element .

Geometry:

The geometry of the 3-node triangle show in Figure 2.4 is speci�ed by the location

of its three corner nodes on the fx; yg plane. The nodes are labeled 1, 2, 3 while travers-

ing the sides in counterclockwise fashion. The location of the corners is de�ned by their

coordinates:

(xi; yi) i = 1; 2; 3

the area of triangle is denoted by �A and is given by:

2 �A = det

24 1 1 1
x1 x2 x3
y1 y2 y3

35 = x21y31 � x31y21 (2.54)

where xij = xi � xj; yij = yi � yj for i; j = 1; 2; 3 i 6= j:



2.4 Finite Element Space 26

Properties of Triangular Coordinates:

Consider triangular on regular triangular, points of the triangle may also be located

in terms of a parametric coordinate system:

�1; �2; �3

this is a local coordinate.

Represent a set of straight lines parallel to the side opposite to the ith corner. See

Figure. The equation of sides 12, 23 and 31 are '1 = 0; '2 = 0 and '3 = 0: respectively.

The three corners have coordinates (0; 0; 1) ; (0; 1; 0) and (1; 0; 0) :The three midpoints of

the sides have coordinates,
�
1
2
; 1
2
; 0
�
;
�
0; 1

2
; 1
2

�
and

�
1
2
; 0; 1

2

�
; the centroid

�
1
3
; 1
3
; 1
3

�
; and so

on. The coordinates are not independent because their sum is unity:

�1 + �2 + �3 = 1 (2.55)
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Coordinate Transformations:

Quantities which are closely linked with the element geometry are naturally ex-

pressed in triangular coordinates. On the other hand, quantities such as displacements,

strains and stresses are often expressed in the Cartesian system x; y. We therefore need

transformation equations through which we can pass from one coordinate system to the

other.

Cartesian and triangular coordinates are linked by the relation24 1x
y

35 =
24 1 1 1
x1 x2 x3
y1 y2 y3

3524 �1�2
�3

35 (2.56)

The �rst equation says that the sum of the three coordinates is one. The second and third

express x and y linearly as homogeneous forms in the triangular coordinates. These simply

apply the linear interpolant formula to the Cartesian coordinates: x = x1�1 + x2�2 + x3�3

and y = y1�1 + y2�2 + y3�3:

Inversion of (2:56) yields24 �1�2
�3

35 = 1

2 �A

24 x2y3 � x3y2 y23 x32
x3y1 � x1y3 y31 x13
x1y2 � x2y1 y12 x21

3524 1x
y

35 (2.57)

Partial Derivatives:

From equations (2:56) and (2:57) we immediately obtain the following relations be-

tween partial derivatives:

@x

@� i
= xi;

@y

@� i
= yi (2.58)

@� i
@x

=
yjk
2 �A
;
@� i
@y

=
xkj
2 �A

(2.59)
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where j and k denote the cyclic permutations of i: For example, if i = 3, then j = 1 and k =

2. The �rst derivatives of a function w (�1; �2; �3)with respect to x or y follow immediately

from (2:59) and application of the chain rule:

@w

@x
=

1

2A

�
@w

@�1
y23 +

@w

@�2
y31 +

@w

@�3
y12

�
(2.60)

@w

@y
=

1

2A

�
@w

@�1
x32 +

@w

@�2
x13 +

@w

@�3
x21

�
(2.61)

which matrix form is �
@w
@x
@w
@y

�
=

1

2 �A

�
y23 y31 y12
x32 x13 x21

�264
@w
@�1
@w
@�2
@w
@�3

375 (2.62)
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Triangular Finite Element

Let K be any triangle. Let Pk denote the set of all polynomials in two variables of

degree � k.

1. Linear Lagrange triangle

Let P = P1. Let N1 = fN1; N2; N3g (dimP1 = 3)Note that ��� indicates the nodal

Fig. 2.8. Linear Lagrenge triangle

variable evaluation at the point where the dot is located.
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2. Cubic Hermite triangle

Let P = P3. Let N3 = fN1; N2; :::; N10g (dimP3 = 10)Note that ��� indicates the

Fig. 2.9. Cubic Hermite triangle

nodal variable evaluation at the point and �� denote evaluation of the gradient at the

center of the circle.
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3. Quadratic Lagrange triangle

Let P = P2. Let N2 = fN1; N2; :::; N6g (dimP2 = 6)

Fig. 2.10. Quadratic Lagrange triangle

4. Cubic Lagrange triangle

Let P = P3. Let N3 = fN1; N2; :::; N10g (dimP3 = 10)

Fig. 2.11. Cubic Lagrange triangle
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2.5 The Interpolant

Consider a function w (x; y) that varies linearly over the triangle domain. In terms of

Cartesian coordinates it may be expressed as

w (x; y) = a0 + a1x+ a2y (2.63)

where a0, a1 and a2 are coef�cients to be determined from three conditions. In �nite

element work such conditions are often the nodal values taken by N at the corners:

N1; N2; N3

The expression in triangular coordinates makes direct use of these three values:

w ('1; '2; '3) = N1'1 +N2'2 +N3'3 =
�
N1 N2 N3

� 24 '1'2
'3

35 (2.64)

=
�
'1 '2 '3

� 24 N1N2
N3

35
equation (2:64) is called a linear interpolant for w.

De�nition Given a �nite element (K;P ;N ), let the set f'i : 1 � i � kg � P be the

basis dual to N . If v is a function for which all Ni 2 N ; i = 1; :::; k are de�ned, then we

de�ne the local interpolant by

w (v) :=

kX
i=1

Ni (v)'i (2.65)
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Interpolant of Triangular Finite Element

1. Linear Lagrange triangle

'1 = �1

'2 = �2

'3 = �3 (2.66)
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2. Cubic Hermite triangle

'1 = �21 (�1 + 3�2 + 3�3)� 7�1�2�3

'2 = �21 (x21�2 � x13�3) + (x13 � x21) �1�2�3

'3 = �21 (y21�2 � y13�3) + (y13 � y21) �1�2�3

'4 = �22 (3�1 + �2 + 3�3)� 7�1�2�3

'5 = �22 (x32�3 � x21�1) + (x21 � x32) �1�2�3

'6 = �22 (y32�3 � y21�1) + (y21 � y32) �1�2�3

'7 = �23 (3�1 + 3�2 + �3)� 7�1�2�3

'8 = �23 (x13�1 � x32�2) + (x32 � x13) �1�2�3

'9 = �23 (y13�1 � y32�2) + (y32 � y13) �1�2�3

'10 = 27�1�2�3 (2.67)
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2.6 Derive the element matrix

The variation formulation of Possin equationZ



OvOudx =
Z



vfdx (2.68)

let fKigi is nonoverlapping triangular domain, and [ni=1Ki = 
; thenZ



OvOudx =
nX
i=1

Z
ei

OvOudx (2.69)

on each element Ki the global coordinate x; y transfor into local �1; �2; �3 the linear La-

grange interpolation ofw in the local interpolantw = N1'1+N2'2+N3'3 = �

24 N1N2
N3

35 =
�N ;

r = Zr�1;�2;�3 ; where Z =

"
@�1
@x

@�2
@x

@�3
@x

@�1
@y

@�2
@y

@�3
@y

#
Z
ei

OvOudx =
Z
ei

Vr��
TZTZr�;��N jJ j d�2d�3 (2.70)

where �1 = 1� �2 � �3:

the local element matrix is
R
ei
r�;��

TZTZr�;�� jJ j d�d�



Chapter 3
Numerical Method of Monge-Ampére

Equation

We follow the Feng's method, that is adding a vanishing biharmonic term such that

the fully non-linear Monge-Ampére equation become regular. The elliptic regularization

Monge-Ampére equation:

��42u� + det
�
D2u�

�
= f; in 


u� = g on @
 (3.71)

4u� = � on @


where 
 is a bound domain in the R2 with a smooth boundary @
, f is a given function

3.1 Linearization Regularization Monge-Ampére equation

the function of regularization Monge-Ampére equation

MA [u] = ��42u+ det
�
D2u

�
(3.72)

variation ofMA [u] is

DuMA [u] = (Dyyu) (Dxx) + (Dxxu) (Dyy)� 2 (Dxyu) (Dxy)� �42

= O �
�
cof(D2u)O

�
� �42 (3.73)

the linearization regularization Monge-Ampére equation

��42u+ O �
�
cof(D2u)Ou

�
= f (3.74)

36
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3.2 Variation formulation

the equivalent variational problem

�
Z
�42u�vdx+

Z
O �
�
cof(D2u)Ou

�
vdx =

Z
fvdx in 
 (3.75)

the weak formulation of the biharmonic term �
R
�42u�vdx and4u� = �

��
Z



42u�vdx = �

Z
@


�rv � n� �
Z



4u�4vdx

= �

Z
@


r� � nv � �
Z



4u�4vdx

= ��
Z



4u�4vdx (3.76)

where v = 0 on @
 and the second boundary condition same as4u� = 0 on @
:

the weak formulation of the fully non-linear termZ



O
�
cof

�
D2u

�
Ou
�
vdx =

Z
@


�
cof

�
D2u

�
Ou
�
� nvdx�

Z



�
cof

�
D2u

�
Ou
�
Ovdx

= �
Z



�
cof

�
D2u

�
Ou
�
Ovdx (3.77)

So the equivalent variational problem of equation (3:71) is

��
Z



4u�4vdx�
Z



�
cof

�
D2u

�
Ou
�
Ovdx =

Z
fvdx in 
 (3.78)

3.3 Non-linear iteration

For non-linear problem, we usually use iterative method such as �xed-point iteration,

Newton's iteration etc.. Iteration method can be classi�ed by the rate of convergence,

q-quadratically, q-superlinearly, and q-linearly.
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3.3.1 Fixed-Point Iteration

Many non-linear equation are naturally formulated as �xed-point problem

x = K (x) (3.79)

whereK, the �xed-point map may be non-linear. A solution x̂ of (3:79) called a �xed point

of the map K. The �xed-point iteration is given by

xn+1 = K (xn) (3.80)

This iterative method is also called non-linear Richardson iteration, Picard iteration, or the

method of successive substitution.

3.3.2 Newton's method

The Newton's iteration is

xn+1 = xn � F 0 (xn)�1 F (xn) (3.81)

sometimes the F 0 (xn)�1 is not easy to �nd, then we can consider use approximate the term,

such as chord method, Shamanskii method or secant method etc..

3.3.3 Non-linear iteration of regularization Monge-Ampére equation

The regularization Monge-Ampére equation

F [u] = f + �42u� det
�
D2u

�
(3.82)

the DuF [u] is

DuF [u] = �O �
�
cof(D2u)O

�
+ �42 (3.83)
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Newton's iteration of F

un+1 = un �DuF [u
n]�1 F [un] (3.84)
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Fig. 3.12. BCIZ truangular element

3.4 Basis function of BCIZ element

To build the necessary technical tools, we shall derive and present a detailed study of the

linearization of the elliptic regularization Monge-Ampere equation and its BCIZ �nite el-

ement approximation. Introduction to the BCIZ element, BCIZ element is conforming

element, it can calculus the curvature easily, and its approximation is very well. But the

basic BCIZ element has a problem, if the mesh is non-uniform mesh, then the numeri-

cal result is lost the accuracy. So many people propose the revise BCIZ element such that

numerical result has good approximation on non-uniform mesh.

BCIZ element:

Let P = P3. Let N = fN1; N2; :::; N9g

In the free-form design problem, we must to consider that the �rst differential of the

solution, so we choose BCIZ �nite element approximation. It can easy the calculus the �rst

differential and curve of each element.
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The visible degree of freedom of the the element collected in v are

vT =
�
w1 �x1 �y1 w2 �x2 �y2 w3 �x3 �y3

�
(3.85)

where the �x and �x is consider rotation, that is different from u, under Cartesian coordinate

u = w; uy = �x; ux = ��y:

'1 = �21 (3� 2�1) + 2�1�2�3

'2 = ��21 (y12�2 + y13�3)�
1

2
(y12 + y13) �1�2�3

'3 = �21 (x12�2 + x13�3) +
1

2
(x12 + x13) �1�2�3

'4 = �22 (3� 2�2) + 2�1�2�3

'5 = ��22 (y23�3 + y21�1)�
1

2
(y23 + y21) �1�2�3

'6 = �22 (x23�3 + x21�1) +
1

2
(x23 + x21) �1�2�3

'7 = �23 (3� 2�3) + 2�1�2�3

'8 = ��23 (y31�1 + y32�2)�
1

2
(y31 + y32) �1�2�3

'9 = �21 (x31�1 + x32�2) +
1

2
(x31 + x32) �1�2�3 (3.86)

where � i are triangular coordinate.
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Let

� =
�
'1 '2 '3 '4 '5 '6 '7 '8 '9

�
(3.87)

and

w (�1; �2; �3) = �v (3.88)

Derive the element matrix Derive the element matrix of the variation equation (3:78) with

BCIZ element

3.4.1 The linearization of non-linear term and element matrix

Change coordinate from the global coordinate to the local coordinate, the relationship of

Ox;y and O�1;�2;�3 is

�
@w
@x
@w
@y

�
= Z

264
@w
@�1
@w
@�2
@w
@�3

375 (3.89)

where

Z =
1

2A

�
�y32 �y13 �y21
x32 x13 x21

�
(3.90)

the w use BCIZ element to approximation, w = �v

264
@w
@�1
@w
@�2
@w
@�3

375 =
264

@�
@�1
@�
@�2
@�
@�3

375 v = Bv (3.91)
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where

B =

26666666666664

2�1 (3� 2�1)� 2�21 + 2�2�3 2�1�3
�2�1 (�y21�2 � y31�3) + 1

2
(y21 + y31) �2�3 �21y21 +

1
2
(y21 + y31) �1�3

2�1 (�x21�2 � x31�3)� 1
2
(x21 + x31) �2�3 ��21x21 � 1

2
(x21 + x31) �1�3

2�2�3 2�2 (3� 2�2)� 2�22 + 2�1�3
��22y21 + 1

2
(y32 � y21) �2�3 �2�2 (�y32�3 + y21�1) + 1

2
(y32 � y21) �1�3

�22x21 +
1
2
(�x32 + x21) �2�3 2�2 (�x32�3 + x21�1)� 1

2
(x32 � x21) �1�3

2�2�3 2�1�3
��23y31 � 1

2
(y31 + y32) �2�3 ��23y32 � 1

2
(y31 + y32) �1�3

�23x31 +
1
2
(x31 + x32) �2�3 �23x32 +

1
2
(x31 + x32) �1�3

2�1�2
�21y31 +

1
2
(y21 + y31) �1�2

��21x31 � 1
2
(x21 + x31) �1�2
2�1�2

�22y32 +
1
2
(y32 � y21) �1�2

��22x32 � 1
2
(x32 � x21) �1�2

2�3 (3� 2�3)� 2�23 + 2�1�2
�2�3 (y31�1 + y32�2)� 1

2
(y31 + y32) �1�2

2�3 (x31�1 + x32�2) +
1
2
(x31 + x32) �1�2

37777777777775

T

(3.92)

so the Ov = ZBv; then the element matrix of �
R


(cof (D2u)Ou)Ovdx is

Ke1 = �
Z
e

BTZTC1ZB jJ j d�1d�2 (3.93)

where C1 is cof (D2u)

3.4.2 biharmonic term

for biharmonic term D�2u where D = c
12(1��2)

�2 =
h

@2

@x2
@2

@y2
2 @2

@x@y

i24 1 � 0
� 1 0

0 0 (1��)
2

35
264 @2

@x2
@2

@y2

2 @2

@x@y

375 (3.94)

Let C2 =

24 1 � 0
� 1 0

0 0 (1��)
2

35
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The second derivative of a function w (�1; �2; �3) with respect to x or y from (2:59)

and application of the chain rule:

@2w

@x2
=

1

2 �A

�
@

@�1

@w

@x
y23 +

@

@�2

@w

@x
y31 +

@

@�3

@w

@x
y12

�
(3.95)

=
1

4 �A2

�
@2w

@�21
y223 +

@2w

@�22
y231 +

@2w

@�23
y212 + 2

@2w

@�1@�2
y31y23 + 2

@2w

@�1@�3
y12y23 + 2

@2w

@�2@�3
y12y31

�

@2w

@y2
=

1

2 �A

�
@

@�1

@w

@y
x32 +

@

@�2

@w

@y
x13 +

@

@�3

@w

@y
x21

�
(3.96)

=
1

4 �A2

�
@2w

@�21
x232 +

@2w

@�22
x213 +

@2w

@�23
x221 + 2

@2w

@�1@�2
x13x32 + 2

@2w

@�1@�3
x21x32 + 2

@2w

@�2@�3
x21x13

�

@2w

@x@y
=

1

2 �A

�
@

@�1

@w

@y
y23 +

@

@�2

@w

@y
y31 +

@

@�3

@w

@y
y12

�
=

1

4 �A2

�
@2w

@�21
x32y23 +

@2w

@�22
x13y31 +

@2w

@�23
x21y12 +

@2w

@�1@�2
(x13y23 + x32y31)

+
@2w

@�1@�3
(x21y23 + x32y12) +

@2w

@�2@�3
(x21y31 + x13y12)

�
(3.97)

which matrix form is

264 @2w
@x2
@2w
@y2

2 @
2w

@x@y

375 = 1

4 �A2

2666664
y223 x232 2x32y23
y231 x213 2x13y31
y212 x221 2x21y12

2y23y31 2x32x13 2 (x32y31 + x13y23)
2y31y12 2x13x21 2 (x13y12 + x21y31)
2y12y23 2x21x32 2 (x21y32 + x32y12)

3777775

T

26666666664

@2w
@�21
@2w
@�22
@2w
@�23
@2w
@�1@�2
@2w
@�2@�3
@2w
@�1@�3

37777777775
(3.98)

let

S =
1

4 �A2

2666664
y223 x232 2x32y23
y231 x213 2x13y31
y212 x221 2x21y12

2y23y31 2x32x13 2 (x32y31 + x13y23)
2y31y12 2x13x21 2 (x13y12 + x21y31)
2y12y23 2x21x32 2 (x21y32 + x32y12)

3777775

T
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the w use BCIZ element to approximation, w = �v26666666664

@2w
@�21
@2w
@�22
@2w
@�23
@2w
@�1@�2
@2w
@�2@�3
@2w
@�1@�3

37777777775
= 	v (3.99)

where

	 =

2666666666664

6� 12�1 0 0 2�3
2y21�2 + 2y31�3 0 0 2y21�1 +

1
2
(y21 + y31) �3

�2x21�2 � 2x31�3 0 0 �2x21�1 � 1
2
(x21 + x31) �3

0 6� 12�2 0 2�3
0 2y32�3 � 2y21�1 0 �2y21�2 + 1

2
(y32 � y21) �3

0 �2x32�2 + 2x21�3 0 2x21�2 � 1
2
(x32 � x21) �3

0 0 6� 12�3 2�3
0 0 �2y31�2 � 2y32�2 �1

2
(y31 � y32) �3

0 0 2x31�1 + 2x32�2
1
2
(x31 + x32) �3

2�1 2�2
1
2
(y21 + y31) �1 2y31�1 +

1
2
(y21 + y31) �2

�1
2
(x21 + x31) �1 �2x31�1 � 1

2
(x21 + x31) �2

2�1 2�2
2y32�2 +

1
2
(y32 � y21) �1 1

2
(y32 � y21) �2

2x32�2 � 1
2
(x32 � x21) �1 �1

2
(x32 � x21) �2

2�1 2�2
�2y32�3 � 1

2
(y31 � y32) �1 �2y31�3 � 1

2
(y31 � y32) �2

2x32�3 +
1
2
(x31 + x32) �1 2x31�3 +

1
2
(x31 + x32) �2

3777777777775

T

(3.100)

so the4v = S	v; then the element matrix of ��
R


4u�4vdx is

Ke2 = �
Z T

e

	TSTC2S	 jJ j d�1d�2 (3.101)
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In this thesis, we will follow this algorithm

1. Given a initial u0, � and tolerance T

2. Fixed �

3. Newton's iteration if kun+1 � unk � T then it converge, if not the iteration is diverge

4. if � � h2 where h is mesh size then out the algorithm

5. let � = �=c where c is a constant, then go to 2



Chapter 4
Numerical Study

The numerical result will be given, These are three part of this chapter: Poisson

equation ,biharmonic equation and Monge-Ampére equation.

4.1 Poisson Equation

Poisson Equation:

4u = f in 


uj@
 = g

where f and g are obtained from a given analytical solution u. We use Linear element and

BCIZ element to approximate the Poisson equation. We compute the Poisson equation on

different mesh size. Our calculation domain is [0; 1] � [0; 1] : The boudary condition are

Dirchlet type.
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4.1.1 Example:

The analytical solution u = ex+y; f = 2ex+y and g = ex+y: we use linear element to

approximate the Poisson equation in this case.

Computed solution uh Error

h ku0 � uhk1 ku0 � uhkL2 ku0 � uhkH1

1=10 5.97E-03 8.28E-04 2.04E-01
1=20 1.98E-03 2.21E-04 1.02E-01
1=40 6.28E-04 5.68E-05 5.10E-02
1=80 1.91E-04 1.44E-05 2.55E-02
1=160 5.65E-05 3.61E-06 1.28E-02

Table 1. Change of ku� uhk w.r.t. h

The convergence rate of L2 norm is second order and H1 norm is �rst order. This

result is same as error estimates of the biharmonic equation using BCIZ element approxi-

mation.
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4.1.2 Example:

The analytical solution u = sin (2�x) sin (2�y) ; f = �8�2 sin (2�x) sin (2�y) and g = 0:

we use BCIZ element to approximate the Poisson equation in this case.

Computed solution uh Error

h ku0 � uhk1 ku0 � uhkL2 ku0 � uhkH1

2�3 1.23E-3 8.03E-4 4.37E-2
2�4 1.67E-4 7.54E-5 4.19E-3
2�5 1.32E-5 7.24E-6 5.32E-4
2�6 8.83E-7 7.85E-7 1.18E-4

Table 2. Change of ku� uhk w.r.t. h

The convergence rate of L2 norm is third order and H1 norm is second order. This

result is same as error estimates of the biharmonic equation using BCIZ element approxi-

mation.



4.2 Biharmonic Equation 50

4.2 Biharmonic Equation

Biharmonic Equation:

42u = f in 


uj@
 = g

Ou � nj@
 = h

where f , g and h are obtained from a given analytical solution u. We use BCIZ element to

approximate the Biharmonic equation. We compute the Biharmonic equation on different

mesh size. Our calculation domain is [0; 1] � [0; 1] : The boudary condition are Dirichlet

type and Neumann type. Because of the Biharmonic equation is fourth order equation, so

the approximation of linear element maybe not have a high accuracy.
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4.2.1 Example:

The analytical solution u = x cos(x)ey; f = 0 ,g = x cos(x)ey andOu =
�
cos(x)ey � x sin(x)ey

x cos(x)ey

�
:

Computed solution uh Error

h ku0 � uhk1 ku0 � uhkL2 ku0 � uhkH2

2�2 0.002971694 0.001206162 0.499530706
2�3 0.00065049 0.000273676 0.242128734
2�4 0.000155176 6.32838E-05 0.119339924
2�5 3.78495E-05 1.51706E-05 0.059270777
2�6 9.32505E-06 3.71417E-06 0.02954046
2�7 2.31532E-06 9.1924E-07 0.014747201

Table 3. Change of ku� uhk w.r.t. h

The convergence rate of L2 norm is second order and H2 norm is �rst order. This

result is same as error estimates of the biharmonic equation using BCIZ element approxi-

mation.
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4.2.2 Example:

The analytical solution u = (cos(2�x)� 1) (y2 � 2y3 + y4) ; f = 0 ,g = x cos(x)ey and

h = 0:

Computed solution uh Error

h ku0 � uhk1 ku0 � uhkL2 ku0 � uhkH2

2�2 0.01171965 0.004154116 0.645238157
2�3 0.004269365 0.001568274 0.307797116
2�4 0.001169401 0.000445123 0.150571686
2�5 0.000302368 0.000116688 0.074556331
2�6 7.67083E-05 2.97733E-05 0.037111559
2�7 1.93091E-05 7.5141E-06 0.018516197

Table 4. Change of ku� uhk w.r.t. h

The convergence rate of L2 norm is second order and H2 norm is �rst order. This

result is same as error estimates of the biharmonic equation using BCIZ element approxi-

mation.
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4.3 Monge-Ampére

Regularization Monge-Ampére Equation:

��42u� + det
�
D2u�

�
= f; in 


u� = g on @


4u� = � on @


where f and g are obtained from a given analytical solution u. We use BCIZ element to

approximate the Monge-Ampére equation. We compute the Poisson equation on different

parameter � with �xed mesh size h. The boudary condition are Dirchlet type. In this

section, we provide several 2-D numerical experiments of BCIZ element. And the initial

condition is given by zero. The � start from 1 to h2:
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4.3.1 Example:

This test, we calculus ku0 � u�hk for �xed mesh size h = 2�8; while varying � in order to

approximate ku0 � u�k : We use BCIZ element and set to solve problem (3:71) with the

analytical solution u = x4 + y2 ; f = 24x2 and g = x4 + y2; Our calculation domain 
 is

[0; 1]� [0; 1] :

solution error

� ku0 � u�hk1 ku0 � u�hkL2 ku0 � u�hkH2 iter
1 3.05E-1 1.61E-1 5.32 6
2�2 2.30E-1 1.21E-1 4.67 10
2�4 1.13E-1 5.71E-2 3.63 10
2�6 4.23E-2 1.90E-2 2.71 8
2�8 1.45E-2 5.67E-3 1.99 8
2�10 4.50E-3 1.60E-3 1.44 8
2�12 1.29E-3 4.33E-4 1.03 9
2�14 3.48E-4 1.13E-4 7.33E-1 10

Table 5. Change of ku0 � u�hk w.r.t. � (h = 2�8)
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�
ku0�u�hkL2

�

ku0�u�hkH2
4p�

1 0.160842924 5.319207667
2�2 0.482036757 6.609013597
2�4 0.913779843 7.268095576
2�6 1.218354047 7.670044224
2�8 1.450567862 7.955838131
2�10 1.637202829 8.133261803
2�12 1.772707203 8.235401948
2�14 1.85193153 8.290262971

Table 6. Change of ku0 � u�hk w.r.t. � (h = 2�8)
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4.3.2 Example:

This test, we calculus ku0 � u�hk for �xed mesh size h = 2�8; while varying � in order to

approximate ku0 � u�k : We use BCIZ element and set to solve problem (3:71) with the

analytical solution u = 20x6 + y6 ; f = 18000x4y4 and g = 20x6 + y6; Our calculation

domain 
 is [0; 1]� [0; 1] :

solution error

� ku0 � u�hk1 ku0 � u�hkL2 ku0 � u�hkH2 iter
4 6.43 2.88 177.28 5
1 5.22 2.17 167.40 9
2�2 3.31 1.19 148.99 10
2�4 1.79 6.20E-1 125.31 10
2�6 8.72E-1 2.57E-1 101.97 10
2�8 4.02E-1 9.17E-2 82.10 10
2�10 1.80E-1 3.22E-2 65.25 11
2�12 7.93E-2 1.11E-2 51.21 13
2�14 3.45E-2 3.74E-3 39.77 20

Table 7. Change of ku� u�hk w.r.t. � (h = 2�8)
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�
ku0�u�hkL2

�

ku0�u�hkH2
4p�

4 0.720510991 125.3567907
1 2.165121991 167.3973101
2�2 4.758836554 210.7002103
2�4 9.926086663 250.6286892
2�6 16.4590354 288.4238466
2�8 23.47587569 328.3874835
2�10 32.93384144 369.1038869
2�12 45.33800541 409.6430813
2�14 61.24535142 449.9969415

Table 8. Change of ku� u�hk w.r.t. � (h = 2�8)
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4.3.3 Example:

This test, we calculus ku0 � u�hk for �xed mesh size h = 2�8; while varying � in order to

approximate ku0 � u�k : We use BCIZ element and set to solve problem (3:71) with the

analytical solution u = e
x2+y2

2 ; f = (1 + x2 + y2) ex
2+y2 and g = e

x2+y2

2 ; Our calculation

domain 
 is [0; 1]� [0; 1] :

solution error

� ku0 � u�hk1 ku0 � u�hkL2 ku0 � u�hkH2 iter
1 1.78E-1 1.01E-1 3.03 29
2�2 1.41E-1 8.17E-2 2.72 48
2�4 7.14E-2 4.45E-2 2.13 38
2�6 2.26E-2 1.56E-2 1.57 9
2�8 6.30E-3 4.52E-3 1.13 8
2�10 1.81E-3 1.22E-3 8.00E-1 8
2�12 5.00E-4 3.16E-4 5.67E-1 8
2�14 1.33E-4 8.00E-5 4.01E-1 9

Table 9. Change of ku� u�hk w.r.t. � (h = 2�8)
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�
ku0�u�hkL2

�

ku0�u�hkH2
4p�

1 0.100518486 3.026105949
2�2 0.32688765 3.840967403
2�4 0.71238757 4.259311736
2�6 0.99970787 4.434163657
2�8 1.157804247 4.506118399
2�10 1.24700059 4.527808719
2�12 1.294427725 4.534697517
2�14 1.309904805 4.53757113

Table 10. Change of ku� u�hk w.r.t. � (h = 2�8)
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4.3.4 Example:

This test, we calculus ku0 � u�hk for �xed mesh size h = 2�8; while varying � in order to

approximate ku0 � u�k : We use BCIZ element and set to solve problem (3:71) with the

analytical solution u =
2
p
2(x2+y2)

3
4

3
; f = 1p

x2+y2
and g = 2

p
2(x2+y2)

3
4

3
; Our calculation

domain 
 is [0; 1]� [0; 1] :Where f has a singular point at (0; 0) :

solution error

� ku0 � u�hk1 ku0 � u�hkL2 ku0 � u�hkH2 iter
1 1.41E-1 7.89E-2 2.16 5
2�2 1.23E-1 6.93E-2 2.01 19
2�4 7.59E-2 4.48E-2 1.64 9
2�6 2.78E-2 1.81E-2 1.22 10
2�8 8.01E-3 5.57E-3 8.95E-1 8
2�10 2.12E-3 1.55E-3 6.51E-1 8
2�12 5.57E-4 4.08E-4 4.68E-1 9
2�14 1.44E-4 1.04E-4 3.34E-1 11

Table 11. Change of ku� u�hk w.r.t. � (h = 2�8)
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�
ku0�u�hkL2

�

ku0�u�hkH2
4p�

1 0.078906702 2.164987734
2�2 0.277330363 2.843363264
2�4 0.717285822 3.275360039
2�6 1.15590166 3.442870121
2�8 1.425652095 3.57845558
2�10 1.583580447 3.680240848
2�12 1.671089711 3.747674023
2�14 1.709884392 3.773972909

Table 12. Change of ku� u�hk w.r.t. � (h = 2�8)
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4.3.5 Example:

This test, we calculus ku0 � u�hk for �xed mesh size h = 2�8; while varying � in order to

approximate ku0 � u�k : We use BCIZ element and set to solve problem (3:71) with the

analytical solution u =
p
x2 + y2 ; f =

�
0 if (x; y) 6= (0; 0)
? if (x; y) = (0; 0) and g =

p
x2 + y2; Our

calculation domain 
 is [�1; 1] � [�1; 1] :Where f has a singular point at (0; 0), and our

guess the value of f at (0; 0) is 3�:

solution error

� ku0 � u�hk1 ku0 � u�hkL2 ku0 � u�hkH2 iter
1 8.17E-1 6.00E-1 8.65 5
2�2 5.51E-1 3.72E-1 8.82 9
2�4 2.48E-1 1.42E-1 9.27 10
2�6 9.77E-2 5.31E-2 9.72 11
2�8 4.151E-2 2.56E-2 10.09 14
2�10 2.08E-2 1.49E-2 10.32 19
2�12 9.28E-3 6.92E-3 10.51 28
2�13 3.59E-3 1.95E-3 10.66 21

Table 13. Change of ku� u�hk w.r.t. � (h = 1=127)
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�
ku0�u�hkL2

�

ku0�u�hkH2
4p�

1 0.599947604 8.652542689
2�2 1.48793695 12.4786026
2�4 2.278636795 18.53711229
2�6 3.398612852 27.50569621
2�8 6.546636298 40.36922514
2�10 15.30464406 58.38278827
2�12 28.35360433 84.08190819
2�13 16.00805235 101.4092367

Table 14. Change of ku� u�hk w.r.t. � (h = 1=127)
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Compared with Feng's and Oberman's result:

case1: u = e
x2+y2

2 ; f = (1 + x2 + y2) ex
2+y2

Ours Feng's
� ku� u�hkL2 � ku� u�hkL2
2�1 0.093580805 0:5 0.038717
2�2 0.081721912 0:25 0.040988
2�3 0.064370429 0:1 0.032218
2�4 0.044524223 0:05 0.022259
2�6 0.015620435 0:0125 0.007817
2�9 0.002361013 0:0025 0.001864
2�11 0.00062253 0:0005 0.000405

Ours Oberman's
N iter N M1 M2
128 69 121 31965 1205
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case 2: u =
p
x2 + y2; f =

�
0 if (x; y) 6= (0; 0)
? if (x; y) = (0; 0)

Ours Feng's
� ku� u�hkL2 � ku� u�hkL2
2�1 0.504058
2�2 0.371984
2�3 0.239381
2�4 0.142415 none
2�6 0.053103
2�9 0.014946
2�11 0.001954

Ours Oberman's
N iter N M1 M2
128 117 121 36396 10486

Under same accuracy, iteration number is less than other group. And the case have

singularty can be achieved with high ef�cient computing.



Chapter 5
Conclusion

1. The error of ku� u�hkL2 of the Monge-Ampére is O (�) from test cases. The error of

ku� u�hkH2 of the Monge-Ampére is O ( 4
p
�) from test cases.

2. In numerical simulation of the elliptic regularization Monge-Ampére, the � � h2;

where h is mesh size.

3. In the singular case, we can shift the grid point such that the singular point locate in a

element.
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