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摘要 

論文內容將探討網路控制系統伴隨傳送延遲的問題。網路產生的傳輸延遲往

往會對網路控制閉迴路造成負面的影響,例如:降低系統的穩定度和造成控制效能

變差。論文中將會先引入未考慮網路狀況的單一直流馬達系統，然後針對此一單

一系統用極點位移的方式設計控制器。最後再將設計出來的控制器加上網路系統

完成整個系統的架構。網路造成的延遲可大致分為兩種:一種是固定的延遲, 另一
種是隨機的延遲，本論文將探討前者對網路控制系統的影響。我們為了降低網路

的使用率，使網路發揮更大的功能並且維持整個控制系統的穩定性，我們將訂出

一個傳輸誤差的範圍，控制行為將依據此一標準來決定控制行為。系統中央控制

器會根據最新的系統狀態來決定是否更新控制命令，傳輸誤差的範圍也是跟系統

最新狀態有關。根據此控制法則，可以降低耗用之網路資源並且保證系統的穩定

度。系統傳輸誤差是網路實際應用上的一種無法避免的現象且將會於文中定義。

模擬將會以兩個不同直流馬達和線性不穩定系統來作驗證。文中也將討論網路產

生延遲的影響。 
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ABSTRACT 

    A network system considering network-induced delay is presented in this thesis. 
Network-induced delay may have advert influences on networked closed-loop control 
system such as performance degradation and system destabilization. We will first 
introduce single DC motor plant without considering networked control systems, and 
design individual controller for DC motor using pole placement method. Then, the 
overall networked control systems will be introduced. There are two types of 
network-induced delay: one is fixed delay; the other is random delay. The former is 
adopted in the thesis. In order to reduce network usage and maintain system stability, 
control input signals are sent under certain boundary conditions. Central controller 
sends control signals according to present states or former control states of the plants. 
The network usage can be reduced and overall system stability can be guaranteed, too. 
Transmission error is a practical phenomenon in NCS and will be defined in the thesis. 
Examples of controlling two DC servo-motors or two linear unstable systems through 
network will be demonstrated, and the effects caused by network-induced delay will 
also be shown in simulations and discussed in the thesis.  

 ii



誌謝 

首先很感謝指導教授李祖添 校長還有吳政郎 教授的耐心指導，讓我能順利

完成這本論文。也謝謝口試委員謝哲光 教授和張隆國 教授的斧正。 

交大的六年生活，充滿了喜怒哀樂的回憶，很慶幸身邊一直有好朋友陪伴跟

幫助。在碩士生活的這兩年，更是讓我學習成長不少，實驗室學長同學的關心跟

體貼讓我永記心中，誰說唸理工的人都很冷冰冰呢! 

最後感謝家人跟男友一路的支持跟鼓勵，她們給了我精神上最大的幫助。本

文謹獻給 805 實驗室: 欣翰學長、炳榮學長、冠銘學長、保村學長、文真、雅齡、

詠建、東璋，謝謝你們。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 iii



CONTENTS 
摘要                i 
ABSTRACT                                                        ii 
誌謝                                                              iii 
CONTENTS                                                       iv 
LIST OF FIGURES             v 
LIST OF TABLES                    viii 
 
CHAPTER 1  INTRODUCTION         1 
 1.1 Motivation             1 
 1.2 Survey of DC Motor Systems and Unstable Systems     1 

1.3 Survey of Pole Placement and Lyapunov Stability      2 
1.4 Survey of Network Control Systems        3 
1.5 Thesis Organization and Contributions        4 

 
CHAPTER 2  SYSTEM  MODEL         5 

  2.1 System Model            5 
2.1.1 DC Motor Systems and Unstable Systems     5 
2.1.2 Network System Model                                   7 

 
CHAPTER 3  POLE  PLACEMENT  DESIGN  METHODOLOGY 10 
 3.1 Pole Placement Theory           10 

3.2 Design Algorithm            10 
3.3 Simulations of DC Motor Systems and Unstable Systems   14 
 

CHAPTER 4  NETWORK  STABILITY  ANALYSIS     22 
4.1 Lyapunov Stability Theory          22 
4.2 Modified Lyapunov Stability with Network Conditions    23 
4.3 Simulations 

4.3.1 Network Control System without Delay      34 
4.3.2 Network Control System with Delay      37 

 
CHAPTER 5  CONCLUSIONS          40 

5.1 Remark Conclusions           40 
5.2 Future Work             41 

 
REFERENCE 
 

 iv



LIST OF FIGURES 

Fig. 1.1 A typical NCS setup and information flow       3 

Fig. 2.1 Equivalent circuit of the DC motor         5 

Fig.. 2.2 Control network system structure with induced delay     8 

Fig. 3.1 The relation between nω  and ξ  when sts 1.0= , str 07.0= , and 
                 12 

std 06.0=

Fig. 3.2 The relation of nω  and ξ  when three design condition are all satisfied.  12 

Fig. 3.3(a) The relation between nω  and ξ  when 059.0=st , and 
                15 

01.0=dt
02.0=rt

Fig. 3.3(b) The output angular speed of controlled (red line) and uncontrolled (blue line) 
System 1                16 

Fig. 3.3(c) The output angular speed of controlled (red line) and uncontrolled (blue line) 
System 2                16 

Fig. 3.4(a) The relation between nω  and ξ  when 03.0=st , 008.0=dt and  01.0=rt

17 

Fig. 3.4(b) The output angular speed of controlled (red line) and uncontrolled (blue line) 
System 1                17 

Fig. 3.4(c) The output angular speed of controlled (red line) and uncontrolled (blue line) 
System 2                17 

Fig. 3.5(a) The relation between nω  and ξ  when 02009.0=st , and 
               18 

003.0=dt
005.0=rt

Fig. 3.5(b) The output angular speed of controlled (red line) and uncontrolled (blue line) 
System 1                18 

Fig. 3.5(c) The output angular speed of controlled (red line) and uncontrolled (blue line) 
System 2                18 

Fig. 3.6(a) The relation between nω  and ξ  when 12=st , 2=dt and  19 4=rt

Fig. 3.6(b) The output of controlled and uncontrolled unstable System 1   19 

Fig. 3.6(c) The relation between nω  and ξ  when 7=st , 1=dt and   20 2=rt

Fig. 3.6(d) The output controlled and uncontrolled unstable System 2    20 

 v



Fig. 3.7(a) The relation between nω  and ξ  when 10=st , 1=dt and   21 3=rt

Fig. 3.7(b) The output of controlled and uncontrolled unstable System 1   21 

Fig. 3.7(b) The output of controlled and uncontrolled unstable System 2   21 

Fig. 3.8(a) The relation between nω  and ξ  when 5.2=st , 5.0=dt and  22 1=rt

Fig. 3.8(b) The output of controlled and uncontrolled unstable System 1 where 4=nω  
and 98.0=ξ                22 

Fig. 3.8(c) The output of controlled and uncontrolled unstable System 2 where 4=nω  
and 98.0=ξ                22 

Fig. 4.1 Transmission error bound            24 

Fig. 4.2 Transmission error bound and control states       26 

Fig. 4.3 Transmission error bound and control states of NCS with delays   30 

Fig. 4.4 The controlling block diagram of overall networked system    33 

Fig. 4.5(a) The angular velocity of transition error controlled and uncontrolled system 
of System1               34 

Fig. 4.5(b) The angular velocity of transition error controlled and uncontrolled system 
of System2               34 

Fig. 4.5(c) The controlled frequencies of DC motor ststem1 and system2   35 

Fig. 4.6(a) The output of transition error controlled and uncontrolled system of Unstable 
system1                35 

Fig. 4.6(b) The output of transition error controlled and uncontrolled system of 
Unstable system2                                                      35 

Fig. 4.6(c) The controlled frequencies of Unstable sytem1 and system2   36 

Fig. 4.7(a) The angular velocity of transition error controlled with delays and 
uncontrolled system of System1           36 

Fig. 4.7(b) The angular velocity of transition error controlled with delays and 
uncontrolled system of System2           37 

Fig. 4.7(c) The controlled frequencies of DC motor ststem1 and system2 with delays. 

37 

Fig. 4.8(a) The output of transition error controlled with delays and uncontrolled system 
of Unstable system1             37 

 vi



Fig. 4.8(b) The output of transition error controlled with delays and uncontrolled system 
of Unstable system2             38 

Fig. 4.8(c) The controlled frequencies of Unstable sytem1 and system2 with delays. 

38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 vii



LIST OF TABLES 

 

Table 3.1 ITAE values according to different combinations of ξ and nω    13 

Table 3.2 The parameters of DC motors systems        15 

Table 3.3 ITAE of System 1 and System 2 according to possible ξ and nω  
combinations               15 

Table 3.4 ITAE of System 1 and System 2 according to possible ξ and nω  
combinations               16 

Table 3.5 ITAE of unstable System 1 and System 2 according to possible ξ and 

nω combination              19 

Table 3.6 ITAE of unstable System 1 and System 2 according to possible ξ and 

nω combination              20 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 viii



CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

The overwhelming stands of network system are obviously in recent decades. 
Because of the complexity and loads are rapidly increasing, the demands of NCS’s 
performance are ever increasing. A system without network system can only control one 
sub-plant, while a well-designed network control system can deal with ten times or 
more sub-plants with only one central controller. The efficiency is distinctly superior 
than the traditional control systems in many ways. Furthermore, the applications 
connected through a network can be remotely controlled from a long–distance source. 
Conventionally, the networks used in the aforementioned applications are specific 
industrial networks, such as CAN (Controller Area Networks), and PROFIBUS. 
However, general data networks such as Ethernet and Internet are quickly advancing to 
be the networks of choices for many applications due to their flexibility and lower costs. 

There are two general structures to design a control system through a network. The 
first structure is to have several sub-systems, in which each of them contains a set of 
sensors, actuators, and a controller by itself. These system components are attached to 
the same control plant. In this case, a sub-system controller receives a set point from the 
central controller. Another structure is to connect a set of sensors and actuators to a 
network directly. Sensors and actuators in this case are attached to a plant, while a 
controller is separated from the plant via a network connection to perform a closed-loop 
control over the network. In this thesis, the latter is adopted. 

In order to extend the network efficiently, we try to provide a simple but useful 
methodology to reduce the usage of the network. The network induced time delays are 
also topic to be discussed. Therefore, under allowable physical condition, we can 
enlarge the control network as large as possible and display the influences brought by 
network delays [14].  

 

1.2  Survey of DC Motor Systems and unstable Systems 

Two kinds of sub-systems will be used in this thesis. One is DC motor servo 
systems, and the other is a random selected linear unstable system. Those two different 
sub-systems will demonstrate distinct results: as for the unstable system, we will focus 
more on system stability, and the DC motor servo systems, we will emphasize more on 
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the transient performances. 

In recent years, the use of DC machines has become exclusively associated with 
applications where the unique characteristics of the DC motor (i.e., high starting torque 
for traction motor application) justify its cost, or where portable equipment must be run 
from a DC (or battery) power supply. The ease with which the DC motor lends itself to 
speed control has long been recognized. Compatibility with transistor amplifiers, plus 
better performance due to the availability of new improved materials in magnets, 
brushes and epoxies, has also revitalized interest in DC machines. The need for new 
high-performance motors with highly sophisticated capabilities has produced a 
superabundance of new shapes and sizes quite unlike DC machines years ago. 

     The DC motors are original convergent systems, and therefore we will put 
emphases on their transient performances than stability conditions. The related 
reference of DC motor control through network system is [15]. 

 

1.3 Survey of Pole Placement and Lyapunov Theory 

Pole placement is a traditional control system design technique for linear 
time-invariant control systems. The technique is based on the fact that several 
performance specifications can be met using dynamic output feedback to adequately 
place closed-loop poles in the complex plane. An extension of the classical pole 
placement problem is the regional pole placement problem, in which the objective is to 
place closed-loop poles in a suitable region of the complex plane. The regional pole 
placement problem is usually treated in connection with the substantially more general 
problem of placing closed-loop poles in a specified region in the face of uncertainty 
with respect to the mathematical model of the plant. In many real-world situations, the 
model uncertainty reflects on the parameters of the plant, which has motivated 
extensive research efforts in parametric robust control theory [10]-[12]. 

Lyapunov stability theory is more often used in analyzing nonlinear systems than 
linear systems [13]. In this thesis, Lyapunov theory is adopted to solving the stability 
problem of system with network condition added. A transmission error bound is derived 
from Lyapunov stability conditions [21]. 

 

1.4  Survey of Network Control Systems 

    Feedback control systems wherein the control loops are closed through a real-time 
network are called networked control systems (NCSs) [1-4 and 18]. The defining 
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feature of an NCS is that information (reference input, plant output, control input, etc.) 
is exchanged using a network among control system components (sensors, controller, 
actuators, etc.). Fig.. 1.1 illustrates a typical setup and the information flows of an NCS. 
The primary advantages of an NCS are reduced system wiring, ease of system diagnosis 
and maintenance, and increased system agility. The insertion of the communication 
network in the feedback control loop makes the analysis and design of an NCS complex. 
Conventional control theories with many ideal assumptions, such as synchronized 
control and non-delayed sensing and actuation, must be reevaluated before they can be 
applied to NCSs.  

 

Fig. 1.1 A typical NCS setup and information flows 

Specifically, the following issues need to be addressed. The first issue is the 
network-induced delay (sensor-to-controller delay and controller-to-actuator delay) that 
occurs while exchanging data among devices connected to the shared medium. This 
delay, either constant or time varying, can degrade the performance of control systems 
designed without considering the delay and can even destabilize the 
system[16][19][20].  

The network can be viewed as a web of unreliable transmission paths. Some 
packets not only suffer transmission delay but, even worse, can be lost during 
transmission. Thus, how such packet dropouts affect the performance of an NCS is an 
issue that must be considered.  

Another issue is that plant outputs may be transmitted using multiple network 
packets (so-called multiple-packet transmission), due to the bandwidth and packet size 
constraints of the network. Because of the arbitration of the network medium with other 
nodes on the network, chances are that all/part/none of the packets could arrive by the 
time of control calculation.  

However, we will only focus our attention on the issues of network limitations and 
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network-induced delays in the direction from controller to actuators. Many researches 
have been done when it comes to discuss about the problems of network-induced delays. 
Some of them focus on finding the transmission deadlines for which the stability of the 
NCS is guaranteed [3,4,7, and 14]. 

 

1.5  Thesis Organization and Contributions 

This thesis has been organized as follows. Chapter 2 introduces the system model 
including sub-systems and overall models. Chapter 3 presents the pole placement 
controller design procedures and results. Chapter 4 briefs Lyapunov stability and the 
main proof of error bound results. Chapter 5 gives the simulation results of Chapter 4. 
Chapter 6 concludes the thesis also highlighting future studies of NCS.  

The stability of error bound promising system is derived in this thesis. The central 
controller can spare more time dealing with other sub-plants. In this way, the central 
controller only needs to send control signals less than 250 times during 5000 times 
accessing to the network of the least control times. In other words, ten times the 
sub-plants can be inserted as long as the physical layer of NCS could afford. 
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CHAPTER 2 

SYSTEM  MODEL 

2.1 System Model 

    The whole system is composed of two different sub-systems: DC motors and 
network part. We will first present DC motor models in mathematical form in section 
2.1.1 and then the overall system in section 2.1.2 with the network system plugged in.  

                                                                                      
2.1.1 DC motor system and Unstable Systems 

In this chapter, two DC motor systems are chosen as control plants. For a long time, 
motor system is always a very fundamental but crucial system. No matter in 
theoretically proving or practical implementation, because of their simplicity in 
structure and malleability in function, they are widely used in system analysis, design 
and application. We will introduce the mathematical model of a single motor, and then 
the whole motor system.  

    The motor is a machine devises electrical power into mechanical power; more 
specifically it transfers electrical power into mechanical power with the help of 
magnetic field. Since the magnetic field is always constant, it is not our subject to 
discuss the relating problem in this field. We will focus on the relation between 
electrical power and mechanical power. Moreover, many useful mathematical models 
would be constructed as follows.  

Equation of electrical model of the motor is given by: 

ga
a

a EIR
dt
dILV +⋅+⋅=                      (2-1) 

R
La

M

Motor

+

-

Tg,wV Eg
Ia

 

Fig. 2.1 Equivalent circuit of the DC motor 

where and  are the motor voltage and current respectively. The motor impedance 
at stall is equal to a combination circuit of resistance, 

V aI
R , in series with inductance . aL
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gE  is the internally generated voltage which is proportional to the motor velocity, ω .   

ω⋅= Eg KE                           (2-2) 

Combining (2-1) and (2-2), we have the electrical equation 

ω⋅+⋅+⋅= Ea
a

a KIR
dt
dILV                    (2-3) 

Second, we will introduce motor dynamic equation. The relation between torques 
and velocity is given by 

Lmg TT
dt
dJT ++⋅=
ω                     (2-4) 

where  is the total moment of inertia,  is the internally generated torque, and 

 is the load opposing torque. The opposing torque in the motor is given by 

J gT

LT

fm TDT +⋅= ω                          (2-5) 

where  is the viscous damping factor, and  is the internal friction torque. 

Because of the constant magnetic field, the current produces a proportional torque 

D fT

aTg IKT ⋅=                         (2-6) 

where  is the torque constant. Therefore, the total dynamic function from (2-4), 
(2-5) and (2-6) are  

TK

LfaT TTD
dt
dJIK ++⋅+⋅=⋅ ωω                 (2-7) 

For simplicity, we will assume that motor velocity is the same as that of the 
load. The following results are based on the equal velocity definition. Finally, linking 
up motor electric equation (2-3), (2-4) and motor dynamic equation (2-7), we have a 
motor mathematical model with its variables. However, a transfer function is needed 
when we want to design a control system. The relations between input signals and 

output signals are easier to understand in this way. We assume 0=fT  and  0=LT
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for further discussion since neither of them affect the transfer function. The Laplace 
transforms of the motor equations are 

)()()()( sKsIRLssV Eaa ω⋅+⋅+⋅=             (2-8) 

)()( sDssJIK aT ωω ⋅+⋅⋅=⋅⋅                (2-9) 

We can obtain an expression for the current: 

)()(1)( sDJs
K

sI
T

a ω⋅+⋅=                 (2-10) 

If we combine (2-8) and (2-10), we have 

)()())((1)( sKsDJsRLs
K

sV Ea
T

ωω ⋅+⋅+⋅+⋅=      (2-11) 

For simplicity, we let damping factor  negligible, and the corresponding 
transfer function becomes 

D

TEa

T
m KKJRsJLs

K
sV
ssG

⋅+⋅⋅+⋅⋅
== 2)(

)()( ω        (2-12) 

As mention to unstable systems, virtual linear unstable systems are adopted in 
this thesis. Purposely, we build up a linear system with locating its poles on the right 
hand side of complex plant. Because of the innate physical characteristics, DC 
motors are always convergent. Therefore, the linear unstable systems are used for 
comparison with DC motor systems. 

 

2.1.2 Network system model 

    Traditionally, point-to-point communication architecture for control system has 
been used for decades in industry. However, enormously growing physical setups and 
functionality both test the limits of point-to-point communication architecture. Network 
systems with common bus architectures, called networked control systems (NCSs), 
have many advantages such as small volume of wiring and distributing processing. 
Those merits make it possible to implement larger communication architecture ever.  

There are three typical network architectures using control communication- 
Ethernet, Control net, and Device net. In this paper, we choose Device net (CAN bus) 
as our NCS architecture. CAN bus is a deterministic protocol optimized for short 
messages, and the message priority is specified in the arbitration field, which means the 
network-induced delay is predictable and probably is some fixed constant. The 
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disadvantages of CAN are limited data rate (maximum of 500 Kb/s) and limited size of 
transferring data. However, these demerits do not cause any problem to the following 
discussion. 

Several network-based controlled DC motors are used as an example to 
demonstrate the effectiveness of the proposed scheme. The whole system is composed 
of three different units: plant (DC motors), central controller, and communication 
network (CAN bus). The structure is shown in Fig.. 2.1. We concern the CAN as the 
only time delay part, and the control input signal delay is introduced between central 
controller and motor controller through CAN bus.  

Central PC Control

motor

Actuator & Sensor

Actuator & Sensor

motor

delay

delay

. . . .

 

Fig.. 2.2 Control network system structure with induced delay 

    Now, we want to know some performance and characteristics of the plant. It is 
very intuitive to find a state space representation of the target system. A common form 
of state space of a motor is given by  

)()()( tuBtxAtx ⋅+⋅=&                     (2-13) 

where  is the state, and y is the output. We take [ Txxx 21= ] ω=1x  (rpm), , 

(volt) into (2-12). We also choose motor speed as the single output, where 

12 xx &=

Vu =

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
−

⋅
⋅

−=
aa

TE

L
R

JL
KKA

10
, 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
=

a

T

L
KB
0

                (2-14) 

Next, we will consider some realistic situations of the network systems. For 
instance, the feedback states are not always available, and therefore the control input 
may be not compatible to the present condition. To illustrate the situation, rewrite the 
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input part in the state space of (2-13) as 

)()()( ktuBtxAtx ⋅+⋅=&  , where ttt k ≤<0            (2-15) 

The symbol  represents some time point that before the present time, and  is the 
initial time. Another Delay time will also be put into mathematical expression. We 
assume that delay time is a fixed constant, say 

kt 0t

τ , and (2-15) becomes 

)()()( τ−⋅+⋅= ktuBtxAtx&                  (2-16) 

We are going to discuss how those situations influence the stability of the controlled 
plant in Chapter 4. In order to maintain stability, some bounds are required. 
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CHAPTER 3 

POLE PLACEMENT DESIGN METHODOLOGY  

 

3.1 Pole Placement Theory 

    There are many solutions to design a linear controller. One of the very direct 
controller design solution is pole placement that deals with the closed-loop poles and 
the system performance. In linear controller system design, the characteristics of a 
system can be easily shown by the location of closed-loop poles. Therefore, it is very 
intuitively to design a controller according to this strategy. We can effectively carry out 
the design by specifying the location of these poles. Firstly, the controller is designed 
without considering the presence of network. Besides, the controller dynamics is 
considered continuous because the access interval of the NCS to the network is much 
larger than the processing period of the controller and smart sensors. 

    To investigate the condition required for arbitrary pole placement in an n-th order 
system, we first consider that the process is described by (2-13), where  is a  
state vector, and  is the scalar control. The state feedback control is 

)(tx 1×n
)(tu

)()( txFtu ⋅−=                         (3-1) 

The pole placement method sustains under some conditions are also satisfied. The 
sufficient condition of pole placement is that the system must be controllable, which 
means (3-2) must have full rank. 

[ ]BABAABB n 12 .... −                     (3-2) 

    A matrix  exists that can give an arbitrary set of closed-loop poles of 
. That is, the n roots of the characteristic equation 

F
)( KBA ⋅−

0)( =⋅−−⋅ FBAIs                       (3-3) 

can be arbitrary placed. In order to discuss the connection between system 
characteristics and the pole placement method, we need to connect them with pole 
locations. From [6], we know that  

n

X
ω

θζ == cos                         (3-4) 

22 YXn +=ω                         (3-5) 
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where X , Y  are real part and imaginary part of the dedicated poles. θ  is an angle 
spanning from negative real axis to positive imaginary axis, and ξ  is the damping 
ratio. Many system performances are closely related to these two factors such as rise 
time, delay time, settling time and overshoot. Their equations are already derived in [6] 
as follows: 

)110ln(1 2ζ
ζω

−⋅
−

= −m

n

ts                    (3-6) 

n

tr
ω

ζζ 2917.24167.01 +−
=                    (3-7) 

n

td
ω

ζζ 2469.0125.01.1 ++
=                   (3-8) 

21)(_ ζ
πζ

−
−

⋅= efinalspeedshootover             (3-9) 

Settling time means that the time when the output value first stayed within of 
the final value and always stayed in the range from the time on; rise time refers to the 
time period counts from the output value reaches 10% to 90% of the final value; delay 
time mentions the time when the output value reaches 50% of the final value. We will 
always keep damping ratio approach ‘1’ to avoid damping. 

m−10

It is very clearly that as long as the system performances are constrained the 
locations of poles are also decided. We can choose the locations of desired system poles 
according to pre-limited conditions. In this thesis, we choose settling time, delay time 
and rise time as the design objective. But more conditions are needed in finding more 
specific pole location. We will discuss more in the next section. 

 

3.2 Design Algorithm 

    There are several ways of pole placement such as identical radius, identical real, 
identical damping ratio. In this thesis, poles are assigned to have identical radius and 
damping ratio. In other words, poles are placed in the form of complex conjugate pairs. 
To arrange the locations of poles, in traditional pole placement design, most results 
came from thousands of trial and error tests. To have a more efficient design algorithm, 
first of all, it is necessary to make sure of system characteristics, settling time, delay 
time, rise time and overshoot, according to designer’s demands. For example, choose 

0.1(sec.), (sec.), and =st 07.0=rt 06.0=dt (sec.). 
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Fig. 3.1 The relation between nω  and ξ  when sts 1.0= , str 07.0= , and  std 06.0=

 

According to these design constrains, the relation of ξ and nω can be shown by 
Fig. 3.1. Obviously, there are three possible combinations, but none of them can match 
all the desired conditions. There is always trade-offs in designing the controller, 
therefore, it is very necessary to double check the design condition and the possible 
negotiable changes for the desired controller. In this example, if we choose 5.0=ξ  
and 20=nω  in Fig. 3.1, the demanding conditions of delay time and rise time will be 
satisfied, but the settling time will be discarded.  

 

Fig. 3.2 The relation of nω  and ξ  when three design condition are all satisfied 

 

It is also possible that the three lines are intersected on one point, therefore, the 
design will have a perfect match of the design demands. In Fig. 3.2, three demands of 
the design are satisfied because the three lines have only one solution. In this case, we 
don’t need any further selection for the suitable pair of ξ and nω . However, the case in 
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Fig. 3.1 is more common than the case in Fig. 3.2. This is why we need further 
examination of the selection of ξ and nω  pair. 

We will introduce another widely used error estimation standard called ITAE 
(Integral of Time multiplied by the Absolute Error) to do further selection of ξ and 

nω combinations for our design, and the equation of ITAE is given by 

∫ ⋅⋅= dttetITAE )(                     (3-10) 

where  is the error between present state and final desired value. The main idea of 
ITAE is to eliminate both the settling time and overshoot. Therefore, ITAE is a 
combination result of those two criteria. First, in (3-6), settling time is inverse 
proportion to 

)(te

nω , but is in proportion to ξ . Second, in (3-9), overshoot is related to ξ  
only. In order to eliminate ITAE, we should choose nω  and ξ  as larger as possible. 
After having some candidate combinations of ξ and nω , we can calculate ITAE of 
every combination choosing the one with the minimal ITAE to be our design. The 
example mentioned before have taken into a DC motor system and the outcome is 
shown in Table 3.1. (The detail of the DC motor system will be listed in chapter 5.) 

     

Table 3.1 ITAE values according to different combinations of ξ and nω  

ITAE 4.9865e-036 7.0097e-009 3.9161e-009 

ξ  0.5 0.74 0.99 

nω  20 45 40 

     

Because of different system demands, the selection of poles is certainly very 
different. ITAE is just a kind of the selection standard, and one also can use minimal 
input or no damping standard as the design conditions. In this thesis, the settling time, 
rise time, delay time and ITAE standards are adopted in design controllers. Unlike the 
other pole placement methods proposed, we use a more specific way to eliminate the 
possible combinations of desired poles in the pole placement design algorithm. We 
combine conventional pole placement and ITAE to select desired locations of poles. 
The design algorithm not only can reduce the time wasted in finding suitable poles but 
can also meet design standard. 
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3.3 Simulations of DC Motor Systems and Unstable Systems 

    Two different DC (SYSTEM 1 and SYSTEM 2) motors are used as model systems. 
The state space of the DC motor system is shown in (1-13) and (1-14), where the 
parameters are listed in Table 3.2. We will demonstrate different design conditions and 
also show DC motor output results. The purpose of DC motor controller is speed 
control. System 1 and System 2 are two different DC motors. The latter is a high speed 
DC motor. The final speed of System 1 is set to fix at 3819.7 rpm (400 rad/s) and of 
System 2 is 6684.5 rpm (700 rad/s).  

There are also two different unstable systems whose system models are given as 
follows according to (2-14). The poles are set to be 1.2 2.5,- =s  and , 
respectively. 

10  0.6,=s

Linear unstable system 1: 

)()()( tuBtxAtx ⋅+⋅=&  

where  and . ⎥
⎦

⎤
⎢
⎣

⎡
−

−−
=

7.02
8.02

A ⎥
⎦

⎤
⎢
⎣

⎡
=

1
1

B

Linear unstable system 2: 

)()()( tuBtxAtx ⋅+⋅=&  

where  and . ⎥
⎦

⎤
⎢
⎣

⎡
=

103
11

A ⎥
⎦

⎤
⎢
⎣

⎡
=

2
1

B

Examples of different intersecting points of settling time, rise time and delay time 
will be demonstrated. Fig. 3.3(a)~(c) and Table 3.3 show the design results of 

, and . Fig. 3.4(a)~(c) and Table 3.4 show the results of 
, and . Fig. 3.5(a)~(c) and Table 3.5 show the results of 

, and 

059.0=st 01.0=dt 02.0=rt
03.0=st 01.0=dt 008.0=rt
02009.0=st 005.0=dt 003.0=rt . Fig. 3.6~Fig. 3.8 and Table 3.6~3.8 are 

design results of unstable systems, and are with corresponding design demands of Fig. 
3.3~Fig. 3.5 and Table 3.3~3.5. 

     This algorithm could give the designer an approaching region of possible poles. 
Although the settling time, delay time, rise time and ITAE could guarantee some 
performances, it always needs some trial and error work to rectify the final locations of 
designed poles. 
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Table 3.2 The parameters of DC motors systems 

                 SYSTEM 1      SYSTEM 2 

Symbol Value Value

R  (Ω ) 19.16 1.3

aL  (m) 31088.4 −×  4104.3 −×  

mτ (sec.) 3108 −×  3108 −×  

J ( ) 2kgm 6105.8 −×  6105.8 −×  

TK ( ) ANm / 0.145    21082.3 −×  

Table 3.3 ITAE of System 1 and System 2 according to possible ξ and nω  combinations 

ITAE 1 54.4503 76.3844 24.0913

ξ  0.83 0.9 0.999

nω  180 170 199

ITAE 2 6.3271 8.9472 2.8107

ξ  0.83 0.9 0.999

nω  180 170 199

 

Fig. 3.3(a) The relation between nω  and ξ  when 059.0=st , 01.0=dt and  02.0=rt
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Fig. 3.3(b) The output angular speed of controlled (red line) and uncontrolled (blue line) System 1 
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Fig. 3.3(c) The output angular speed of controlled (red line) and uncontrolled (blue line) System 2 

Table 3.4 ITAE of System 1 and System 2 according to possible ξ and nω  combinations 

ITAE 1 5.7533 177.2367

ξ  0.6 0.9 

nω  300 450 

ITAE 2 0.5289 7.7748 

ξ  0.6 0.9 

nω  300 450 
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Fig. 3.4(a) The relation between nω  and ξ  when 03.0=st , 008.0=dt and  01.0=rt

 

Fig. 3.4(b) The output angular speed of controlled (red line) and uncontrolled (blue line) System 1 

 

Fig. 3.4(c) The output angular speed of controlled (red line) and uncontrolled (blue line) System 2 
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Fig. 3.5(a) The relation between nω  and ξ  when 02009.0=st , 003.0=dt and  005.0=rt

 

Fig. 3.5(b) The output angular speed of controlled (red line) and uncontrolled (blue line) System 1 

 

Fig. 3.5(c) The output angular speed of controlled (red line) and uncontrolled (blue line) System 2 
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Table 3.5 ITAE of unstable System 1 and System 2 according to possible ξ and nω combination 

ITAE 1 -4101.2435× -4101.1077× 0.0014 

ξ  0.82 0.88 0.97 

nω  0.75 0.72 0.83 

ITAE 2 -9101.7584× 1.5914 -8101.1665×

ξ  0.82 0.88 0.97 

nω  2 1 2 

 

Fig. 3.6(a) The relation between nω  and ξ  when 12=st , 2=dt and  4=rt

 

Fig. 3.6(b) The output of controlled and uncontrolled unstable System 1 
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Fig. 3.6(c) The relation between nω  and ξ  when 7=st , 1=dt and  2=rt

 

Fig. 3.6(d) The output controlled and uncontrolled unstable System 2 

Table 3.6 ITAE of unstable System 1 and System 2 according to possible ξ and nω combination 

ITAE 1 -5102.4593× 0.0012 

ξ  0.52 0.82 

nω  1.4 1 

ITAE 2 -11101.1791× 0.3848 

ξ  0.52 0.82 

nω  1.4 1 
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Fig. 3.7(a) The relation between nω  and ξ  when 10=st , 1=dt and  3=rt

 

Fig. 3.7(b) The output of controlled and uncontrolled unstable System 1 

 

Fig. 3.7(c) The output of controlled and uncontrolled unstable System 2 
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Fig. 3.8(a) The relation between nω  and ξ  when 5.2=st , 5.0=dt and  1=rt

 

Fig. 3.8(b) The output of controlled and uncontrolled unstable System 1 where 4=nω  and 

98.0=ξ  

 

Fig. 3.8(c) The output of controlled and uncontrolled unstable System 2 where 4=nω  and 

98.0=ξ  
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    Those design demands will be used also in the following simulations in Chapter 5. 
From the above simulations, the chose poles of DC motor servo system1 and system2 
are and is 08.0380 ±−= is 8.0540 ±−= , respectively. The chose poles of unstable 
system1 and system2 are andis 3.03±−= is 08.010 ±−= , respectively. 
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CHAPTER 4 

NETWORK STABILITY ANALYSIS 

 The former chapters have mentioned sub-plant systems and their controllers. In 
this chapter, we will introduce the main idea in this thesis- network control system 
stability. We want to find out a transmission error- the difference between present state 
and former control state – to act as a kind of control standard. All the control signals are 
changed according to this standard. The standard is also a kind of boundary. As long as 
the transmission error of present state is within the derived boundary, the system 
stability and network resources can be guaranteed.  

 

Fig 4.1 Transmission error bound 

 

4.1 Lyapunov Stability Theory  

    It is very easy to check whether a linear system is stable by computing its 
eigenvalues and checking their real parts. Obviously, adding network system criteria to 
original linear system makes very big differences on stability and system performances. 
The stability is no longer guaranteed and neither do the performance of the original 
designed controller. Therefore, Lyapunov stability theory provides us another option to 
deal with the stability problems in advance. The Lyapunov stability theory we mention 
here, actually, is the second method of Lyapunov theory which is also called the direct 
method of Lyapunov. In the following discussion, we will use the phrase “Lyapunov 
theory” instead.  

    Lyapunov theory allows us to determine the stability of a system without explicitly 
integrating the differential equation (2-13). The method is a generalization of the idea 
that if there is some form of “measure energy” in a system, then we can study the rate of 
change of the energy of the system to ascertain stability. To make this precise, we need 
to define exactly what one means by “measure energy.” Before we define the “measure 
energy”, we will present the general form of Lyapunov equation. Let  be a 0>Q

 24



positive definite symmetric matrix and let P  denote the unique positive symmetric 
solution of  

QAPPAT −=⋅+⋅                        (4-1) 

where  is system matrix of , and let  be a non-negative function with 
derivative  along the trajectories of the system. The  is defined as 

A Axx =& ),( txV
V& ),( txV

xPxtxV T ⋅⋅=),(                         (4-2) 

where P  is the solution of Lyapunov equation (4-1). From equation (4-2), we can 
view  as a kind of energy form of the system. The function V  can serve as a 
measure for the length of the vector x. If, in addition, , we see that  is a 
decreasing function of t along any trajectory . This suggests that the quantity 

 and hence the vector  tends to zero as 

V
0>Q ),( txV&

)(tx
),( txV& )(tx ∞→t , and hence that  is 

stable. 
Axx =&

In other word, as long as  has been proved, the stability of system is then 
maintained. The relation between Lyapunov equation and (4-2) can be shown as 
follows: 

0<V&

xPxPxxV TT &&& +=                         (4-3) 

If taking (2-13) into (4-3) and with pole placement control input in (3-1), we got 

               (4-4) xFBAPxPxFBAxV TTT )()( ⋅−+⋅−=&

To make , and the inequality is given by 0<V&

0)()( <⋅−+⋅− xFBAPxPxFBAx TTT                (4-5) 

By rearranging (4-5), we have 

0)]()[( <⋅−+⋅− xFBAPPFBAx TT                (4-6) 

Inequality (4-6) sustains if the condition (4-7) holds. 

QFBAPPFBA T −=⋅−⋅+⋅⋅− )()(                (4-7) 

Equation (4-7) is the Lyapunov equation of system (2-13). 

 

4.2 Modified Lyapunov Stability with Network Conditions 

In conventional controller design, it is very natural to stabilize an unstable system. 
The condition of  for all 0<V& 0≠x  is always required. The main idea of Lyapunov 
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theory is also to promise stability of control system. However, there are some 
mechanical systems that are already stable without compensation. DC motors are one of 
those examples. In this situation, it is meaningless to discuss whether . Therefore, 
in this section, modified stability standards will be discussed.  

0<V&

VKV ⋅−<&                            (4-8) 

Instead of proving  to satisfy the stability demands of the system, inequality 
(4-8) shows more emphases on the decay rate of the system. We now focus our attention 
on the better performances of control system but not only the stability. The 
corresponding modified Lyapunov equation becomes 

0<V&

QPKFBAPPFBA T −=⋅+⋅−⋅+⋅⋅− )()(              (4-9) 

This result will be used in the proofs of Proposition 1. 

All of the discussion of Lyapunov stability theory does not yet consider network 
criteria. To introduce network condition in our discussion, we first replace control input 
(2-13) with (2-15). Equation (4-4) becomes 

))()(()()())()(( k
TT

k txFBtxAPtxtPxtxFBtxAV ⋅⋅−⋅+⋅⋅−⋅=&   (4-10) 

where , and represents the initial time. Considering the inherent physical 
problem of network systems, the control input signals are not always available, and the 
period during every access time of the controller is not constant. In order to maintain 
system performances, a bounded error will be defined in the following proposition. Fig. 
4.2 shows the relation between transmission error bound and control state. 

ttt k <<0 0t

T 1     T 2     T 3     T 4     T 5      T 6      T 7      T 8

C
on

tro
l S

ta
te

||x
(t)

-x
(tk

)||

T im e

     X ( t1 )

     X ( t2 )

    X ( t4 )

      X ( t5 )
     X ( t6 )

       | | e ( t ) | |

T im e

    X ( t3 )

 

Fig. 4.2 Transmission error bound and control states 
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Proposition 1:  

Let ,  nRx∈ nnRPQ ∈, ,× nRB∈ , and nRF ×∈ 1  where are positive definite 
matrices. 

PQ,
B  is the system matrix in (2-15), and  is the state feedback gain. F P  is 

the unique solution of modified Lyapunov equation (4-9) according to specific . If 
the error is limited as 

Q

1
min )()(

2
1)( −⋅⋅< PBFtxQte λ             (4-11) 

where , and ttt k <<0 )()()( ktxtxte −= . The system can be guaranteed to have 
Lyapunov stability of  

KVV −<&                       (4-12) 

where  is given in (4-2), and system model is ),( txV

)()()( ktuBtxAtx ⋅+⋅=&  

 

Proof: 

xPxPxxV TT &&& +=  

Form (4-10), we have 

   ))()(()()())()(( k
TT

k tBFxtAxPtxtPxtBFxtAxV −+−=&

))()(()(2 k
T tBFxtAxPtx −=  

we assume that 

1
min )(

2
1)( −⋅< PBFxQte λ  

where , and  is identity matrix in (4-7). )()()( ktxtxte −= Q

xQxtePBFx TT )(
2
1)( minλ⋅<⋅⋅  

2
min )(

2
1)( xQtePBFxT λ<⋅⋅  
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2

2
1)( xQtePBFxT <⋅⋅  

QxxtePBFx TT

2
1)( <⋅⋅  

0)(2)( <⋅⋅+− tePBFxxQx TT  

It is obvious that 

)(2)()(2)( tePBFxxQxtPBFexxQx TTTT ⋅⋅+−≤+−  

If 

0)(2)( <⋅⋅+− tePBFxxQx TT  

Then, 

0)(2)( <+− tPBFexxQx TT                         

Taking substituting (4-9) into above inequality we have 

0)]()([)(2)(})()){(( <−++−+− k
TTT txtxPBFtxtxKPBFAPPBFAtx  

022)]([2 <−+⋅+− PBFxxPBFxxPxxKtBFxAxPx TTT
k

T  

)()())()(()(2 tPxtxKtBFxtAxPtx T
k

T ⋅−<−  

We substitute and  into above inequality, then we have V& V

VKV ⋅−<&  

    ▓ 

Lemma 1: 

Consider a linear time-invariant system in (2-13). Let ,  nRx∈ nnRPQ ∈, ,× nRB∈ , 
and nRF ∈ 1×  where are positive definite matrices. PQ, B  is the system matrix in 
(2-15), and  is the state feedback gain. F P  is the unique solution of modified 
Lyapunov equation (4-9) according to specific . If the error is limited as Q
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11
min )(])([)(

2
1)( −− ⋅−+< PBFtxBFMIAMQte kλ       (4-13) 

where , and system model is )( kttAeM −=

)()()( ktuBtxAtx ⋅+⋅=&  

 

Proof: 

The trajectory expression of  with )(tx ktt =0  is given as 

∫ −− +=
t

t

tA
k

ttA

k

k dBuetxetx τττ )()()( )()(  

Taking (3-1) with into above equation, we have ktt =0

∫ −− −=
t

t k
tA

k
ttA

k

k dtBFxetxetx ττ )()()( )()(  

            )()()(
k

t

t

AAt
k

ttA tBFxdeetxe
k

k ∫ −− −= ττ

           )()()( 1)(
k

t

t

AAt
k

ttA tBFxeAetxe
k

k

=

−−− −−=
τ

τ  

            )(])([ 1)(
k

AtAtAtttA txBFeeAee kk −−−− −+=

            )(])([ )(1)(
k

ttAAtAtttA txBFeIeAee kk −−−− −+=

            )(])([ )(1)(
k

ttAttA txBFeIAe kk −−− −+=

                (4-14) )(])([ 1
ktxBFMIAM −+= −

where  . If take (4-14) into Proposition 1, the inequality became )( kttAeM −=

11
min )(])([)(

2
1)( −− ⋅−+< PBFtxBFMIAMQte kλ  

▓ 

    Proposition 1 describes the error bound [ )()( ktxtx − ] of a local plant. As long as 
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the error bound is within the proved range, the system can have better performance than 
the original system, and the results will be shown in Chapter 5 in simulations. 

    Lemma 2 will introduce network delays. It is an extent manifestation of 
Proposition 1. Another formation of bounds will be shown in the following proposition. 
The system state space is  

)(tBuAxx +=&  

where the input control is given as follows 

)()( τ−−= ktFxtu  

where . Fig. 4.3 shows the relation between control states and error bounds 
with time delays. 
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Fig. 4.3 Transmission error bound and control states of NCS with delays 

 

Lemma 2: 

Consider a linear time-invariant system in (2-13). Let ,  nRx∈ nnRPQ ∈, ,× nRB∈ , 
and nRF ∈ 1×  where are positive definite matrices. PQ, B  is the system matrix in 
(2-15), and  is the state feedback gain. F P  is the unique solution of modified 
Lyapunov equation (4-9) according to specific . If the delayed control state is limited 
as given 

Q

11
min )(])([)(

2
1)()( −− ⋅−+<−− PBFtxBFMIAMQtxtx kk λτ  

whereτ  represents fixed delay and ttt k <<0 , and τAMeM = . The system can be 
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guaranteed to have Lyapunov stability of (4-12) where  is (4-2), and system model 
is 

V

)()()( τ−⋅+⋅= ktuBtxAtx&  

 

Proof: 

xPxPxxV TT &&& +=  

Adopted form (4-10) where the input signals are delayed states, we have 

))()(()()())()(( ττ −−+−−= k
TT

k tBFxtAxPtxtPxtBFxtAxV&  

))()(()(2 τ−−= k
T tBFxtAxPtx  

where ttt kk <−<− τ1 . We first assume that 

11
min )(])([)(

2
1)()( −− ⋅−+<−− PBFtxBFMIAMQtxtx kk λτ  

where we substitute (4-14) into above inequality 

1
min )(

2
1)()( −⋅<−− PBFxQtxtx k λτ  

xQxtxtxPBFx T
k

T )(
2
1)()( minλτ <−−⋅  

QxxtxtxPBFx T
k

T

2
1)()( <−−⋅⋅ τ  

It is obvious that 

)()(2)()]()([2)( ττ −−⋅⋅+−≤−−+− k
TT

k
TT txtxPBFxxQxtxtxPBFxxQx  

If 

0)()(2)( <−−⋅⋅+− τk
TT txtxPBFxxQx  

Then, 
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0)]()([2)( <−−+− τk
TT txtxPBFxxQx  

Taking substituting (4-9) into above inequality we have 

0)]()([)(2)(})()){(( <−−++−+− τk
TTT txtxPBFtxtxKPBFAPPBFAtx  

022)]([2 <−+⋅+−− PBFxxPBFxxPxxKtBFxAxPx TTT
k

T τ  

0)()())()(()(2 <⋅+−− tPxtxKtBFxtAxPtx T
k

T τ  

)()())()(()(2 tPxtxKtBFxtAxPtx T
k

T ⋅−<−− τ  

We substitute and  into above inequality, then we have V& V

VKV ⋅−<&  

▓ 

Lemma 2 is actually an extension of Proposition1. In the results of Lemma 2, the 
effect caused by fixed delay τ  is described by )(tβ . 
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4.3 Simulations 

    The following simulations are demonstrated by speed control of two different DC 
motor servo systems and two randomly selected different linear unstable systems. The 
detailed parameters of DC motor servo system and unstable systems are given in Table 
3.2 and as follows.  

Linear unstable system 1: 

)()()( tuBtxAtx ⋅+⋅=&  

where  and . ⎥
⎦

⎤
⎢
⎣

⎡
−

−−
=

7.02
8.02

A ⎥
⎦

⎤
⎢
⎣

⎡
=

1
1

B

 

Linear unstable system 2: 

)()()( tuBtxAtx ⋅+⋅=&  

where  and . ⎥
⎦

⎤
⎢
⎣

⎡
=

103
11

A ⎥
⎦

⎤
⎢
⎣

⎡
=

2
1

B

The controlling block diagram is shown in Fig. 4.4. 

Sub-system1

Central
Controller

-

Sub-system2-

.

.

.

u1

      u2
states1

  states2

 

Fig. 4.4 The controlling block diagram of overall networked system 

 

 33



4.3.1 Network Control System without Delay 

    The following simulations will demonstrate the controlled results of systems 
considering transmission error. All the controlling conditions and system details are the 
same as mentioned in section 4.3. The most different part is that innate characteristics- 
transmission error- of NCSs are considered. However, the network-induced delays are 
not involved in. In practical NCS, not every feedback states are available during every 
sampling time, and therefore the control input signal might not be compatible to present 
states and is calculated according to some states before. Lyapunov stability theory is 
adopted when deriving the transmission error bound in Chapter 4. The control input 
signal is changed based on transmission bound. Finally, the endurable error is within 
0.001. 

 

(1)DC motor systems 

 
Fig. 4.5(a) The angular velocity of transition error controlled and uncontrolled system of System1 

 
Fig. 4.5(b) The angular velocity of transition error controlled and uncontrolled system of System2 
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Fig. 4.5(c) The controlled frequencies of DC motor ststem1 and system2 

 

(2)Unstable systems 
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Fig. 4.6(a) The output of transition error controlled and uncontrolled system of Unstable system1  
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Fig. 4.6(b) The output of transition error controlled and uncontrolled system of Unstable system2 
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Fig. 4.6(c) The controlled frequencies of Unstable sytem1 and system2 

 

     The same pole placement results of section 4.3 are also used in this section. Fig. 
4.5 are, comparing with single plant control, not so ideal in transient performances 
especially in delay time and rise time. On the other hand, the controlled frequencies 
deserve to be mentioned. For DC motor servo systems, the frequencies are 5000/25000 
times at most. Unstable systems are 25000/400000 times. The controlled frequencies 
are system depending. Even the worse case in DC motor system, nine tenth network 
usage is saved and about three fourth for unstable system.  
 

4.3.2 Network Control System with Delay 

    In this section, all the controlling conditions and system details are the same as 
mentioned in section 4.3.1. An overall NCS with constant delays is presented. The 
constant delay adopted is 44.4 μsec.  

(1)DC motor systems 

 

Fig. 4.7(a) The angular velocity of transition error controlled with delays and uncontrolled system 

of System1 
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Fig. 4.7(b) The angular velocity of transition error controlled with delays and uncontrolled system 

of System2 

 
Fig. 4.7(c) The controlled frequencies of DC motor ststem1 and system2 with delays 

 

(2)Unstable systems 
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Fig. 4.8(a) The output of transition error controlled with delays and uncontrolled system of 

Unstable system1 
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Fig. 4.8(b) The output of transition error controlled with delays and uncontrolled system of 

Unstable system2 

 
Fig. 4.8(c) The controlled frequencies of Unstable sytem1 and system2 with delays 

    The simulations show that adding of delay decreases system efficient a lot. Taking 
DC motor systems for example, only three fourth network resources are saved and the 
unstable systems are even worse. Although the stability is promised in both system 
types, the advanced performances are not always guaranteed.  Therefore, it is very 
important to make sure the demands of NCS before design one. If the demands are only 
focus on system stability, the design is good enough. But if designers are focus on other 
system performances, it needs more compensating and amending. 

 

 

 

 

 38



CHAPTER 5 

CONCLUSIONS 

5.1 Remark Conclusions 

    In this thesis an error bound concept is provided to function as a switching 
standard of networked control systems. The system needs control only when the error 
bound is over the calculated value which is closely related to present state or former 
available state. The standard is quite reasonable. Through network systems, many 
unpredictable situations will inevitably appear in the systems such as network induced 
time delay and packet losses. Besides, there is also some other algorithm problems need 
to be considered, for example, scheduling or package dropping. Any of these tasks put 
great deal of influences on the NCS performance and stability.  

The lesser the unnecessary accesses to the network the more efficient the NCS is. 
The concept of error bound could maintain this condition. Local sensors can sieve out 
the error bound of every state and send out control demands to the central controller and 
then the central controller can send control signal to the local actuators. It is no need for 
central controller to send control signal to every node for every state which is 
impossible for practical layer. In small local NCS with few nodes, the achievements are 
not conspicuous, but the effect would be very noticeable in large NCS. For example, if 

one node covers only 10
1  lesser network usage than before, a NCS with 100 nodes 

could save 10
9  usage of the network and is very flexible for another possible 90 more 

nodes to enlarge the original 100 nodes NCS. This means the original NCS could have 
around 90% in growth. The influences of the error bound are very useful and ideal. 

The simulations of switched systems illustrate the most ideal situations in NCS 
that is merely possible in practical realization. It means every feedback state is available, 
and also fixed time slots are set for specific nodes without considering the fact that the 
feedback states of the node might not be available during the specific time slots. The 
other simulations are modeling actual network criteria without delays and with delays. 
The mentioned turn, , is sometimes called transmission error[9]. The simulation 
results of those two situations demonstrate the influences network part brought to the 
NCS. Comparing with ideal situations, the performances are not so good although the 
stability is still promised.  

)(te
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5.2 Future Work 

    The detailed relation between system performance and stability is not so clear and 
definitely so far in the discussion. Different sub-plant may have different demands in 
design and their limitations are quite diverse, too. We use pole placement methodology, 
in this thesis, to maintain DC motor performance. For unstable systems, the most 
crucial problem lays on stability which is much more important than system transient 
performance comparing with DC motors.  

    Pole placement methodology is good at controlling the transient states of a system, 
but there are following limitations. There are always limited bounds for the locations of 
poles. The design methodology mentioned in this thesis, is just objective orientation ; 
not intending to find exactly pole locations. For more complex and larger systems, other 
controller design might be better and powerful choices such as optimal control, H 
infinity or robust control. It is also possible to design a compensation controller for the 
pole placement controller without thoroughly changing original controller.  

    There are many other more complex problems appearing in real NCSs. It would be 
a very complete discussion if those criteria could be transformed in to mathematical 
expression and be considered in the NCSs. Every condition has different impact on 
system stability or performance. If we could consider more practical situations, the 
derived consequences could be more persuasive and more flexible.  

    There are also some discussions about the modified Lyapunov equation. According 
to (4-8), the modified Lyapunov equation is shown in (4-9). However, it is not for sure 
that whether the equation has a solution. More mathematical proof needs to be 
continued and discussed.  
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