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Abstract

In this thesis, we present the precoded MIMO block transmission
(PMBT) system. Assuming there are M transmitting antennae and
M receiving antennae, a block of M modulation are precoded using a
M x M transmitting matrix and sent to the M Tx antennae. We ana-
lyze the BER performance of PMBT with zero forcing (ZF), minimum
mean square error (MMSE) receiver and optimum bit allocation and
also compare the performance with Generalized MRT (GMRT). In
the case of ZF and MMSE receiver, the relationship between GMRT
and PMBT depend on the eigenvalues of channel matrix. For opti-

mum bit allocation case, PMBT always has better performance than

GMRT.
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Chapter 1

Introduction

To improve the performance of a wireless transmission system in which the chan-
nel quality fluctuates, researchers suggested that the receiver be provided with
multiple received signals generated by the same underlying data. The suggestions
are referred to as diversity which exists in different forms including temporal di-
versity, frequency diversity, and antenna diversity.

Temporal diversity includes channel coding in conjunction with time inter-
leaving which involve redundancy in the time domain. Frequency diversity refers
to transmission on different frequencies which provides redundancy in frequency
domain. Antenna diversity can be viewed as redundancy in spatial domain and
implemented by using multiple antennae at both the transmit side (base station)
and receiver side (mobile units). Antenna diversity, as one of the most effective
techniques to improve the performance of a wireless communication system in
fading environment, is usually achieved by employing multiple element antenna
array at either transmitter or receiver, or at both transmitter and receiver.

Recently, transmit diversity technique is becoming more attractive various
transmit diversity techniques were proposed in [1], [2], [3], and [4]. For example,
the simple transmit diversity is proposed by Alamouti [1]. where a pair of symbols
is transmitted using two antennae at first, and the transformed version of the pair
is transmitted to obtain the MRC-like diversity. Another example of space-time
block coding scheme was proposed by Tarokh [2], [3] and space-time trellis coding
scheme was proposed by Tarokh [4]. Space-time block codes (STBC) operate on a



block of input symbols, producing a matrix output whose columns represent time
and rows represent antennae. Their main feature is the provision of full diversity
with a very simple decoding scheme. On the other hand, space-time trellis codes
(STTC) operate on one input symbol at a time, producing a sequence of vector
symbols whose length represents antennae. STTC is like traditional TCM (trellis
coded modulation). Their main feature they can provide full diversity gain and
coding gain. Their disadvantage is that they are extremely hard to design and
generally require high complexity encoders and decoder.

Most of methods were built on implementation to achieve the diversity rather
than to maximize the signal-to-noise ratio (SNR). In [5], Titus K. Y. LO pro-
posed a scheme of the maximum ratio transmission call MRT, which is similar
to maximum ratio combining technique at the receiver end. This method use
to select the transmitter and receiver weighting vectors to maximize SNR. We
consider the selection of the weighting vector under the normalized constraint
condition, and derive bounds of the overall SNR gain. But MRT method can not
find the optimum SNR. In [6], Pingyi Fan find the generalized weighting vector
to maximize SNR. It is proved in [6] that the generalized maximal SNR gain of
MRT is always greater than or equal to that presented by Titus K. Y. LO under
the normalized constraint condition on weighting vector for any given flat fading
channel.

In this thesis, we present the precoded MIMO block transmission (PMBT)
system. We assume there are M transmitting antennae and M receiving anten-
nae. A block of M modulation are precoded using a M x M transmitting matrix
and sent to the M Tx antennae. This is different from the MRT and General-
ized MRT (GMRT) scheme in [5] and [6], in which multiple antennae are used
to transmitted single modulation symbol with different weighting used for dif-
ferent antenna. We can design transceiver matrices of precoded MIMO block
transmission to minimize BER. Assuming this is no bit allocation, we will op-
timum transmitting and receiving matrices to minimize BER. We will use this
results to compare with MRT. We can first use zero-forcing (ZF) and minimum

mean square error (MMSE) solution to find receiving matrix; then we choose



transmitting matrix to minimize BER. In the MMSE case, we show that when
the modulation symbols are 4-QAM, the optimum transmitting matrix is not
unique. Example of the optimum transmitting matrix include the DFT matrix.
In the case of zero forcing receiver, solution of optimal transmitting matrix are
SNR dependent. For higher SNR, there also exists a class of channel-independent
optimal transmitting matrix. The optimal solution are the same as those of the
MMSE receivers. Final, we use optimum bit allocation solution to find the op-
timum transmitting matrix and to use this result to compare with MRT and
GMRT. In the optimum bit allocation case, we show that when the channel noise
is white Gaussian noise, the optimum transmitting matrix is the identity ma-
trix and receiving matrix respectively the unitary matrices that diagonalize the
channel matrix. We show that with optimal bit allocation, the PMBT requires
a smaller transmission power than the GMRT system for the same transmission

bit rate. Simulation examples will be given to corroborate the results.

1.1 Outline

e Chapter 2: The system model used in the study is described in Sec. 2.1. In
Sec. 2.2, the MRT concept is presented. Discussions are given in terms of

average SNR and the order of diversity in Sec. 2.3.

e Chapter 3: The system model used in the study is described in Sec. 3.1.
In Sec. 3.2, we shall investigate the principle of generalize maximum ratio
transmission (GMRT). In Sec. 3.3, we present generalized bounds of the
overall SNR gain.

e Chapter 4: The system model used in the study is described in Sec. 4.1. In
Sec. 4.2, we find optimum transmitter matrix for ZF receiver and derive the
SNR Bg_zr and the BER Pg_zp. In Sec. 4.3, we find optimum transmitter
matrix for MMSE receiver and derive the SNR SBg_armse and the BER

PG_MMSE-

e Chapter 5: In Sec. 5.1, we derive the optimal bit allocation formula for a



given target transmission bit rate. In Sec. 5.2, We use ZF, MMSE receiver

and optimum bit allocation case to compare GMRT.

e Chapter 6: In Sec. 6.1, it show some numerical examples of Maximum ratio
transmission (MRT). In Sec. 6.2, we compare the average performance of
the systems with different selection methods of the weighting vectors by
some simulation. In Sec. 6.3, we compare PMBT, which use ZF, MMSE

receiver and optimum bit allocation with GMRT by some simulation.

e Chapter 7: Conclusion.

1.2 Notations

1. Bold face are used to represent the matrices or the vectors.
2. A" denotes transpose-conjugate of A.
3. The notation I, is used to represent the M x M identity Matrix.

4. The notation diag(Ay, Ag, - -+, Ar)denotes an M x M diagonal matrix with

the diagonal element equal to .

5. The notation W, is used to represent the normalized M x M DFT matrix

given be

(Wilen = =€/ ¥

where 0 < k,n < M — 1.



Chapter 2

Maximum Ratio Transmission
(MRT)

A review of MRT given in [5], where multiple antennae are used for both trans-
mission and reception. We will present the concept, principles, and analysis of
MRT for wireless communication, where multiple antennae are used for both
transmission and reception. This concept shows that the average overall SNR
is proportional to the cross correlation between channel vectors and that error

probability decrease inversely with the (K x L)th power of the average SNR.

2.1 MRT System Model

A system is considered, which consists of K antennae for transmission and L
antennae for reception. The channel consists of K x L statistically independent
coefficients. It can be conveniently represented by a matrix
hip -+ g h,
H=|: -~ :|=]: (2.1)
hrpi -+ hix hy,
where the entry h, represents the channel coefficient for antenna k and antenna
p. It is assumed that the channel coefficients are available to both the transmitter
and receiver.
The system model shown in Fig. 2.1. The symbol s to be transmitted is

weighted with a transmit weighting vector v to from the transmitted signal vector.
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Figure 2.1: Maximum ratio transmission (MRT) system model

The received signal vector is the product of the transmitted signal vector and the

channel plus the noise. that is
x =Hf + n (2.2)
where the transmitted signal s is given by
f=1[fi- 'fk]T = sfvy - 'Uk]T

where s is the transmitted symbol, [v; -+ -v;]T is the weighting factor in vector
form. The noise vector is expressed as n = [n;---n;]7. Noise is assumed to
be white Gaussian and uncorrelated with the signals. The received signals are

weighted and summed to produce the estimate of the symbol.

2.2 Theoretical Analysis on Principle MRT

In order to generate the K x 1 transmission weight. Let the transmission weight

be a linear transformation of the channel matrix; that is

v = (gH)" (2.3

i L \1/2
where g = [g1--- 1], and a = [|gH|| = (25:1 Zqul 9p9q Yot hpkhqk) - The

transmitted signal vector is expressed as
5 H
f= a(gH) (2.4)

6



The received signal vector is, given by
x = “H(gH)" +n (2.5)
a

To estimate the transmitted symbol, we let w set to be g. The estimate of the

symbol is given by
s
§=gx = agH(gH)H +gn =oas+gn (2.6)

with the overall SNR given by

a? a?

et TR e (27)
& > |gp|
p=1

where ry = 02/02 denote the average SNR. for a single transmitting antenna.
From (2.10), we know the overall SNR is a function of g. So we choose the
appropriate value for g. If we let |gi| = |g2| = - - - |9z| = 1/V/L , the overall SNR
is rewritten as

r = a’rg (2.8)

which is maximized if a? maximized. a? reaches the maximum value if we set

K
S hhly
(9007) = —=——. (2.9)
- ‘kz—:1 hpkhzk

That is
1 L L

oy = T 22

plql

Z hpkh

k=1

1 L L
=2 hhf|. (2.10)
p=1¢q=1

2.3 The Bounds of the Average Overall SNR

The summation term with respect to K in (2.13) is the inner product of different
pair of channel vectors if h, and hq are mutually orthogonal (i.e., hphg =0), a®

takes on the smallest value; that is

1 L K
opt ZZ |hpk| (211)
p 1 k=1

7



and

Ela2,] = K72. (2.12)

opt]
If hy and hq are fully correlated (i.e., hyhf = |hg||?), a? takes on the largest

value; that is
1 L L K
opt ZZZ |hqk| . (213)
p 1g=1k=1

and

Ela LKr2. (2.14)

opt]

Therefore, the average overall SNR is bounded by
Kr?ry <7 < LKr?r. (2.15)

For a system consisting of K x L antennae, it is expected that the order of
diversity be K x L; the probability of error decrease inversely with the (K x L)th
power of the average SNR. To determine P, the probability of error conditioned
on a set of channel coefficients h,, must be obtained first. The conditional error
probability is averaged over the probability density function (pdf). We consider
a special case with BPSK modulation scheme, the conditional error probability
is expressed as

P(r) = Q(V2r). (2.16)
The pdf p(r) is x-distribution with 2 x K x L degrees of freedom. Tt follows that
p(r) is given by

7nLKflefr/Fa
where
To = 10E[|hpr|”] = ror2. (2.18)
The error probability is them given by the following integral
P = / P(r)p(r)dr. (2.19)
0
For7,>1
1 (2LK —1)!
P=(—\K 2.20
(4r_a) (LK) (LK —1)! (2.20)

which indicates the probability of error decrease inversely with the (K x L)th
power of the average SNR.



Chapter 3

Generalized Maximum Ratio
Transmission (GMRT)

In this chapter, we consider the selection of the weighting vector in [6]. We will
give the results. Furthermore, we also present that our generalized upper and

lower bound of SNR can be achieved by selecting the weighting vector properly.

3.1 GMRT System Model

A system is considered, which consists of K antennae for transmission and L
antennae for reception. The channel consists of K x L statistically independent
coefficients. It can be conveniently represented by a matrix
hiv -+ ik h,
H=| : . |=]: (3.1)
hrpi -+ hix hy,
where the entry h, represents the channel coefficient for antenna k and antenna
p. It is assumed that the channel coefficients are available to both the transmitter
and receiver.
The GMRT system model is same as MRT shown in Fig. 2.1. Next, by
considering the following equivalent baseband model, the received signal vector
is

x=Hf + n (3.2)



The transmitted signal s is given by
f=1[fi-fe]" = s[oy - 0p]"

where s is the transmitted symbol, [v; - --v;]" is the weighting factor in vector
form. The noise vector is expressed as n = [ny ---n]”. Noise is assumed to be

white Gaussian and uncorrelated with the signals.

3.2 Theoretical Analysis on Principle GMRT

In order to generate the K x 1 transmission weight. Let the transmission weight

be a linear transformation of the channel matrix; that is

v = %(gH)H (3.3)

i L\ 1/2
where g = [g1--+gz], and a = |[gH|| = ( 5:1 Zqul 9IpYq Elf:l hpkhqk) . The

received signal vector is, given by
x = “H(gH)" +n (3.4)
a

To estimate the transmitted symbol, we let w set to be g. The estimate of the

symbol is given by
s
§=gx = ggH(gH)H +gn=oas+gn (3.5)

with the overall SNR given by

a? H|
r= 5T = e ! ro = ||gH||” ro. (3.6)
gl Igll
where ||g|| = 1, and ry = 02/02 denote the average SNR. for a single transmitting

antenna. The maximum ratio transmission problem can be converted into finding
an optimal weighting vector g. An optimal weighting vector makes the overall

SNR be maximized. This is equivalent to following maximization problem

max {g"HH"g} (3.7)
& llgll=1

10



By using the singular value decomposition of Hermitian symmetric matrix,
HH" = UA’U". (3.8)

where U = [uy,uy, -+, uy] is an unitary matrix, u; is the i-th column vector,
and A = diag(A, Aa,-+-,Ar) is a diagonal matrix. The diagonal matrix with
elements in decremental order Ay > Ay > --- > A\;, > 0. We can use Rayleigh
principle get ||@meeH||> = A2 and choose g to be the corresponding eigenvector

u;. Thus, the overall SNR can write

Tmaz = ||gmaIH||2 To = )\%7"0- (39)

3.3 Generalized Bounds of the Overall SNR

We set ||g]| = 1, by using the equality

Z A> = trace (HHY) = Z Z gl - (3.10)

p=1 p=14g=1

So, we can get

1 L K
T Z Z |hpq| < )‘2 < Z Z |hpq| (3-11)
p 1g=1

p=1qg=1

Overall SNR is bounded by

1 L K

T Z Z |hpq| ro < )‘ZTO < Z Z |hpq| To. (3.12)

p 1g=1 p=1¢g=1
In the chapter 2, we presented the maximum SNR gain under the condition
l91] = |g2| = - -+ lgr| = 1/V/L, as follows

1 L L

o =T 22

plql

thh

k=1

(3.13)

It is easy to see the generalized maximal SNR gain of GMRT is always greater
than or equal to that presented in the chapter 2 under the normalized constraint

condition on weighting vector. Thus we have
AT > a2, (3.14)

11



We consider a special case with a given H and N-ary QAM modulation scheme,

the corresponding bit error rate can be calculated by

1 3
Pe ~ 2(]_ - \/—N)Q( m)\l’ro). (315)

Suppose the transmitted symbol has variance o2, then the transmission power

is Eqyrr = o2. For a given probability of error P, the required transmission
power is
No

Egurr = ¢ (2b — 1) v (3.16)

where ¢ = 1/3 [Q_I (2(123M))]2.

12



Chapter 4

Precoded MIMO Block
Transmission (PMBT)

In this chapter, we consider of M antennae for transmission and M antennae for
reception and the minimization of probability error for precoded MIMO block
transmission with an unitary precoding matrix. We analyze the probability error
of MRBT with zero forcing (ZF) and minimum mean squared error (MMSE)
receiver. Finally, we use optimum bit allocation to maximize performance at a

given fixed data rate .

4.1 PMBT System Model

The channel consists of M x M statistically independent coefficients. It can be
conveniently represented by a matrix
hip oo hay hy
H=| : . = |=]: (4.1)
hare o haw hyp
where the entry h, represents the channel coefficient for antenna k and antenna
p. It is assumed that the channel coefficients are available to both the transmitter
and receiver. The system model shown in Fig. 4.1. The transmitter is a unitary
matrix M x M G with GFG = I,,. The receiver is an M x M matrix A. Next,

by considering the following equivalent model, the received signal vector is
r=HGs +n (4.2)

13



n
r
s b by

Transmitter Channel Receiver

Figure 4.1: Precoded MIMO Block Transmission (PMBT) system model

The transmitted vector s is given by s = [s;---s3/|7. Suppose the inputs have
zero mean and variance F;, with real and imaginary parts having equal variances
E,/2. The noise vector is expressed as n = [n; - --nys]”. The channel noise n; is

uncorrelated complex white Gaussian noise with zero mean and variance Nj.

4.2 Zero Forcing (ZF) Receiver

Suppose the receiver is a zero forcing one. The overall transfer matrix Toyerann = I
in the absence of the channel noise n. So we set A = G"H~'. We get the

system model of PMBT which uses ZF receiver represented as in Fig. 4.2.

Seml G ol H Doy H o G ey

Transmitter Channel A =
Receiver

Figure 4.2: The PMBT System Model using Zero forcing Receiver

B

Receiver Receiver

Figure 4.3: Illustration of noise path at a zero-forcing receiver

Let received vector be r be indicated in Fig. 4.2 ; then, the error vector is

14



e = Ar —s. The noise come entirely from channel noise. The noise vector e
can be analyzed by considering the receiver block diagram in Fig. 4.3. The
channel matrix H = UAV, which by using singular value decomposition. A =
diag(A1, Ag, -+, Ay) is a diagonal matrix. The diagonal matrix with elements in
decremental order \; > Ay > --- > \j; > 0. Therefore, the output noise vector

e has autocorrelation given by
R. = Ny GPH'H G = NyGFVHA2VG = NyPPA?P. (4.3)

where P = VG. The elements of n are uncorrelated Gaussian random vari-

ables with variance Ny. The elements of © = U n continue to be uncorrelated

Gaussian random variables with variance Ny, due to the unitary property of

UM, Therefore, the k-th element of the noise vector q has variance given by
2

o, = Ny/)2. The output noise e is related to q by

M
e =Y Drilk- (4.4)
k=1

where pi,; denote the (k,i)th element of P. As ¢, are uncorrelated, the i-th

M
subchannel noise variance o _, (i) = kz_:l |pr,i| o5 - That is

2

: (4.5)

)

o zr(i) = No Z h\
k=1

Let Be_zr(i) = Es/o2_,p(i), which is the SNR of the ith subchannel; then

r

Ba-zr(1) = —;
> Pk,
k=1

. (4.6)
I

where 7 = E,/Ny. As G is unitary, we have >, |]0k,i|2 = 1. Using this fact, we

can write the average mean square error (MSE) Y = 1/M Y¥ 0% ,.(i) as

S (4.7)
M & '

The computation of BER depends on the modulation scheme used. We will use

4-QAM as an example. Assume the subchannel errors have equal variances in

15



real and imaginary parts; therefore, the real and imaginary parts of the 4-QAM
symbols have equal probability of error. Furthermore we assume 4-QAM symbols

have equal probability. For 4-QAM modulation, the BER of the ith subchannel

Po_zr(i) = Q(\/Bo-zr(i)) (4.8)

given by

The average BER is

Pamsr = 37 2 Q/Fo—sr(i) (19

e The G = V! Case: The unitary matrix P = I. The ith subchannel noise

variance represented as

M | 12
. pk,z| NO
ovn_gzp(i) = Ny Z VRSV (4.10)
k=1 2 A

Bvn_gzp(i) = Ajr. (4.11)

The average BER is
1 Z 2
PVH—ZF: - Q( )\lr) (412)

e The G = VHW Case: The unitary matrix P = W. The ith subchannel

noise variance represented as
No & 1
OVaw_gp = 5 > N (4.13)

k=1

The SNR of the ith subchannel can write as

BVHW—ZF =

(4.14)

Mz =
a~>;a|’_‘

L
M

k=1

The average BER is

Pyuyw_zp = Q(\/ BVHW—ZF)- (4-15)

16



For the convenience of subsequent discussion, we introduce the function
fly) =Q(—). (4.16)

In terms of f(-) and subchannel SNR, we have

1

Po-zr(i) = QU B/ 7bsr (i) = F(G——

). (4.17)

The average BER is give by

. 1 Mf 1
szF—M (m)

i=1

(4.18)

From the lemma 2 in [7] , we know f(y) is monotone increasing. It is convex
when y < 1/3 and it is concave when y > 1/3. Then three useful SNR quantities
is defined for boundaries to distinguish operation region. They are ry , 7 and 7,
as follows:

3
7+ T1=MAX 5. (4.19)

A
Obviously, it is true ryp < 7 < r;. Three SNR regions are define as
Riow = {rlr <10}, Rpia ={rlro <7 <1}, Rpign={rlr>mr}. (4.20)

After defining the SNR region, we can introduce the Theroem 1 in [7].
Theorem 1 : The average BER P;_zr is bounded by

Pyu_yzp < Po_zr < Pyaw_zp, forr € Ry,

Pyrn_zp > Po_zr > Pyaw_zp, for v € Ryig.

Each of two inequalities relating Pg_zr and Py ay_ 4 becomes an equality if and
only if subchannel noise variance 02_, (i) are equal, i.e., 04 _, (i) = T, where T
is as given in (4.7). The results in Theorem 1 imply that the P = I is the optimal
solution for r in Rj,, and the P = W is the optimal solution for 7 in Rp;g,. The
SNR region Ry, corresponds to a high error rate, whereas Rj;g, corresponds to
a more useful range of BER. So we choose the P = W is the optimal solution for

high SNR. The optimum transmitting matrix G is equal to VEW.

17



4.3 Minimum Mean Square Error (MMSE) Re-
ceiver

In this subsection, we consider that the receiver is an MMSE receiver. We will see
that using an MMSE receiver improves the system performance, especially when
the channel has spectral nulls. Let receiver vector is r be indicated in Fig.4.4;
then, the error vector is e = Ar — s. For a given unitary transmitting matrix G,
the optimal receiver matrix A that minimizes E|efe]. By the orthogonality prin-
ciple, e should be orthogonal to the observation vector r, i.e., E[(Ar — s)r''] = 0.

This yields AE[rrf] = E[sr?]; then
Elsr] = E[s(s"GTH! + nf!)] = 02GHHY. (4.21)

Elrr?] = E[(HGs + n)(s"GIHY + n)] = ¢’ HGG"HY + N,I.  (4.22)

The channel matrix H = UAV, which by using singular value decomposition

(SVD). A = diag(\i, Ae, - - -, Ap) is a diagonal matrix. The diagonal matrix with

elements in decremental order A\; > Ay > --- > Ay > 0. Solving this equation,
we get

A = 2G"HY(¢?HGG"H"” + NI)* (4.23)

= o?GIVIAUR (6?UA?UT + NyI) ™! (4.24)

= GHVHIAG2(02A? + NoI) 'U. (4.25)

Let I' = Ac?(02A% + NoI) ! is a diagonal matrix, and the diagonal element
represent as [[']; = 02);/(02)\? + Ny).

A = GUvAruf (4.26)

= GUF. (4.27)

where F = VITU#. We get the system model of PMBT which uses MMSE
receiver represented as in Fig. 4.4. Using A = G”F, y = Ar 4 n can be written

as

y = G"FHGs + n=Ts +n. (4.28)
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Figure 4.4: The PMBT System Model using MMSE Receiver

where T = GYFHG. We can further verify that y = G¥VYTAVGs + n Now
we define P = VG, and y can be represented as

=P"'TAP +n=P"JP +n. (4.29)

where J = T'A, the diagonal element represent as

o2 )\?
ECo ST 30
The autocorrelation matrix of the vector y is represented as
R,, = E,PJ°P + N,PI"°P. (4.31)
The i-th receiver output g; can be expressed as
Yi = 0;S; + T;. (4.32)
2 Ar M-1 A2r " H
where a; = o, and 7 = 3085 X i bkjtoey t [PYTU"n];.
k j#i k=1 k"
The variance of y; is
(\27)2 A2r?
E|ly’| = E, i ’“7 il —E—  (4.33
[|y|] Z|pk 1+ A2r) 02|pk +)\2) ( )
A2y
= F, Pk 4.34
kgl P 1+ \or ( )
= a;F. (4.35)
The variance of 7; is
E ] = E[lyl’] - a?Es = a; (1 — ay). (4.36)
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The subchannel SINR Be_aarse(i) = a?E/E [|TZ|2] is given by

M 2 A2r
a’FE, a > k=1 Pkl —1+§%,«

a; Es(1 — a;) o l—a; Ziwﬂ |pk,i|2 1+iir‘

Ba-rmsn(i) = (4.37)
The computation of BER depends on the modulation scheme used. We will use
4-QAM as an example. Assume the subchannel errors have equal variances in
real and imaginary parts; therefore, the real and imaginary parts of the 4-QAM
symbols have equal probability of error. Furthermore we assume 4-QAM symbols

have equal probability. For 4-QAM modulation, the BER of the i-th subchannel

Pa_vmse(i) = Q( Ba—mmse(i)). (4.38)

is given by

The average BER is

Pa_ymvse = % Zl Qv Ba-mmse(i))- (4.39)

e The G = V# Case: The unitary matrix P =1I. The SNR of the i-th

subchannel is
Bvu arse(i) = A7T. (4.40)

Comparing with (4.10), we see that it is the same as fyu_zp(i). The
average BER is

Pynaapsss = 7 D QUyNE). (a.41)

i=1
e The G = VIW Case: The unitary matrix P = W. The SNR of the i-th
subchannel can be written as
M A2y
L=l Ty

ZM 1
k=1 1+/\ir

(4.42)

BVH W-MMSE —

The average BER is

PVHWfMMSE = Q(\/ BVHWfMMSE)- (443)
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For the convenience of subsequent discussion, we introduce the function

h(y) = Q(Jy~' —1). (4.44)

The subchannel BER is

: 1
¢ ( BGMMSE(Z)> - h(l + Ba—mmse(i)” (4.45)
Using (4.37),
! — - |pk,i|2
1+ Be—mmse(i) - kz::l 1+ )\zr‘ (4.46)

Therefore, we have

1 & ul |pki|2
Pa_ = — Pa_ ) P ) =h ’ . 4.47
G-MMSE Vi ; G MMSE(Z) ) G MMSE(Z) (1; 1 +)\%7“ ( )

Using the definition of A(-), the BERs of two cases are given, respectively, by

1 M 1
Pyw_ = — h|—1. 4.48
eraumse =3 20 15 (1.49
1 &1
P, _ =h|— —_— 4.49
envmnise =0 (33 1 (1.19)

write is as a lemma from the lemma 4 in [7] , the function h(y) = Q(v/y~' — 1),
defined for 0 < y < 1, is convex. Using the above lemma, we can show the

following result

Pyrw yvse < Po-mmse < Py yuse (4.50)

Each of two inequalities relating Pg_yrarsg and Pyryyarargp becomes an equality
if and only if subchannel noise variance 02 ,;1,55(7) are equal. So the choice

G = V"W is the optimal solution.
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Chapter 5

Precoded MIMO Block
Transmission with Bit Allocation

In this chapter, we consider bit allocation the precoded block transmission system
in chapter 4. We first derive the bit allocation formula for PMBT which uses zero
forcing receiver such that the transmitting power can be minimized for a given
bit rate.

Let the bit rate in the k-th channel be b, then the total bit rate is b = E,]c‘/il by
per block. The input power of the k-th channel is afk, which is also the output
signal power of the k-th channel at the receiver end due to AHG = I,,. Suppose

the output noise power of the k-th channel is azk, given by

M
2 _ 2 /y2
0., = No ; Pl ™ /A7 (5.1)
For QAM modulation schemes under high bit rate assumption, we have
1 Pe\1?
o, = 3 [Ql (;)] 20?2 =207 . (5.2)

where ¢ = é [Q_l (%)]2, which depends on the given probability of symbol error

P.. Define P(b) as the transmitting power needed for transmitting b bits. Then

we have
M M
Pb) = > o2 =cy 2o (5.3)
k=1 k=1

\Y
o
S
I~
—=
%
<
g
I~
—=
(bql\D
_

(5.4)



el abocd v 8l

Receiver Receiver

Figure 5.1: Block diagram of the receiver

" 1M
= cM2/M (1‘[ a§k> = cM22MEM. (5.5)
k=1

where Ey = [[M, 0?.. The equality holds if and only if the bits are optimally

allocated according to

b 1
by = i log:oy, + MZOQQEO (5.6)
|2

LR szw:p’“’i + 1 ]]Z[[z\ffjh[’“'2 (5.7)
a M 9 0i:1 )\12 M . t=1 ’ = )\12 . .

The entry pj,; represents the unitary matrix for row & and column 7. We define

the coding gain C'g as Pyee(b), the power needed for transmitting b bits when
there is no bit allocation, over P(b). Without bit allocation, by = b/M, for
k=1,2,...,M; then

M
Pdirect(b) = CQb/M Z Uzk- (58)
k=1

The coding gain of bit allocation is

1/M

1 M M
Co=+: > ol (H a§k> > 1. (5.9)
k=1 k=1

The above inequality follows from the arithmetic mean over the geometric mean
inequality.

From Fig. 5.1, we see that the optimum P is determined by the autocorrelation
matrix Ree of e, which is as indicated in Fig. 5.1. Using Hadamard inequality, we
know that [[;L, 02 > det (Ree) = det (Rqq). We can use this result to minimize
e, agk. We choose P matrix to make R is diagonal.

AWGN Channel

When the channel noise is a white noise, the autocorrelation matrix Ry, = oI
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is a diagonal matrix. The optimal P is simply P = I. We get [[I;L, 02 ]'/M =
et (Rea) = (I 272)

represented as

M
Ny. The minimized transmission total power

1/M

M
P(b) = cM2"M (H A,f) No. (5.10)
k=1
The transmission bits in k-th channel represented as
b No 1 M N,
- _ - — — . A1

The coding gain is

1/M

Cg= %él/)\i/ (ﬁuﬁ) : (5.12)

5.1 Nonnegative Integer Bit Allocation

In the derivation of bit allocation in Sec. 5, we do not constraint by to be non-
negative integer. The solution in (5.7) may give bit allocation with fractions
or negative numbers. To obtain nonnegative bit allocation, we will use greedy
algorithm by allocating one bit at a time.

Assume we have bit budget b bits. For each bit to be allocated, we give the
subchannel one bit such that the resulting total modulation symbols variance
Y 4L, 02 (be) is minimum. That is, each time we allocate one bit to the k—th
subchannel that has the smallest incremental energy ey (b;) until all the bits are
allocated. For example, a energy function o?, (b;) for QAM modulation could be
define as

Pe

2 )]2 (2% =)o, = (2" = 1)y, (5.13)

€k

700~ 3 o (

2
where ¢ = % [Q_l (%)] , which depends on the given probability of symbol error

P,. The increment energy is then
ex(br) = 03 (bp) — o2 (bpy — 1) = 2" ol = 2e(by — 1). (5.14)

It may happen that some of the subchannel do not have any bit. Summarizing,

we can describe the algorithm as follows:
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1. set by =0 and ex(0) =0, k=1,2,..., M.

2. compute eg(by +1) = 2%02 , k=1,2,..., M.

en
3. find m < arg {min,<;<ps[e; (b; + 1)}
4. by, =b, +1, n=n+1.

5. if n < b, go to 3.

6. find S0, 02 (b)), k=1,2,..., M.

7. end.

From the optimal bit allocation algorithm, two characteristics can be observed

here

o max ey (by)] < minfey, (bn +1)], n=1,....,M, m=1,..., M.

M M by ) by, )
o Yol =3 Y e(i), where ol =3 ey(i), fork=1,..., M.
k=1 k=1i=1 i=1

We will use this results in Sec. 5.2.3 to proof that PMBT with optimum bit

allocation must have better performance than GMRT for flat fading channel.

5.2 Comparison of GMRT with PMBT

In this section, we will compare GMRT with PMBT. We will use ZF, MMSE
receiver and optimum bit allocation case to compare GMRT. To start with the
analysis, we will assume that the two systems have the same transmission rate.
The PMBT system use 4-QAM modulation with M transmission antennae in
place, the transmission rate is 2M bits per block. So GMRT use 22M-QAM
modulation. In chapter 3, we know the overall SNR of GMRT Bgyrrr given as

Banvrr = Nar, where 1= E,/Nj. (5.15)

22M

We consider -QAM modulation scheme, the corresponding bit error rate can

be calculated by
_ 3
Pe ~ 2(]_ -2 M)Q( m)\lr). (516)
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5.2.1 Zero forcing receiver without bit allocation

We consider the BER of the precoded MIMO transmission system with a zero
forcing receiver for the case when there is no bit allocation. In Sec. 4.2, the overall

SNR of PMBT is given as

(5.17)

5VHW—ZF =

Mzl =
a~>;/|’—‘

L
M=

We consider 4-QAM modulation scheme, the corresponding bit error rate can be

PVHW—ZF = Q(\/ BVHW—ZF)- (5-18)

Before this comparison, we will assume that the two systems have the same total

calculated by

transmission power. The total transmission power of PMBT system is M times
of the symbol variance E;. So the GMRT system uses M times of the symbol
variance F to transmit symbol. Comparing (3.15) with (5.18), we observe that

PMBT is better than GMRT if following condition is satisfied

3M
Bvaw _zr — mBGMRT > 0. (5.19)

otherwise, if Bynyw_zp — [3M/(2°M — 1)]Bamrr < 0, then GMRT has better
performance than PMBT. The condition can be written as

-1

1 X1 3M
Pviw _zr — afemrr = (M 1; )\—%> T — m)ﬁr (5.20)
M _g) (M o\
3 = Mk

where r = E, /Ny, a = 3M /(22 — 1) and ¢ = g TT0L; Tl A2/ TR, Tl A2
We look at three specials cases: M=2, 3, and 4.

o M—=9: {4)‘% — X >0 Pynw_zp < Pamrr

AN, = AT <0 Pynw_zr > Pomrr
20238, —\2>0 Pyu <P
o M=3: ’\ij’ég 1= VEW-zF >~ 'GMRT
20;2%3% — M <0 Pyrnw_zp > Pougr
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A2AZN2 2
o M—d. Sdsmarimaong — A 200 Pynw zp < Pourr
) 84NN N2 P > P
IYIVEDYIVEDYIY: 1 VEW-ZF GMRT
From above results, we know two curve of GMRT and ZF receiver case have no
b

crossing point for all SNR.

5.2.2 MMSE Receiver without bit allocation

We consider the BER of the precoded MIMO transmission system with a mini-
mum mean square error receiver for the case when there is no bit allocation. In

the Sec. 4.3, the overall SNR of PMBT is given as
/\ir

ZM
k=1 14x%r

BVHWfMMSE = (522)

ZM 1 '
k=1 14X2r

We consider 4-QAM modulation scheme, the corresponding bit error rate can be

Pyrw_yvvse = Q(\/ BVHW—MMSE)- (5-23)

Before this comparison, we will assume that the two systems have the same total

calculated by

transmission power. The total transmission power of PMBT system is M times
of the symbol variance E;. So the GMRT system uses M times of the symbol
variance F to transmit symbol. Comparing (3.15) with (5.23), we observe that

PMBT is better than GMRT if following condition is satisfied

3M
Bvaw mmse — mﬁGMRT > 0. (5.24)

otherwise, if Byuw_yavse — [BM/(22M — 1)]Bamrr < 0, then GMRT has bet-
ter performance than PMBT. The condition ¢ = Byuw_mmse — [3M/(22M —

1)]Bamrr can be written as

M M—1

¢ = c[)\fH(1+)\ir)+---+)\?V, (1+22r) (5.25)

— ca)\} lH (1 + )\zr) +-+ I (1 + )\zr) > 0. (5.26)
k=2 k=1

where r = E, /Ny, a = [3M /(22" —1)], and ¢ = [T2L, (1 + A?). Assume r > 1,
we can approximate By _yvse — @Barrr = prirM 4+ por™ 2. The p; and py

are represented as
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-1 -1
(Mfl) 92M _ 1 M 22 M
o [MED A (£ 1) oen (B2) ]

where y = ca)\? (HZ o Iz ]) The Bw_mmse — aBaurr represented as

M 1 —1
plerl +p27"M72 = /M”M72 [¢1 (Z p) - )‘% r (5'27)
i=2 7
rM—2 M q -1
TR [¢2 (Z F) — 2\ (5.28)
i=2 7

where ¢y = [(22M — 4) /3] =1, and ¢, = [(M — 1) (22M — 1) /3M| —2+2)2/\,.
We look at three cases for M=2, 3, and 4.

o M—=9: { (4N = A)r4+05>0 Pynw_ymse < Paomrr
' (4)\2 — )\2)7" +05<0 PVHW7MMSE' > Pourr

/\z_'_)\z —M)r+ 23>0 Pynw_ymuse < Pourr

(20
{ 20 /\2/\ )\2

( prany iy Dr+ 23 <0 Pynw_yuse > Pourr
{ (84

AZAZA2 9
o M. woaaooe AT+ Ze 20 Prow_yuse < Paver
AZAZAZ 9
/\2)\2+/\2/\2+/\2/\2 - M)r+ 2, <0 Pyrw_pyse > Pavrr
2(7A3 61.75+2X2 /A2)A2N2 22
where 23 = (AQHQ ,and z, = F%A%M%i\éﬁ%f\i /\2 . From above results, we

know two curve of GMRT and MMSE receiver case may have a crossing point.
The cdf of Z3 and Z; are shown in Fig. 5.2. From the Fig. 5.2, we know that
almost Z3 and Z, are large or equal to zero. In this condition, we assume Z3 > 0

and Z; > 0. In this assumption, we can find the crossing point r.

o M=2: If 4)\2 — \? < 0, the crossing point 7 = —0.5/(4A3 — \?).

o M=3: If 207\2)\2/()\2 + \3) — M < 0, the crossing point give as
—2(7A3 — A7)
[20A5A3 — AT (A3 + A3)]
o M=4: Tf 84XA2N\2)\3 /(N33 + A3A + A\2\7) — A7 < 0, the crossing point give

as

= 7=

L BLTAMN -2 (1))
[BANIAIAZ — A2 (A2N2 + A2 + 2A0)]
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Figure 5.2: Cumulative Distribution Function for M=3, 4.

5.2.3 Zero forcing receiver with optimum bit allocation

In this section, we assume noise are white Gaussian noise and bit budget b bits.

The modulation scheme is 2°-QAM for GMRT, the corresponding BER can be

calculated by
P, ~2(1 — 27M2)0(, 2631 ). (5.29)

Now we have P, to find transmission power Egyrr. From (3.16), we know that

the total transmission power of GMRT system is

No2 =17, P, L N
E = — ——— ~c(2"—1)—. .
GMRT 23 [Q <2(1 — 2_,,/2))] o ) Y (5.30)

2
where ¢ = 1/3 [Q_l (%)] . From Sec. 5.1, we know that Egyrr change to

represent as
No

Eanrr ~ c(2 — 1)A—% = Zel(i). (5.31)

From Sec. 5.1, we also know that the total transmission power of PMBT is
M M
Epyupr = Y o. (be) ~cd (2% — 1)o7, (5.32)
k=1 k=1
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= c};@bk — 1)7 =Y Zek(i). (5.33)

Comparing (3.16) with (5.13), we observe that PMBT is better than GMRT if

following condition is satisfied

Epypr — Eaurr < 0. (5.34)

otherwise, if Epypr — Faymrr > 0, then GMRT has better performance than
PMBT. The condition can be written as

Epvpr — Egurr = kX—: éek(i) - ; 61(i) (5-35)
- 3 éek(i) - 3 al) (5.36)

From (5.14), we know ey (by + 1) = 2e4(bx) and max len (by)] < min [em (b + 1)].

Using this result, the condition change to represent as

M

Epypr — Egupr = Y 27" (2()’“ - 1) ek (br) (5.37)
k=2
(2" —1) e (b1 +1) <0. (5.38)

Epypr becomes the same as Egypr if we choose by = b and by = b3 = ... =
by = 0. In optimal bit allocation, bit allocation is optimized to minimize Epy/pr.
So the minimized Epjspr is always smaller than Fgpyrrr. So Epyrpr with optimal

bit allocation is always better than Egyrr.

5.3 Complexity of PMBT and GMRT

In this section, we analyze the complexity of GMRT and PMBT and compare
the complexity of GMRT and PMBT. We will discuss the complexity to divide
into two parts. First, we can compute operational analysis to need some real
multiplications and real additions for GMRT and PMBT. Second, we can compute
design system to need some real multiplications and real additions for GMRT and

PMBT.
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e Operational analysis: We will divide system into three parts, which are

transmitter, channel and receiver.

Generalized Maximum ratio Transmission

real multiplications | real additions
Transmitter aM 3M
Channel 4AM? M(5M —2)
Receiver 4M 6M — 2
Total AM(M + 2) 5M?* +9M —2

Precoded MIMO Block Transmission

real multiplications | real additions
Transmitter 4M? M(5M — 2)
Channel 4M? M(5M —2)
Receiver 4M*? MM —2)
Total 1207 15M?% — 6M

From these tables, these complexity of PMBT and GMRT are O(M?) and
the complexity of PMBT is more than GMRT for M > 2.

e Design system : For GMRT system, we use the first column vector of U
to maximize SNR. So we need to find the eigenvalues of hermitian matrix
HH" and the corresponding eigenvector matrix U. For GMRT system,
we will use U and V to find optimal solution. So we need to find the

eigenvalues of channel matrix H and the corresponding unitary matrices U

and V.

We can use singular value decomposition (SVD) to find eigenvalues of HH"
and H and the corresponding matrices U and V. The SVD algorithm is
usually computed by variant of QR decomposition. First, A is reduced to
bidiagonal form by orthogonal transformations, then remaining off-diagonal
entries are annihilated iteratively. So SVD has very high complexity and
the complexity of SVD algorithm is O(M?). So the complexity of design

system are more than operational analysis.

From above results, the complexity of design system is more than operational

analysis and the complexity of PMBT is more than GMRT.
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Chapter 6

Numerical Simulation

6.1 MRT Simulation

The 4-QAM scheme is used in the simulation for simplicity. A simple channel is
adopted, where the fading channel coefficients are independent complex Gaussian
random variables. It is also assumed that perfect knowledge of channel fading
coefficients are available to both transmitter and receiver stations. Different pairs
of (K,L) are selected as (2,1), (3,1), (4,1), (2,2), (3,2), (4,2). 10* different channels

and 10% symbols are used in the simulation.

0 The comparision of MRT performance curves
10

—— MRT Tx-2,Rx-1
—— MRT Tx-2,Rx-2
—— MRT Tx-3,Rx-1
—— MRT Tx-3,Rx-2
—v— MRT Tx-4,Rx-1
—— MRT Tx—4,Rx-2 |]

Bit error Rate (BER)

15

Es/No(dB)

Figure 6.1: The comparison of MRT performance curves showing the effect of
adding the second receiving antennae for K=2, K=3, and K=4.
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The BER performance curves plotted in Fig. 6.1 show the results using one
or two receiving antennae for K=2, K=3, and K=4. Two characteristics that are

particularly associated with diversity can be observed here
1. The improvement becomes greater as SNR increase.

2. The incremental improvement becomes smaller as the diversity order in-

creases.

= (i.e., D1 > D2 > D3).

In Fig. 6.2, the performance curves for different cases of the fourth-order
diversity (i.e., K x L = 4) are given. Comparing the curve corresponding to
KL = 41 with that corresponding to KL = 22, one may observe the 1-dB
difference in SNR for the same BER.

. The comparision of MRT performance curves

—— MRT Tx-2,Rx-2
—8— MRT Tx-4,Rx-1

Bit error Rate (BER)

12

6
Es/No(dB)

Figure 6.2: The comparison of MRT performance curves for the same diversity
order with different receiver antennae number.
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6.2 GMRT Simulation

In the Sec. 3, we prove that the generalized maximal SNR gain of GMRT is
always greater than or equal to that presented by Lo under the normalized con-
straint condition on weighting vector for any given flat fading channel. In this
section, we investigate it by simulation. 4-QQAM scheme is used in the simulation
for simplicity. A simple channel is adopted, where the fading channel coefficients
are independent complex Gaussian random variables. It is also assumed that
perfect knowledge of channel fading coefficients are available to both transmitter
and receiver stations. Different pairs of (K,L) are selected as (2,1), (3,1), (4,1),
(2,2), (3,2), (4,2). 10* different channels and 10° symbols are used in the sim-
ulation. Fig. 6.3 denotes that when the receiver antenna is single antenna, the
two systems with different selections of weighting vectors have the same perfor-
mance. The results in Fig. 6.4 indicate that for the same product diversity, the
system performance by using more antennae at the transmitter will get better
performance. Fig. 6.5 show that as the product diversity increases, the system

performance will get better.

0 The comparision of MRT and GMRT performance curves
10 ; ; T ;

—— MRT Tx-2,Rx-1
—— MRT Tx-3,Rx-1
—-— MRT Tx—4,Rx-1
—— GMRT Tx-2,Rx-1
—— GMRT Tx-3,Rx-1
—— GMRT Tx-4,Rx-1

H
oI
&+

S

!
N
T

Bit Error Rate ( BER)
=
o

H
oI
&

10’ L L L L L L
0 2 4 6 8 10 12 14 16

Es/No(dB)

Figure 6.3: The comparison of MRT and GMRT performance curves showing the
effect of one receiving antennae for K=2, K=3, and K=4.
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The comparision of MRT and GMRT performance curves

10 T T T T T
—&— MRT Tx-2,Rx-2
i —— MRT Tx—4,Rx-1
4 —— GMRT Tx-2,Rx-2
—— GMRT Tx-4,Rx-1
-2
o107 |
]
Q
2
S
o
8
@
@ 107 |
0™
0 2 4 8 10 12

6
Es/No(dB)

Figure 6.4: The comparison of MRT and GMRT performance curves for the same
diversity order with different receiver antennae number.

a The comparision of MRT and GMRT performance curves
10 ; ; T ; ;
—&— GMRT Tx-2,Rx-2
1 —— GMRT Tx-3,Rx-2
—— GMRT Tx-4,Rx-2
) —— MRT Tx-2,Rx-2
—%— MRT Tx-3,Rx-2
—— MRT Tx-4,Rx-2
& 107F
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Figure 6.5: The comparison of MRT and GMRT performance curves for different
product diversity.
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6.3 PMBT Simulation

In the Section. 4, we analyze the BER performance of PMBT systems with ZF and
MMSE receiver and derive the optimal bit allocation formula for a given target
transmission rate. We want to use this results to compare with GMRT system
at the same transmission rate.4-QQAM modulation is used for precoded MIMO
block transmission system. We use use 22Y-QAM modulation for GMRT. In
Fig. 6.6 - Fig. 6.11, we perform simulation for a single channel. In the Fig. 6.12 -
Fig. 6.14, 10* Channel are used in the simulation. The fading channel coefficients

are uncorrelated complex Gaussian random variable with mean 0, variance 1.
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The comparision of GMRT and PMBT performance curves M=2
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Figure 6.6: BER performances PMBT and GMRT for M=2, PMBT: 4-QAM,
GMRT: 16-QAM, \? = 2.49, A2 =0.13.

In the Fig. 6.6, the eigenvalue of channel matrix are \? = 2.49, A2 = 0.13 and
we have 402 — \? < (0. Using (5.21), this results let me know GMRT have better
performance than PMBT-VHW-ZF for all SNR and GMRT and PMBT-VH#W/-
MMSE have no the crossing point for SNR, which value are larger or equal to
0(dB). In this simulation, we compute the value of ry, 7, and 7, respectively,
as 0.79(dB), 10.84(dB), and 13.62(dB). Notice that the crossing of PMBT-
VHE_ZF and PMBT-VEIW-ZF occurs around 10(dB), which is a value close to

36



7 = 10.84(dB) than to ry = 0.79(dB) or r; = 13.62(dB). From the eigenvalue of
channel matrix, we compute by = 4, and by = 0. This result let me know that
GMRT and PMBT with optimal bit allocation have the same performance.

In the Fig. 6.7, the eigenvalue of channel matrix are \? = 1.22, A3 = 0.42
and get 4)\2 — )2 > 0. From (5.21), we know PMBT-VEZW-ZF have better
performance than GMRT for all SNR and GMRT and PMBT-VZW-MMSE have
no the crossing point. In this simulation, we compute the value of ry, 7, and rq,
respectively, as 3.9(dB), 6.8(dB), and 8.53(dB). Notice that the crossing of
PMBT-VZ.ZF and PMBT-VHW-ZF occurs around 6(dB), which is a value close
to T = 6.8(dB) than to 1o = 3.9(dB) or r; = 8.53(dB). From the eigenvalue of
channel matrix, we compute b; = 3, and b, = 1. As not all the bits are assigned

to the same symbol, PMBT with optimal bit allocation have better performance
than GMRT.

The comparision of GMRT and PMBT performance curves M=2
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Bit Error Rate (BER)
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Figure 6.7: BER performances PMBT and GMRT for M=2, PMBT: 4-QAM,
GMRT: 16-QAM, \? = 1.22, \2 = 0.42.

In the Fig. 6.8, the eigenvalues of channel matrix are \? = 5.75, A\ =
2.53, A3 = 0.25 and get 20A3)3/(A3 + A3) — A < 0. From (5.21), we know GMRT
have better performance than PMBT-V#IV-ZF for all SNR and the crossing of
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GMRT and PMBT-VZW-MMSE occurs around 8(dB), which is a value closer
to 7 = 8.5(dB). In this simulation, we compute the value of ry, 7, and ry,
respectively, as —2.82(dB),6.6(dB), and 10.8(dB). Notice that the crossing of
PMBT-VE.ZF and PMBT-VEZW-ZF occurs around 6.2(dB), which is a value
close to 7 = 6.6(dB) than to ry = —2.82(dB) or r; = 10.8(dB). From the eigen-
value of channel matrix, we compute by = 4, b = 2, and b3 = 0. Therefore

PMBT with optimal bit allocation have better performance than GMRT.
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Figure 6.8: BER performances PMBT and GMRT for M=3, PMBT: 4-QAM,
GMRT: 64-QAM, \? = 5.75, \3 = 2.53, A = 0.25.

In the Fig. 6.9, the eigenvalue of channel matrix are A\? = 3.62, \2 = 1.3, \3 =
0.7 and we get 20A\2)\2/(A2 + A\2)—\? > 0. From (5.21), we know PMBT-V#1V-ZF
have better performance than GMRT for all SNR and GMRT and PMBT-V#1¥/-
MMSE have no the crossing point. In this simulation, we compute the value of
ro, T, and ry, respectively, as —0.82(dB),3.93(dB), and 6.32(dB). Notice that
the crossing of PMBT-V#-ZF and PMBT-V#W-ZF occurs around 4(dB), which
is a value close to 7 = 3.93(dB) than to ry = —0.82(dB) or r; = 6.32(dB). From
the eigenvalue of channel matrix, we compute b; = 3, by = 2, and b3 = 1. So

we know that PMBT with optimal bit allocation have better performance than
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0 The comparision of GMRT and PMBT performance curves M=3
10 T

—o GMRT

—e PMBT-V"-zF
—— PMBT-Optimum Bit Allocation
—— PMBT-V"w-zF
—— PMBT-V"'W-MMSE

Bit Error Rate (BER)

Es/No (dB)

Figure 6.9: BER performances PMBT and GMRT for M=3, PMBT: 4-QAM,
GMRT: 64-QAM, \? = 3.62, \2 =1.3, \3 =0.7.

GMRT.

In the Fig. 6.10, the eigenvalue of channel matrix are \? = 6.94, \3 =
3.4, A2 =0.1, A2 = 0.043 and get 84X2\2\7/(A3A2 + A2)2 + A\2)\3) — )2 < 0. From
(5.21), we know GMRT have better performance than PMBT-VEZW-ZF for all
SNR and the crossing of GMRT and PMBT-VZW-MMSE occurs around 13(dB),
which is a value closer to 7 = 13.32(dB). In this simulation, we compute the value
of ry, T, and ry, respectively, as —5.7(dB), 8.11(dB), and 13.31(dB). Notice that
the crossing of PMBT-V#-ZF and PMBT-VHW-ZF occurs around 8(dB), which
is a value close to 7 = 8.11(dB) than to ry = —5.7(dB) or r; = 13.31(dB). From
the eigenvalue of channel matrix, we compute b; =4, by = 3, b3 = 1, and b, = 0.
So we know that PMBT with optimal bit allocation have better performance
than GMRT.

In the Fig. 6.11, the eigenvalue of channel matrix are \? = 4.2, \2 = 2.2, \3 =
1.3, A7 = 0.16 and get 84\3A3\7/(A3A3 + MA3AT + A30F) — A7 > 0. From (5.21),
we know PMBT-V#W-ZF have better performance than GMRT for all SNR and
GMRT and PMBT-VH#W-MMSE have no the crossing point. In this simulation,
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Figure 6.10: BER performances PMBT and GMRT for M=4, PMBT: 4-QAM,
GMRT: 256-QAM, \? = 6.94, \2 = 3.4, A2 =0.1, \2 = 0.043.

we compute the value of rg, 7, and ry, respectively, as —1.38(dB), 7.54(dB), and
12.63(dB). Notice that the crossing of PMBT-V-ZF and PMBT-VEZW-ZF oc-
curs around 7(dB), which is a value close to 7 = 7.54(dB) than to ry = —1.38(dB)
or r;y = 12.63(dB). From the eigenvalue of channel matrix, we compute b; = 3,
by = 3, b3 = 2, and by = 0. So we know that PMBT with optimal bit allocation
have better performance than GMRT.

In the Fig. 6.12, the BER of the MMSE receiver is lower than the zero-forcing
receiver for all SNR. For the case of MMSE receiver, GMRT system better than
PMBT system for all SNR. The PMBT with optimal bit allocation have better
performance than GMRT.

In the Fig. 6.13 - Fig. 6.14, the BER of the MMSE receiver is lower than the
zero-forcing receiver for all SNR. For the case of MMSE receiver, GMRT system
better than PMBT system for high SNR. The PMBT with optimal bit allocation
have better performance than GMRT.
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The comparision of GMRT and PMBT performance curves M=4
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Figure 6.11: BER performances PMBT and GMRT for M=4, PMBT: 4-QAM,
GMRT: 256-QAM, \? = 4.2, \2 =22, A\ =1.3, \? =0.16.

The comparision of GMRT and PMBT performance curves M=2
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Figure 6.12: BER performances PMBT and GMRT for M=2, PMBT: 4-QAM,
GMRT: 16-QAM, 10* Channel are used.
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The comparision of GMRT and PMBT performance curves M=3
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Figure 6.13: BER performances PMBT and GMRT for M=3, PMBT: 4-QAM,
GMRT: 64-QAM, 10* Channel are used.

The comparision of GMRT and PMBT performance curves M=4
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Figure 6.14: BER performances PMBT and GMRT for M=4, PMBT: 4-QAM,
GMRT: 256-QAM, 10* Channel are used.
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Chapter 7

Conclusion

In this thesis, we perform simulation of precoded MIMO block transmission
(PMBT) with zero-forcing (ZF), minimum mean square error (MMSE) receivers
and optimum bit allocation and also compare the performance with Generalized
MRT (GMRT). In our experiments, we found that the PMBT with optimum
bit allocation perform significantly better than GMRT. Furthermore, the PMBT
with optimum bit allocation performs the same as the GMRT if we choose all bits
fall into one subchannel, which has maximum eigenvalue of channel matrix. In
the case of ZF and MMSE receiver, the relationship between PMBT and GMRT
depend on the eigenvalues of channel matrix. If the eigenvalues of channel matrix
close to each other, the PMBT with ZF and MMSE receivers will have the better
performance. On the contrary, GMRT has the better performance at the large
difference of eigenvalues values. This outcome shown that PMBT with optimum

bit allocation always have better performance than GMRT for flat fading channel.
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