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Abstract. Mean excitation  energies of atoms have  been calculated  based on a 
local plasma approximation. A treatment for atomic  shell-wise  contributions to the 
mean excitation  energy has  been established. The effect of plasma  damping was 
included  by  an empirical  approach. Electron  density  distributions of atoms  have 
been  obtained  using the Hartree-Fock-Slater model. Results of this work are 
compared  with those of the detailed  matrix  element  evaluations. 

1. Introduction 

The  mean  excitation  energy, I. is a crucial parameter in 
the  Bethe  theory  (Bethe 1930, 1933) of stopping  power 
for  charged  particles.  Its  determination relies to a great 
extent  on  theoretical  calculations  because  experimental 
measurements  are  extremely difficult ( ICRU 1984). 
Among  the  theoretical  methods,  the oscillator  strength 
approach  (Dehmer et a1 1975. Inokuti et a1 1981) and 
the local plasma  approximation  (LPA)  (Lindhard  and 
Scharff 1953, Chu  and  Powers 1972, Tung  and  Watt 
1985) are  the  two most popular  ones.  The  former 
approach is a direct  evaluation of transition  matrix 
elements  for  the full photo-absorption  spectra. 
Although it is believed  this  approach  can be  quite  accu- 
rate, i t  is not  particularly  attractive  because of the 
tedious  computation of detailed  dipole  oscillator 
strength  distributions.  On  the  other  hand,  the LPA util- 
ises a simple  inhomogeneous  electron gas model which 
requires only electron  density  distributions.  Because of 
its  simplicity, LPA retains  the  competitive  position. 

Even  though LPA is useful,  previous  development of 
the  model  suffers  the  weakness of an  undetermined 
parameter y .  Lindhard  and Scharff (1953) in their  estab- 
lishment of the LPA have  argued  that  the value of y lies 
between 1 and V'2, depending  on  the  atomic  number. 
This  argument was based  on  an  assumption  that  the 
single electron  revolution  frequency was approximately 
equal  to  the  free  electron  plasma  frequency  at any 
position of the  electrons in an  atom. As we have  shown 
(Tung  and Kwei 1985, Kwei and  Tung 1986), this 
assumption was unrealistic  because of the  constant value 
of the  quantum  mechanical  revolution  energy as com- 
pared with the  space varying  plasma  energy for  any 
subshell of an atom.  In  addition,  the  correlation of 

electron  densities  from  different subshells  altered the 
effective  plasma  energy as determined by Lindhard  and 
Scharff.  Finally,  the  plasma  damping  effect  neglected 
previously  plays a notable  role in the  determination of 
mean  excitation  energies. 

In  this  paper. we  will first derive a formula  for 
the  mean  excitation  energy using the LPA from first 
principles.  Effective  plasma  energies in this  work are 
determined  from  correlated  electron density  distri- 
butions of individual  subshells.  We will then  show  that 
the  equivalent  expression in the  previous LPA is a special 
case of this  formula  under  certain  assumptions.  Further. 
we will include  the  plasma  damping effect by an  empiri- 
cal approach.  Finally, we  will present  and discuss mean 
excitation  energies  calculated in this  work  and compare 
the  results with those  obtained using the  oscillator 
strength  method. 

Note  that all equations  and  quantities in this paper 
are  expressed in atomic  units unless  otherwise  specified. 

2. Local plasma approximation 

The basic  idea taken by the LPA is a concept of an 
inhomogeneous  electron gas  associated with the  elec- 
tron  density  distribution of an  atom.  In this approxi- 
mation.  the  plasma oscillation of the  electron cloud 
plays an equally  important  role as the  revolution of 
electrons in contributing  to  the  dynamic  response of 
the  atom.  The gross  response  function of a weakly 
interacting  atomic system is described by its  energy loss 
function,  i.e.  the  imaginary  part of the negative  inverse 
dielectric  function.  For  an  atom  composed of several 
subshells of different  binding  energies,  the dielectric 
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function is given by (Raether 1980) 

where W,, = (4nni)1’2, n,, W, and Ti are, respectively, 
the  free  electron  plasma  energy,  the  electron  density, 
the binding energy  and  the plasma  damping coefficient 
associated  with  the  ith  subshell. 

Consequently,  the  energy loss function  may  be  writ- 
ten  as  (Tung  and Kwei  1985, Kwei and  Tung 1986) 

where  the  resonant  or effective  plasma energy, Wpi, is 
a  solution of the  equation 

If we neglect the  plasma  damping,  i.e.  taking T i  = 0, 
equation (2) becomes 

where W ’ p i  = 4nZi = w2. - W:. 

excitation  energy  (Fano 1963) 
Substituting  equation (4) into  the  equation  for  mean 

PI 

( 5 )  

we obtain 

where n = Z n,, fi, and W,, are varying with the  radial 
distance, r ,  from  the  nucleus of an  atom.  Averaging 
equation (6) over  the  entire  space, we get 

In Z = (1/Z) E 1 4nr2Z i ( r )  In W P i ( r )  dr .  (7) 
i 

Equation (7) is the  formula  for  mean  excitation  energies 
of the LPA. It will be  shown below that  the  equivalent 
formula in the  previous LPA is a  simplification of (7) 
under  certain  assumptions. 

For  convenience,  we may  rewrite (7) as 

In I = (1/2Z) x 4nr2 f i i ( r )  In W ; , ( r )  dr .  (8) 

Lindhard  and Scharff  argued that  the  free  electron 
plasma energy, Wpi, was  approximately  equal  to  the 
electron  revolution  energy, W,. Following  this 
argument, we obtain 

i 

Because  the  function 4nr2Zi(r) is sharply  peaked  and 
the  function @$(r )  - W ?  + W $ ( r )  is only important in 
the  peaked  region, it is not significantly different  to 
write  equation  (9)  as 

In z = ( 1 / 2 ~ )  x 1 4nr*ni (r )  
i 

X l n ( 2  (Wii(r)  - W ;  + WEi(r)))  dr .  (10) 

To demonstrate  the  above  description, we plot  the 
functions 4nr2Zi(r) and W ; j ( r )  - W ?  + W$(r )  in figures 
1 and 2 for  a  fluorine  atom.  It is clear  that  the  replace- 
ment of equation (9) by equation (10) generates only  a 
minor  difference in evaluating In I. 

Now, applying the  sum  rule 

I 

to  equation (2), we find 

X ( W ; , - W ; ) = 2 W ; , = W ;  (12) 
i i 

and 

x 4 n r 2 Z i ( r )  = 2 4nr2n i ( r )  = 4nr2n(r).  (13) 
l i 

Combining  equations (lo),  (12) and  (13), we get 

1nZ = (1/Z) 4nr2n(r)  ln(yW,(r)) d r  (14) 

where y = v2, as  suggested by Lindhard  and  Scharff. 

r 

Figure 1. A plot of the function 4nr%,{r) in the integrand of 
equation (9) for i = 1 S, 2s and 2p subshells of a fluorine 
atom. All quantities are expressed in atomic units. 
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r 

Figure 2. A plot of the function Wp,(f) - + Wpj(r) in the 
integrand of equation (9) for i = 1 S, 2s  and  2p  subshells of 
a fluorine atom. All quantities are  expressed in atomic 
units. 

Equation (14) is the  formula  for  mean excitation ener- 
gies in the  original LPA. 

3. Plasma damping effect 

Equation (7) was derived  under  the  assumption of no 
plasma  damping,  i.e. via equation (4). To include the 
effect of plasma  damping  on  the  mean excitation  energy, 
we must substitute  equation (2) into  equation ( 5 ) .  Exact 
evaluation of the  combined  equation would  require 
detailed  information  about  the  plasma  damping  coef- 
ficient for  each  subshell of an  atom. Since such  eval- 
uation  greatly  reduces  the simplicity of the LPA and 
information  on  the plasma  damping coefficient is seldom 
available, we propose  here  an empirical  approach which 
utilises  atomic  binding  energies  only. 

The effect of plasma  damping  tends  to  reduce  the 
mean  excitation  energy  determined by (7). This  can  be 
understood by rewriting (7) as 

x 6(W - wpi(r)) In W d W d r .  (15) 

The  term 4nr2fii(r)6(W - WPi(r)) represents  the oscil- 
lator  strength  for  excitation  energy W in the case of no 
plasma damping. A sketch of the oscillator  strength 
distribution  for  a given subshell is made in figure 3. It 
is seen  that in the  case of no  plasma  damping the  entire 

I 
I 
I 
I 
7 
I 
I 
I 

L?p, - 
No plasma damping 

Figure 3. A sketch of the  oscillator strength distribution for 
the ith subshell  in  an atom. The sharp  peak  around  the 
effective plasma energy Wpi is  the  result  neglecting  plasma 
damping. The broad  curve  is the result taking into account 
the plasma damping effect. The  shaded  area  represents 
the oscillator strength distribution where  the  excitation 
energy  is  below  the binding energy Wb 

oscillator strength is exhausted in inelastic  interactions. 
However, in the case of plasma  damping  the  shaded 
portion of the oscillator  strength in figure 3 is not used 
up  due  to  the restrictive  condition,  W > W,, appearing 
in equation (1). It is because of this  restriction that  the 
contribution  to  the  mean excitation  energy  from small 
excitation  energies is excluded. 

To account  for  the  effect of plasma  damping  on 
mean  excitation  energies, we introduce  a modifying 
factor  into  equation (7). Let 

In I = (l/Z) x 1 4nr2iii(r)  ln(aiWpi(r))  dr 
I 

where ai is a  plasma-damping-dependent coefficient 
with a  value less than 1. The  magnitude of ai depends 
on  two  factors, i.e. Ti and W,. The plasma  damping 
coefficient,  Ti,  controls the width of the oscillator 
strength  distribution  sketched in figure 3. Therefore, 
ai+ 1 for  Ti+ 0 and ai < 1 for Ti 9 1. Because  the 
damped oscillator  strength  distribution  peaks  around 
wpi where wPi > W, and  the  damping coefficient is inver- 
sely proportional  to qp, (Kliewer  and Raether 1973),  the 
shaded  area in figure 3 must be inversely  proportional  to 
the binding  energy W,. In  other  words, a, approaches 1 
for W, + = but is a  constant  value  for  Wi+ 0. In this 
work, we assume 

ai = 1 - A ,  exp(-BiWi) (17) 

where Ai and  Bi  are  taken as fitting parameters. 
Equation (17) satisfies the asymptotic  behaviour  at  the 
two  limits  and  yet keeps  a simple form. 
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4. Results and discussion c 
Using equation  (7)  and  the Hartree-Fock-Slater  elec- 
tron  density  distribution (Herman and  Skillman  1963), 
we have  calculated  the  mean  excitation  energies of 
atoms of atomic  number below  18. The results of I / Z  
versus 2 are  plotted in figure 4.  For  comparison, we 
have  included in this  figure the  corresponding  results of 
Chu  and  Powers (1972)  using equation (14)  and Dehmer 
er a1 (1975)  using the  dipole oscillator  strength method. 
It is seen  that  for Z > 5 the results of equation  (7)  are 
in better  agreement  than  those of equation (14) with 
the  dipole  oscillator  strength data.  The difference 
between  the  results of equation  (7)  and  the dipole 
oscillator strength  method is mainly due  to  the neglect 
of plasma  damping. 

Inspecting  equations  (16)  and  (17), we know that 
the plasma  damping  effect is more  important  for smaller 
binding energies.  Let us assume  that this  effect is only 
significant for  the most  weakly bound,  or  the  outermost, 
subshell.  We  further  assume  that  mean  excitation  ener- 
gies obtained by the  dipole oscillator strength  method 
are  correct in the  sense of the  plasma  damping  effect. 
To  estimate  the  dependence of the plasma  damping 
effect on the binding energy, we plot in figure 5 the  ratio 
of mean  excitation  energies  calculated by the  dipole 
oscillator strength  method  (Dehmer er a1 1975) to  those 

i l 
l 
I 

20 

4 8 1 2  16 

Figure 4. A plot of the mean excitation energy against the 
atomic number for atoms with Z= 2 to 18. The chain curve 
and triangles present results calculated using equation 
(14). The broken curve and squares represent results 
calculated using equation (7). The full curve and full circles 
represent results calculated using equation (16). The 
dotted curve and open circles represent results calculated 
by the dipole oscillator strength method (Dehmer et a/ 
1975). 
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Figure 5. A plot of the ratio of mean excitation energies 
calculated by the dipole oscillator strength method 
(Dehmer et a/ 1975) to those calculated by equation (7) as 
a function of the binding energy of the outermost subshell. 

calculated by equation  (7)  as  a  function of the binding 
energy of the  outermost  subshell.  It is found  that  this 
dependence varies  with the  attribution of the  outermost 
subshell.  It  seems  that  this  dependence  for  the  p subshell 
is closer to  what we expected using equation (17)  than 
that  for  the S subshell.  Recognising the  outermost shell- 
wise dependence of the  plasma  damping  effect, we have 
chosen  different  values of the fitting parameters Ai and 
B; in (17) for  the  different  outermost subshells. The 
results of equation (16) for  the  mean  excitation  energy 
including the  plasma  damping effect are also  plotted in 
figure 4.  The fitting parameters A,  and B, for  the  outer- 
most  2s, 2p, 3s and  3p subshells are, respectively, 
0.34,  0; 0.5, 0.07;  0.4,  0;  0.7.  0.005.  The  agreement 
for  mean  excitation  energies  between  equation (16)  and 
the  dipole oscillator  strength method is excellent  for 
outermost  p  subshell  atoms. Such agreement for outer- 
most S subshell atoms is somewhat  worse  due  to 
the  poorer  application of equation  (17).  However,  the 
largest  deviation  for  outermost S subshell atoms is only 
about 5 % .  

Lindhard  and Scharff  have mentioned  that  the value 
of y in equation (14) lies between 1 and v2 depending 
on the  atom.  Previous  applications of the LPA have 
taken y = v2. Although we have  proven  that  equation 
(14)  should be replaced by equation  (7),  the  application 
of (14) is justified if we let y be an adjusting  parameter. 
Substituting  the  results of mean  excitation  energies 
obtained by equation  (16)  into  equation  (14), we have 
determined this parameter.  Figure 6 is a plot of such a 
parameter  as  a  function of atomic  number.  The small 
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Figure 6. A plot of the  parameter y as determined by 
substituting the mean excitation energies  calculated  using 
equation (16) into equation (1 4). 

‘wiggles’ appearing  at 2 = 4 and 12 correspond  to  the 
outermost S subshell  atoms.  The  value of this  adjusting 
parameter is within the  range  1.15  to  1.26  for 2 between 
3 and 18. In  practice,  one may  choose y = 1.2 applying 
to all atoms.  This  choice  should  be  better  than using 
y = 1 or  d2. 

5. Conclusion 

We  have  studied  mean  excitation  energies of atoms 
using the LPA. We  have  shown  that  the  formula  for 
mean  excitation  energies  should  be  expressed in terms 

Mean excitation energies of atoms 

of the individual  contributions by the  different subshells 
in an  atom.  The effect of plasma  damping on the  mean 
excitation  energy  reduces this  energy by an  amount 
depending  primarily on the binding  energy of the  outer- 
most  subshell. An empirical  approach has  been 
adopted in  this  work to account for  the plasma  damping 
effect.  Results of this  approach  agree very well with the 
corresponding  results of the  dipole oscillator  strength 
method.  Application of the  previous LPA formula is still 
valid by adjusting  the  parameter y .  Calculations  indicate 
that  the  value of y lies between  1.15  and 1.26 for  atomic 
numbers  between 3 and 18. 
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