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Abstract. A self-consistent model  for describing carrier transport in heavily 
doped  semiconductor devices has been developed. The proposed model  allows 
convenient  treatment of  non-uniform semiconductors in a  manner that  is  both 
thermodynamically consistent and consistent with the  transport equations, the 
steady-state continuity equations  and the electrostatic potetial with explicit 
boundary conditions at the contacts. The complex problems are reduced to 
determining two types of quantities: the reference electrostatic potential  and 
the activity  coefficient of  the carriers. In order to  find  the  simple  working 
equations for  the model, two choices of reference for the electrostatic potential 
are discussed. The presented transport  equations are written  in a simple 
Shockley-like form, in  which  the effects associated with  the  non-uniform band 
structure  and the influence of Fermi-Dirac statistics are described by a thermo- 
dynamic property, the activity  coefficient of the carriers, which  is expressed in 
terms  of  two band model parameters, the effective band-gap shrinkage, A€,,, 
and the effective  asymmetry factor, A. In  this  form they are convenient for use in 
computer-aided analysis and  the  design of heavily  doped  semiconductor 
devices. 

1. Introduction composition-independent term (called the  reference 
state chemical potential) and a term which is compo- 

The general analytic characterisation of the  carrier sition dependent and accounts for the non-ideal behav- 
transport in heavily doped semiconductor devices is iour (named the activity coefficient) of the real system. 
difficult because of the complex heavy-doping effects The electrical contribution depends on the electrical 
[ l ]  that must  be accounted for.  These effects may condition of the phase and may contain some other 
include the actual band-gap narrowing [2, 31, the  car- potential energy (for example,  due  to  strain) besides 
rier degeneracy [4], the influence of the impurity band electrostatic energy. 
[5], and  the built-in electric field due  to  a graded doping In this paper we consider the  carrier  transport in 
density [h]. The resulting changes in the energy bands heavily doped semiconductor devices based on 
must  be considered in order to model p-n junction position-dependent band-structure approach. A simple 
devices accurately [ l ,  7 ,  8,  91. Transport  equations  for but self-consistent formulation of the thermodynamic 
materials with a  position-dependent band structure quanttities,  the  transport  equations,  the  steady-state 
have been derived by Mock [lo], van Overstraeten and continuity equations  and  the Poisson’s equation with 
co-workers [ l  1 J ,  Marshak and van Vliet [12-141 and explicit boundary conditions at  the contacts is pre- 
Lundstrom and co-workers [ 151. However, a systematic sented. By the  proper choice of reference for  the 
study (including the choice of the reference states) of a electrostatic potential, we develop  a simpler and  more 
self-consistent solution of transport  equations, steady- complete analytic model. The model includes the 
state continuity equations, Poisson’s equation and elec- effects of the modified band structure and the activity 
trochemical potential equation (irreversible thermody- coefficient of the  carriers which  is a useful quantity  for 
namics) does not seem to exist in the previous studies. describing a system behaviour deviated from its idea- 

The electrochemical potential of a given charged lity. The heavy-doping effects mentioned above  are 
species in a phase is generally divided into two terms accounted for in a consistent manner  that yields a 
(as shown in equation (26) below): the first one comes useful model which  can  be an effective aid to design 
from a chemical contribution and  the second an electri- and an informative guide to physical and  thermodyna- 
cal contribution. The chemical contribution is produced mic understanding. The results presented here  are of 
by the chemical environment in which the charged great importance both in practical device applications 
species exists, and is usually split into two terms,  a and in pedagogy. 
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Carrier transport in heavily doped  semiconductor  devices 

2. Energy bands in heavily doped 
semiconductors 

Figure 1 shows the energy  band  diagram  for  a  heavily 
doped  semiconductor.  The validity of this  energy  band 
model  has  been discussed by Marshak  and van  Vliet 
[12]. From figure 1, we have 

E L @ )  = Eo - qV(x) (1) 

x ( x )  = E&) - &(x) = 4 ,  - qV(x)  - E&) (2) 
and 

E G ( X )  = E&) - &(x) (3) 
where Eo is the field-free  vacuum  level, EL is the local 
vacuum  level, V is the  electrostatic  potential  (neglect- 
ing the  other  potentials), x is the  electron affinity, E G  is 
the  band-gap  energy, Ec is the  bottom of the  conduc- 
tion  band, Ev is the  top of the valence band,  and q is 
the  magnitude of the  electronic  charge. 

0 
 position,^ 

Figure 1. The  energy  bands for a n  inhomogeneous 
material 

If we assume  Fermi-Dirac  statistics  and  write  the 
non-equilibrium  carrier  densities  as 

n ( x )  = N&)FdVC(X)) 

= ni(x)<C(x) exp[(EFn(x) - E l ( x ) ) / k T l  (4) 
and 

A x )  = NV(X)Fl,*(VV(X)) 

= ni(X)PV(x) exp[(E,(x) - EFp(x))/kT] ( 5 )  

where EFn and EFp are  the  quasi-Fermi levels for elec- 
trons  and  holes,  respectively,  and 

n,(X) = (Nv(X)Nc(X))’”eXp( - EG(x)/2kT) (6) 

is the  position-dependent  intrinsic  carrier  concentra- 
tion. Nc(x) and  Nv(x)  are effective  densities of states in 
the  conduction  band  and in the  valence  band,  respecti- 
vely. ti(x) is the  degeneracy  effect  and is defined by 

and Fl,? is the Fermi-Dirac  integral of order one-half 
with 

and 

After  some  algebraic  manipulation,  these  parameters 
can be  related  to  the  electrostatic  potential  as 

where 

are  the  quasi-Fermi  potentials  for  the  electrons  and 
holes,  respectively. It should  be  noted  here  that  quasi- 
equilibrium  condition is applied  at x=O. Thus, by 
convention, we have  EFp(0) = EFn(0)=E!(O) (assuming 
p-type  material here). 

Using Equations  (2)-(6) we obtain  the intrinsic 
energy level 

It is apparent  from (14) that E , ( x )  is not, in general, 
parallel  to V(x) as it is  in a  uniform  non-degenerate 
semiconductor.  Indeed, El is a  purely  thermodynamic 
property of the intrinsic bulk semiconductors  as  shown 
by Chang [16]. Thus,  one  cannot use it  to align the 
energy levels in the  energy  band  diagram. 

3. Poisson’s equation 

To obtain  the  electrostatic  potential within a heavily 
doped  semiconductor  device we must  solve  Poisson’s 
equation [ 171 with appropriate  boundary  conditions. 
For  convenience,  consider  a  one-dimensional p-n junc- 
tion with Ohmic  contacts  at x = O  on  the p-side  and 
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x =  W on  the  n-side,  and with the  junction  at x , .  The 
Poisson's equation is given by 

where K is the  dopant  density-dependent dielectric 
constant, q l  is the  permittivity in vacuum,  and N +  = 
N :  - N ,  is the  ionised  dopant  density.  The  carrier 
concentrations,  p  and  n, can  be  expressed in terms of 
the  electrostatic  potential.  Algebraic  manipulation of 
equations  (4), ( 9 ,  (6)  and  (14), with quasi-equilibrium 
condition at x = 0 and  the  reference  electrostatic  poten- 
tial 

gives the following carrier  densities 

and 

where 

AE,= (E,(O) -Eg@))  + kTln (::i;;:$;) 

and 

( ~ ( x )  - ~ ( 0 ) )  + k T  In 

+ kTIn( Cc(x)) ] iAE, .  (19) 

As  shown in figure 1, we choose x = 0 as  the  refer- 
ence  position  for  the  electrostatic  potential  at which the 
material is uniform.  Also,  the  actual  band-gap  narrow- 
ing effect (ABGN = EG(0) - &(x) )  is generally  greater 
than  the  degeneracy  effect (AFD= k T  ln(<&)<"(x))). 
So, both AE, and A are positive quantities. AE, is 
called the effective  band-gap  shrinkage and  accounts 
for  the  actual  band-gap  narrowing effect ( A B G N ) ,  the 
density-of-state  effects (ADos), and  the influence of 
Fermi-Dirac  statistics ( A F D ) .  A ,  called the effective 
asymmetry  factor [18], measures  the  fraction of the 
reduction in band  gap  that  occurs in the  conduction 
band, 0 SA S 1.  In  a lightly doped  material with 
uniform  band  structure, AEg and A are  zero.  These 
extra  terms  over  conventional  results  are  due  to  the 
non-ideal  behaviour of the  carriers  and can  be related 
to  the activity  coefficients of the  carriers [16]. 

Assuming  that the  potential of the  Ohmic  contacts 
remains in equilibrium, we obtain  the  electrostatic 
potential V ( W )  from (16) as 

4 V W )  = S V n ( W  

where  subscript 0 represents  the  equilibrium  value. In 
n-type  semiconductors,  where NA( W )  = 0, rill( W )  % 
po( W )  and  one can  neglect po( W )  and NA(W) in the 
charge  neutrality  condition  to yield no( W )  = ND( W ) .  
Also,  from  (14), (P"( W )  is given by 

q 9 n ( W )  Et(o) - E F n ( W )  
= EP(0) - E;(W)  = -qvi, (21) 

where V, represents  the  terminal  voltage.  Again,  note 
that  quasi-equilibrium  condition  at  contact x = W gives 
E,,(") = EF,(W)=EF(W). It is the well known  result 
that  the  separation of the  majority  quasi-Fermi levels 
across the  entire device is given by the  terminal  voltage. 

The electrostatic  potential  difference V, across  the 
entire device is given by 

v, = V( W )  - V(0). (22) 

Substituting  (20), (21) and 

into (22) gives 

- kTln( <"(O)> -qv;, .  (23) 
It is also  noted  that  the built-in potential Vhl of the 
junction  for  the  degenerate case is given by [l91 

qvbi=  -A,(W)AE,,(W)+kTln ( ND,,,,,,o') 

-kTW<"(o)) .  

Substituting (24) into (23) ,  we have 

v, = v,, - v;,. 
Equation (25) gives the  total  voltage  across  the  junction 
from x =  0 on the  p  side  to x = W on  the  n  side.  In 
equilibrium V, = O  and Vbi  is given by (24),  but if an 
external  voltage V, is applied it changes V,. It is import- 
ant to note  that,  for  a given bias, Vt becomes  smaller  as 
either A,(") or AE,,(W) becomes  larger. The refer- 
ence  electrostatic  potential V(0) and  equation (20) can 
be served  as  two  explicit  boundary  conditions  for solv- 
ing the Poisson equation. 

4. A consistent formulation 

In this  section,  equations  presented  earlier  are used to 
derive  the self-consistent  results for  the  band-model 
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parameters  and  thermodynamic  quantities,  for  exam- 
ple,  the  reference  state chemical  potentials  and activity 
coefficients of the  carriers which appear in the  electro- 
chemical  potentials of the  carriers.  The electrochemical 
potential ( , L i ) ,  or quasi-Fermi  level, of a  charged  spe- 
cies i in phase a is defined as  the sum of its chemical 
potential  and its electric  potential  energy [20] 

,L: = p ;  + ziqVrl=pI*.a + kT ln(y7c:') + z,qV" (26) 

where p: is the chemical potential, p:." is the  reference 
state chemical  potential  and is a  function  only of tem- 
perature,  pressure,  and choice of reference  state, yr is 
the activity coefficient, c? is the  concentration (ci = n  for 
electrons; c i=p  for  holes),  and zi  ( z i =  1 for  holes; 
2, = - 1  for  electrons) is the  elemental  charge of species 
i. The potential V" is the  electrostatic  potential which is 
obtained  through  integration of Poisson's equation 

For  electrons ( i  = n), equating ,Ln = EF, ,  we have 
(15). 

E F ,  =,L, =p:  + k T  In(ny,) - q v .  (27) 

Here we have  dropped  the  superscripts because  (27) 
holds  on either  the n-side or p-side. It is clear that we 
have  two  reference  states in (27), i.e., p :  and qV(0). 
This  implies that we have  two  unknowns  and only one 
equation.  To  get  the consistent  results,  these  two  refer- 
ence  states  cannot  be chosen  independently.  When  one 
is specified, the  other must  be  fixed.  In  a  similar 
manner,  for  holes ( i  = p),  equation ,Lp = - E F p  gives 

- EFp =pp=pp* + kTln (py,) + q v .  (28) 

Note  that negative  quasi-Fermi  energy is used in equa- 
tion  (28).  This is because  a  hole  has  a  charge  opposite 
that of an  electron. 

Chang [21] has  recently  addressed the calculation of 
the  reference  state chemical  potentials  and  the activity 
coefficients of the  carriers with three  different choices 
of reference  for  the  electrostatic  potentials. In the case 
of 

qV(0) = kT In (c";WoQ) 
the results of his analysis  for  electrons  and  holes are 

p:( T) = E,(O) - kT In(ni(0)) + qV(0)  (29) 

p;( T) = - E,(O) - kT In(ni(0)) - qV(0)  (30) 

and 

y,(T,p,x)=exp(  (32) 

where AEg and A are defined by (18) and (19), respecti- 
vely. These values  combined with (15) and (26) can be 
used in the self-consistent  result  calculations. It is seen 
from figure 1 that  the value of the  reference  electro- 
static  potential  at x =  0 can be  arbitrarily  chosen 

because the field-free  vacuum level E,, is an  arbitrary 
one.  The choice of 

qV(0)  = kTln (5";;;oy 

(a  particular  value),  however,  results in the simple 
equations (29) through (32) and  also  leads to  a simple 
form of Poisson's equation [19]. This  choice will be 
used henceforth. 

5. Transport  equations 

The  electron  and hole current  densities  under  isother- 
mal conditions  are given by 

J ,  = n U,V E F n  (33) 

and 

JP = p  UpV EFp (34) 

where U, and Up are  the mobilities of electrons  and 
holes,  respectively. The validity of these  equations  for 
materials with position-dependent  band  structures  has 
been  established by Marshak  and van Vliet [12,22]. 

If the definition of EF,, (27), is used,  the  gradient of 
the  electron quasi-Fermi level can be expressed  as 

V E F n =  - qVV+ kTV In n + kTV In y,. (35) 

Note  that Vu,* is zero  because  the  reference state 
chemical  potential is a  function  only of temperature, 
pressure  and  the  choice of the  reference  state. 
Substituting (35) into (33) yields 

J ,  = kTU,Vn - qnU,VV+ kTnU,V In yn. (36) 

Furthermore, substituting (31) into  (36),  followed by 
some algebraic  manipulation, gives 

J,=kTU,Vn-qnU,V(V+AAEdq). (37) 

The hole  current density is derived in a  similar manner. 
For  holes,  an  expression  for  the  gradient of the quasi- 
Fermi level can  be  obtained by using the definition of 
E F p  in (28). The result  for E F p  is 

V E F p =  - qVV- kTV l n p  - kTV In yp. (38) 

Again, we use the fact that V& = O .  Substituting  (38) 
into  (34), we obtain 

J p = - k T U p V p - q p U p V V - k T p U p V I n y p .  (39) 

Equation (39) can  be  rewritten in terms of AEg and A .  
Using (32) in the last term of (39) and  rearranging 
yields 

Jp=-kTUpVp-qpUpV V - ( l - A ) L  . (40) i AE 4 1 
Equations (37) and  (40) or (36) and  (39)  are  convenient 
to use in semiconductor  device  analysis.  Although 
these  equations  are  expressed in a  simple form, they 
correctly  describe  carrier  transport in materials with a 
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position-dependent  band  structure.  The effects of the 
non-uniform  band  structure  and  the  carrier  degeneracy 
are  described by two parameters,  AEg  and A ,  which are 
expressed in terms of the  carrier activity coefficients. 
The results  presented  here  are identical in form  to 
those  derived by Marshak  and van  Vliet  [22]. The 
treatments,  however,  are  different.  These  results  along 
with those discussed in [22] would give a  good  descrip- 
tion of the  carrier  transport in degenerate  materials 
with  non-uniform  band  structure. 

6. The pn product 

The  carrier  concentrations given by equations (16) and 
(17)  can be  related  to  their activity  coefficients by (31) 
and (32) as 

and 

It is noted  that  the  pre-exponential  factor in equations 
(41)  and (42)  has the  same value  only if band-gap 
narrowing is symmetric (i.e., A = or yn = yp), which 
rarely  occurs  [23].  Even  as  the  carrier is non-degener- 
ate, asymmetric  band-gap  narrowing gives different 
pre-exponential  factors in (41) and  (42).  This is 
contrary  to  the  results of [8]. 

From  (41) and  (42),  the p n  product is then given by 

where  the ynyp product,  from (31) and  (32), is given by 

We  define  an  effective  intrinsic  carrier  concentration  as 
the pn product in equilibrium  (EFn = EFp) [l, 11, 131; 
thus 

where  the  subscript  zero  denotes  equilibrium. 
Substituting  (45)  into  (43) gives the p n  product  for all 
cases 

These  equations  can be simplified for  special  cases of 
interest. As an  example,  for  non-degenerate uniform 
semiconductors (yn = ynll = y p  = ypl, = l), equations  (41), 
(42) and  (46)  reduce  to 

and 

p ( x ) n ( x )  = n:(O) exp (EFni3 (49) 

In  the case of low-level injecton,  i.e. y n = y n l j  and yp=ypl, 
or A€,= AE,,,, (46) reduces  to 

This  result  can be used for all practical  conditions  (even 
for  high-level  injection) in Si. 

7. Discussion 

7.1. The choice of reference states 

The choice of the  reference  states is quite  arbitrary. 
The  proper choice,  however, of these  reference  states 
can  lead to simpler  working equations  for  the 
problems.  For  example, we choose x=x,- as  the  refer- 
ence  position  for  the  electrostatic  potential  at which 
qV(xj)  = O .  The results  for  the  carrier  concentrations 
and  the  potential  at  the  contacts  are given by 

n ( x )  = n ( x ; )  exp ( q ( V ( x )  - qn(x)) + AAE, 
k T  

+ (1 - All(0))AE,ll(O) - k T  In(-) (53) 
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The  parameters AE, and A in equations (51)-(54) are 
defined by equations  (57)  and ( 5 8 )  as 

and 

+ k T l n ( C o j l / h E , .  I;c(x,) (58) 

Note  that  the  parameters AEg and A given by (57) and 
(58 )  are  different  from  those defined by (18)  and (19) 
due  to  two  different choices of the  reference  states.  It is 
also noted  that  the  pre-exponential  factors in (51) and 
(52)  are  different  from  those  given by (16)  and (17). 

It is clear  that  the  boundary  conditions  for  the 
integration of Poisson's equation  are explicit for  the 
case of 

qV(0)  = kT In ( C " y o Q )  

(discussed  previously), while they are implicit for 
qV(x;)  =0 due  to  the  unknown  quantities p(x,-) and 
n ( x ; ) .  Therefore,  the  numerical  computation  for solv- 
ing the Poisson equation is quite  straightforward  for  the 
former  case. 

7.2. Alternative current equations 

In a typical  analysis,  the  electric field is expressed in 
terms of the  electrostatic  potential  as 

E =  -VV. (59) 

Using (59) in (36)  and  (39), we obtain  the  current 
equation, which is rewritten in terms of E 

J,=kTU,VnfqnU,E+kTnU,VIn yn (60) 

and 

J ,  = - kTU,Vp + qpU,E - kTpU,V In yp. (61) 

In this form, only one  parameter,  i.e.  the activity 
coefficient, is necessary to  describe  the effect of the 
non-uniform  band  structure  and  the influence of the 
Fermi-Dirac  statistics. The  current  density, via its 
dependence  on y,, in (60) and y p  in (61),  depends  not 
only on the effective band-gap  narrowing  but also on 
the  effective  asymmetry in band-gap  narrowing.  It is 
important  to  note  that  the diffusivity is not  needed  to 
evaluate  (60)  and  (61)  because  the coefficient in front 
of the diffusion terms involves  only the  mobility, which 
can  be  obtained  from  experiment. 

7.3. Minority-carrier current and concentration 

In  order  to solve for  the  steady-state  minority  carrier 
concentration,  for  example p in a heavily doped  n-type 
region in low injection, we return  to (40). It  should  be 
useful to define the effective  electric field in analysis  as 

JP = - kTU,Vp + qp U,E, (62) 

where 

The 'effective'  electric field (electric  plus  quasi-electric) 
E,  can be  evaluated by equating (62) to  zero  for 
thermal  equilibrium  conditions 

For low-injection  conditions, E, is not  altered  from its 
equilibrium  value given by (62) [18]. Combining  (45) 
and (64) yields 

Here we assume n,,= N D .  Substituting  (65)  into  (62) 
gives 

Equation (66) shows that  the minority  carrier current 
density is evaluated  independently  of how A is chosen. 

Equation (66) is inserted  into  the  steady-state  hole 
continuity  equation: 

V.J ,+q(R-G)=O (67) 

where R ,  the  recombination  rate of carriers  and G,  the 
rate  at which they  generate,  are  assumed  to be inde- 
pendent of the effective  asymmetry factor.  When two 
boundary  conditions  on p are specified,  (67)  can  be 
solved for  the  steady-state  hole  density.  The  boundary 
condition  at  the  contact W can be  either  a  Dirichlet 
type  or  a  Neumann  type.  The  second  boundary  con- 
dition  at  the  edge of the  space  charge region  follows 
from  the  non-equilibrium  form of (50) 

where V i ,  represents  the  portion of the  applied voltage 
that  appears  across  the  junction.  Equation (68)  indi- 
cates  that  the  relationship  between  the  junction  poten- 
tial and  the  minority  carrier  density  at  the  edge of the 
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space  charge region is obtained  regardless of the choice 
of A in the  transport  equations. 

The discussion presented  above shows that  the  car- 
rier  concentrations  and minority  carrier current density 
of heavily doped  semiconductor device are  correctly 
modelled  even when the  choice  for  A in (37) and (40) is 
made  arbitrarily.  However,  the  electrostatic  potential, 
built-in potential  and chemical  potential  cannot  be 
evaluated unless  A is known.  These  quantities  depend 
strongly on  the  A-value.  These  results  are also 
observed  when  the  semiconductor  equations  for  a 
Gaussian p-n junction  are solved  numerically [24]. 

8. Conclusions 

In  this  paper we present  a  self-consistent  formulation 
for  the  thermodynamic  quantities,  the  transport  equa- 
tions,  the  steady-state  continuity  equations  and  the 
electrostatic  potential with explicit boundary  conditions 
at  the  contacts.  The  formulation of the  model  requires 
the  selection of reference  for  the  electrostatic  potential 
and  the  evaluation of the activity coefficients of the 
carriers. Special  emphasis  has  been  placed  on  writing 
the  working  equations in a  simple  form by the  proper 
choice of the  reference  states.  These  general  transport 
equations, which are similar to those  derived by 
Marshak  and van  Vliet [13, 221, were  obtained  from  a 
simple  but  general  thermodynamic  point of view and 
written in a  simple  form  for use in device  analysis. 
In  this form,  the effects of the  non-uniform  band 
structure  and  the influence of Fermi-Dirac  statistics are 
described by one  thermodynamic  quantity,  the activity 
coefficient of the  carriers, which is expressed in terms 
of two  energy  band  model  parameters,  the effective 
band-gap  shrinkage, A E g ,  and  the effective  asymmetry 
factor, A .  These  parameters  correctly  account  for  the 
changes in the  band  structure  and  the  carrier  degener- 
acy which occur in regions  that  are heavily doped. 
When  experimentally  measured  heavy-doping  para- 
meters  are used in the  simple Shockley-like transport 
equations,  no  further  correction  for  degenerate  statis- 
tics is necessary.  Finally, it was shown, in the case of 
low injection,  that  the  carrier  densities  and  the minority 
carrier  current  density in semiconductor  devices with 
quasi-neutral, heavily doped  regions,  can  be  modelled 
accurately,  independently of the choice of A.  
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