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研究 

國立交通大學電子物理學系碩士班  

學生：吳家慶                    指導教授：楊本立 教授 

 

中文摘要 

 

    我們利用固態核磁共振的方法研究最近發現的鐵基超導體 FeSe1-δ

及摻雜銅元素取代部分鐵的(Fe1-xCux)Se1-δ。這些樣品具有微量的 Se 缺

陷(δ≈0.12,0.15)。我們主要是探討 Se 缺陷和鐵元素在 FeSe1-δ中超導

性所扮演的角色。由 Spin-lattice relaxation rate(1/T1)的實驗我們

發現樣品中 spin fluctuation 的強度隨著 Se 缺陷的增加而變小，spin 

fluctuation 一般被懷疑與非傳統超導體有關，也確實出現在 FeSe1-δ

的樣品中；另外分析 1/T1數據發現並不是整體 FeSe1-δ樣品內部都具有

超導性。藉由 AC susceptibility 實驗的量測，我們亦發現 FeSe1-δ在

Se 缺陷較多樣品中的 superconducting volume fraction 也較少。這

些結果暗示著超導性只出現在 Se 缺陷較少甚至無 Se 缺陷的相中。。至

於摻銅的(Fe1-xCux)Se1-δ，我們的實驗發現摻銅效應導致超導臨界溫度下

降且在極微量的銅摻雜(x≈0.03)時 FeSe 的超導性消失，由我們的 1/T1

數據發現樣品的 Spin-lattice relaxation rate 在摻雜銅元素後並無

明顯改變，表示摻雜銅元素對(Fe1-xCux)Se1-δ內的 spin dynamic 影響不

大 。對照 Williams 等人對摻雜銅(Fe1-xCux)Se1-δ 的電阻量測實驗發現

有 metal-insulator phase transition，摻銅的效應對 FeSe 電子組態

比 spin dynamic 的影響大，因此我們認為電子組態的變化可能是超導

性消失的主因。   
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Abstract 

 
The roles of Se deficiency and Fe atoms, for the superconductivity of 

FeSe, have been respectively investigated in FeSe1-δ and (Fe1-xCux)Se1-δ, by 

our NMR experiments. The data, for nuclear spin-lattice relaxation rate 

(1/T1), show that the spin fluctuations are weakened at a larger δ, and are 

correlated with the superconductivity in FeSe. The superconducting volume 

fraction, estimated by our ac susceptibility experiments, is found to vary 

inversely with d. Our findings suggest that the Se-deficient FeSe has an 

inhomogeneous phase, where the superconductivity is associated with the 

regions having few or no Se vacancies. As for (Fe1-xCux)Se1-δ, Tc is rapidly 

suppressed by Cu doping and vanishes around x=0.03. The 77Se and 63Cu 

NMR linewidths suggest that a local moment is induced at the Fe sites, and 

not at the Cu sites. However, 1/T1 shows no obvious change with the Cu 

doping. We suspect that other effects, such as disorder or change in the 

density of states, have more influence on Tc suppression, since a 

metal-insulator transition, induced by Cu substitution, occurs in the 

resistivity measurements. 
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Chapter 1 Introduction 

 

1.1  Iron-based superconductors 
 

The first member of iron-based superconductor LaFeOP, containing the Fe 

element, which was originally thought of against the formation of superconductivity, 

was first found by Hideo Hosono's research group at the Tokyo Institute of 

Technology in 2006[1]. Due to its low superconducting critical temperature, close to 

boiling point of liquid helium, LaFeOP, did not attract much attention. Until 2008, 

Hideo Hosono's research group found the second member of iron-based 

superconductor family, La(O1-xFx)FeAs,x=0.05~0.12[2]. This material has a relatively 

high superconducting critical temperature, Tc=26K. Then it has quickly drawn 

considerable attention. The emerge of iron-based superconductors did lead to a 

carnival-like atmosphere that scientists have tried synthesizing new members of 

iron-based superconductors and characterizing their properties.  

 

After Japanese research group had successfully raised Tc up to 26K by 

replacing As with P, groups in china made similar compounds raised Tc to 56K. 

Although these Tc are not high enough to challenge the records set over the past 

twenty years by cuprate superconductors, scientists are still excited for several reasons. 

First, the critical temperature of Fe-based superconductors is much higher than 

conventional superconductors. Second, iron compounds have the potential for 

technological applications compared to copper oxides, which are too brittle to make 

wires for electric power transmission applications. Besides, superconducting iron is an 

unexpected element to make a superconductor because of magnetism is not 

compatible with superconductivity according to the conventional BCS theory. The 

Meissner effect also states that superconductors will expel magnetic fields. Why can 

the magnetism of the iron element coexist with the iron-based superconductors? There 

is no consensus on the answer yet. 

 

There are four major kinds of Fe-based superconductors up to date. The first 

one is La(O1-xFx)FeAs, called the 1111 system. The second is (Ba1-xKx)Fe2As2 [3], 

called 122 system and having a higher Tc= 38K. The third is LiFeAs [4], belonging to 

the 111 system, and its Tc= 18K. The last is the FeSe1-δ [5], belonging to 11 system 

and its Tc= 8K. Among the newly discovered iron-based superconductors, FeSe1-δ is 

the first binary compound to be found by Dr. Maw-Kuen Wu’s research group in the 
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Institute of Physics in Academia Sinica, Taiwan. Though its superconducting 

temperature is not as high as the other Fe-based superconductors, it has quickly 

attracted much attention due to its structural simplicity and easier material handling. 

Recently the high pressure experiments have raised its Tc up to 36.7 K [6], 

comparable to the FeAs-based superconductors. 

 
Like the cuprate superconductors, some Fe-base superconductors need electron 

or hole doping in order to show superconductivity. For example, LaOFeAs is not 

superconducting, but La(O1-xFx)FeAs is after F doping. By ultrafast laser experiment, 

pseudogap behavior is also found in some iron-based superconductors. Pseudogap 

behavior is considered as an important feature in cuprate superconductors. 

 

1.2  FeSe1- superconductor 
 

FeSe resemble the FeAs-based superconductors in many ways. For example, 

both of them have layered structures, electronic states, and even the lattice instabilities 

[7-9]. However, whether FeSe is close to a spin-density wave (SDW) instability or 

magnetic order like the FeAs-based superconductors is still unclear[6,10].  

 
FeSe1- has complex structure phases, as summarized in the original literature 

where the superconductivity was reported in Se-deficient tetragonal β-FeSe[5], i.e., 

FeSe0.82 and FeSe0.88. And then it was soon followed by a similar finding for a 

composition of less Se deficiency, FeSe0.92 [13]. However, recently McQueen’s group 

claimed that superconductivity actually exists only in the nearly stoichiometric FeSe. 

They further pointed out that very little Se deficiency (δ=0.03) is enough to destroy 

the Cooper pairing in this material [14]. Although they attributed this discrepancy to 

the oxygen contamination in those Se-deficient FeSe samples, we would like to know 

why o FeSe0.82 and FeSe0.88 are still superconducting. Clarifying the role of Se 

deficiency in FeSe is essential to any theoretical treatments of pairing mechanism of 

superconductivity because it determines whether it is essential to introduce charge 

carriers in the two dimensional FeSe layer or not, as compared to the cuprate 

superconductors.  

 

Understanding the role of Fe2+ spin is another important issue, which has 

already been investigated by chemically substituting Fe for Cu, i.e., 

(Fe1-xCux)Se1-δ[15,16]. Superconductivity in FeSe is rapidly suppressed by only 1.5% 

copper substitution. The iron (Fe2+) ion and the copper (Cu2+) ion have the same 

number of valence electrons but different spins and atomic radii. So the chemical 
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Chapter 2  

Principles of nuclear magnetic resonance 

 

 
2.1  Hamiltonian and spectra 
 

     The general form of nuclear spin Hamiltonian can be written as the sum of four 

interactions: 

࣢ ൌ ࣢୞ ൅࣢୕ ൅࣢ୣି୬ ൅࣢୬ି୬, 

 

The first term is the Zeeman Effect term of the nuclei, which can be written as: 

 

࣢୞ ൌ γ԰ࢧ଴ ∙  ,෠ࡵ

where γ	is	called	gyromagnetic ratio. With this equation we can determine the desired 

NMR frequency we want to observe by changing the applied magnetic field, because 

the magnitude of energy between the energy levels is γ԰ࢧ଴ ∙  ෠ . If we apply aࡵ

electromagnetic wave to the sample with some appropriate conditions, the nuclei will 

be excited to the higher energy level, where the frequency ω is exactly equal to γࢧ଴. 

Figure 2-1 is an illustration of the energy levels of the 1/2 nuclear spin in the magnetic 

field. If we excite the nucleus in the ground state to the excited by applying a EM 

wave energy exactly equal to the energy gap between the two energy level, then the 

excited nucleus will return back to the ground state and emit photons, which gives on 

the NMR spectrum. 
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the condensed matter is bigger. 

 

2.4  Spin-lattice relaxation  
 

The spin-lattice relaxation rate, 1/T1 can provide information of dynamic 

process, such as spin fluctuation. In order to explain T1 briefly, we can introduce the 

Fermi golden rule, given by  

P୧→୤ ൌ
ଶ஠

԰
࣢୪|fۧ|ଶδሺω|iۦ| െ E୤+E୧ሻ, 

which represents the rate of transitions between two states. ࣢୪ is the time-dependent 

Hamiltonian giving rise to the spin-lattice relaxation. We can infer that the process of 

spin-lattice relaxation is related to the fluctuation of hyperfine field, so the 1/T1 can be 

written as: 

Tଵ
ିଵ ൌ ஓమ

ଶ
׬ 〈࣢୦୤ሺtሻ࣢୦୤ሺ0ሻ〉e୧னబ୲dt
ஶ
଴ , 

where 〈࣢୦୤ሺtሻ࣢୦୤ሺ0ሻ〉is the autocorrelation function. If the ࣢୦୤ሺtሻalters between 

േ࣢୦୤,	then  〈࣢୦୤ሺtሻ࣢୦୤ሺ0ሻ〉 ൌ ࣢୦୤
ଶ eି୲/த, where τ	 is	 the	correlated	time	constant.	

Through	further	calculation,	we	can	get	

Tଵ
ିଵ ൌ

γଶ࣢୦୤
ଶ τ

1 ൅ ω଴
ଶτଶ

 

With the above equation, we can know that if the electrons are becoming more 

correlated with neighboring electrons in strong correlated electron system, such as 

entering magnetic order or quantum critical point. The correlated time	constant	τ	will	

become	longer,	which	means	the	itinerant	electrons	in	the	material	become	more	

correlated	through	certain	exchange	interaction.	Figure	2‐3	is	a	simulated	plot	of	

1/T1	versus	1/ωτ.	We	consider	there	is	a	magnetic	phase	transition	at	Tm,	where	

τ	 is	 temperature	 dependence.	 For	 a	 consideration	 of	 second	 order	 phase	

transition,	τሺTሻis	given	by,	

	

τሺTሻ ൌ τଵሺ1 െ T/T୫ሻ஗భ,	for	T൏Tm	
τሺTሻ ൌ τଶሺT/T୫ െ 1ሻ஗మ,	for	T൐Tm	

	

In	this	picture,	we	can	show	that	there	is	a	peak	of	1/T1,	which	occurs	when	the	

temperature	is	at	Tm.	From	figure	2‐3	we	connect	the	spin‐lattice	relaxation	with	

the	physic	picture	of	the	electric	correlation,	which	can	explain	the	phenomenon	

of	some	critical	phase	transition,	such	as	superconductivity,	magnetic	order,	and	

et	al.	For	further	approaching	to	the	classically	representative	plot	of	1/T1	versus	

T,	 we	 plotted	 the	 1/T1	versus	 T/Tm	and	 found	 a	 singularity	 at	 Tm,	 which	 is	 in	
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from	 which	 we	 can	 obtain	 the	 quantity	 of	 dynamic	 susceptibility.	 Usually	 the	

dynamic	susceptibility	is	dominated	by	fluctuations,	such	as	spin	fluctuations	in	

superconductivity.	We	can	check	that	whether	there	are	spin	fluctuations	in	the	

high‐Tc	 superconductors	 or	 other	 quantum	 critical	 phenomenon.	 Furthermore,	

we	can	write	1/T1	by	employing	the	superconducting	density	of	states,	given	by	

	

Tଵ
ିଵ ∝ Aଶ ׬ CାሺE, EᇱሻN୆ୌሺEሻfሺEሻN୆ୌሺEᇱሻ ൈ ሺ1 െ fሺEᇱሻሻdE	

	

For	a	BCS	superconductor,	its	density	of	state	is	given	by	

N୆ୌሺEሻ ൌ
E

√Eଶ െ ∆ଶ
N୒ሺEሻ	

and	the	coherence	factor	is	 	 CାሺE, Eᇱሻൌ
ଵ

ଶ
൅ ୉୉ᇲ

ଶ∆మ
	

At	Eൌ∆	 ,	N୆ୌ	 has	a	singularity	and	 CାሺE, Eᇱሻ	 is	non‐zero.	Then	the	 Tଵ
ିଵ	 has	a	

singularity	 at	 TൌTc.	 In	 a	 s‐wave	 superconductor,	 1/T1	 has	 a	 maximum	 value,	

called	Hibel‐Slitcher	coherence	peak.	For	T൑Tc/3,	 this	equation	can	be	reduced	

to	 Tଵ
ିଵ~exp	ሺെ ᇞ/k୆Tሻ.	This	behavior	is	only	valid	for	s‐wave.	Different	kinds	of	

wave	 superconductor	 have	 different	 gap	 symmetry	 and	 we	 can	 get	 different	

power	law	relation	of	 Tଵ
ିଵ	 by	introducing	the	density	function.	
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Chapter 4 Experimental Process and Results 

 

4.0 Brief description 
 
     Our experiments have several parts. The following experimental contents will 

be introduced in two parts based on the samples of Se-deficient FeSe1-δ and Cu-doped 

(Fe1-xCux)Se1-δ, respectively. We have demonstrated our measurements of NMR, AC 

susceptibility, X-ray diffraction, and resistivity, where the NMR measurements 

include both of spectra and spin-lattice relaxation rate (1/T1). 

 
 
4.1 Structure & Resistivity measurement & Phase diagram 
     Before the NMR measurement, we need to confirm that the Se-deficient FeSe1-δ 

and Cu-doped (Fe1-xCux)Se1-δ have the same tetragonal crystal phase where the 

superconductivity occurs. We also need to know the phase diagram of Se-deficient 

FeSe1-δ in different Se deficiency and Cu-doped (Fe1-xCux)Se1-δ in different doping 

level. 

 

4.1.1 X-ray different patterns of FeSe1-δ and (Fe1-xCux)Se1-δ 

     The samples of iron selenide (FeSe) are polycrystalline, provided by 

Maw-Kuen Wu’s research group in the Institute of Physics in Academia Sinica, 

Taiwan. The detailed methods of sample preparation are in reference 1. 

Polycrystalline samples of the Se-deficient FeSe0.88 and the Cu-substituted 

(Fe1-xCux)Se1-δ with (x,δ)=(0,0.12), (0.01,0.15), (0.02,0.12), (0.03,0.12), and 

(0.04,0.12) were used in our NMR and ac magnetic-susceptibility experiments. In 

order to prove that the sample of (Fe0.99Cu0.01)Se0.85 has similar features with other 

samples, (Fe0.98Cu0.02)Se0.88, (Fe0.97Cu0.03)Se0.88, (Fe0.96Cu0.04)Se0.88, FeSe0.88. Figure 

4-1 is the powder x-ray diffraction patterns of these samples. Rietveld refinement was 

analyzed by using GSAS software, to confirm the sample stoichiometry and quality. 

The x-ray diffraction patterns reflect the detailed structures of our samples. Indeed, 

through the data on figure 4-1, the (Fe0.99Cu0.01)Se0.85 does have similar structure with 

other different composition of samples. 
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4.2   AC susceptibility measurements of FeSe1-δ and (Fe1-xCux)Se1-δ 

 
Experimental setup is described in chapter 3-4(p.14) 

 

4.2.1 Theory of AC susceptibility measurements 
 
     We want to know why FeSe0.99, FeSe0.92, FeSe0.88 have similar onset Tc? The 

superconducting volume fraction estimated from our ac susceptibility may provide a 

clue. Figure 4-5 shows our ac susceptibility measurements of Imai et al.’s FeSe0.99, 

our FeSe0.88, (Fe0.99Cu0.01)Se0.85, and (Fe0.98Cu0.02)Se0.88 . The method of measurement 

is using the LC resonant circuit, originally made for NMR’s measurements, to detect 

its relative frequency shift by using the Network analyzer [4]. This method utilizes the 

resonance frequency ω (~1/√LC) of the LC circuit changing with the inductance, 

which in turn depends on the sample susceptibility χ. That is, L=L0[1+4πχ(T)], L0: 

inductance of the NMR coil. The rising of the frequency-shift ratio [defined as 

relative size of change from the frequency at 15K, ω(T)/ω(15K)-1] in figure 4-5 

represents the superconducting phase transition because the frequency ω increases as 

it enters the superconducting state, χ<0. The size of frequency-shift ratio gives a 

rough estimate of the superconducting volume fraction. 

 

4.2.2 Superconducting volume fraction of FeSe1-δ & (Fe1-xCux)Se1-δ 
 

     We found that FeSe0.88 has a superconducting volume fraction significantly 

smaller than FeSe0.99 since a small frequency-shift ratio. The dc bulk susceptibilities, 

reported in reference 12, show the similar result of a weaker superconducting 

diamagnetic response in FeSe0.82, if the background sign from impurities is subtracted. 

Note that the pressure experiment on FeSe0.99 shows that Tc and superconducting 

volume fraction vary simultaneously with pressure [4], unlike in the Se-deficient case, 

where only superconducting volume fraction varies with Se deficiency. We also did 

the two-T1 analysis for our FeSe0.88 and found that the volume fraction, for the short 

T1 component, is about 50%, which is 10% less than that in FeSe0.92 [6].    

 

      



 

Figu

(rep

The

freq

 

ure 4-5. D

produced fr

e frequency 

quency at 15

Data from t

om referen

shift, on th

5K, ω(T)/ω(

the AC ma

nce 7), FeSe

he vertical ax

(15K)-1. 

 

22 

agnetic susc

e0.88, (Fe0.99

xis, is defin

ceptibility 

9Cu0.01)Se0.

ned as relati

measureme

85, and (Fe

ive size of c

ents of FeS

e0.98Cu0.02)Se

change from

 
Se0.99 

e0.88. 

m the 



23 
 

4.3 NMR spectrum of FeSe1-δ 
      

     To our knowledge, there are three papers of NMR measurements, to date, 

reporting on superconductivity in FeSe1-δ. Imai’s research group has measured the 

nearly stoichiometric FeSe0.99 and FeSe0.97, with the samples claimed to be free of 

oxygen contamination [4]. Kotegawa’s research group and Masaki’s research group 

have also measured the Se-deficient FeSe0.92 but didn’t say whether there was any 

oxygen contamination or not [5,6]. In order to resolve this discrepancy, concerning 

the stoichiometry of the superconductivity in FeSe, the following discussions compare 

to our FeSe0.88 data, with the data reproduced from the previous literature. The 

standard Hahn-echo pulse sequences and saturation pulses were, respectively, 

employed throughout our 77Se NMR spectra and 1/T1 experiments at 75 kilo Gauss 

(kG). 

 

4.3.1 NMR spectrum of FeSe1-δ 
 

     Figure 4-6a is the 77Se NMR spectra with different Se deficiency of FeSe1-δ, 

FeSe0.99, FeSe0.97, FeSe0.92, FeSe0.88, at 10 K. Note that the linewidth increases with 

the Se deficiency, as expected because NMR linewidth generally reflects the amount 

of lattice disorder in the sample. From the spectra of different Se deficiency of FeSe1-δ, 

we can indirectly confirm the correct stoichiometry of these samples. We compare the 

spectra of disordered FeSe0.88 and ordered FeSe0.99. Similar Tc≈8K suggests that 

Cooper pairing is not vulnerable to the lattice disorder induced by the Se vacancy.  

 

     How can we be sure that the growing linewidth reflects the lattice structure 

disorder caused by Se vacancy? Figure 4-6b is a simulating diagram which is assumed 

that we consider different quantity of vacancy in a condensed matter. If the vacancy is 

bigger, then the linewidth is getting bigger, too. Notice that the frequency shift 

behavior is not so clear in our experimental data. We thought it is because of the 

experimental error problem. 
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4.4 Spin-lattice relaxation rate (1/T1) of FeSe1-δ 
 

Here we report our spin-lattice relaxation data of FeSe1-δ and discuss what we 

have found in our sample. First, I will present a representative 1/T1 data of FeSe0.88 (at 

16K) and explain why we use a stretched exponential curve fitting. Second, we 

discuss the behavior of the distributed T1 in our sample. 

 
4.4.1 Spin lattice relaxation curve of FeSe0.88 

 

Figure 4-8 represents a nuclear spin-lattice relaxation curve for our FeSe0.88 

sample at 16K. Note that M(t) means the nuclear magnetization as a function of time. 

The function of typical single exponent spin lattice relaxation curve is given by, 

1 െ
Mሺtሻ
Mሺ∞ሻ

ൌ e
ି ୲
୘భ 

Note that the dashed line in the log plot of figure 4-8. It means if the curve is single 

exponential, the curve will be a straight line following the trace of dashed line. If the 

curve deviate the dashed line, it can’t be classified into the type of single exponential 

curve, which means the curve is follow a single exponential behavior. So we should 

fit the curve with another kind of curve fitting, such as the following stretched 

exponential curve fitting. 

Compare our FeSe0.88 data with the Imai’s group’s FeSe0.99 and FeSe0.97 data, 

there were two different behaviors. For the Imai’s group’s FeSe0.99 and FeSe0.97 data, 

is single exponential, as to ours, FeSe0.88, is stretched exponential. The observed 

stretched exponential behavior means that the spin-lattice relaxation rate, T1, is 

distributed in our FeSe0.88 sample. This behavior may be caused by two reasons, 

anisotropy or disorder in FeSe0.88 . To figure out what the real reason causing 

distributed behavior in FeSe0.88, we note that the single exponential behavior, 

observed in the nearly stoichiometric FeSe polycrystalline samples, implies that there 

is only a nearly isotropic T1, although it has a two-dimensional layered structure. So a 

stretched exponential behavior, caused by the anisotropic T1, is then ruled out. So the 

reason causing distributed behavior in FeSe0.88 is due to the disorder induced by 

Se-vacancy. 
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4.4.3 1/T1T in FeSe1-δwith different Se deficiency 
 

Figure 4-10 shows the relaxation rate curve, with different Se deficiency, from 

the stretched fit. Note that T1 value is not directly obtained from the stretched 

exponential curve fitting. The T1 value of the stretched exponential curve fitting is the 

most majority of T1 in the sample. In order to catch the intrinsic feature from the 

distributed T1, we calculated the average 1/T1, directly from the initial slope of the 

relaxation curve[8], instead of two-T1 fit. The equation of average 1/T1 in stretched 

exponent curve fitting is given by 

〈
1
Tଵ
〉 ൌ න

1
Tଵ

∞

଴
P ൬

1
Tଵ
൰ d ൬

1
Tଵ
൰ ൌ ln10 ൈ initial	slope	of	log	ሺ1 െ

Mሺtሻ
Mሺ∞ሻ

ሻ 

 

The pink circles are our 1/T1T curve. From this curve, we saw the turning point 

reflecting the Tc. The Korringa-type behavior (T1T=constant), for temperatures 

between superconducting temperature (Tc) and 50 K, in FeSe0.88 and FeSe0.92, is 

actually misleading because both 1/T1 values of FeSe0.88 and FeSe0.92 are obtained 

from the stretched exponential fit. These stretched data cannot reflect the real situation 

of the average behavior for 1/(T1T) because the stretched exponent is proved to be 

temperature dependent (see figure 4-9). Above 100 K, T1 is uniquely determined, and 

1/(T1T) increases with increasing temperature. The behavior is common to some 

Fe-Based superconductors, and likely originated from the effect of the band structure 

in electron-doped system. The increasing 1/(T1T) with increasing temperature above 

100K may be caused by pseudogap behavior in electron-doped system of Fe-Based 

superconductors. 
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4.5.3 Comparison of 77Se and 63Cu NMR spectra of (Fe1-xCux)Se1-δ 

 
 

     Why do 63Cu and 77Se linewidths behave so differently? Normally the NMR 

spectrum becomes wider and more asymmetric when the increase in doping level is 

begun [9, 10]. But here, the 63Cu linewidth can come from both the doping-induced 

magnetic shift distribution, and the powder pattern due to the anisotropic shifts and 

quadrupolar effects. The broad shoulders, on both sides of the central peak, are caused 

by the quadrupolar broadening. Because these broad shoulders stay nearly unchanged, 

unlike the central peak sharpening at higher Cu doping, the quadrupolar effects 

probably do not cause the narrowing of the central peak. Note that the centroid of the 

spectrum moves closer to the unshifted reference line at higher Cu doping, implying 

that the Cu nuclei do not much feel the hyperfine fields, from the neighboring Fe/Cu 

spins, at a higher doping levels. Since there is no direct chemical bonding between the 

Cu and Fe atoms, part of the 63Cu frequency shift at low Cu doping comes from the 

transferred hyperfine coupling, mediated by the conduction electrons. For higher Cu 

doping, we suspect that the metal-insulator transition reduces the number of 

conductions so that the transferred hyperfine coupling becomes weaker. Therefore, 

both the magnetic shift and linewidth decrease at higher Cu doping. This is different 

from the 77Se spectra, where there is direct wave-function overlap between the 4p and 

Fe 3d electrons so that the 77Se nucleus can always effectively probe the Fe spins, to 

show a broader linewidth at higher doping. 
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4.7 Conclusion & Summary 

 

Combining the reduced superconducting volume fraction in the Se-deficient 

FeSe with the findings from the previous discussions, i.e., the different 

temperature-dependent 1/T1 at different Se sites and the reduced spin fluctuations at a 

larger δ, we infer that the Se-deficient FeSe has an inhomogeneous phase, where the 

superconductivity comes from regions with few or no Se vacancies. The 

Se-vacancy-free region has much stronger magnetic fluctuations than the Se-vacant 

region. When greater vacancy is introduced in FeSe, both the overall spin fluctuations 

and superconducting volume fraction will decrease.  However, this picture cannot 

explain why the superconductivity disappears in FeSe0.97 [7]. Is this really due to the 

oxygen contamination in those Se-deficient samples so that the superconductivity is 

actually from FeSe1-δOy, instead of FeSe1-δ? An oxygen-free FeSe0.82 has been 

reported by Williams et al., with magnetic susceptibility clearly showing a 

superconducting diamagnetic response, if the background signal from the impurities is 

subtracted [3]. Therefore, we think it unlikely that occurrence of any oxygen 

contamination is the cause. While preparing this paper, we noticed that a different 

result was recently reported, where the superconductivity was claimed to exist in a 

narrow range of δ=0.03, i.e., FeSe0.974±0.005 [11]. These recent experiments, together 

with our own, indicate that the superconductivity emerges from the nearly 

stoichiometric FeSe. Figure 4-17 is the neutron diffraction data of different Se 

vacancy. From this, we know that the quantity of Se vacancy will only effect the 

composition phase content. Why do Imai et al. have a different result with M. K. Wu 

et al.? E. Pomjakushina says that Imai has an unnecessary quenching processing, 

which makes the structure is unstable. And this result an non-superconducting FeSe. 
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     In summary, we conducted comprehensive studies of the 77Se NMR in the 

Se-deficient and Cu-substituted FeSe. By comparing our data with previous literatures, 

we infer that FeSe1-δ has inhomogeneous phases, where the superconductivity 

emerges from regions with little or no Se vacancy. As for the Tc suppression in 

(Fe1-xCux)Se1-δ, magnetic fluctuations are not directly relevant. We suspect that it is 

the electronic states changing by Cu substitution so that a metal-insulator transition 

arises and soon Tc is suppressed. 
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