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摘要 

  

    本篇論文應用機器學習演算法幫助我們分析影像之場景，並將場景中的物件

區域辨識出來。在本篇論文中，我們提出一個階層式場景分析系統，它主要是利

用以基因演算法為基礎的 Fuzzy ID3 理論方法。首先，我們提出一個基於基因演

算法的 Fuzzy ID3 理論方法來產生模糊決策樹，並且從這顆建構的模糊決策樹，

萃取出描述資料集的模糊規則。然後我們顯示出這些規則如何應用在車前的場景

分析。並且利用自然界的法則，來加以改善場景中物件區塊的修正，以提高辨識

的正確性。 

 

本篇論文所提出的階層式場景分析方法，主要是應用在分析從駕駛者的角度

往外看出去的道路場景。從測試的結果可以證明，我們所提出的這套系統，可以

有效的分出場景中的物件，並且能夠提供於避免潛在車禍碰撞事件的應用。 
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A Hierarchical Approach for Scene Analysis Using 

Genetic Algorithm Based Fuzzy ID3 Method 
 

STUDENT: SHIH-TSUNG CHEN       ADVISOR: Dr. JYH-YEONG CHANG 

 

Institute of Electrical and Control Engineering 

National Chiao-Tung University 

 

ABSTRACT 

 

    In this thesis, we consider to utilize machine learning algorithm to segment 

natural objects in outdoor scene images. First, we proposed a scene analysis system 

that is rooted from genetic algorithm based fuzzy ID3 method. We develop a genetic 

algorithm based fuzzy ID3 method, which is designed to generate a fuzzy decision 

tree and the decision tree can extract fuzzy rules to summarize the regularities existing 

in the data set. Afterward we show how the resultant rules can be used for object 

recognition and then apply image ground-truthing to further improve the rule-based 

object classification accuracy.  

 

The proposed hierarchical scene analysis method is applied to analyze the 

forward-looking road scene from a car. The testing results have demonstrated the 

natural object segmentation accuracy is quite high and this method provides a 

potential application in automated car collision avoidance. 
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Chapter 1. Introduction 
 

 

1.1. Research Background 

 

Computer has made a great contribution to the promotion of human lives. With 

the development of the computer, it is easier for people to communicate with each 

other. Since the mutual communication methods of mankind hinge on computers, they 

can identify and even can understand the data given to them. It is widely recognized 

that computers should be more humanized. In order to make it easier for people to use 

computers and even to communication with them, a lot of hand-written recognition 

and speech recognition systems have commercialized. 

 

At present, images are regard as an essential variety of information. They are the 

most common media around us. One of the important problems in a vision system is 

identifying the image regions that represent objects. This operation, which is so 

natural and easy for people, is surprisingly difficult for computer. The first step 

toward a vision system for object identification is to partition or segment an image 

into meaningful regions. Ideally, a region represents an object or part of an object. But 

current progresses been made are limited, mostly because of the variation of natural 

scenes. By using some knowledge, we are likely able to let the system adapt itself to 

most situation that may be encounter on the road. 

 

In recent years, a great deal of scientific efforts has already dedicated to image 

analysis problems. The paradigm of image analysis has been successfully utilized in 
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various fields. For example, robot vision, medical diagnose, image segmentation, 

pattern recognition, and so on. 

 

1.2. Overview 

 

The purpose of image understanding is to enable a computer to understand its 

environment from visual information. There are diverse studies about image 

understanding using knowledge base system [1], [2]. In the study of image 

understanding, it is important to recognize the natural elements by image processing, 

and to understand their situations with knowledge base. But at present, a general 

purpose image understanding system is still very difficult for scientists to achieve. 

Because the input image data is very diverse and also sensitive to the environment, a 

scene in the real world may produce completely different data under different 

situation, for example, time of a day or year, wealth condition, and viewing angle. 

 

In recent years, fuzzy set has provided an effective scheme of knowledge 

representation. One major feature of fuzzy set theory is its ability to express the 

ambiguity in human thinking, and uncertain information obtained from the real world. 

Furthermore, fuzzy set theory provides the inference that applies human reasoning 

ability to the knowledge base system. Therefore, fuzzy systems are suitable for 

various fields, e.g., decision making, pattern recognition, and control problems etc. In 

particular, fuzzy set theory has also been an appropriate framework for many 

problems encountered in the image scene analysis system, because various kinds of 

variation found in image scene can be resolved by fuzzy logic [3]. Due to the inherent 

complexity existing in the scene, the problem of image understanding has more 

developmental area. Keller et al. [4] has proposed the fuzzy-set-based aggregation 
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networks for scene analysis by neural network structure using fuzzy set theory. 

 

    More recently, a number of authors have endeavored to use techniques from 

machine learning to increase the robustness and efficiency of scene understanding 

system. Foresti et al. [5] have proposed a new model of neural tree, called generalized 

neural tree (GNT). GNT joins together some characteristics of decision trees and 

some of classical feed-forward neural networks. In the GNT’s learning rule, the whole 

tree structure is considered at each learning step, and the entire training set is used to 

update each node in order to provide a better classification. Bischof et al. [6] have 

proposed a conditional rule generation technique (CRG) that is designed to describe 

structures using part attribute and their relations. The idea of CRG is to generate 

classification rules that include structural pattern information to the extent that is 

required for classifying correctly a set if training patterns. 

 

Knowledge-based image understanding and interpretation has been investigated 

by several researchers. The knowledge-guided segmentation and labeling (KGSL) [7] 

approach can be applied to segment the images, automatically extract cluster labeling 

rules and add them to the knowledge base to improve its performance. The promise of 

the system was demonstrated by processing a set of color images and the application 

of the approach to ocean satellite images. Fan et al. [8] have proposed a 

knowledge-based road scene understanding system KRUS. In this system, a road 

recognition information algorithm combining fusing of edge and region information 

and using of scene knowledge is presented, which makes the KRUS system intelligent 

enough to recognize road robustly and precisely. 

 

 

 3



1.3. Thesis Outline  

 

In this thesis, we proposed a hierarchical scene analysis system. In this system, a 

supervised learning algorithm is applied to construct a decision tree and extract fuzzy 

rules from the decision tree. Finally, the fuzzy rules were used to classify the pixels of 

images. 

 

The remainder of this paper is structured as follows. Chapter II introduces the 

genetic algorithm based Fuzzy ID3 method. Chapter Ⅲ  discusses the overall 

structure of the hierarchical scene analysis approach and describes the experiment to a 

simple gray image. In Chapter Ⅳ, we will show the application of the approach to a 

set of color images of road scene taken on freeway by using digital camera. Chapter 

Ⅴ presents our conclusions. 
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Chapter 2. Fundamental Concept 
 

 

    Our proposed image analysis system relies heavily on the fuzzy set theory, 

genetic algorithm, and fuzzy ID3 algorithm. First, it is instructive to explain them in 

detail. 

 

2.1. Introduction to Fuzzy ID3  

 

Knowledge acquisition from data is very important in knowledge engineering. A 

popular and efficient method is ID3 algorithm [9]. The ID3 approach to pattern 

recognition and classification consists of a procedure for synthesizing an efficient 

decision tree for classifying pattern that have non-numeric feature values. The 

decision tree can also be expressed in the form of rules. Therefore, ID3 is often 

thought of as an inductive inference procedure for machine learning or rule 

acquisition. 

 

Fuzzy ID3 (FID3) algorithm [10], [11] extended from ID3 to incorporate fuzzy 

notation. The decision tree using fuzzy ID3 algorithm is similar to that of ID3 

algorithm. Fuzzy ID3 algorithm is extended to apply to a data set containing numeric 

feature values instead of symbolic feature and generates a fuzzy decision tree using 

fuzzy sets. A fuzzy decision tree consists of nodes for training features, edges for 

branching by given feature values of fuzzy sets, and leaf node for final decision 

classes with certainties. 
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The feature ranking step is optional as we can use any arbitrary order of the 

features, but it is a desirable step because it can reduce the size of the tree and hence 

produce an efficient and accurate decision tree. While construct the decision tree, we 

use genetic algorithm to tune the fuzzy set membership function of features and 

parameters of decision tree to improve the classification performance and reducing 

the rule number. 

 

2.2. Feature Ranking  

 

When we start to construct decision tree, we have to choose the most important 

feature from the whole features. The order of feature to construct decision tree is an 

important issue to be investigated. In order to construct a decision tree with high 

accuracy and small size, the order of feature is evaluated using information gain [12]. 

In the process of deciding the order of features is called feature ranking.  

 

The information theory that underpins this information gain criterion can be 

given in one statement: The information conveyed by a message depends on its 

probability and can be measured in bits as minus the logarithm to base 2 of that 

probability. So, for example, if there are 8 equal probable messages, the information 

conveyed by any one of them is  or 3 bits. Therefore, the information 

gain criterion provides a mechanism for a ranking a set of features so that the most 

favorable order can be chosen. 

à log2 1/8( )

}

 

Assume that we have a training data set D, where each training data has l  

features  and one classified class  and fuzzy sets 

 for the feature . Let  to be a fuzzy subset in  whose class 

A1, A2, ..., Al C= C1, C2, ..., Cm{

Fi1, Fi2, ..., Fim Ai DCk D
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is Ck  and  is the sum of the membership values in a fuzzy set of training data. 

We use the information gain G A  to estimate the gain of the feature, and 

decide the order of feature, whereA  represents the ith feature. 

|D|

i, D( )

à

i

G(Ai,D) = I(D) E(Ai,D),                      (2.1) 

where 

I(D) =à
P
k=1

n

(pk á log2 pk),                         (2.2) 

E(Ai,D) =
P
j=1

m

(pij á I(DFij
)),                       (2.3) 

.pk =  D

D kC

,                                    (2.4) 

.pij = P
j=1
m DFij

ìì ììDFij

ìì ìì
.                                        ..(2.5) 

 

    I D  stands for the entropy before branch, and  means the entropy 

after branch according to the feature . We will the select the feature with maximum 

information gain for constructing the decision tree at root. So we will set higher order 

to the feature with higher . Because of the feature ranking procedure will 

influence the performance and size of the decision tree. Accordingly, we will obtain 

not only minimized rule number but also maximized accuracy. 

( ) E Ai, D( )

}

Ai

G(Ai,D)

 

2.3. Tree Construction 

 

 Assume that we have a training data set D, where each training data has l  

features  and one classified class  and fuzzy sets 

 for the feature . Let  to be a fuzzy subset in  whose class 

is 

A1, A2, ..., Al C= C1, C2, ..., Cm{

Fi1, Fi2, ..., Fim Ai DCk D

Ck  a. Then the algorithm to generate a fuzzy decision tree is shown as follows: 
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1) Generate the root node that has a set of all training data, i.e., a fuzzy set of 

all training data with the unit membership value. 

2) If a node  with a fuzzy set of data  satisfies the following conditions: t D

2.1) The proportion of a data set of a class  is greater than or equal to a 

threshold , that is, 

Ck

òr

                              
D

D kC

õ òr,           (2.6) 

2.2) The number of a data set is greater than a threshold , that is,   òn

                                        | |            (2.7)  D < òn,

2.3)  There are no attributes for more classifications, 

then it is a leaf node and we assign the certainty 
D

D kC

 with all classes at 

this node. 

3) If it does not satisfy the above conditions, it is not a leaf node, and the 

internal node is generated as follows: 

3.1) Select the feature which has next large G  value for test 

feature . 

(Ai,D)

Atest

3.2) Divide D  into fuzzy subsets D  according to the test 

feature, where the membership value of data in  is the product of 

the membership value in  and the value of  of the value of 

 in . 

1,D2, ...,Dm

Dj

D Ftest,j

Atest D

3.3) Generate new node  for fuzzy subsets  and 

label the fuzzy sets  to edges that connect between the nodes  

and . 

t1, t2, ..., tm D1,D2, ...,Dm

Ftest,j tj

t

3.4) Replace D by D  and repeat from 2) recursively until the end of all 

path is leaf node. 

j

 8



2.4. Fuzzy Set Discretization 

 

Continuous-valued features have to be discretized priori to selection, typically by 

partitioning the range of feature into subranges. In ID3-like algorithms, a threshold 

value for the continuous-valued feature partition into two subranges. We regard this 

threshold value as cut point. The objection may be raised is that the discretized 

schema will cause to produce “bad” cut point especially when there are more than two 

classes in the problem. 

 

This drawback can be overcome by using a discretization algorithm, called 

class-attribute interdependence maximization (CAIM) [13]. The CAIM algorithm 

show that it generates discretization schemes with almost always the highest 

dependence between the class labels and discrete intervals, and always with 

significantly lower numbers of intervals. Nevertheless, this crisp set is unnatural in the 

real world. Therefore, a fuzzy set introduces vagueness by eliminating the sharp 

boundary that divides members from nonmembers in the group. Thus, the transition 

between full membership and nonmembership is gradual rather than abrupt. Hence, 

we introduce Gaussian-type membership functions to each feature in our fuzzy ID3 

algorithm. 

 

The fuzzy ID3 scheme is determined by the parameter which includes the 

thresholds , , and the membership functions of each feature fuzzy set. A good 

selection of fuzzy rule base, leaf node threshold, and membership functions would 

greatly improve the accuracy of decision trees. To this end, genetic algorithm (GA) 

based scheme is utilized because of the essential nature of nonlinear of decision trees 

which limits the feasibility of traditional gradient method. In our work, GA [14] is 

òr òn
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used to tune the leaf node thresholds , , and the parameter of the membership 

functions of each feature. The membership function for each feature adopts the 

Gaussian-type and is given by  

òr òn

),
2

)(exp()( 2

2

σ
µ−

−=
xxm                            .(2.8) 

where x is the corresponding feature value of the data with mean  and variance û. 

Thus for each membership function, two parameters ö  and  must tune. To 

minimize the rule number and maximize the accuracy, the fitness function [15] is 

defined as 

ö

û

,)( 0 L
AAf η

+−=                                 (2.9) 

where A  is the accuracy of the classification,  is the lowest accuracy of the 

classification in the current population, 

0A

L  is the average depth of the decision tree, 

and η  is the influence of the average depth. While starting the tuning procedure, 

initially we set η  to a value such that 
L
η  is greater than 0AA − . This means that 

reduction of average depth of decision tree obtains a higher priority over 

maximization of accuracy. Therefore, the thresholds are tuned that the data classifies 

at lower depth, so that nodes at higher depth of the tree becomes redundant. As GA 

evolves, we gradually continue to decrease the value of η  so that maximization of 

the accuracy starts dominating. Subsequently, we reduce η  to zero in k steps. After k 

steps, η  is always zero. In other words, we focus on the improvement of the 

accuracy after η  becomes zero. Thus we can decrease the rule number without 

losing classification performance. 

 

Now, we will illustrate one cycle of the tuning process. Assume we have a data 

set with four features and three classes, such that there are twelve membership 

functions. Each membership function has two parameters ö  and , and two û
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thresholds  and ò  in addition. Thus we have to tune 26 parameters totally. 

Initially we set random number to these parameters. In our setting,  is randomly 

chosen from the range between the maximum and minimum value of the 

corresponding feature among the data and  is chosen between 0 and the standard 

deviation of that feature.  

òr n

ö

û

 

There are several encoding of GA which depends on the problem heavily. Binary 

encoding is the most common one, mainly because the first research of GA used this 

type of encoding and because of its relative simplicity. In binary encoding, every 

chromosome is a string of bits 0 or 1. Crossover and mutation are two basic operators 

of GA. Performance of GA depend on them very much. There are many ways how to 

perform crossover and mutation. We briefly describe how to perform these two 

operators.  

 

In Fig. 2.1. Multi point crossover method selects two crossover points, binary 

string from the beginning of the chromosome to the first crossover point is copied 

from the first parent, the part from the first to the second crossover point is copied 

from the other parent and the rest is copied from the first parent again. We repeat this 

a 

 

 

 

 

 

Fig. 2.1. Multi

 1
+

=

 

 point crossover. 

1

http://cs.felk.cvut.cz/~xobitko/ga/encoding.html


procedure until the end of those parent chromosomes. This process produces two new 

offspring chromosome, each of which is similar to both parent chromosomes. There 

are other ways to make crossover, for example we can choose more crossover points. 

Crossover can be quite complicated and depends mainly on the encoding of 

chromosomes. Specific crossover made for a specific problem can improve 

performance of the genetic algorithm. 

 

After a crossover is performed, mutation takes place probably. Mutation is 

intended to prevent falling of all solutions in the population into a local optimum of 

the solved problem. In Fig. 2.2. Mutation operation randomly changes the offspring. 

In case of binary encoding we can switch a few randomly chosen bits from 1 to 0 or 

from 0 to 1. Mutation can be illustrated as follows: 

 

 

= 

 

Fig. 2.2. Mutation. 

 

In our GA scheme, assume we generate 50 chromosomes of these parameters, 

and use them to generate decision trees. After each decision tree is generated, for 

example, one individual has accuracy 87% and average depth is 3.5. The lowest 

accuracy in this population is 72%, and the fitness function of this individual is 

.
5.3

)2.77.8( η
+−=f  Accordingly, we perform the reproduction, crossover, and 

mutation operators to generate the new chromosomes and continue until the 

predetermined condition is achieved. Here we select the crossover probability 
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pc = 1and mutation probability pm = 0.0001 for the GA evolving algorithm. 

 

The advantage of GA is in their parallelism. GA is traveling in a search space 

using many individual trials in each generation so that they are less likely to get stuck 

in a local extreme like the other methods. The disadvantage of GA is in the 

computational time. GA can be slower than other methods. But since we can 

terminate the computation in any time, the longer run is acceptable. For some 

problems, choosing and implementation of encoding and fitness function can be 

difficult even though GA is powerful. To apply GA to fuzzy ID3 scheme, Fig. 2.4. is a 

flowchart of our genetic algorithm based fuzzy ID3 method. 

 

2.5. Fuzzy Rule Inference 

 

According the rule base, inference of the decision tree starts from the root node 

and iteratively tests each node indicated by the rule until reach at a leaf node. Note 

that we have recorded certainty values 
D

D kC

 at leaf nodes as mentioned above and it 

represents the certainty of each class of the corresponding rule.  

 

Since we obtain the 
D

D kC

 values of each leaf node, the node is assigned by all 

class name with certainty value 
D

D kC

. On the other hand, every leaf node has all 

class name with corresponding certainty value. The rule produced by each leaf node 

which can classify the data to every class with certainty value and does not directly 

classify the data to a specific class. For example, the fuzzy rule extracted from the leaf 
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node as follows: 

IF X1 is F12 AND X2 is F21

THEN Class 1 with certainty 0.3 and Class 2 with certainty 0.7         .(2.10) 

 

In the pre-condition of the above rule, X1 assumes the membership value in the 

second fuzzy set F12 of the first feature and X2 assumes the membership value in the 

first fuzzy set F21 of the second feature. In the consequent part, there are two certainty 

values, 0.3 certainty value for class 1 and 0.7 certainty value for class 2. The steps of 

using the rule base to classify are as follows: 

1) For each extracted fuzzy rule, we multiply the membership value of the 

corresponding fuzzy set of the testing data from the root to the leaf node 

sequentially. That is the firing strength, i.e. suppose the membership value of 

the testing data associated with the ith fuzzy set is . The firing strength is 

given by 

mi

                                                       (2.11) 
Q
i=1

l

mi x( ) .

2) Multiply the certainty of the classes of the leaf node associated with the 

current fuzzy rule by the firing strength and denote the values as , 

. 

J n( )

n = 1, 2, ..., class number( )

3) Repeat 1) and 2) until that all rules have been evaluated. 

4) Sum the result in 3) of all the rules. Note that we must sum up the each class 

respectively. 

5) Assign the testing data to the class with the maximum value in 4). 

 

For example, a simple decision tree with 2 features, 3 subsets and 3 classes is 

shown in Fig. 2.3. This decision has four leaf nodes F11, F21, F22, and F13 with their 
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certainties C1, C2, and C3 respectively. In addition, the membership values of the 

testing data are shown in the branch. Thus we can use these 4 fuzzy rules to classify 

the testing data as follows: 

 

class 1: ΣJ(1)=0.1*0.1+0.5*0.8*0.3+0.5*0.3*0.3+0.9*0.8=0.895 

class 2: ΣJ(2)=0.1*0.2+0.5*0.8*0.7+0.5*0.3*0.4+0.9*0.1=0.45 

class 3: ΣJ(3)=0.1*0.7+0.5*0.8*0.0+0.5*0.3*0.3+0.9*0.1=0.205 

 

 

Fig. 2.3. An example of decision tree. 

 

The testing data is assign to class 1 becauseΣJ(1) is the maximum. Note that we 

classify one testing data need to evaluate all fuzzy rules but not just rely on a specific 

rule. In this way, we can use all rules together to decide the class of every testing data 

instead of generating a new specific rule only for some specific data. Therefore, we 

can reduce the size of rule base without losing performance.  
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Fig. 2.4.  Flowchart of genetic algorithm based fuzzy ID3 method. 
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Chapter 3. Scene Analysis System 

 

 

In this chapter, we propose a system to analyze freeway scenes which usually 

contain sky, trees, road, vehicles, and so on. The functional module of the proposed 

system is shown in Fig. 3.1. The main capability of this system can automatically 

classify natural objects in the scene by the characteristics of image feature without too 

many subjective opinions. The details of the system are described in this chapter. 

 

3.1. Feature Selection 

 

Color is one of the most interesting characteristic of the natural world and can be 

computed in many different ways. Moreover, it is well known that chromatic 

characteristics of natural elements are not stable and highly dependent on color 

brilliance, reflections from the objects, illumination geometry, viewing geometry, and 

camera parameters. Unfortunately, up to now no single solution has been found to 

sufficiently characterize objects belonging to natural scenes. When given an image 

representing an outdoor scene, the first difficulty in describing it is to choose the most 

appropriate color space for object characterization. Selecting the best color space still 

is one of the difficulties in scene analysis [16]. 

 

3.1.1 RGB Color Space 

 

    Color is perceived by humans as a combination of tristimuli red, green, and blue 

a 
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Fig. 3.1. The functional modules of the scene analysis system. 
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which are usually called three primary colors. From  representation, we can 

derive other kinds of color space by using either linear or nonlinear transformations. 

In the  model, each color appears in its primary spectral components of red, 

green, and blue. This model is based on a Cartesian coordinate system. The  

color space can be geometrically represented in a 3 dimensional cub in Fig. 3.2. The 

coordinates of each point inside the cube represent the values of red, green, and blue 

components, respectively.  

RGB

RGB

RGB

 

Red

Green

Blue

White

Black

Cyan

Yellow

Magenta

 

Fig. 3.2. RGB color space represented in a 3 dimensional cube. 

 

RGB is the most commonly used model for the television system and picture 

acquired by digital cameras. RG  is suitable for color display, but not good for 

color scene analysis because the high correlation among the R , , and B 

components. By high correlation, we mean that if the intensity changes, all the three 

components will change accordingly. Also, the measurement of a color in RG  

B

G

B
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space does not represent color differences in a uniform scale, hence, it is impossible to 

evaluate the similarity of two colors form their distance in  color space. RGB

 

3.1.2. HSI Color Space 

 

The  color space is another commonly used color space in image 

processing, which is more intuitive to human vision. The  color space separates 

color information of an image from its intensity information. Color information is 

represented by hue and saturation values, while intensity which describes the 

brightness of an image, is determined by the amount of the light. Hue represents basic 

colors. Saturation is a measure of the purity of the color, and signifies the amount of 

white light mixed with the hue. 

HSI

HSI

 
Fig. 3.3. HSI color space represented in a cylindrical coordinates. 
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The  color model can be described geometrically as in Fig. 3.3. Generally 

hue is considered as an angle between a reference line and the color point in  

color space. The range of hue value is from 0

HSI

RGB

o to 360o , for example, yellow is 60o, 

green is 120o , blue is 240o, and magenta is 300o. The saturation component represents 

the radial distance from the cylinder center. The nearer the point is to the center, the 

lighter is the color. Intensity is the height in the axis direction. The axis of the cylinder 

describes the gray levels, for example, minimum intensity is black, maximum 

intensity is white. Each slice of the cylinder perpendicular to the intensity axis is a 

plane with the same intensity. 

 

The  color space has a good capability of representing the colors of human 

perception [17], because human vision can distinguish different hues easily, whereas 

the perception of different intensity or saturation does not imply the recognition of 

different color. The  color space can be transformed from the  [18]. The 

formulation for hue, saturation, and intensity are 

HSI

HSI RGB

 

H =
ò, if
360à ò, if

ú
B ô G
B > G

,                 (3.1) 

where 

ò = cos
à1

RàG( )2+ RàB( ) GàB( )[ ]2
1

2

1
RàG( )+ RàB( )[ ]

( )
          (3.2) 

S= 1à R+G+B( )

3 min R,G,B([ )]                        .(3.3) 

I =
3

(R+G+B)
.                .             .(3.4) 

 

    Hue reflects the predominant color of an object and has a great capability in 

subjective color perception. Hue is also the most useful feature in color image 
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processing since it is less influenced by the nonuniform illumination such as shade, 

shadow, or reflect lights. 

 

3.1.3. Gray Level 

 

    The gray level Y is a measurement of the luminance of the color, and is a likely 

candidate for edge in a color image. The formulation of gray level Y from RG  

components is given by 

B

Y= 0.299R + 0.587G + 0.114B              ..(3.5) 

 

3.1.4. Spatial Information 

 

One of the drawbacks of color space clustering is that the cluster analysis does 

not utilize any spatial information. Therefore, the spatial information, which involves 

vertical position and horizontal position, is suitable for our scene analysis system. But 

the horizontal position has less unique information than that of the vertical position. 

Because of the natural elements, for example, the house or tree, maybe locate from 

left to right but can not locate from up to down in the scene. For this reason, we only 

choose the vertical position as our spatial information feature. 

 

3.2. Establish Fuzzy Rule Base 

 

If we want to build a system that is able to understand a natural element in 

complex scenes, we can generate a fuzzy rule base system to describe the natural 

element. However, scene analysis in the computer vision research has been known to 

be one of the most difficult fields. Consequently, we proposed the genetic algorithm 
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based fuzzy ID3 method to solving this problem. 

 

    Provided here is a gray image as Fig. 3.4(a); we can see this scene with our eyes 

and understand it with our brain. Nevertheless, the scene analysis system can not 

recognize anything initially. Therefore, we have to provide a desired recognition by 

our effort. In Fig. 3.4(b), the desired recognition image has three colors which 

represent three distinct objects in Fig. 3.4(a), in which the white represents sky, green 

represents tree, and gray represents road. Then, we use the genetic algorithm based 

fuzzy ID3 method to generate fuzzy rules to analyze the image. In order to let the 

scene analysis system makes sense, we expect these fuzzy rules generated by the 

genetic algorithm based fuzzy ID3 method is reasonable and accurate enough. 

 
(a) 

 
(b) 
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(c) 

Fig. 3.4. Results of the proposed approach: (a) original image, (b) desired output 

image, and (c) resulting image by fuzzy rule base. 

 

In this case, we use Fig. 3.4(a) as the input image and 3.4(b) as the desired output 

image. And we choose gray level and vertical position as our input features. After 

running the genetic algorithm based fuzzy ID3 method, the generated decision tree is 

aa 

 
Fig. 3.5. The decision tree generated by the scene analysis system on Fig. 3.4(a). 
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Membership value 

Dark Medium Light 

Gray level 

Fig. 3.6. Membership function of gray level. 

 

 

Membership value 

High Medium Low 

Vertical position 

Fig. 3.7. Membership function of vertical position. 
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shown in Fig. 3.5. In addition, the membership function of gray level is shown in Fig. 

3.6 and the membership function of vertical position is shown in Fig. 3.7. 

Consequently, we can infer fuzzy rules from the decision tree shown in Fig. 3.5. 

These fuzzy rules are as follows. 

 

IF Gray level is Light 

THEN Sky with certainty 0.480, Road with certainty 0.520,  

                     .and Tree with certainty 0.000. 

IF Gray level is Dark 

THEN Sky with certainty 0.017, Road with certainty 0.015,  

                     .and Tree with certainty 0.968. 

IF Gray level is Medium and Vertical position is High 

THEN Sky with certainty 0.700, Road with certainty 0.002,  

                     .and Tree with certainty 0.280. 

IF Gray level is Medium and Vertical position is Low 

THEN Sky with certainty 0.002, Road with certainty 0.875,  

                      and Tree with certainty 0.123. 

 

    These fuzzy rules evaluate gray level first and vertical position next, because 

gray level has lager feature rank than vertical position. It means that gray level is 

more discriminative than vertical position in this case. This is because gray level can 

separate sky, tree, and road better than vertical position. The training result which 

evaluated by these four fuzzy rules is shown in Fig. 3.4(c). We obtain a region pixel 

accuracy of 97.7% in comparison Fig. 3.4(c) with Fig. 3.4(b). It is evident that these 

four fuzzy rules do locating the pixel to the appropriate natural element well. 

Therefore, in our proposed approach, we can say this scene analysis is an efficient and 
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reasonable system. 

 

3.3. Image Ground-Truthing 

 

The vehicles consist of many inhomogeneous components, such as glass, license 

plate, tire, lamp, steel plate, and so on. By using fuzzy rules inference, it encounters 

great difficulty in describing the vehicle class. The vehicle class is not pure as sky, 

tree, and road classes. Therefore, we introduce image ground-truthing into our scene 

analysis system to improve the vehicle region accuracy. The ground-truthing useful 

for this proposed scene analysis system are summarized below. 

 

1) The vehicles must run on the road. 

2) Any vehicle highly probable has a shadow area, and this area is the darkest 

pixels in the scene. 

3) All kinds of vehicles have a fixed height/width ratio. 

 

    We describe our scene analysis system in Figs. 3.8(a)–(f). We establish fuzzy 

rule base in advance and test the input image Fig. 3.8(a) which is a 256×192 

chromatic image. And Fig 3.8(b) is the desired output to verify the object region 

analysis accuracy which includes five colors: white denotes sky, green denotes tree, 

gray denotes road, yellow denotes vehicle, and red denotes the others. After fuzzy rule 

inference on each pixel of the image, the testing result is shown in Fig. 3.8(c). We can 

see the image recognition accuracy and vehicle recognition accuracy are not good 

enough. Therefore, we use three image ground-truthing rules to find the vehicle 

possible region, and sketch the vehicle possible region in black line square. The result 

is shown in Fig. 3.8(d). In the vehicle possible region, we use Sobel operator [19] 
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to … 

    

(a)                                 (b) 

    

(c)                                 (d) 

    

(e)                                 (f) 

Fig. 3.8. (a) original image, (b) desired output image, (c) resulting image by fuzzy 

rule base inferring, (d) possible vehicle region finding by image ground-truthing, (e) 

vehicle region refining by edge detection, and (f) final scene image obtained by image 
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erosion. 

to detect the vehicle upper contour and replace the wrong classes in our detected 

vehicle region by vehicle class. Then, we assign the wrong vehicle class at the outside 

of the vehicle region to the others class. In Fig. 3.8(e), the vehicle was improved by 

our approach, but the wrong vehicle class is still not correct and needs changing. 

Hence, we apply erosion method [19] to remove the pixels in the wrong class. The 

final experimental result is shown in Fig. 3.8(f). In comparison the final result of Fig. 

3.8(f) with the resulting image by fuzzy rule base inferring of Fig 3.8(c), we can find 

out Fig. 3.8(f) is more similar to desired output of Fig. 3.8(b) than Fig. 3.8(c). In the 

intelligent transportation system, the vehicle recognition is the most important figure 

to be considered, and we can recognize vehicle correctly in this case.  
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Chapter 4. Simulation and Experiment 
 

 

    In this chapter, we illustrate our proposed scene analysis system by simulating 

the outdoor images, which are chromatic image with size 256×192. These images are 

taken on freeway by using digital camera. In order to confirm the validity of the 

proposed system, we provide the desired output image by manual recognition of 

segmented natural objects. Then, we compare the simulated results with the desired 

output image. This simulation was done on Pentium4 2.4G personal computer. 

 

4.1. Fuzzy Rule Base for Freeway Scene 

 

    As mentioned in Chapters 2 and 3, we design a scene analysis system based on 

fuzzy ID3 algorithm. With this algorithm, we can establish a fuzzy rule base to 

analyze the freeway image taken from a driver view in a driving car. 

 

    As developed by Wang and Mendel [20], fuzzy rules were generated by learning 

from examples. A training data with feature vector and is associated with the desired 

output of corresponding objects. Such image pixel constitutes an input-output pair. 

These fuzzy rules are a series of associations of the form “if antecedent conditions 

hold, then consequent conditions hold.” For our system, we consider the consequent 

conditions are the name of the natural objects in the scene such as sky, tree, road, 

vehicle, and others. And the number of antecedent conditions equals the number of 

features. 
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(a)                                  (b) 

       

(c)                                  (d)

 

     

               

 (e)                              (d) 

Fig. 4.1. (a) four 128×96 training images, (b) desired output image, (c) gray level of 

the training images, (d) hue of the training images, and (e) training result by our 

proposed scene analysis system. 
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In order to construct the fuzzy ID3 decision tree to specify the fuzzy rule base to 

analyze the image scene, we use four typical 128×96 outdoor images as our training 

data. These outdoor images are shown in Fig. 4.1(a). Then these features used for the 

training data are gray level, hue, and vertical position. Gray level and hue are shown 

in Figs. 4.1(c) 4.1(d), respectively. As to these images, the following five classes will 

be assigned: the sky is denoted by white, the tree is denoted by green, the road is 

denoted by gray, the vehicle is denoted by yellow, and the others is denoted by red. 

Fig. 4.1(b) is the desired output image, obtained by manual segmentation. 

Subsequently, we use these data as our training data set. After running the genetic 

algorithm based fuzzy ID3 method, the scene analysis system generates 30 fuzzy rules 

and provides a training result which is shown in Fig. 4.1(e). After recognizing by this 

fuzzy rule base, the training data set has obtained an 87.5% accuracy of region 

segmentation. In the following, we utilize this fuzzy rule base obtained as the default 

fuzzy rule base in the consequent freeway scene analysis 

 

4.2. Simulation Results 

 

After establishing the fuzzy rule base, we apply our scene analysis system to 

analyze 20 chromatic images taken from a driving car on freeway by using digital 

camera. Here, the first stage output represents the output after fuzzy rule base 

inferring, the second stage output represents the output after image ground-truthing 

refining, and the third stage output represents the output after image erosion shrinking. 

These analyzed results are shown in Figs. 4.2–4.21. In the intelligent transportation 

system, the vehicle recognition rate is the most important figure to be considered. 

Therefore, in addition to the image accuracy of segmented natural objects, we use 

another criterion AV defined by 
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to evaluate the vehicle recognition accuracy of our proposed scene analysis system. 

Vehicle pixels in the segmented image that is classified correctly –  
Non-vehicle pixels in the segmented image that is classified to vehicle class 

Total vehicle pixels AV = 
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(a) 

    
(b)                         (c) 

     
(d)                         (e) 

    

(f)                         (g) 

Fig. 4.2. Testing on Image 1. (a) original image, (b) desired output image, (c) resulting 

image by fuzzy rule base inferring, (d) possible vehicle region finding by image 

ground-truthing, (e) vehicle region refining by edge detection, (f) final scene image 

obtained by image erosion, and (g) lane line recognition. 
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(a) 

    

(b)                         (c) 

    
(d)                         (e) 

    
(f)                         (g) 

Fig. 4.3. Testing on Image 2. (a) original image, (b) desired output image, (c) resulting 

image by fuzzy rule base inferring, (d) possible vehicle region finding by image 

ground-truthing, (e) vehicle region refining by edge detection, (f) final scene image 

obtained by image erosion, and (g) lane line recognition. 
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(a) 

        

(b)                         (c) 

      
(d)                         (e) 

    
(f)                         (g) 

Fig. 4.4. Testing on image 3. (a) original image, (b) desired output image, (c) resulting 

image by fuzzy rule base inferring, (d) possible vehicle region finding by image 

ground-truthing, (e) vehicle region refining by edge detection, (f) final scene image 

obtained by image erosion, and (g) lane line recognition. 
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(a) 

      

(b)                         (c) 

       
(d)                         (e) 

    

(f)                         (g) 

Fig. 4.5. Testing on Image 4. (a) original image, (b) desired output image, (c) resulting 

image by fuzzy rule base inferring, (d) possible vehicle region finding by image 

ground-truthing, (e) vehicle region refining by edge detection, (f) final scene image 

obtained by image erosion, and (g) lane line recognition. 
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(a) 

      
(b)                         (c) 

     
(d)                         (e) 

    
(f)                         (g) 

Fig. 4.6. Testing on Image 5. (a) original image, (b) desired output image, (c) resulting 

image by fuzzy rule base inferring, (d) possible vehicle region finding by image 

ground-truthing, (e) vehicle region refining by edge detection, (f) final scene image 

obtained by image erosion, and (g) lane line recognition. 
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(a) 

        
(b)                         (c) 

        
(d)                         (e) 

    

(f)                         (g) 

Fig. 4.7. Testing on Image 6. (a) original image, (b) desired output image, (c) resulting 

image by fuzzy rule base inferring, (d) possible vehicle region finding by image 

ground-truthing, (e) vehicle region refining by edge detection, (f) final scene image 

obtained by image erosion, and (g) lane line recognition. 
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(a) 

     
(b)                         (c) 

     
(d)                         (e) 

    

(f)                         (g) 

Fig. 4.8. Testing on Image 7. (a) original image, (b) desired output image, (c) resulting 

image by fuzzy rule base inferring, (d) possible vehicle region finding by image 

ground-truthing, (e) vehicle region refining by edge detection, (f) final scene image 

obtained by image erosion, and (g) lane line recognition. 
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(a) 

     
(b)                         (c) 

        
(d)                         (e) 

    

(f)                         (g) 

Fig. 4.9. Testing on Image 8. (a) original image, (b) desired output image, (c) resulting 

image by fuzzy rule base inferring, (d) possible vehicle region finding by image 

ground-truthing, (e) vehicle region refining by edge detection, (f) final scene image 

obtained by image erosion, and (g) lane line recognition. 
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(a) 

        
(b)                         (c) 

       
(d)                         (e) 

    

(f)                         (g) 

Fig. 4.10. Testing on Image 9. (a) original image, (b) desired output image, (c) 

resulting image by fuzzy rule base inferring, (d) possible vehicle region finding by 

image ground-truthing, (e) vehicle region refining by edge detection, (f) final scene 

image obtained by image erosion, and (g) lane line recognition. 
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(a) 

     
(b)                         (c) 

     
(d)                         (e) 

    

(f)                         (g) 

Fig. 4.11. Testing on Image 10. (a) original image, (b) desired output image, (c) 

resulting image by fuzzy rule base inferring, (d) possible vehicle region finding by 

image ground-truthing, (e) vehicle region refining by edge detection, (f) final scene 

image obtained by image erosion, and (g) lane line recognition. 
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(a) 

        
(b)                         (c) 

        
(d)                         (e) 

    

(f)                         (g) 

Fig. 4.12. Testing on Image 11. (a) original image, (b) desired output image, (c) 

resulting image by fuzzy rule base inferring, (d) possible vehicle region finding by 

image ground-truthing, (e) vehicle region refining by edge detection, (f) final scene 

image obtained by image erosion, and (g) lane line recognition. 
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(a) 

      
(b)                         (c) 

        
(d)                         (e) 

    

(f)                         (g) 

Fig. 4.13. Testing on Image 12. (a) original image, (b) desired output image, (c) 

resulting image by fuzzy rule base inferring, (d) possible vehicle region finding by 

image ground-truthing, (e) vehicle region refining by edge detection, (f) final scene 

image obtained by image erosion, and (g) lane line recognition. 
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(b)                         (c) 

       
(d)                         (e) 

    

(f)                         (g) 

Fig. 4.14. Testing on Image 13. (a) original image, (b) desired output image, (c) 

resulting image by fuzzy rule base inferring, (d) possible vehicle region finding by 

image ground-truthing, (e) vehicle region refining by edge detection, (f) final scene 

image obtained by image erosion, and (g) lane line recognition. 
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(b)                         (c) 

        
(d)                         (e) 

    

(f)                         (g) 

Fig. 4.15. Testing on Image 14. (a) original image, (b) desired output image, (c) 

resulting image by fuzzy rule base inferring, (d) possible vehicle region finding by 

image ground-truthing, (e) vehicle region refining by edge detection, (f) final scene 

image obtained by image erosion, and (g) lane line recognition. 
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(a) 

     
(b)                         (c) 

       
(d)                         (e) 

    

(f)                         (g) 

Fig. 4.16. Testing on Image 15. (a) original image, (b) desired output image, (c) 

resulting image by fuzzy rule base inferring, (d) possible vehicle region finding by 

image ground-truthing, (e) vehicle region refining by edge detection, (f) final scene 

image obtained by image erosion, and (g) lane line recognition. 
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(b)                         (c) 

        
(d)                         (e) 

    

(f)                         (g) 

Fig. 4.17. Testing on Image 16. (a) original image, (b) desired output image, (c) 

resulting image by fuzzy rule base inferring, (d) possible vehicle region finding by 

image ground-truthing, (e) vehicle region refining by edge detection, (f) final scene 

image obtained by image erosion, and (g) lane line recognition. 
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(b)                         (c) 

        
(d)                         (e) 

    

(f)                         (g) 

Fig. 4.18. Testing on Image 17. (a) original image, (b) desired output image, (c) 

resulting image by fuzzy rule base inferring, (d) possible vehicle region finding by 

image ground-truthing, (e) vehicle region refining by edge detection, (f) final scene 

image obtained by image erosion, and (g) lane line recognition. 
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(b)                         (c) 

        
(d)                         (e) 

    

(f)                         (g) 

Fig. 4.19. Testing on Image 18. (a) original image, (b) desired output image, (c) 

resulting image by fuzzy rule base inferring, (d) possible vehicle region finding by 

image ground-truthing, (e) vehicle region refining by edge detection, (f) final scene 

image obtained by image erosion, and (g) lane line recognition. 
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(b)                         (c) 

        
(d)                         (e) 

    

(f)                         (g) 

Fig. 4.20. Testing on Image 19. (a) original image, (b) desired output image, (c) 

resulting image by fuzzy rule base inferring, (d) possible vehicle region finding by 

image ground-truthing, (e) vehicle region refining by edge detection, (f) final scene 

image obtained by image erosion, and (g) lane line recognition. 
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(b)                         (c) 

        
(d)                         (e) 

    

(f)                         (g) 

Fig. 4.21. Testing on Image 20. (a) original image, (b) desired output image, (c) 

resulting image by fuzzy rule base inferring, (d) possible vehicle region finding by 

image ground-truthing, (e) vehicle region refining by edge detection, (f) final scene 

image obtained by image erosion, and (g) lane line recognition. 
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In summary, the overall accuracy comparison of the above 20 images between 

each stage output are illustrated in TABLE I. After testing 20 chromatic images, we 

obtained 87.79% accuracy of the overall scene images and 84.12% accuracy of 

vehicles in the scene images. As demonstrated in the successful application on 

freeway images, the proposed scene analysis system is general and robust. 

 

TABLE I 

ACCURACY COMPARISON BETWEEN EACH STAGE OUTPUT 

Considering all  

vehicles in the image 

Ignoring far away vehicles and  

specify far away vehicles as others 

 

Image accuracy Vehicle accuracy Image accuracy Vehicle accuracy

1st stage output 84.91% 35.57% 84.02% 28.35% 

2nd stage output 87.93% 73.08% 88.88% 84.06% 

3rd stage output 87.66% 73.87% 87.79% 84.12% 
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Chapter 5. Conclusion 
 

 

    This thesis has presented an automatic interpretation system of outdoor scene 

image by using a set of fuzzy rules. The scene analysis system based on the fuzzy 

rules derived from the GA based fuzzy ID3 technique has been developed in this 

thesis. The system is trained by a set of training images. Then, we construct the 

decision tree, and extract fuzzy rules from this decision tree. Finally, we apply this 

scene analysis system to analyze outdoor images.  

 

    Based on the knowledge bases of the image and supervised learning algorithm, 

the scene analysis use fuzzy IF-THEN rules to interpret image scenes can be 

generated. If more different objects in the images are analyzed, the more fuzzy rules 

will generate by the scene analysis system. After testing on a set of chromatic images, 

we obtained 87.79% accuracy of the scene images and 84.12% accuracy of the 

vehicles in the scene images. As demonstrated in the successful application on 

freeway images, the proposed scene analysis system is general and robust.  

 

This proposed system develops an automatic scene analysis scheme by computer 

and we can extent this system to various fields, e.g. geographic image analysis, 

medical image analysis, robotic vision, and so on. But in each different application, 

we must add the specific domain knowledge to select the feature and refine the 

segmented image..  

 

    Knowledge plays a critical role in an intelligent vision system. More attention 
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should be paid to knowledge structure and knowledge processing. Conventional 

image processing techniques are necessary, but not enough. In the field related to 

knowledge processing, fuzzy ID3 algorithm is a powerful tool. 
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