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ABSTRACT

A network system considering network-induced delay is presented in this thesis.
Network-induced delay may have advert influences on networked closed-loop control
system such as performance degradation and system destabilization. We will first
introduce single DC motor plant without considering networked control systems, and
design individual controller for DC motor using pole placement method. Then, the
overall networked control systems will be introduced. There are two types of
network-induced delay: one is fixed delay; the other is random delay. The former is
adopted in the thesis. In order to reduce network usage and maintain system stability,
control input signals are sent under certain boundary conditions. Central controller
sends control signals according to present states or former control states of the plants.
The network usage can be reduced and overall system stability can be guaranteed, too.
Transmission error is a practical phenomenon in NCS and will be defined in the thesis.
Examples of controlling two DC servo-motors or two linear unstable systems through
network will be demonstrated, and the effects caused by network-induced delay will
also be shown in simulations and discussed in the thesis.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The overwhelming stands of network system are obviously in recent decades.
Because of the complexity and loads are rapidly increasing, the demands of NCS’s
performance are ever increasing. A system without network system can only control one
sub-plant, while a well-designed network control system can deal with ten times or
more sub-plants with only one central controller. The efficiency is distinctly superior
than the traditional control systems in many ways. Furthermore, the applications
connected through a network can be remotely controlled from a long—distance source.
Conventionally, the networks used in the aforementioned applications are specific
industrial networks, such as CAN (Controller Area Networks), and PROFIBUS.
However, general data networks such as Ethernet and Internet are quickly advancing to
be the networks of choices for many applications due to their flexibility and lower costs.

There are two general structures to design a control system through a network. The
first structure is to have several sub-systems, in which each of them contains a set of
sensors, actuators, and a controller by itself. These system components are attached to
the same control plant. In this case, a sub-system controller receives a set point from the
central controller. Another structure is to connect a set of sensors and actuators to a
network directly. Sensors and actuators in this case are attached to a plant, while a
controller is separated from the plant via a network connection to perform a closed-loop
control over the network. In this thesis, the latter is adopted.

In order to extend the network efficiently, we try to provide a simple but useful
methodology to reduce the usage of the network. The network induced time delays are
also topic to be discussed. Therefore, under allowable physical condition, we can
enlarge the control network as large as possible and display the influences brought by
network delays [14].

1.2 Survey of DC Motor Systems and unstable Systems

Two kinds of sub-systems will be used in this thesis. One is DC motor servo
systems, and the other is a random selected linear unstable system. Those two different
sub-systems will demonstrate distinct results: as for the unstable system, we will focus
more on system stability, and the DC motor servo systems, we will emphasize more on



the transient performances.

In recent years, the use of DC machines has become exclusively associated with
applications where the unique characteristics of the DC motor (i.e., high starting torque
for traction motor application) justify its cost, or where portable equipment must be run
from a DC (or battery) power supply. The ease with which the DC motor lends itself to
speed control has long been recognized. Compatibility with transistor amplifiers, plus
better performance due to the availability of new improved materials in magnets,
brushes and epoxies, has also revitalized interest in DC machines. The need for new
high-performance motors with highly sophisticated capabilities has produced a
superabundance of new shapes and sizes quite unlike DC machines years ago.

The DC motors are original convergent systems, and therefore we will put
emphases on their transient performances than stability conditions. The related
reference of DC motor control through network system is [15].

1.3 Survey of Pole Placement and Lyapunov Theory

Pole placement is a traditional control system design technique for linear
time-invariant control systems. The technique is based on the fact that several
performance specifications can be met using dynamic output feedback to adequately
place closed-loop poles in the complex plane. An extension of the classical pole
placement problem is the regional pole placement problem, in which the objective is to
place closed-loop poles in a suitable region of the complex plane. The regional pole
placement problem is usually treated in connection with the substantially more general
problem of placing closed-loop poles in a specified region in the face of uncertainty
with respect to the mathematical model of the plant. In many real-world situations, the
model uncertainty reflects on the parameters of the plant, which has motivated
extensive research efforts in parametric robust control theory [10]-[12].

Lyapunov stability theory is more often used in analyzing nonlinear systems than
linear systems [13]. In this thesis, Lyapunov theory is adopted to solving the stability
problem of system with network condition added. A transmission error bound is derived
from Lyapunov stability conditions [21].

1.4 Survey of Network Control Systems

Feedback control systems wherein the control loops are closed through a real-time
network are called networked control systems (NCSs) [1-4 and 18]. The defining



feature of an NCS is that information (reference input, plant output, control input, etc.)
is exchanged using a network among control system components (sensors, controller,
actuators, etc.). Fig.. 1.1 illustrates a typical setup and the information flows of an NCS.
The primary advantages of an NCS are reduced system wiring, ease of system diagnosis
and maintenance, and increased system agility. The insertion of the communication
network in the feedback control loop makes the analysis and design of an NCS complex.
Conventional control theories with many ideal assumptions, such as synchronized
control and non-delayed sensing and actuation, must be reevaluated before they can be
applied to NCSs.

Physical Plant

Actuator 1 | - | Actuator m | Sensor 1 | | Sensor n
T
+| i ' :
| 1 I N S P | ol SO o e ) 1 -
e T e ——— - 1 TR o ) e i
Ltberﬁ 11| 1§ Control Network  Other
Processes L Processes
Cantroller

Fig. 1.1 A typical NCS setup and information flows

Specifically, the following issues need to be addressed. The first issue is the
network-induced delay (sensor-to-controller delay and controller-to-actuator delay) that
occurs while exchanging data among devices connected to the shared medium. This
delay, either constant or time varying, can degrade the performance of control systems
designed without considering the delay and can even destabilize the
system[16][19][20].

The network can be viewed as a web of unreliable transmission paths. Some
packets not only suffer transmission delay but, even worse, can be lost during
transmission. Thus, how such packet dropouts affect the performance of an NCS is an
issue that must be considered.

Another issue is that plant outputs may be transmitted using multiple network
packets (so-called multiple-packet transmission), due to the bandwidth and packet size
constraints of the network. Because of the arbitration of the network medium with other
nodes on the network, chances are that all/part/none of the packets could arrive by the
time of control calculation.

However, we will only focus our attention on the issues of network limitations and



network-induced delays in the direction from controller to actuators. Many researches
have been done when it comes to discuss about the problems of network-induced delays.
Some of them focus on finding the transmission deadlines for which the stability of the
NCS is guaranteed [3,4,7, and 14].

1.5 Thesis Organization and Contributions

This thesis has been organized as follows. Chapter 2 introduces the system model
including sub-systems and overall models. Chapter 3 presents the pole placement
controller design procedures and results. Chapter 4 briefs Lyapunov stability and the
main proof of error bound results. Chapter 5 gives the simulation results of Chapter 4.
Chapter 6 concludes the thesis also highlighting future studies of NCS.

The stability of error bound promising system is derived in this thesis. The central
controller can spare more time dealing with other sub-plants. In this way, the central
controller only needs to send control signals less than 250 times during 5000 times
accessing to the network of the least control times. In other words, ten times the
sub-plants can be inserted as long as the physical layer of NCS could afford.



CHAPTER 2
SYSTEM MODEL
2.1 System Model

The whole system is composed of two different sub-systems: DC motors and
network part. We will first present DC motor models in mathematical form in section
2.1.1 and then the overall system in section 2.1.2 with the network system plugged in.

2.1.1 DC motor system and Unstable Systems

In this chapter, two DC motor systems are chosen as control plants. For a long time,
motor system is always a very fundamental but crucial system. No matter in
theoretically proving or practical implementation, because of their simplicity in
structure and malleability in function, they are widely used in system analysis, design
and application. We will introduce the mathematical model of a single motor, and then
the whole motor system.

The motor is a machine devises electrical power into mechanical power; more
specifically it transfers electrical power into mechanical power with the help of
magnetic field. Since the magnetic field is always constant, it is not our subject to
discuss the relating problem in this field. We will focus on the relation between
electrical power and mechanical power. Moreover, many useful mathematical models
would be constructed as follows.

Equation of electrical model of the motor is given by:

di
V=L, —2+R-1 _+E 2-1
ot = e (1)
La
. R[]

+ —

ve "® =g (o0Tw

tor

O

Fig. 2.1 Equivalent circuit of the DC motor

where Vand I,
at stall is equal to a combination circuit of resistance, R, in series with inductance L, .

are the motor voltage and current respectively. The motor impedance



E, isthe internally generated voltage which is proportional to the motor velocity, .

E, =Ko (2-2)

Combining (2-1) and (2-2), we have the electrical equation

di

V=l R+ Ko (2-3)

a

Second, we will introduce motor dynamic equation. The relation between torques
and velocity is given by

T, :J-Z—?+Tm +T, (2-4)

where J is the total moment of inertia, T, is the internally generated torque, and

T, isthe load opposing torque. The opposing torque in the motor is given by

T,=D-o+T; (2-5)

where D is the viscous damping factor, and T, is the internal friction torque.

Because of the constant magnetic field, the current produces a proportional torque
(2-6)

where K, is the torque constant. Therefore, the total dynamic function from (2-4),
(2-5) and (2-6) are

KT-Ia:J-cL—C:+D-a)+Tf +T, (2-7)

For simplicity, we will assume that motor velocity is the same as that of the
load. The following results are based on the equal velocity definition. Finally, linking
up motor electric equation (2-3), (2-4) and motor dynamic equation (2-7), we have a
motor mathematical model with its variables. However, a transfer function is needed
when we want to design a control system. The relations between input signals and

output signals are easier to understand in this way. We assume T, =0 and T =0



for further discussion since neither of them affect the transfer function. The Laplace
transforms of the motor equations are

V(s)=(s-L, +R)-1,(s)+K; -a(s) (2-8)
Ki-l,-=J-5-@(S)+D-w(s) (2-9)

We can obtain an expression for the current:

| (s)= Ki(s .J+D)-o(s) (2-10)

T

If we combine (2-8) and (2-10), we have

V(s) =Ki(s- L +R)(s-J+D)-0(s)+ K, -(s)  (2-1)
T
For simplicity, we let damping factor D negligible, and the corresponding
transfer function becomes

_o(s) _ K,

G, (s)= =
n(8) V(s) s’-L,-J+s-R-J+K-K,

(2-12)

As mention to unstable systems, virtual linear unstable systems are adopted in
this thesis. Purposely, we build up a linear system with locating its poles on the right
hand side of complex plant. Because of the innate physical characteristics, DC
motors are always convergent. Therefore, the linear unstable systems are used for
comparison with DC motor systems.

2.1.2 Network system model

Traditionally, point-to-point communication architecture for control system has
been used for decades in industry. However, enormously growing physical setups and
functionality both test the limits of point-to-point communication architecture. Network
systems with common bus architectures, called networked control systems (NCSs),
have many advantages such as small volume of wiring and distributing processing.
Those merits make it possible to implement larger communication architecture ever.

There are three typical network architectures using control communication-
Ethernet, Control net, and Device net. In this paper, we choose Device net (CAN bus)
as our NCS architecture. CAN bus is a deterministic protocol optimized for short
messages, and the message priority is specified in the arbitration field, which means the
network-induced delay is predictable and probably is some fixed constant. The

7



disadvantages of CAN are limited data rate (maximum of 500 Kb/s) and limited size of
transferring data. However, these demerits do not cause any problem to the following
discussion.

Several network-based controlled DC motors are used as an example to
demonstrate the effectiveness of the proposed scheme. The whole system is composed
of three different units: plant (DC motors), central controller, and communication
network (CAN bus). The structure is shown in Fig.. 2.1. We concern the CAN as the
only time delay part, and the control input signal delay is introduced between central
controller and motor controller through CAN bus.

motor

il

LA

Actyator & Sehsor

[ —

Central PC Control

%5

= = o= om
4

Actuator & Sensor

[

Fig.. 2.2 Control network system structure with induced delay

Now, we want to know some performance and characteristics of the plant. It is
very intuitive to find a state space representation of the target system. A common form
of state space of a motor is given by

%(t) = A-x(t) + B-u(t) (2-13)

where x=[x, x,[|' isthe state, and y is the output. We take x, =@ (rpm), X, =X,

u =V (volt) into (2-12). We also choose motor speed as the single output, where

0 1 0
A=|_ KKy R B=| Ky (2-14)
a"] La La

Next, we will consider some realistic situations of the network systems. For
instance, the feedback states are not always available, and therefore the control input
may be not compatible to the present condition. To illustrate the situation, rewrite the



input part in the state space of (2-13) as
X(t) = A-x(t)+B-u(t,) ,where t,<t, <t (2-15)
The symbol t, represents some time point that before the present time, and t, is the

initial time. Another Delay time will also be put into mathematical expression. We
assume that delay time is a fixed constant, say 7, and (2-15) becomes

%(t) = A-x(t) + B-u(t, - 7) (2-16)

We are going to discuss how those situations influence the stability of the controlled
plant in Chapter 4. In order to maintain stability, some bounds are required.



CHAPTER 3

POLE PLACEMENT DESIGN METHODOLOGY

3.1 Pole Placement Theory

There are many solutions to design a linear controller. One of the very direct
controller design solution is pole placement that deals with the closed-loop poles and
the system performance. In linear controller system design, the characteristics of a
system can be easily shown by the location of closed-loop poles. Therefore, it is very
intuitively to design a controller according to this strategy. We can effectively carry out
the design by specifying the location of these poles. Firstly, the controller is designed
without considering the presence of network. Besides, the controller dynamics is
considered continuous because the access interval of the NCS to the network is much
larger than the processing period of the controller and smart sensors.

To investigate the condition required for arbitrary pole placement in an n-th order
system, we first consider that the process is described by (2-13), where x(t) isa nx1
state vector, and u(t) is the scalar control. The state feedback control is

u(t) = —F - x(t) (3-1)

The pole placement method sustains under some conditions are also satisfied. The
sufficient condition of pole placement is that the system must be controllable, which
means (3-2) must have full rank.

B AB A’B .. A"'B| (3-2)

A matrix F exists that can give an arbitrary set of closed-loop poles of
(A-B-K). That is, the n roots of the characteristic equation

s-1-(A-B-F)=0 (3-3)

can be arbitrary placed. In order to discuss the connection between system
characteristics and the pole placement method, we need to connect them with pole
locations. From [6], we know that

¢ =cosf = X (3-4)
w

o, =X2+Y? (3-5)

10



where X, Y are real part and imaginary part of the dedicated poles. € is an angle
spanning from negative real axis to positive imaginary axis, and & is the damping
ratio. Many system performances are closely related to these two factors such as rise
time, delay time, settling time and overshoot. Their equations are already derived in [6]
as follows:

ts =~ @0 ™ -\1—£2) (3-6)
ONe
i = 10.4167¢ + 2.917¢°7 (3-7)
w

n

_ 1.1+0.125£ +0.469¢ 2
w

td (3-8)

n

<
over _shoot = (finalspeed) - e /@ (3-9)

Settling time means that the time when the output value first stayed within 107" of
the final value and always stayed in the range from the time on; rise time refers to the
time period counts from the output value reaches 10% to 90% of the final value; delay
time mentions the time when the output value reaches 50% of the final value. We will
always keep damping ratio approach “1’ to avoid damping.

It is very clearly that as long as the system performances are constrained the
locations of poles are also decided. We can choose the locations of desired system poles
according to pre-limited conditions. In this thesis, we choose settling time, delay time
and rise time as the design objective. But more conditions are needed in finding more
specific pole location. We will discuss more in the next section.

3.2 Design Algorithm

There are several ways of pole placement such as identical radius, identical real,
identical damping ratio. In this thesis, poles are assigned to have identical radius and
damping ratio. In other words, poles are placed in the form of complex conjugate pairs.
To arrange the locations of poles, in traditional pole placement design, most results
came from thousands of trial and error tests. To have a more efficient design algorithm,
first of all, it is necessary to make sure of system characteristics, settling time, delay
time, rise time and overshoot, according to designer’s demands. For example, choose
t, =0.1(sec.), t, =0.07 (sec.), and t, =0.06 (sec.).

11
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Fig. 3.1 The relation between @, and & when t,=0.1s, t. =0.07s,and t; =0.06s

According to these design constrains, the relation of £and @,can be shown by
Fig. 3.1. Obviously, there are three possible combinations, but none of them can match
all the desired conditions. There is always trade-offs in designing the controller,
therefore, it is very necessary to double check the design condition and the possible
negotiable changes for the desired controller. In this example, if we choose &=0.5
and @, =20 in Fig. 3.1, the demanding conditions of delay time and rise time will be

satisfied, but the settling time will be discarded.

100

an

=]

mr settlingtime

4 1 1 L 1 L 1 ! 1
%.1 0.z 03 04 05 06 a7 0.4 04 1
champing ratio

Fig. 3.2 The relation of @, and & when three design condition are all satisfied

It is also possible that the three lines are intersected on one point, therefore, the
design will have a perfect match of the design demands. In Fig. 3.2, three demands of
the design are satisfied because the three lines have only one solution. In this case, we
don’t need any further selection for the suitable pair of £and ®,. However, the case in

12



Fig. 3.1 is more common than the case in Fig. 3.2. This is why we need further
examination of the selection of £and «, pair.

We will introduce another widely used error estimation standard called ITAE
(Integral of Time multiplied by the Absolute Error) to do further selection of £and
@, combinations for our design, and the equation of ITAE is given by

ITAE = j t-[et)] - dt (3-10)
where e(t) is the error between present state and final desired value. The main idea of
ITAE is to eliminate both the settling time and overshoot. Therefore, ITAE is a
combination result of those two criteria. First, in (3-6), settling time is inverse
proportionto w,, but is in proportion to &. Second, in (3-9), overshoot is related to &
only. In order to eliminate ITAE, we should choose @, and & as larger as possible.
After having some candidate combinations of and ,, we can calculate ITAE of
every combination choosing the one with the minimal ITAE to be our design. The

example mentioned before have taken into a DC motor system and the outcome is
shown in Table 3.1. (The detail of the DC motor system will be listed in chapter 5.)

Table 3.1 ITAE values according to different combinations of &£and @,

ITAE 4.9865e-036 | 7.0097e-009 | 3.9161e-009
4 0.5 0.74 0.99
, 20 45 40

Because of different system demands, the selection of poles is certainly very
different. ITAE is just a kind of the selection standard, and one also can use minimal
input or no damping standard as the design conditions. In this thesis, the settling time,
rise time, delay time and ITAE standards are adopted in design controllers. Unlike the
other pole placement methods proposed, we use a more specific way to eliminate the
possible combinations of desired poles in the pole placement design algorithm. We
combine conventional pole placement and ITAE to select desired locations of poles.
The design algorithm not only can reduce the time wasted in finding suitable poles but
can also meet design standard.
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3.3 Simulations of DC Motor Systems and Unstable Systems

Two different DC (SYSTEM 1 and SYSTEM 2) motors are used as model systems.
The state space of the DC motor system is shown in (1-13) and (1-14), where the
parameters are listed in Table 3.2. We will demonstrate different design conditions and
also show DC motor output results. The purpose of DC motor controller is speed
control. System 1 and System 2 are two different DC motors. The latter is a high speed
DC motor. The final speed of System 1 is set to fix at 3819.7 rpm (400 rad/s) and of
System 2 is 6684.5 rpm (700 rad/s).

There are also two different unstable systems whose system models are given as
follows according to (2-14). The poles are set to be s=-2.5,1.2 and s=0.6, 10,

respectively.
Linear unstable system 1:

X(t) = A-x(t) + B-u(t)

-2 -0.8 1
where A= and B= )
-2 07 1

Linear unstable system 2:

%(t) = A-x(t) + B - u(t)

1 1
where A= and B = L .
3 10 2

Examples of different intersecting points of settling time, rise time and delay time
will be demonstrated. Fig. 3.3(a)~(c) and Table 3.3 show the design results of
t, =0.059, t, =0.01and t, =0.02. Fig. 3.4(a)~(c) and Table 3.4 show the results of

t, =0.03, t, =0.01and t, =0.008. Fig. 3.5(a)~(c) and Table 3.5 show the results of
t, =0.02009, t, =0.005and t, =0.003. Fig. 3.6~Fig. 3.8 and Table 3.6~3.8 are
design results of unstable systems, and are with corresponding design demands of Fig.
3.3~Fig. 3.5 and Table 3.3~3.5.

This algorithm could give the designer an approaching region of possible poles.
Although the settling time, delay time, rise time and ITAE could guarantee some
performances, it always needs some trial and error work to rectify the final locations of
designed poles.
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Table 3.2 The parameters of DC motors systems

SYSTEM 1 SYSTEM 2
Symbol Value Value
R (Q) 19.16 1.3
L, (m) 4.88x107° 3.4x10™
Ty (sec.) 8x107° 8x107
J (kgm?) 8.5x10° 8.5x107
K, (Nm/A) 0.145 3.82x107°

Table 3.3 ITAE of System 1 and System 2 according to possible &and @, combinations

ITAE1 | 54.4503 | 76.3844 | 24.0913
g 0.83 0.9 0.999
, 180 170 199
ITAE2 | 6.3271 | 8.9472 | 2.8107
& 0.83 0.9 0.999
, 180 170 199
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Fig. 3.3(a) The relation between @, and & when t, =0.059, t; =0.0land t, =0.02
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Table 3.4 ITAE of System 1 and System 2 according to possible &and @, combinations

ITAE 1 5.7533 | 177.2367

g 0.6 0.9

@, 300 450

ITAE 2 0.5289 7.7748

g 0.6 0.9

, 300 450
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Table 3.5 ITAE of unstable System 1 and System 2 according to possible &and @, combination

ITAE1 [1.2435x10*[1.1077x10™* 0.0014
< 0.82 0.88 0.97
, 0.75 0.72 0.83
ITAE2 |1.7584x10°| 15914 |1.1665x10°
< 0.82 0.88 0.97
, 2 1 2
B
il
!
g3\,
1l delay time T— o E
¥ — e =
"*-'nel e
853 o3 o2 o5 08 07 0B 09 1
darnpmg rdhio

Fig. 3.6(a) The relation between @, and & when t, =12, t, =2and t, =4
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Table 3.6 ITAE of unstable System 1 and System 2 according to possible &and @, combination

ITAE 1 |2.4593x10°| 0.0012
< 0.52 0.82
w, 1.4 1

ITAE2 [1.1791x10™| 0.3848
< 0.52 0.82
, 1.4 1
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Those design demands will be used also in the following simulations in Chapter 5.
From the above simulations, the chose poles of DC motor servo systeml and system2
are s=-380+0.08iand s=-540+0.8i, respectively. The chose poles of unstable
system1 and system2 are s =-3+0.3iands =-104 0.08i, respectively.
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CHAPTER 4
NETWORK STABILITY ANALYSIS

The former chapters have mentioned sub-plant systems and their controllers. In
this chapter, we will introduce the main idea in this thesis- network control system
stability. We want to find out a transmission error- the difference between present state
and former control state — to act as a kind of control standard. All the control signals are
changed according to this standard. The standard is also a kind of boundary. As long as
the transmission error of present state is within the derived boundary, the system
stability and network resources can be guaranteed.

Fig 4.1 Transmission error bound

4.1 Lyapunov Stability Theory

It is very easy to check whether a linear system is stable by computing its
eigenvalues and checking their real parts. Obviously, adding network system criteria to
original linear system makes very big differences on stability and system performances.
The stability is no longer guaranteed and neither do the performance of the original
designed controller. Therefore, Lyapunov stability theory provides us another option to
deal with the stability problems in advance. The Lyapunov stability theory we mention
here, actually, is the second method of Lyapunov theory which is also called the direct
method of Lyapunov. In the following discussion, we will use the phrase “Lyapunov
theory” instead.

Lyapunov theory allows us to determine the stability of a system without explicitly
integrating the differential equation (2-13). The method is a generalization of the idea
that if there is some form of “measure energy” in a system, then we can study the rate of
change of the energy of the system to ascertain stability. To make this precise, we need
to define exactly what one means by “measure energy.” Before we define the “measure
energy”, we will present the general form of Lyapunov equation. Let Q >0 be a

24



positive definite symmetric matrix and let P denote the unique positive symmetric
solution of

AT -P+P-A=-Q (4-1)

where A is system matrix of X = Ax, and let V(x,t) be a non-negative function with
derivative V along the trajectories of the system. The V (x,t) is defined as

V(xt)=x"-P-x (4-2)

where P is the solution of Lyapunov equation (4-1). From equation (4-2), we can
view V as a kind of energy form of the system. The function V can serve as a
measure for the length of the vector x. If, in addition, Q >0, we see that V (x,t) is a
decreasing function of t along any trajectory x(t). This suggests that the quantity
V(x,t) and hence the vector x(t) tends to zero as t — oo, and hence that % = Ax is
stable.

In other word, as long as V <0 has been proved, the stability of system is then
maintained. The relation between Lyapunov equation and (4-2) can be shown as
follows:

V = x"Px+ X" Px (4-3)
If taking (2-13) into (4-3) and with pole placement control input in (3-1), we got
V =x"(A-B-F) Px+x"P(A-B-F)x (4-4)
To make V <0, and the inequality is given by
X' (A-B-F)"Px+x"P(A-B-F)x<0 (4-5)
By rearranging (4-5), we have
X' [(A-B-F)"P+P(A-B-F)]x<0 (4-6)
Inequality (4-6) sustains if the condition (4-7) holds.
(A-B-F)"-P+P-(A-B-F)=-0Q (4-7)

Equation (4-7) is the Lyapunov equation of system (2-13).

4.2 Modified Lyapunov Stability with Network Conditions

In conventional controller design, it is very natural to stabilize an unstable system.
The condition of V <0 forall x=0 isalways required. The main idea of Lyapunov
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theory is also to promise stability of control system. However, there are some
mechanical systems that are already stable without compensation. DC motors are one of

those examples. In this situation, it is meaningless to discuss whether V < 0. Therefore,
in this section, modified stability standards will be discussed.

V<-K-V (4-8)

Instead of proving V <0 to satisfy the stability demands of the system, inequality
(4-8) shows more emphases on the decay rate of the system. We now focus our attention
on the better performances of control system but not only the stability. The
corresponding modified Lyapunov equation becomes

(A-B-F)' -P+P-(A-B-F)+K-P=-Q (4-9)
This result will be used in the proofs of Proposition 1.

All of the discussion of Lyapunov stability theory does not yet consider network
criteria. To introduce network condition in our discussion, we first replace control input
(2-13) with (2-15). Equation (4-4) becomes

V = (A-x(t) - B-F -x(t))" Px(t) + x(t)T P(A-x(t) = B-F - x(t,)) (4-10)

where t, <t, <t, and t,represents the initial time. Considering the inherent physical
problem of network systems, the control input signals are not always available, and the
period during every access time of the controller is not constant. In order to maintain
system performances, a bounded error will be defined in the following proposition. Fig.
4.2 shows the relation between transmission error bound and control state.

. I I
| 2 I I
X(tl)l |

L

Control State

»

Time

S

T1L T2 T3 T4 T5 T6 T7 T8 Time

»
L

[1e (1l

[I%(8)-x(tk)l|

Fig. 4.2 Transmission error bound and control states



Proposition 1:

LetxeR",Q,PeR™, BeR", and F R where Q,Pare positive definite

matrices. B is the system matrix in (2-15), and F is the state feedback gain. P is
the unique solution of modified Lyapunov equation (4-9) according to specific Q. If

the error is limited as
1 }
lect)] < > Ain QX[ - [PBF| (4-11)

where t, <t, <t, and e(t) = x(t) —x(t,). The system can be guaranteed to have
Lyapunov stability of

V < -KV (4-12)
where V(x,t) isgiven in (4-2), and system model is

%(t) = A-x(t) + B-u(t,)

Proof:
V = x"Px+ x"Px

Form (4-10), we have
V = (AX(t) - BFx(tk))T Px(t) + x(t)" P(AX(t) - BFx(t,))
=2x" (t)P(Ax(t) - BFx(t,))
we assume that

6] <5 2 Q|- PEF]

where e(t) = x(t) - x(t, ), and Q is identity matrix in (4-7).

<[ [PBF -] <X |- 2 20 (QUIX]
2

- [PBF et < A QI
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[P - fe] < 5 QI
b 1Pl < 5 x"x

X" (-Q)x + 2HxT H |PBF||- [e(®)] < 0
It is obvious that

X" (-Q)x+2x" PBFe(t) < X" (-Q)x+ 2|x" - |PBF|-[e(t)]

X" (-Q)x+2|x" |- |PBF|-[e(t)]| < 0

Then,
x" (=Q)x +2x" PBFe(t) <0

Taking substituting (4-9) into above inequality we have

X" (){(A—BF)" P+ P(A—BF) + KP}x(t) + 2x™ (t)PBF[x(t) — x(t,)]<0
2x" P[Ax—BFX(t, )]+ K - X" Px+2x" PBFx—2x" PBFx< 0

2x" (t)P(AX(t) — BFx(t,)) < —K - x" (t)Px(t)

We substitute V and V into above inequality, then we have

V <-K-V

Lemma 1:

Consider a linear time-invariant system in (2-13). Letxe R",Q,PeR™", BeR",
and F eR™™ where Q,Pare positive definite matrices. B is the system matrix in
(2-15), and F is the state feedback gain. P is the unique solution of modified
Lyapunov equation (4-9) according to specific Q. If the error is limited as
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lect)| < %Amm QM + A™(1 - M)BFIx(t,)| - |PBF| (4-13)

At

where M =e”""%)  and system model is

%(t) = A-x(t) + B-u(t,)

Proof:

The trajectory expression of x(t) with t, =t, isgivenas
X(t) = e*x(t,) + | ‘ eI Bu(7)dr
Taking (3-1) with t, =t, into above equation, we have
x(t) =" x(t,) - | t "I BFx(t, )d 7

= e x(t,) —e* [ e M deBFX(t,)

= eA(Hk)X(tk) _pM (_A—le—Ar

L BRX()

=[e"%) + AT (e ™™ —e ™M) BFIx(t,)

=[e") e AT (1 —e W) BFX(t, )

=[e*%) + A7 (1 —e W) BFIx(t,)

=[M + A™(1 - M)BFIx(t,) (4-14)
where M =e"""%) If take (4-14) into Proposition 1, the inequality became

le(t)] < %zmm (Q)H[M +A(I =M )BF]x(tk)H~||PBF||‘1

Proposition 1 describes the error bound [ x(t) — x(t,) ] of a local plant. As long as
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the error bound is within the proved range, the system can have better performance than
the original system, and the results will be shown in Chapter 5 in simulations.

Lemma 2 will introduce network delays. It is an extent manifestation of
Proposition 1. Another formation of bounds will be shown in the following proposition.
The system state space is

X = AX+ Bu(t)
where the input control is given as follows
u(t) = -Fx(t, —7)

where t, <t<t,,;. Fig. 4.3 shows the relation between control states and error bounds
with time delays.

A

Control State

-
-

Time

[le ()11

=
&
X

Tl*TZ T3 T4 T5 T6 T7 T8 Time

Fig. 4.3 Transmission error bound and control states of NCS with delays

Lemma 2:

Consider a linear time-invariant system in (2-13). Letxe R",Q,P e R™, BeR",
and F eR" where Q,Pare positive definite matrices. B is the system matrix in
(2-15), and F is the state feedback gain. P is the unique solution of modified
Lyapunov equation (4-9) according to specific Q. If the delayed control state is limited

as given

[x(t) - x(t, —7)| < %&mn (Q)H[M + A1 -M )BF]x(tk)H-”PBF”*l

wherez represents fixed delay andt, <t <t, and M =Me"*. The system can be
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guaranteed to have Lyapunov stability of (4-12) where V is (4-2), and system model
is

%(t) = A-x(t) + B-u(t, - 7)

Proof:
V = X" Px + X" Px

Adopted form (4-10) where the input signals are delayed states, we have
V = (AX(t) - BFxX(t, —7))" Px(t) + x(t)" P(Ax(t) - BFx(t, — 7))
= 2x" (t)P(AX(t) - BFx(t, — 7))
where t, , <t, —7 <t . We first assume that
[x(t) - x(t, —7)| < %ﬂmm (Q[IM + A (1 —M)BFIx(t, )| - |PBF| ™
where we substitute (4-14) into above inequality
%)= xtt, = 0] < A QI PBF]
b 1P - xtt, =) < 175 2 (U
[ - PBF [ Jx() - xt, - ) < X" Qx

It is obvious that

X" (~Q)x+2x" PBF[X(t) - x(t, — 7)< X (~Q)x+ 2|x"| - [PBF|- |x(t) - x(t, - 7)|

X' (—Q)x + ZHXT H -|PBF - [x(t) - x(t, —7)| <0
Then,
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X" (-Q)x + 2x" PBF[x(t) — x(t, —7)] <0

Taking substituting (4-9) into above inequality we have

X" ){(A— BF)" P+ P(A-BF) + KP}x(t) + 2x" (t)PBF[x(t) - X(t, — )]<0

2x" P[Ax — BFx(t, —7)]+ K - X" Px+2x" PBFx—2x' PBFx <0

2x" (t)P(AX(t) — BFx(t, — 7))+ K -x" (t)Px(t) <0

2x" (t)P(AX(t) — BFx(t, — 7)) < —K - x" (t)Px(t)

We substitute V and V into above inequality, then we have
V<-K-V
H

Lemma 2 is actually an extension of Propositionl. In the results of Lemma 2, the
effect caused by fixed delay 7 is described by A(t).
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4.3 Simulations

The following simulations are demonstrated by speed control of two different DC
motor servo systems and two randomly selected different linear unstable systems. The
detailed parameters of DC motor servo system and unstable systems are given in Table
3.2 and as follows.

Linear unstable system 1:

%(t) = A-x(t) + B-u(t)

-2 -08 1
where A= and B = .
-2 07 1

Linear unstable system 2:

%(t) = A-x(t) + B-u(t)

1 1
where A= and B = . .
3 10 2

The controlling block diagram is shown in Fig. 4.4.

@ Sub-system?2
statesl

(=) Sub-system1
tates2

Central
Controller

u2

ul

Fig. 4.4 The controlling block diagram of overall networked system
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4.3.1 Network Control System without Delay

The following simulations will demonstrate the controlled results of systems
considering transmission error. All the controlling conditions and system details are the
same as mentioned in section 4.3. The most different part is that innate characteristics-
transmission error- of NCSs are considered. However, the network-induced delays are
not involved in. In practical NCS, not every feedback states are available during every
sampling time, and therefore the control input signal might not be compatible to present
states and is calculated according to some states before. Lyapunov stability theory is
adopted when deriving the transmission error bound in Chapter 4. The control input
signal is changed based on transmission bound. Finally, the endurable error is within
0.001.
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Fig. 4.5(a) The angular velocity of transition error controlled and uncontrolled system of System1
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Fig. 4.5(b) The angular velocity of transition error controlled and uncontrolled system of System?2
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The same pole placement results of section 4.3 are also used in this section. Fig.
4.5 are, comparing with single plant control, not so ideal in transient performances
especially in delay time and rise time. On the other hand, the controlled frequencies
deserve to be mentioned. For DC motor servo systems, the frequencies are 5000/25000
times at most. Unstable systems are 25000/400000 times. The controlled frequencies
are system depending. Even the worse case in DC motor system, nine tenth network

Tirme

usage is saved and about three fourth for unstable system.

4.3.2 Network Control System with Delay

In this section, all the controlling conditions and system details are the same as
mentioned in section 4.3.1. An overall NCS with constant delays is presented. The

constant delay adopted is 44.4 . sec.
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(2)Unstable systems
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The simulations show that adding of delay decreases system efficient a lot. Taking
DC motor systems for example, only three fourth network resources are saved and the
unstable systems are even worse. Although the stability is promised in both system
types, the advanced performances are not always guaranteed. Therefore, it is very
important to make sure the demands of NCS before design one. If the demands are only
focus on system stability, the design is good enough. But if designers are focus on other

system performances, it needs more compensating and amending.
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CHAPTER S5
CONCLUSIONS
5.1 Remark Conclusions

In this thesis an error bound concept is provided to function as a switching
standard of networked control systems. The system needs control only when the error
bound is over the calculated value which is closely related to present state or former
available state. The standard is quite reasonable. Through network systems, many
unpredictable situations will inevitably appear in the systems such as network induced
time delay and packet losses. Besides, there is also some other algorithm problems need
to be considered, for example, scheduling or package dropping. Any of these tasks put
great deal of influences on the NCS performance and stability.

The lesser the unnecessary accesses to the network the more efficient the NCS is.
The concept of error bound could maintain this condition. Local sensors can sieve out
the error bound of every state and send out control demands to the central controller and
then the central controller can send control signal to the local actuators. It is no need for
central controller to send control signal to every node for every state which is
impossible for practical layer. In small local NCS with few nodes, the achievements are
not conspicuous, but the effect would be very noticeable in large NCS. For example, if

one node covers only %O lesser network usage than before, a NCS with 100 nodes

could save %O usage of the network and is very flexible for another possible 90 more

nodes to enlarge the original 100 nodes NCS. This means the original NCS could have
around 90% in growth. The influences of the error bound are very useful and ideal.

The simulations of switched systems illustrate the most ideal situations in NCS
that is merely possible in practical realization. It means every feedback state is available,
and also fixed time slots are set for specific nodes without considering the fact that the
feedback states of the node might not be available during the specific time slots. The
other simulations are modeling actual network criteria without delays and with delays.
The mentioned turn, e(t), is sometimes called transmission error[9]. The simulation
results of those two situations demonstrate the influences network part brought to the
NCS. Comparing with ideal situations, the performances are not so good although the
stability is still promised.
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5.2 Future Work

The detailed relation between system performance and stability is not so clear and
definitely so far in the discussion. Different sub-plant may have different demands in
design and their limitations are quite diverse, too. We use pole placement methodology,
in this thesis, to maintain DC motor performance. For unstable systems, the most
crucial problem lays on stability which is much more important than system transient
performance comparing with DC motors.

Pole placement methodology is good at controlling the transient states of a system,
but there are following limitations. There are always limited bounds for the locations of
poles. The design methodology mentioned in this thesis, is just objective orientation ;
not intending to find exactly pole locations. For more complex and larger systems, other
controller design might be better and powerful choices such as optimal control, H
infinity or robust control. It is also possible to design a compensation controller for the
pole placement controller without thoroughly changing original controller.

There are many other more complex problems appearing in real NCSs. It would be
a very complete discussion if those criteria could be transformed in to mathematical
expression and be considered in the NCSs. Every condition has different impact on
system stability or performance. If we could consider more practical situations, the
derived consequences could be more persuasive and more flexible.

There are also some discussions about the modified Lyapunov equation. According
to (4-8), the modified Lyapunov equation is shown in (4-9). However, it is not for sure
that whether the equation has a solution. More mathematical proof needs to be
continued and discussed.

40



REFERENCE

[1] Y. Halevi and A. Ray, “Integrated communication and control systems: “Part
I—Analysis,” J. Dynamic Syst., Measure. Contr., vol. 110, pp. 367-373, Dec., 1988.

[2] J. Nilsson, “Real-time control systems with delays,” Ph.D. dissertation, Dept. of
Automatic Control, Lund Institute of Technology, Lund, Sweden, January, 1998.

[3] G.C. Walsh, H. Ye, and L. Bushnell, “Stability analysis of networked control
systems,” in Proc. Amer. Control Conf. , pp. 2876-2880, San Diego, CA, June 1999.

[4] M.S. Branicky, S.M. Phillips, and W. Zhang, “Stability of networked control
systems: Explicit analysis of delay,” in Proc. Amer. Control Conf, pp. 2352-2357,
Chicago, IL, June 2000.

[5]Electro-Craft Corporation, “DC motors, speed controls, servo systems: an
engineering handbook,” Pergamon press, Reading, 1972, 3" edition.

[6] B. C. Kuo, Automatic control systems, John Wiley & sons, Reading, 1993, 6"
edition.

[7]L. Xie, J. M. Zhang, and S. Q. Wang, “Stability analysis of networked control
system,” Proceedings of the First International Conference on MLC, Beijing, 4-5 Nov.
2002.

[BIN. B. Almutairi, M. Y. Chow, “Pl Parameterization Using Adaptive Fuzzy
Modulation (AFM) for Network Control Systems — Part I:. Partial Adaptation,” for
possible presentation at IECON 2002, pp3152-3157, Sevilla, Spain, 2002.

[9]W. Zhang, “Stability Analysis of Network Control Systems,” Ph.D. dissertation, Dept.
of Electrical Engineering and Computer Science, Case Western Reserve University,
Aug., 2001.

[10]J. Ackermann, “Robust Control: Systems with Uncertain Physical Parameters,”
Springer-Verlag, New York, 1993.

[11]K. J. Astrom, and B. Wittenmark, “Computer-Controlled Systems: Theory and
Design,” 3". Edition, Prentice-Hall, Upper Saddle River, NJ, 1997.

[12]B. R. Barmish, “New Tools for Robustness of Linear Systems,” Macmillan
Publishing Co., New York, 1994,

[13]H. L. Trentelman, A. A. Stoorvogel, and M. L. J. Huatus, “Control Theory for
Linear Systems,” Springer-Verlag, London limited, 2001.

4



[14]M. Y. Chow, and Y. Tipsuwan, “Network-Based Control Systems: A Tutorial,” The
27" Annual Conference of IEEE Industrial Electronics Society, pp1593-1602, 2001.

[15] N. B. Almutairi, M. Y. Chow, and Y. Tipsuwan, “Network-Based Controlled DC
motor with Fuzzy Compensation,” The 27" Annual Conference of IEEE Industrial
Electronics Society, pp1844-1849, 2001.

[16]R. Luck, and A. Ray, “An Observer-based Compensator for Distributed Delays,”
Automatica, Vol. 26, No. 5, pp.903-908, 1990.

[17]Y. Liu, H. Yu, “Stability of Networked Control Systems Based on Switched
Technique,” Proceedings of the 42" |EEE Conference on Decision and Control,
ppl1110-1113, Hawaii USA, Dec., 2003.

[18]G. C. Walsh, O. Beldiman, and L. Bushnell, “Asymptotic Behavior of Networked
Control Systems,” Proceedings of the 1999 IEEE International Conference on Control
Applications, pp1448-1453, Hawaii USA, Aug., 1999.

[19]F. L. Lian, J. Moyne, and D. Tilbury, “Optimal Controller Design and Evaluation
for a Class of Networked Control Systems with Distributed Constant Delays,”
Proceedings of the American Control Conference, pp3009-3014, Anchorage, Alaska,
May, 2002.

[20]R. Krtolica, U. Ozgiiner, H. Chan, and H. Goktag, etc. “Stability of Linear
Feedback Systems with Random Communication Delays,” American Control
Conference, 1991.

[21]C. T. Chen, “Linear System Theory and Design- 3 ed.,” Oxford University Press,
Oxford, New York, 1999.

[22]A. Zheng, and M. Morari, Control of Linear Unstable Systems with Constraints,”
Proceedings of the American Control Conference, pp3704-3708, Seattle, Washington,
Jun., 1995.

[23]F. L. Lian, I. R. Moyne, D. M. Tilbury, “Performance evaluation of Control
Networks: Ethernet, Control Net, and Device Net.,” Control Systems Magazine, IEEE,
\ol. 21, pp66-83, Feb., 2001.

42



