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Abstract

First, we use the maximum transconductance linear extrapolated method to
extract Vty of DTMOS. It can largely reduce drafting time of extracting Vry of
DTMOS by using this method. Furthermore, we lead the equivalent potential concept
into DTMOS to indicate the channel potential control ability of both gate and source
terminals with using band diagram, -simultaneously. It deduces the m-model for
extracting body effect coefficient without complicated variable substrate bias and
fitting process. In addition, the penetration-electric field from drain/source can be
suppressed by the forward body bias of DTMOS, especially for short channel device.
As a result, it improves the short channel effect (~9%) in DT technology due to
decreasing of charge sharing effect. Then, we use split C-V to extract the effective
mobility of DTMOS. Comparing to normal device, the higher mobility (~32%) of
DTMOS can be attributed to the decreasing of normal electrical field for minor
depletion region. The effect oxide thickness about 4 A of DTMOS can be reduced by
using metal gate (TiN ~ TaC) to replace poly gate. It achieves by eliminating poly gate
depletion. Besides, we prove that DTMOS owns the lower ballistic transport
coefficient with higher injection velocity from source terminal due to its suppression
of DIBL effect.

For the first time, high-performance with superior reliability characteristics is



demonstrated in a NOR-type architecture, using dynamic-threshold source-side
injection (DTSSI) in a wrapped select-gate (WSG) silicon-oxide-nitride-oxide-silicon
(SONOS) memory device, with multilevel and 2-bit/cell operation. The DTSSI
programming mechanism was thoroughly investigated using the Integrated Systems
Engineering (ISE) TCAD simulation tools combining the fabrication procedure and
physical models. Results show the major factors affecting the DTSSI technique,
including the supply current, and the lateral and vertical electric fields between the
neutral-gap regions in the WSG-SONOS memory cell. Moreover, a programming
mechanism for conventional source-side injection (Normal-mode), substrate-bias
enhanced source-side injection (Body mode) and dynamic-threshold source-side
injection (DT mode) of wrapped-select-gate SONOS (WSG-SONOS) memory is also
developed with 2-D Possion equation.and-hot-electron simulation and programming
characteristics measurement for NOR flash-memory. Compared with traditional SSI,
the DTSSI mechanisms are enhanced in terms of lateral acceleration electric field
(~6%) and supply current (~450%) in the neutral gap region, resulting in high

programming efficiency. It also provides lower power consumptions (~25% decrease).

Finally, the high-performance (Tprem=200Nns/Ters=5ms) with low supply current in DT

mode is used to achieve the multilevel and 2-bit/cell operation. Using the DTSSI
enables easy extraction of the multilevel states with tight V1 distribution, nearly
negligible second-bit effect, superior endurance characteristics, and good data
retention.

Finally, we discuss DTMOS with regard to operation temperature effect. We find
a zero-temperature-coefficient point with no current variation at elevated temperature
in DT mode operation. The main reason is that compensation between threshold

voltage and mobility at elevated temperature. Once operating the device with higher



gate voltage than ZTC point, the phonon effect would degrade on current of device.
On the contrary, the lower operation gate voltage than ZTC point would enhance the
driving current due to its low threshold voltage at higher operation temperature. The
decrease of threshold voltage is result from the increase of intrinsic density of
material at elevated temperature. As a result, predicting the location of ZTC point
precisely is very important to design device at different operation temperature. It can
help to perform the circuit more stable and work well. Here, we propose a clear and
simple ZTC point modeling of DTMOS with considering physical insights carefully.
Using our DTMOS ZTC modeling, the mismatch value between our model and
experimental data, no matter long channel or short channel device, can be reduced
lower than 2%. Furthermore, the ZTC point of DTMOS can also be consistent by
extracting from fixed body bias experimental data. It shows that optimum ZTC point
of device can be adjusted by the body effect coefficient, work function and alpha ratio.

Consequently, our model provides a design guideline for green DT technology.
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Chapter 1

Introduction
1.1 Background

Recently, the concepts of “More Moore” and “More than Moore” have been
discussed and refined in the International Technology Roadmap for Semiconductors
(ITRS) 2009 [1.1], as shown in Fig. 1.1. According to the “More Moore” axis, the
geometrical scaling refers to the continued shrinking of horizontal and vertical
physical feature sizes on chip logic and memory storage functions in order to improve
density (cost-down per area), performance (power and speed) and reliability abilities
to the customers and application. However, it ensues the many grand technological
challenges needed to be overcome from_ following the planar CMOS, Flash and
DRAM devices’ continued scaled-down to submicron regime. Especially for the
planar CMOS device’s scaling continuesa 2.5 year cycle and flash device is 2 year
cycle, respectively. Besides, the researches-of “Parallel Paths” of traditional planar
bulk metal-oxide-semiconductor field transistor such as: fully depleted
silicon-on-insulator MOSFET (FD-SOI) and multiple gate structure (FinFET,
Nanowire) are also very popular for advanced application in the “More Moore” future
technological issues.

In order to enhance device performance, for the conventional constant field path
of logic device scaling, that was accomplished by reducing the gate length, reducing
the gate dielectric thickness and then increasing the channel doping concentration to
avoid the un-ideal effect such as seriously short channel effect (SCE) and
drain-induced barrier lowering (DIBL). Therefore, it results that the application
requirements no longer both meet the performance and power consumption,

simultaneously. Figure 1.2 shows the typical 15-Vy characteristics of simulation and



measurement data under nMOSFET operation regime [1.2]. The results indicate the
gate oxide leakage current will exceed more than the baseline limit of 1 A/cm? set for
low stand-by power dissipation (LSTP) while the gate oxide scaled down to 1.5 nm
for gate voltage biased at 0.5 V at 25°C. As a result, in order to break the scaling
barriers, introducing a new material system (Silicon/High-k/Metal gate) for higher
process control improvement with lower power consumption is as important as new
device structure development. Particularly, using the high-k material, such as HfO,,
HfSION, ZrO,, Al,03, Gd,03 and HfZrO, to replace the oxynitride for suppressing the
direct tunneling current with reducing the equivalent gate oxide thickness (EOT), has
emerged the most difficult challenge associated with the future device scaling
[1.3-1.6]. This is because the high-k materials don’t like the traditional silicon dioxide
with poly silicon gate device that has played the most reliable stack system for a long
time. It encounters the seriously interfacial layer production, Fermi level pinning and
reliability (soft breakdown and hard breakdown) issues [1.7-1.9]. In addition, the
trade-offs of the high channel doping concentration to control short channel effect is
to degrade the carrier mobility and increase the junction leakage of device. Particular
in very short channel device beyond 45nm, the higher doping would also increase the
fluctuation of threshold voltage results in the difficulty of circuit design while scaling
the power supply voltage. As a result, the proposed solutions for these challenges
should be considered to achieve concurrently with stable characteristics of device
architecture and circuit design level.

On the other hand, similar to the traditional planar MOSFET, the flash memory
device would also faces its specific challenges, such as non-scalability of interpoly
dielectrics, dimensional control, non-scalability of tunnel dielectrics and dielectric
material properties, beyond 2010. Either NOR and NAND in flash memory

architecture, the difficult demands are that continually scale and reduce the
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write/erase operation voltage with quiet thinner tunnel oxide and inter-poly blocking
dielectrics for the smaller dimension device [1.10]. This is due to the tunnel oxide
shrinks beyond 8 nm would result in the serious charge loss path, called
stress-induced leakage-current (SILC), after cycling [1.11]. At the same time, the
inter-poly dielectric stack system must be thin enough to keep an almost constant
coupling ration but thick enough to assure the data retention to avoid the failure bit
occurrence. As a result, these trade-off problems are suggested the need to introduce
high-k material, 3D structure devices and silicon-oxide-nitride-oxide-polysilicon
(SONOQOS) device into flash memory fabrication process [1.12-1.14].

Recently, the silicon-oxide-nitride-oxide-silicon (SONOS) memory device has
become one of the most popular candidates for replacement of conventional FG
memory when shrinking the tunneling=oxide thickness to 5 nm [1.15-1.16]. This is
due to property of the material, which causes-local trapping of silicon nitride, in turn
helping the discrete electrons stored in the deep trap sites to resist tunneling-out
processes through the tunneling-oxide. In addition, the density of flash memory
devices can be doubled without increasing the die size, a phenomenon known as
2-bit/cell operation [1.17-1.18], under separated storage characteristics. This has been
achieved by the well-known Channel Hot-Electrons Injection (CHEI) method for
programming each side of a cell. The bit-1 and bit-2 can then be read-out using the
highly reliable reverse-read scheme [1.19]. Furthermore, similar to 2-bit/cell operation,
multi-level states in a cell (MLC) is another attractive approach for achieving
high-density application in a flash memory device [1.20-1.21]. MLC operation entails
construction of different levels of charge in the nitride trapping layer of a SONOS
device. The different combination of charge states is then identified using a highly
reliable method for distinguishing between each level of charge.

Now, the current mainstream types of non-volatile memory (NVM) is still charge
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storage mechanism, both NOR and NAND flash architecture. Other, non-charge
storage types of NVM are also developed, including phase change RAM (PRAM),
ferroelertic RAM (FeRAM) and magnetic RAN (MRAM). All of them, the scaling
difficulties are still the key issue with ensuring the very low levels of charge loss

leakage [1.22-1.23].

1.2 Motivation

According to the International Technology Roadmap for Semiconductors (ITRS)
2010, as shown in Fig. 1.3, the power consumption of total chip power will be more
than 4 w in 2015 [1.1]. The main driven factors of increased power consumption are
the higher interconnect overall capacitance and resistance, the higher chip operating
frequencies and the increasing of expenentially growing leakage of scaled transistor
on chip. Normally, the maximum-power-trend can be presented in three categories,
they are portable battery electronic operation; cost-performance and high performance
PC application, respectively. As a result, selection of appropriate power supply
voltage (Vq4q¢) continues to be an important section to simultaneously optimize power
and performance for integrated circuit products. On the other hand, in order to adapt
the power consumptions to a reasonable value, the power supply voltage (Vqq) should
be reduced down to less than 0.6 V in 2013. Other, the reduced transistor channel
length and reliability of gate dielectrics are also the driven factors to reduce the power
supply voltage. In addition, due to the gate delay increasing is proportional to the
reduction of Vg4, the reduced power supply voltage would seriously degrade the
circuit performance. Then, the threshold voltage of transistor must be simultaneously
decreased as V4. However, it leads to the large increasing of exponentially growing

leakage in subthreshold off-current of stand-by power again. Therefore, it is very hard



to reach both the high speed and low power consumption application.

For the reasons mentioned above, the main purpose of this research is to develop
the concept of high performance with low power consumption with utilizing the
dynamic threshold technique application. Figure 1.4 shows the dynamic threshold
operation scheme, which is accomplished by connecting the gate to the well or body
[1.24-1.26]. Owing to the parasitic n-p-n or p-n-p bipolar in CMOS circuit, the
operation voltage should be maintained less than 0.7 V or junction leakage would
increase violently. The feature of the Dynamic Threshold MOSFET (DTMOS) is a
high threshold voltage (Vi) at stand-by scheme (V¢=0V) and a low threshold voltage
at transistor turn on (Vg=V4a). Then, the subthreshold leakage of off-state can remain
a quiet low levels same as conventional MOSFET. On the other hand, due to the
body-effect affection, the threshold voltage :under DT-mode is dynamic variation
which results in the almost idea subthreshold swing (S.S. = 60 mV/decade) and larger
gate overdrive (Vg4-Vi) Of transistor. Furthermore, the un-ideal short channel
phenomenon, including Vy roll-off, drain-induced barrier lowering (DIBL) and
mobility degradation could also be improved by using the dynamic threshold
technique. Therefore, the author wants to use the concepts/merits of DT into these
sub-micron advanced devices including WSG-SONOS memory device and
high-k/metal gate planar devices. Finally, we want to simultaneously detail the DT

mechanisms both in WSG-SONOS and high-k/metal gate planar devices in this thesis.
1.3 Organization of the thesis

The organization of the thesis is separated into five chapters. After a brief
introduction of the relationships between device challenge issues and DT technique in
chapter 1, we will detail m-model to extract body effect coefficient without

complicated variable substrate bias and fitting process. It demonstrates the excellent



channel potential control ability of DTMOS. In addition, the detail physical insights
of electrical characteristic are also measured and verified between normal and
DT-modes for short channel device with HK/MG gate stack. It provides definite
advantages of DT technology for advance scaled-down era in the chapter 2.
Furthermore, we will demonstrate the characteristics of high-performance and
high-reliability dynamic threshold source-side injection (DTSSI) for 2-bit/cell with
MLC operation of wrapped-select-gate SONOS in NOR type flash memory. The
DTSSI programming mechanism and programming efficiency among three modes
(DT-mode, normal-mode and body-mode) would also be detailed in the chapter 3. In
addition, the temperature effect would affect device characteristics is well known and
want to clarify definitely for stable DT technology application. We introduce a
compact and clear ZTC model to describe the behaviors of DTMOS at elevated
temperature in the chapter 4. Last,-the conclusions-and future works will be presented

in the chapter 5.
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Chapter 2

Basic Physical Insights and Electrical Characteristics of
DTMOS with Different Gate Stack System

2.1 Introduction

Assaderaghi et al demonstrated the physical insights and design guidelines of
dynamic threshold (DT) MOSFET, through both experimental and two-dimensional
simulation approaches [2.1]. It shows the excellent subthreshold swing about
61mV/decade and quite low static power consumptions (low off-leakage) with higher
overdrive. It also derives the gate voltage work point of DTMOS from subthreshold
region to linear region by using traditional threshold voltage formulations with
considering the body effect. It provides a lot of ideas for designing the DTMOS. For
the reasons, using DT technique applications to attain high performance with low
power consumption is a popular approach found in many MOS technologies,
including 6 T-SRAM, multiplier, RFID circuit:and low voltage analog circuit [2.2-2.6].
According to [2.1] and [2.7], the V4 value of the transistor should be less than three
to four times the low power supply (Vpp) for high performance CMOS circuits.
Generally, the V14 of DTMOS can be defined by DC measurement by extracting Vrn
in fixed substrate bias mode. However, this is not a straightforward method due to the
complicated extraction and drawing process. In this thesis, to solve these problems,
we show that the traditional maximum transconductance linearly extrapolated
threshold voltage method with low drain bias (50~100mV) is still effective in
DTMOS [2.8]. By using the maximum transconductance linear extrapolated method
to extract V14 of DTMOS, it can largely reduce the time of graphical fitting process.
In addition, our proposed m-model directly extracts the threshold voltage (Vry) and
body effect coefficient (m) of DTMOS without complicated variable substrate bias
and fitting processes under DC measurement. For the first time, we derive and verify
the m-model with gate control ability for operations at typical room temperatures to
military range (25°C-125°C) with different alpha ratios in DTMOS. We prove the gate
control ability can be largely enhanced by DTMOS and derive the mathematical
expression with physical insights clearly. Furthermore, we utilize the m-model with
different substrate doping profile, including uniform, high-low and retrograde doping

profile, to analysis and predict the important device characteristics of DTMOS.



Finally, we prove the device characteristics and short channel effect can be improved
by using DTMOS with Metal gate/High-k systems [2.9-2-15].

2.2 Experiment

2.2.1 Device Fabrication

The Metal gate/High-k advanced transistors used in this work were fabricated by
state-of-the-art 300 mm wafer with foundry technology. To reduce the low quality
interaction between gate dielectric and silicon bulk, the interfacial layer was formed
by chemical oxide. In turn, the gate dielectric with [Hf]/(Hf+Si) were deposited by
atomic-layer deposition (ALD) techniques. N, ambient annealing was used to
decrease the dielectric defects. It followed by a 100A physical vapor deposition (PVD)
metal film (including: TaC and TiN) and a 1000A polysilicon gate capping layer.
After gate patterning, halo implantation was used to optimize the short channel
control for short channel devices. Eventually, BEOL process is following a

high-temperature annealing to active the source/drain junction of device.

2.2.2 Measurement setup
In this thesis, the DTMOS are operated by connecting the gate with the substrate
electrically. The substrate bias may thus be given as:
Voo = aVy (0<a<1) (2.1)

The « is defined as a constant ratio of the dynamical biases between the gate and

the substrate. Due to the limitation of Vgs<0.7V under DT mode, the validation range
of «is also defined in equation (2.1). Devices operated under normal and DT-modes

while the =0 and a> 0, respectively. In our experiment, we compare the electrical
characteristics of three different gate stack system (Poly/HfSiON, TaC/HfSiON and
TiN/HfSION) both under normal and DT-modes. For the third part of the chapter 2, to
show the differences easily and effectively between normal and DT-modes, we use the
constant current method (Ip=40(W/L) nA), which painstakingly makes drain current
independent of device geometry, to define the Vry of devices both under normal and
DT-modes for NMOS and PMOS, respectively. In addition, we extract the drain
induced barrier lowering (DIBL) effect and subthreshold swing as defined as

following expressions:
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DIBL = AV (22)
DS lvps=0.1and0.7V
and
6|0 Isubthreshd]d -1
55.=| 2% b 2.3)
Vs

,both electrical characteristics of DIBL and S.S. are referred to the short channel effect
as device continued scaled-down. We extract them by DC measurement with using
Keithley 4200 semiconductor parameter analyzer. Furthermore, we extract the
effective mobility with using split C-V method for both under normal and DT-modes.
The split C-V characteristics are measured at a frequency of 1 MHz with different
metal gate devices to extract the gate to channel (Cgc) and gate to bulk capacitance
(Ceg) by using HP 4284 LCR parameter analyzer [2.8]. Finally, we summarize the
advantages of DTMOS in the conclusions of the chapter 2.

2.3 Results and Discussions

2.3.1 A Novel Threshold Voltage (Vyw) and Body Effect Coefficient (m) Extraction
Method (m-model) of DTMOS

2.3.1.1 M-Modeling

Before starting to build our m-model, the V1 of DTMOS here should be defined
its meaning, due to its dynamical change of V14, as the gate voltage point which
DTMOS works from subthreshold region to triode region. Figure 2.1 shows the
V1u-Vas characteristics of transistor with fixed body bias mode. The decrease in the
V14 as the forward body bias increases may be considered a continued reduction of
the depletion charge. The Vty of device is extracted by the linearly extrapolated
threshold voltage of the maximum transconductance method, where Vp=0.1V [2.8].
The straight lines demonstrate that the body bias varies dynamically with the gate bias.
As same as mentioned before, because the DTMOS transistors are operated by
connecting the gate with the substrate, the body bias may be given as:

Vi = oV (0<a<l) (2.4)

The « is defined as a constant ratio of the dynamical biases between the gate and

substrate. It should be noted that, the crossover points in Fig. 2.1 show the V14 of
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DTMOS. For the junction turn-on limitation of Vgs< 0.7V in DTMOS, the validation

range of « is also defined in equation (2.4). Devices are operated under normal and

DT-modes in which =0 and « > 0, respectively.

The physical insight of V14 is usually defined as the gate voltage when the
surface potential (ys) reaches 2y, where the potential y4, is the difference between
Er and Er. At the threshold condition, the total capacitance of MOSFET acts like the
oxide capacitance (Cox) and bulk depletion capacitance (Cqm) in series condition. Thus,

the variation of surface potential may be expressed as a function of gate voltage [2.7]:

= 2.5
Ay, (2.5)
where
C
m = 14+ —dm
C (2.6)

The m factor is called the body effect. coefficient, where A ys is the incremental
change of surface potential due to incremental change of gate voltage. While equation
(2.6) is valid for both uniform and nonuniform bulk doping profiles, based on the
physical concepts, by considering the surface potential () can be controlled by gate
and source terminals under DT mode, simultaneously. The control capability of the

channel potential in our m-model can be expressed as:

Vi Normal _ (1_ a)\/TH DT
m m

+aVTH,DT (O<a§1) (27)

The left term of equation (2.7) exhibits the need of surface potential to achieve the
2y band bending for the threshold voltage. By using the equivalent circuits to
evaluate the effect of the body bias on DTMOS (keeping the substrate ground), the
right term of equation (2.7) shows the 2ys, band bending can be performed by the
gate and source terminals under DT mode, simultaneously. When the boundary
condition is a =1, the threshold voltage relationship between normal and DT-modes

can be given as:

V.

TH,Normal __
m =Viy DT (2.8)
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This is directly referred to as the body effect coefficient (m), as a result, called it
m-model. In advanced CMOS technology, the body effect coefficient (m) is a very
important factor in short-channel-effect (SCE) control. It relates to the substrate
doping profiles design, subthreshold slope and on/off current. Compared to the
conventional body effect coefficient extraction method with its complicated variable
substrate biases and fitting process, equation (2.8) provides a very fast and direct
method to extract the body effect coefficient once the V1 of normal and DT-modes is
known. Further, equation (2.8) also provides a clear rule for designing the V1 of
DTMOS in deep-submicron device with a nonuniform doping profile. Unlike that of
conventional devices, the body effect coefficient of DTMOS may be higher, with low
gate work function material, for a high performance with low power consumption

application.

2.3.1.2 MODELING VALIDATION

Figure 2.2 shows the Ip-Vg and G, characteristics of NMOS under normal and
DT-modes, respectively. It is obvious that the driving current of the DTMOS can be
greatly enhanced by its lower threshold voltage and higher mobility resulting from the
body effect. Unlike the conventional method as.shown in Fig. 2.1, the V14 of DTMOS
is directly extracted by the linearly extrapolated threshold voltage of the maximum
transconductance method. Figure 2.3 and Fig. 2.4 show comparisons of the V1y
extraction results of the conventional method and the Gmmax extraction method for
long channel and short channel devices, respectively. For both long channel (1um)
and short channel devices (0.16um), the maximum errors are below 2.5% for different
alpha ratios of devices under DT mode. Furthermore, from Fig. 2.5 to Fig. 2.8 show
the extraction methods of the conventional method and the Gy max linearly
extrapolated method for both Poly/SiO, and TaC/HfSiON devices with elevated
temperature range from 298 K to 398 K, respectively. The gradual reduction in
threshold voltage results from the increase in n; with increasing measuring
temperature. The maximum errors are lower than 1%, as shown in Fig. 2.9 and Fig.
2.10, in both Poly/SiO, and TaC/HfSiON gate stacks, confirming the good agreement
between our method and the experimental data, respectively. Furthermore, the
predicted values of the Vrypr of the m-model and the experimental date extracted
from the complicated variable substrate bias with fitting process are both shown in Fig.
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2.11 and Fig. 2.12, respectively. For both long channel (1um) and short channel
devices (0.16um), the maximum errors are less than 2% for different alpha ratios of
devices under DT mode. It shows that our method can be still useful in short channel
device. In addition, Fig. 2.13 and Fig. 2.14 shows the extraction results of the
threshold voltage over the temperature range of 298 to 398K for the three methods
under DT mode. The maximum errors are lower than 2% in both Poly/SiO, and
TaC/HfSION gate stacks, confirming the good agreement between our model and the
experimental data, respectively. Furthermore, Fig. 2.15 details our m-model with
using equivalent circuit for both normal and DT-modes, respectively. It demonstrates
the surface potential can be controlled simultaneously under DT mode. The predicted
values of the body effect coefficient of the m-model and the experimental date
extracted from the complicated variable substrate bias with fitting process are both
shown in Fig. 2.16. It includes the two different kinds of gate stack and bulk doping
concentration with elevated temperatures range from 298 to 398K. The gradual
increase in body effect coefficient results from the increase in n; with increasing
measuring temperature. Estimations of the disagreement between the m-model and the
conventional method, roughly 2.5%, are obtained. These results show that our
proposed m-model gives results that are sufficiently accurate to predict the V14 and m
of DTMOS.

2.3.2 Comparison with Performance and Short Channel Effect (SCE) for Different
Gate Stacks between Normal and DT-modes

2.3.2.1 DTMOS Channel Surface Potential Control Modeling

As we mentioned before, the gate terminal connects to the substrate terminal
while operating in DT mode. The threshold voltage of DTMOS is dynamical variation
due to its body effect (Vgs=aVg). As a result, the theoretical threshold voltage for

uniformly doped substrate with considering the body effect can be expressed as:

2¢5,0N, (20 — V,
Viyor =Ves +20 + \/ : é = G) (2.9)

OoX

As Vg is the flat band voltage, ¢, is the potential difference between Fermi level (Eg)

and intrinsic Fermi level (Eg) of the silicon bulk, Cu is the gate oxide capacitance and
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N, is the uniform substrate doping concentration. Fig. 2.17 shows the capacitance
versus (Vg-Ves) for three different poly, TaC and TiN gate stack, respectively. The
effective oxide thickness among three different gate stacks is 25A, 17A and 18A,
respectively. The gate depletion effect of poly gate stack about 4A can be calculated
by the difference value of capacitance between inversion and accumulation region.
Obviously, metal gate can resolve the of problem poly gate depletion effect for
maintaining lower effective oxide thickness. The extraction results of substrate doping
concentration for poly, TaC and TiN gate stacks are shown in Fig. 2.18. The substrate
doping concentrations are almost the same value, 3.5E17, 3E17 and 2E17 cm™ is
obtained for TiN, TaC and poly gate stacks, respectively. By considering the N,, Cox
and Qs (-4x10% cm), the effective gate work function is 4.1 e.V,, 4.3 e.V. and 4.37
e.V. and the Vy equals 0.43V, 0.53V and 0.63V can be obtained for poly, TaC and
TiN, respectively. Figure 2.19 and Fig. 2.20 show the short channel effect of poly gate
for both NMOS and PMOS under normal and DT-modes, respectively. Furthermore,
to resolve the poly gate depletion effect, from Fig. 2.21 to Fig. 2.24 show the short
channel effect of TaC and TiN gate for both-NMOS and PMOS under normal and
DT-modes, respectively. The Vry-roll-off phenomenon for both NMOS and PMOS
can be found due to the charge sharing effect from source/drain junction to depletion
region. For detailing the improvement of short channel effect for DTMOS, we need to
use the equivalent circuit for both normal and DT-modes, again. As we known that, in
subthreshold operating region of DTMOS, the Vgs may lower the potential barrier
height between source and channel, and then the potential of source terminal can be

expressed as following:

¥V source™ l//SourceinitiaI o aVBS (2.10)

Wsource initial 1S the initial potential of source terminal. In addition, the building potential
between channel and source terminal in the thermal equilibrium, can be described as

following:
Wi = Vsourceinitial —¥'s (2.11)

Ws is the channel surface potential and 4, is the intrinsic building potential between

channel and source junction. It should be noted that, due to the charge sheet of

channel doesn’t form before gate voltage higher than threshold voltage, the channel
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surface potential can be negligible due to no inversion charge formation. As a result,
we can define the gate control ability (CAcarte) to channel surface as shown in

following expression:

_ alr// l/ll ource
Cpbate‘Subthreshde = aVGS +(_ aSVG j (2-12)

In addition, due to the potential conservation, we can write the following relationship:

V2&50N s

Vo —Ve —Vig =5 + (2.13)
Cox
Due to the Vgs=aVs under DT-mode, the equation (2.13) can be rewritten as:
v 2&5:0N
V, =V —Vyg =y, + Y5 TaVs (2.14)
COX
Then by differentiation equation (2.14) with respect to Vg yields:
‘9Sina
\/ 2
s O¥s Y Vs 12, (2.15)

N, oV, C

0X

Furthermore, by applying the depletion capacitance (Cg4) concept to the equation, the

relative change between ys and Vg can be rewritten as:

oy _ (1_a) (2.16)
aVG (1+ (:dj .
Cox

Relatively, the relative change of 1/ source and Vg can also be expressed as following:

N al//ls,ource _ a(l//'50urceinitif>1l_OCVG)
N, oV,

=a (2.17)

With substitute equation (5) and (5) into equation (5), the gate control ability (CAgate)
to channel surface for DTMOS is shown as following formulation:
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[1+adJ
CAG ‘ = al/js +| = l//ISource — Cox _ (1+ aé')
ate|Subthreshéd Vg oVg [1+Cdj (1+ 5) (2.18)
C

0X

S—_ dV; _ 1 qesiN,
dVBS Cox 2(2¢fp _VBS )

(2.19)

Comparing to normal mode, while = 0, the DT mode show its higher channel
surface potential control ability with higher « ratios. We explain that why the DTMOS
has lower Vy roll-off effect with three different gate stack system for NMOS and
PMOS, respectively. The experimental results of short channel effect are both shown
in Fig. 2.25 to Fig. 2.26, respectively. Ideally, once o equals 1, the gate control ability
would not be affected by body effect anymore, and it always equals 1 perfectly.
However, in reality, there are some.non-ideal factors, such as substrate parasitic
resistance (Rparasiic) [2.16], and then the gate control ability wouldn’t equal 1.
Fortunately, the DT mode still improves much better than normal mode. In addition,
the metal gate of TaC and TiN show the higher gate control ability result from with no
poly gate depletion effect.

Furthermore, when the device continues scaled-down to sub-micron process, the
source and drain junction would play an important role for capacitance coupling effect
to channel, especially for short channel device. The electric field penetrates from
larger drain voltage terminal would lower the potential barrier of channel which
results a threshold voltage decrease and larger off-leakage, named DIBL effect
[2.17-2-18]. The relationship between threshold voltage variation and device physical
parameters can be expressed as [2.19]:

-L

AV, ocVpe ! (2.20)

where
11
| oc To Wy e 3X 3 (2.21)

Toxis the gate oxide capacitance, Wqmax IS the maximum depletion width and is the X;
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source/drain junction depth. Obviously, the decrease value of all of the physical
parameter can effectively decrease the DIBL effect. Fig. 2.27 and Fig. 2.28 show the
DIBL characteristics of poly, TaC and TiN gate stacks for NMOS and PMOS,
respectively. Due to the increase the effective oxide thickness of poly depletion, the
poly gate stack shows the larger degradation of threshold voltage. On the other hand,
the DIBL effect can be improved by DT-mode operation for all gate stacks result from
its lower effective drain voltage and smaller maximum depletion width. It again
proves the DTMOS has better gate control ability. Especially for short channel device,
the DIBL effect would also increase the subthreshold swing degradation inducing high

subthreshold leakage current (Ip subthreshold) @S expressed:

alys)
KT
ID,Subthreshd}d oc€ (2.22)

while the corresponding drain current named subthreshold current, due to the drain
current is dominated by diffusion current in weak inversion. Furthermore, according
to the initial definition of subthreshold.swing; the subthreshold swing under DT-mode

without considering DIBL effect can be expressed as:

alw's)
KT
|5, subthreshea € € (2.23)

where ¥/ is the modulation surface potential under DT mode, and then:

1 a
5.5.=[ 2199 losumens | _ 1o KT (0¥ ) _p5KT (A+9) (2.24)
Vg q (Ve q (1+ad)

The mathematical expressions show the higher alpha ratios can improve the
subthreshold swing, ideally for a=1, the subthreshold swing can be only affected by
the temperature factor with almost perfect swing. Figure 2.29 and Fig. 2.30 show the
subthreshold characteristics of poly, TaC and TiN gate stacks for NMOS and PMOS at
223 K, respectively. The very excellent subthreshold swings are obtained under
DT-modes which prove the quite high potential for applying in low stand-by power
circuit.

Figure 2.31 shows the I¢, characteristics of poly, TaC and TiN gate stacks,
respectively. The interface state of TiN gate is higher than the others. Furthermore, the

effectively mobility extracted from split C-V among three different gate stacks are
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also shown in Fig. 2.32. Due to the interaction between poly gate and gate dielectric,
the additional defects and dipoles creation result in effective mobility of poly gate is
obvious lower than the others. Figure 2.33 shows the capacitance versus gate voltage
measured from split C-V under normal, fixed-body and DT-modes, respectively. It can
be found that capacitance characteristic under DT mode is dynamical variation. In
addition, Fig. 2.34 shows the effective mobility characteristics versus surface charge
density of poly, TaC and TiN gate stacks under normal and DT-modes, respectively.
The effective mobility of DT mode largely enhances than normal mode due to its
lower normal electric field with higher charge screen effect for the larger inversion
charges. The reason for lower normal electric field is attributed to the decrease of
maximum depletion width. Furthermore, the Fig. 2.35 shows the injection velocity
from source terminal as extracted from elementary scattering theory and temperature

version of backscattering model [2.20-2.22]:

ID,Sat =C WVan BSat(VG _VTH ) (225)

Where Vi, is the injection velocity .of carrier.from source terminal and Bsy is the

ballistic coefficient. Where:

1-r
= < 2.26
[1+ch ( )
r, = 11 (2.27)
1+°-°
IO
A 4
== -2 (2.28)

( D, Satl— D Satz)
o= 2.29
D Sat2 (T T ) ( )
77 — ( T, Satl T Satz) (230)

T-T

The results show the injection velocity versus forward body bias characteristics of
poly, TaC and TiN gate stacks, respectively. Due to the reasons that injection velocity

main affects by the DIBL effect and mobility, the TiN gate has better injection
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velocity than poly gate for its high mobility for short channel device. Furthermore,
while increasing the forward source-body bias, the injection velocity can also be
improved by its higher injection mobility for decrease of depletion charge effect. In
addition, the 65nm TiN gate device also shows its higher injection velocity than 85nm
TiN gate device with lower ballistic coefficient for higher interface state, as shown in
Fig. 2.36. Due to the higher barrier lowering effect at source across to channel in poly
gate, the TiN gate shows lower ballistic transport coefficient than poly gate. However,
the ballistic coefficient would also decrease as increasing forward body bias for
reducing DIBL effect, simultaneously. Eventually, Fig. 2.38, Fig. 2.39 and Fig.2.40
show the on/off characteristics for poly, TaC and TiN gate stacks under both normal
and DT-modes, respectively. Obviously, DTMOS may maintain the low off-leakage
with accomplishing large enhancement of on current for low power device

application.

2.4 Summary

In the chapter 2, analytical expressions with physical insights of m-model of
DTMOS transistor are successfully presented in detail. The maximum errors lower
than 2% and 2.6% in the threshold voltage (V) and body effect coefficient (m)
extraction at elevated temperature over 298 K to 398 K, respectively, confirms the
good agreement between our m-model and experimental data. The proposed physical
formulations are very useful for future deep-submicron integrated circuit design using
DT technology. In addition, we also show the short channel effect improvement and
high performance with low power consumption characteristics of DTMOS in this
chapter. We give clear and simple physical insights to prove the advantages of
DTMOS. Finally, we give a comparison table of physical parameters between
DTMOS and MOSFET, as shown in Table. 2.1.
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Fig. 2.1 Body bias dependence of the threshold voltage at 298K. The straight lines
demonstrate that the body bias varies dynamically with the body bias. The crossover
points show that the Vty of DTMOS with the different alpha ration from 0.5 to 1.
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Fig. 2.2 Experimental Ipo-V¢ and Gp, characteristics of both normal and DT-modes,
respectively. The Vyy of both normal and DT-modes are extracted by linearly
extrapolated of maximum transconductance method with low drain bias (50~100mV).
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Fig. 2.3 The conventional method and maximum transconductance method
experimental values of the Vry of the DTMOS transistor with different alpha ration at

long channel device. The channel length-and width is 1 and 10 um, respectively.
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Fig. 2.4 The conventional method and maximum transconductance method
experimental values of the V1 of the DTMOS transistor with different alpha ration at

short channel device. The channel length and width is 0.16 and 10 pum, respectively.
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Fig. 2.5 Body bias dependence of the threshold voltage at elevated temperatures from

298K to 398K. The straight black line shows that the body bias varies dynamically
with the gate bias. The crossover points'show that the Vry of Poly/SiO, DTMOS.
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Fig. 2.6 Experimental 1d-Vg and Gy, characteristics of Poly/SiO, DTMOS in the linear

region over a temperature range of 25°C to 125°C. The V4 of DTMOS is extracted

by linearly extrapolated of maximum transconductance method.
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Fig. 2.7 Body bias dependence of the threshold voltage at elevated temperatures from
298K to 398K. The straight black line shows that the body bias varies dynamically
with the gate bias. The crossover points-show that the V1 of TaC/HfSiON DTMOS.

Fig. 2.8 Experimental 1d-Vg and G, characteristics of TaC/HfSiON DTMOS in the
linear region over a temperature range of 25°C to 125°C. The Vty of DTMOS is

extracted by linearly extrapolated of maximum transconductance method.
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Fig. 2.9 The comparison results between conventional
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temperature.
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Fig. 2.10 The comparison results between conventional

transconductance methods of the V4 of the TaC/HfSION DTMOS transistor at

elevated temperature.
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Fig. 2.11 Theoretical values and actual experimental data of the V4 of the DTMOS
transistor values with different alpha.ration from-0.5 to 1 for long channel device.
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Fig. 2.12 Theoretical values and actual experimental data of the Vry of the DTMOS

transistor values with different alpha ration from 0.5 to 1 for short channel device.
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Fig. 2.13 Theoretical values and actual experimental data of the V14 of the DTMOS
transistor values at elevated temperature from 298 to 398 K for Poly/SiO, DTMOS.
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Fig. 2.14 Theoretical values and actual experimental data of the Vy of the DTMOS
transistor values at elevated temperature from 298 to 398 K for TaC/HfSiON

DTMOS.
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Fig. 2.15 Equivalent potential diagram and band diagram of our proposed m-model,

including normal and DT-modes, respectively.
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Fig. 2.16 Temperature dependence of the body bias coefficient at elevated

temperatures from 298 to 398 K. Two different kinds of gate stack and body doping

concentration are used to verify our proposed m-model.
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Fig. 2.17 Capacitance characteristics of poly, TaC and TiN gate NMOSFET,

respectively.
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Fig. 2.18 Substrate doping concentration extraction of poly, TaC and TiN gate
NMOSFET, respectively.
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Fig. 2.19 Threshold voltage variation versus channel length between normal and
DT-modes for poly gate NMOS.
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Fig. 2.20 Threshold voltage variation versus channel length between normal and
DT-modes for poly gate PMOS.
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Fig. 2.21 Threshold voltage variation versus channel length between normal and
DT-modes for TaC gate NMOS.
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Fig. 2.22 Threshold voltage variation versus channel length between normal and
DT-modes for TaC gate PMOS.
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Fig. 2.23 Threshold voltage variation versus channel length between normal and
DT-modes for TiN gate NMOS.

02— ——————
PMOS: TiN Gate @ W=10pum
-0.3¢} N i
—m— Normal mode
-04¢} DT mode (a=0.7)
— —eo— DT mode (a=1)
S 051 4 -
>|E -0.6¢ \.\0 ° -
l\. .
-0.7¢ i
-0.8 @ Temperature = 223K ]
-0.9

0.0 02 04 06 08 1.0
Gate Length (um)

Fig. 2.24 Threshold voltage variation versus channel length between normal and
DT-modes for TiN gate PMOS.
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Physical Parameters AV V1H Cox m Wim N. Uess
MOSFET Normal | Normal | Normal | Normal | Normal | Normal | Normal
DTMOS J v ? ? ! ? ?

Physical Parameters D, D A Vo DIBL S.S. lose lon
MOSFET Normal | Normal | Normal | Normal | Normal | Normal | Normal
DTMOS y v v v v v )

Table. 2.1 Comparison table of physical factors and electrical characteristics between

MOSFET and DTMOS.
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Chapter 3

High-Performance and High-Reliability Dynamic Threshold
Source Side Injection (DTSSI) for 2-Bit/Cell with MLC Operation
of Wrapped-Select-Gate SONOS (WSG-SONOS) in NOR-Type

3.1 Introduction

The floating-gate structure of traditional EEPROM devices has encountered a
number of challenges as device sizes continue to shrink in scale. These include
serious short-channel-effects [3.1], data retention degradation resulting from the
stress-induced leakage current [3.2], and obvious gate injection and critical coupling
effects [3.3] between the neighboring floating-gates (FG) in NOR and NAND type
architectures. Among these factors, maintaining a tunneling oxide thickness of at least
8 nm in a very short channel device without simultaneous reliability degradation
limits the process flexibility of FG devices, especially for the development of high
performance FG device fabrication procedures {3.4].

The silicon-oxide-nitride-oxide-siticon  (SONOS) memory device has become
one of the most popular candidates for replacement of conventional FG memory when
shrinking the tunneling-oxide thickness to 5 nm [3.5-3.6]. This is due to property of
the material, which causes local trapping of silicon nitride, in turn helping the discrete
electrons stored in the deep trap sites to resist tunneling-out processes through the
tunneling-oxide.

The density of flash memory devices can be doubled without increasing the die
size, a phenomenon known as 2-bit/cell operation [3.7-3.8], under separated storage
characteristics. This has been achieved by the well-known Channel Hot-Electrons
Injection (CHEI) method for programming each side of a cell. The bit-1 and bit-2 can
then be read-out using the highly reliable reverse-read scheme [3.9].

Similar to 2-bit/cell operation, multi-level states in a cell (MLC) is another
attractive approach for achieving high-density application in a flash memory device
[3.10-3.11]. MLC operation entails construction of different levels of charge in the
nitride trapping layer of a SONOS device. The different combination of charge states
is then identified using a highly reliable method for distinguishing between each level
of charge. However, owing to the larger sensor margin requirements required to

precisely distinguish different charge levels, CHEI with lower programming
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efficiency is not suitable for MLC operations due to its relatively high power
consumption. However, the power-saving Source-Side-Injection (SSI) method, first
published in 1986, has demonstrated high-performance with low operating voltages in
EPROM [3.12-3.14]. Unlike the channel-hot-electron injection (CHEI), the major
advantages of SSI injection are high-speed programming and high programming
efficiency, due to its clever separation of the incompatibilities of optimal
programming conditions of CHEI [3.15]. Therefore, SSI can generate and inject a
sufficiently large number of hot electrons for multi-level operations. However, the
most studies have focused only on drain field variations with increasing drain bias
[3.16-3.17]. As a result, important pointers to improved efficiency for SSI may have
been missed. Furthermore, substrate dopant concentration control for reducing drain
bias becomes both more important and more difficult as devices are scaled down
[3.18].

In this thesis, 2-bit/cell operation with MLC in a Wrapped-Select-Gate
polysilicon-oxide-nitride-oxide-silicon (WSG-SONOS) memory is carried out using
Dynamic Threshold Source-Side-Injection (DTSSI) [3.19]. A fast programming speed
with quite low power consumption was easily achieved for MLC in a WSG-SONQOS
memory with the DTSSI programming technique in a NOR-type array. Moreover, we
compare with programming efficiency-.among conventional SSI (normal mode),
substrate-bias enhanced SSI (Body-mode) and dynamic threshold SSI (DTSSI).
Finally, a highly reliable 2-bit/cell with MLC in a WSG-SONQOS device is also
presented in this thesis [3.20-3.22].

3.2 Experiment

Figure 3.1 shows a cross-section of the WSG-SONOS memory with 2-bit/cell
operation in a NOR-type architecture. The equilibrium cell size is 3.5 F? for each bit,
and 0.18 um ground rule technology was used to fabricate the device. The channel
length of the word gate is 0.65 F, defined by the distance between the select-gate and
drain/source region. The channel length and width of the embedded MOSFET with
in-situ n*-doped Poly-Si select-gate are 1 F and 2 F respectively, as indicated in Fig.
3.1 To execute dynamic-threshold source-side injection (DTSSI) in a WSG-SONOS
memory, the select-gate wrapped around the oxide/nitride/oxide layers is tied to the

p-well electrically during programming. In our device, the Vry of the embedded
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MOSFET in DT mode is 0.4 V, defined by the constant current method (lpgm=0.1 pA),
as shown in Fig. 3.2. In general, the threshold voltage of the embedded MOSFET is
designed to be lower than 0.7 V, otherwise the junction leakage will boost violently in
DT mode, caused by the activation of a parasitic n-p-n bipolar structure. Figure 3.2
shows that lpgm Offers roughly a one order of magnitude improvement in DT mode
due to the dynamic body-effect affection on the embedded MOSFET, resulting in a
larger memory window for its higher supply charges as discussed later. Additionally,
the clear 2-bit/cell and multilevel operation schemes of the WSG-SONOS memory
with DTSSI are displayed in Table 1. The drain and source regions were defined as
the bit-line in the WSG-SONOS memory to accomplish the two bit per cell operation
in DT mode. Erasing and reading techniques were performed by band-to-band
hot-holes injection (BTBHH) and reverse-read, respectively, as shown in Table 3.1.

In this device, the thickness of the blocking oxide/ silicon nitride/ tunneling
oxide layers are 10.0 nm, 8.0nm and 5.0 nm, respectively and the distance between
the nitride trapping layer and select-gate is 15 nm induced by the higher thermal
growth rate on the side-wall of the poly-silicon select-gate than on the single-crystal
silicon [3.21]. As a result, the two physical bits can be separated by the embedded
MOSFET structure of the WSG-SONQS memory in the NOR-type array, resulting in
better second-bit effect with using reverse-read scheme in a very short WSG-SONOS
memory device. In addition, for the CMOS-integrated circuit, the simple fabrication
procedure of the WSG-SONOS memory also shows its compatibility with
conventional processes. In this chapter, the simulation tool Integrated Systems
Engineering (ISE) TCAD was used to analyze the DTSSI programming mechanism in
the WSG-SONOS memory in the first section of this chapter. Then, the comparisons
of programming efficiency among conventional SSI (normal mode), substrate-bias
enhanced SSI (Body-mode) and dynamic threshold SSI (DTSSI) are detailed clearly
in the second section of this chapter. At the same time, the fabrication parameters and
physical models, including the device doping concentration, the material properties,
the Poisson equation, and the hot-electrons injection model were fed into the
simulation tools. Finally, the high-performance and high-reliability DTSSI
programming method for a WSG-SONOS memory with multilevel and 2-bit/cell
operation is demonstrated in the third section of this chapter.

3.3 Results and Discussions
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3.3.1 DTSSI Programming Mechanism for WSG-SONOS Memory

Figure 3.3 shows the programming characteristics of the WSG-SONOS memory
using dynamic-threshold source-side injection (DT mode). The WSG-SONOS was
programmed in DT mode by applying different word gate biases (9~12 V) and
identical drain/source biases (4 V) for 100 ns in a NOR-type array. The junction
leakage due to the low forward bias at well to source (p-n junction) in DT mode is
also shown in Fig. 3.3. The results indicate that both the word gate (Vw.) and
select-gate biases (Vsg) dominate the programming efficiency in DT mode. In order to
understand the programming mechanism of the DTSSI for a WSG-SONOS memory
in a NOR-type architecture, the Integrated Systems Engineering (ISE) TCAD
simulation tools were used to analyze the fabrication parameters, hot-electrons
injection model and Poisson equation in DT mode.

Figure 3.4 (a) shows that devices with larger Vsg exhibit a lower lateral electric
field and almost no vertical electric field variation at Vw,. =12 Vand VgL =4V in DT
mode. The neutral gap region is defined.by the distance between the select-gate and
the nitride trapping layer beneath the word gate. The reason for the degradation of the
lateral electric field is primarily body effect, which increases the potential for
overdrive in the embedded MOSFET; resulting in a decrease in the voltage drop in the
neutral gap region. As a result, the programming efficiency of the WSG-SONOS is
degraded in DT mode with higher Vsg. Fortunately, the higher Vsg also
simultaneously enhances the supply current (Isg) in DT mode, as indicated in Fig. 3.2.
The threshold voltage shift may still be improved in DT mode for this reason. This
research thus shows the trade-off between high performance and tolerance of power
dissipation under increased Vsg. By the same token, the larger V. affects both the
lateral and vertical electric fields in DT mode, as depicted in Fig. 3.4 (b) which also
shows that the Vsg and Vg, were biased at 0.45 V and 4 V, respectively. The increase
in the lateral electric field is attributed to the increased inversion charge density per
area beneath the word gate in DT mode, resulting in higher potential drops between
the virtual source/drain and the inversion layer of the embedded MOSFET. In other
words, the generation rate of hot-electrons can be enhanced by the increase in the
lateral electric field. In addition, the increase in the vertical electric field at the gap
region redirects the movement path of the hot-electrons, resulting in more
hot-electrons being injected through the tunneling oxide and becoming trapped in the
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nitride. This explains the larger shift in threshold voltage in DT mode when the device
biases at higher V. voltage (9~12 V) over a very short programming time (100 ns).
Further, Fig. 3.4 (c) shows the simulation results of the electric field dependences on
VL. The drain and source regions are defined as the bit-line of the WSG-SONOS
memory in the NOR-type architecture for performance of the 2-bit/cell operation. In
this figure, the V. and Vs were biased at 12 V and 0.45 V in DT mode, respectively.
As in previous research [3.12-3.13], the larger Vg, exhibits higher lateral electric field
in the gap region, resulting in the higher hot-electrons generation efficiency in our
WSG-SONOS memory.

Further, figures 3.5 (a) and Fig. 3.5 (b) show the dependence of V. and Vg, 0on
the programming efficiency characteristics of the WSG-SONOS memory in DT mode
using an identical supply charge in a NOR-type array. The V. and Vpg_ are biased at
10 V and 4 V at 100ns in DT mode, respectively. The linear dependence between the
delta V11 and Vw/VeL shows the excellent performance with high programming
efficiency in DT mode. The results can be explained by our simulation analysis of DT
mode in Figures 3.4 (a) and Fig. 3.4 (b).

In sum, this section shows_ that the programming mechanism of our
WSG-SONOS memory device in ' DT:mode in a NOR-type architecture depends on
the Vsg, Vi, and Vy, bias. Optimizing the operating conditions of the WSG-SONOS
memory in DT mode enables both high performance application (high speed with

larger programming window) and LSTP (low stand-by power).

3.3.2 Comparison with Programming Efficiency among Conventional SSI (normal
mode), Substrate-Bias enhanced SSI (Body-mode) and Dynamic Threshold SSI
(DTSSI)

Unlike single gate channel-hot-electron programming SONOS devices, the lpgm
induced by wrapped-MOSFET can maintain a high value due to the structural
separation between the left-bit and the right-bit. Therefore, the electrical effects of the
nitride-trapping charges can be as low as possible. Based on these concepts, there are
three kinds of programming methods for WSG-SONQOS devices: normal, DT, and
body mode, as illustrated in Fig. 3.6. Figure. 3.7 shows the effect of Vsg with 100ns
of programming for each mode of WSG-SONOS memory under the same
programming conditions (Vw.= 9~12 V, Vg = 4V). A typical bell-shaped distribution
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is observed in both normal and body modes, but not in DT mode. Here the DTSSI
must be operated below Vsg=0.65V, otherwise the junction diode of the well and
source will activate. In our device, the Vi, of embedded select-gate MOSFET is only
0.4V, which is defined by the constant current method lpgy=0.1 pA, in WSG-SONOS
memory under DT-mode by appropriately adjusting device process. Across all three
modes, the higher V. exhibits a larger programming window. This is because high
Vwe hot only enhances the collection ability with increasing normal electric field but
also raises the hot electron generation rate by increasing the voltage drop across the
gap region. To understand the SSI mechanism, we simulate the dependence of V.
and Vsg on the electrical field. Both lateral and vertical electrical fields increase
exponentially from the pinch-off point to the end of the neutral gap region, as shown
in Fig. 3.8. The higher V. increases the maximum field peak due to the higher
potential transmission from the drain terminal by increasing the inversion charge
density beneath the word gate. By the same token, the higher Vsg, though it
sufficiently enhances lpgn, degrades the electric field peaks at the same time. This is
because as the wrapped-MOSFET overdrive becomes higher, the voltage drop across
the neutral gap region decreases, decreasing the efficiency of programming. This
explains the typical bell-shaped distribution found in Fig. 3.7.

Further, the DT mode exhibits different-behaviors from those of the normal and
body modes, as shown in Fig. 3.7. The typical programming characteristic of the
DTSSI has a higher memory window while Vg is still at a low voltage. To detail this
phenomenon, we simulate the electrical field dependence of each mode, as shown in
Fig. 3.8. Compared to the normal and body modes, the DT mode possesses a larger
acceleration electrical field between the wrapped-select gate and the word gate.
Therefore, the hot-electron generation rate can be enhanced. By contrast, the body
mode improves only the lpgm, and degrades the lateral electrical field because of the
higher Vsg. As a result, the body mode produces a traditional bell-shaped distribution
(Fig. 3.7).

In sum, there are two major enhancing mechanisms for high programming speed
of WSG-SONOS under DTSSI operation. First, the lpgm increases in DT mode [3.19];
second, the maximum lateral electrical field enhancement occurs at the same time in
the gap region. Owing to the body effect in DT mode, the equivalent oxide

capacitance is increased by decreasing the depletion region under wrapped-MOSFET.
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The increase of inversion charge density per area leads to the strong lpgm injection
into the gap region. Furthermore, the charge reduction of the depletion width can
effectively increase the lateral electric field by decreasing the vertical electric field
effects, further resulting in better gate disturbance in the WSG-SONOS. The hot
electron generation efficiency can be enhanced due to the tradeoff between the lateral
and vertical electric fields in the gap region.

Figure 3.8 also shows that the crossover point of both electrical fields indeed
occurs near the end of the gap region close to the word-gate in all three modes. Since
DTSSI is used for programming, the slight reduction of potential differences between
the word gate and the well, due to the positive body bias, can induce the hot-electron
injection point to move toward to drain terminal. This phenomenon is similar to a
slight decrease in the word-gate voltage. This improves the band-to-band hot-hole
erasing process [3.19] without degrading the programming speed. In other words, the
crossover point pointed out the most possible electrons injection place due to its
maximum vertical electrical field. It also implies the charge storage spatial
distribution in the nitride storage layer will vary with the applied program bias [3.23]
across different SSI mechanisms, when the hot electron injection point is beneath the
word gate, not beside it.

Figure 3.9 displays comparisons of programming efficiency for WSG-SONOS
memory using different SSI modes under the same programming conditions (Vw.=

9~11V, Vg = 4 V), where the supply charge is defined as Qsupply charge =lpem X Teem.

We found that at the same supply charge, the DT mode exhibits a lower word gate
bias with lower Vsg, resulting in higher programming efficiency. Similar to the
simulation results in Fig. 3.9, the very high programming speed with improvement of
programming efficiency can be attributed to the simultaneous enhancement of lpgm
and the lateral electrical field in the gap region. In addition, in body mode, there is
still a larger threshold voltage shift even with the lower lateral field. The drawback of
body mode is its greater power consumption for the higher supply charge due to its
lower programming efficiency.

In sum, this section shows the source-side-injection mechanism under normal,
body, and DT modes of WSG-SONOS memories. Under DT mode, devices exhibited
increased lateral electric field and lpgm. These changes enhanced the programming

efficiency of wrapped-select-gate SONOS for NOR-type flash memory.
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3.3.3 High-Performance and High-Reliability DTSSI Method for 2 Bit/Cell
Operations with MLC in a WSG-SONOS Memory

Figure 3.10 shows the programming characteristics of the WSG-SONOS
memory with optimum ONO thickness (10/8/5nm) programmed by the
dynamic-threshold source-side injection (DT mode) method. To realize high
performance multilevel operations with the WSG-SONOS memory in DT mode, 9 V,
10 V, and 11 V were applied to the word gate while the drain and source were biased
at 4 V and 0V, respectively. Further, 0.45 V was applied to the select-gate which was
electrically tied to the p-well in DT mode.

Due to the high programming efficiency of DTSSI, the programming time (Tpgm)

is only 200 ns when applying Vw. =9V, 10 V, and 11 V in a NOR-type array. The
“10”, “01”, and “00” states (V1w shift more than 1V, 2 V and 3 V) can thus be easily
obtained, as shown in Fig. 3.10. Here, the constant sensing current method (Ipgm=0.1
uA) was used in reverse-read mode (Vg '=:1.8 V and Vsg = 1.6 V) to distinguish
between each state, and the “11” state was defined as the initial state in our memory
device. Fig. 3.11 shows the erasing characteristics-of the WSG-SONOS memory for
the different multilevel states in the NOR-type array, as programmed by DTSSI. In
our device, the band-to-band hot-holes erasing method was used to recombine the
trapping charge in the nitride storage layer. The erasing time for multilevel operation
at different programming levels (“107, “01”, and “00” states) is easily faster than 5 ms
when - 4 V and 6 V were applied at the word-line and bit-line, respectively. Using
DTSSI, our results show that the erasing characteristics of WSG-SONQOS were easily
controlled in multilevel application.

The Ig -VwL transfer characteristics and excellent margin distribution of
multilevel states in our device are shown in Fig. 3.12 (a) and Fig. 3.12 (b),
respectively. The threshold voltage shift exceeds 1 V (“10” state), 2 V (“01” state),

and 3V (“00” state) at a very fast-speed (Tpem=200ns) in DT mode in our device.

Constant current (0.1 pA) was used to define the threshold voltage of the
WSG-SONOS memory, while the device was reverse-read at Vg = 1.8 V and Vsg =
16 V.

In this work, a tight distribution of the threshold voltage was observed. The large
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margin of each state between the neighboring programming levels is 0.87 V, 0.9 V,
and 0.93V in DT mode, respectively. The memory window of more than 0.85 V
relaxes the high accuracy demands of circuit design and provides the ability to
precisely distinguish each state of the WSG-SONOS memory when DTSSI is used. As
discussed above, the multilevel states of the WSG-SONOS memory are programmed
using dynamic-threshold source-side injection technique.

The characteristics of two bit operation in a WSG-SONOS memory cell are
shown in Fig. 3.13. In Fig. 3.13 only the right bit was programmed by DTSSI, while
the left bit was maintained in the initial state. The inset figure shows the g -VwL
transfer characteristics programmed by DTSSI for both forward-read (FR) and
reverse-read (RR) modes, respectively. Forward-read mode for the WSG-SONOS
memory is a common measurement method involving sweeping V. at Vp=1.8 V and
Vs =0 V. The results show that the storage characteristics of these two physical bits in
a cell can be reliably distinguished from the differences in threshold voltage in our
WSG-SONOS. Further, crosstalk immunity can be easily obtained between the two
physical bits for different multilevelstates ‘in. the WSG-SONOS memory under
reverse-read mode, as shown in Fig. 3.14. The bit-1 (neighboring the drain side, as
indicated in Fig. 3.13) was programmed to different multilevel states (“10”, “01”, and
“00” states) in DT mode, while bit-2‘'was kept-in various multilevel states. In general,
the more electrons injected into the nitride trapping layer (bit-1), the more serious the
V1y variation of bit-2, called second-bit effect. This phenomenon can be explained by
the larger amount of the electrons stored in bit-1, resulting in potential increases
beneath the word-gate. To avoid this less-than-ideal effect, with increased Vg, the
“screen effect” induced by extending the drain/source depletion region under bit-1
effectively decreases the second-bit effect. In our WSG-SONOS device, if using Vg
=1.8 V and Vsg =1.6 V to discriminate the exact state in our device, there is almost no
crosstalk between these two bits in the WSG-SONOS memory. Briefly, the bit-line
and select-gate biases should be optimized to avoid serious short channel effects in a
very short channel WSG-SONOS device, and then highly reliable multilevel
operations with 2 bits/cell operation in DT mode can be achieved in a scaled-down
WSG-SONOS memory cell.

Figure 3.15 and Fig. 3.16 show the endurance characteristics and data retention
behaviors of the WSG-SONOS memory with multilevel application under DT and
normal mode, respectively. The multilevel states are programmed at the same Vy, =9
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V, 10 V, and 11 V in both modes with different programming times for DT mode

(Trem=200 ns) and normal mode (Teem=1us). In this cycling test, the bit-line and

select-gate were biased at 4 V and 0.45 V, respectively. Furthermore, an erasing time
of 5 ms using band-to-band hot-holes was selected for the recombination process with
the word-line and bit-line biased at — 4 V and 6 V, respectively. The results
demonstrate that the sensing margin between each bit can still remain highly accurate
with almost no V14 variation even after 10* P/E cycles.

Charge loss behavior in the WSG-SONOS with different multilevel states at
250°C high baking temperature was observed. As the baking temperature gradually
increases, the thermal temperature increases the activation energy of the trapping
charges in the silicon nitride, and these high-energy electrons may then tunnel-out
from the trapping center or migrate and redistribute in the nitride trapping layer,
resulting in variations in the threshold voltage for each state. Fortunately, the memory
window is preserved, remaining large enough to enable highly reliable distinguishing
of the different states in the WSG-SONOS memory device at such high baking
temperatures.

Figure 3.17 demonstrates the gate disturbance (word-line) and drain/source
(bit-line) disturbance for different-multilevel states programmed by DTSSI in our
WSG-SONOS memory. In gate disturbance, neighboring un-selected memory cells
which share a common select-gate and word gate with the programming cell, were
biased at 0.45 V and 12 V in DT mode, respectively. We can see that the thick top
oxide (10nm) in this device creates almost no gate disturbance using DTSSI. By the
same token, the bit-line disturbance (Vg =4 V and Vsc=0.45 V) is comparatively
serious in the “00” state due to the drain field inducing hole injection into the silicon
nitride through the thinner tunneling oxide (5nm), resulting in recombination taking
place in the nitride trapping layer.

Similar to the previous work [3.22], this result shows that an optimized ONO
thickness of 10/8/5 nm in this device in DT mode still performs with excellent
reliability for multilevel application even after the long stressing time of 100 seconds.
In sum, our results demonstrate that our WSG-SONOS device in a NOR-type array
simultaneously achieves both superior performance and high reliability for 2-bit/cell

and multilevel applications using DTSSI.
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3.4 Summary

A novel dynamic-threshold source-side injection (DTSSI) in WSG-SONOS
memory with high performance and reliable multilevel application for 2-bit/cell
operations is successfully demonstrated in this work, for the first time. We have
investigated the programming mechanism of DTSSI in detail using the Integrated
Systems Engineering (ISE) TCAD simulation tools. It shows that the supply current
(Isc), and the lateral and vertical electric fields are the three major factors affecting
programming efficiency when programming WSG-SONQOS memory in DT mode. Our
results show that appropriate operating voltages for the WSG-SONOS memory in DT
mode enable higher programming efficiency to support high-speed multilevel

operation with low power consumption. Further, we obtained high performance
(Trem=200ns/Ters=5mMSs) for highly reliable multilevel operation using DTSSI to

program our WSG-SONOS memory. The greater noise margin between each state
also provides higher flexibility for sensor amplification in circuit design. Moreover,
we also found that the interferences of.second. bit effect and program inhibit may be
almost ignored when operating 2-bit/cell:using DT mode in our device. The excellent
endurance characteristics and superior data retention also indicate the high potential of
the WSG-SONOS memory programmed with  DTSSI for high-reliability and

high-performance flash applications in the future.
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Fig. 3.2 Supply current (Isg) characteristics of the embedded-MOSFET under DT and
normal modes at different V. (9 V, 10 V, 11 V, and 12 V) in a WSG-SONOS
memory cell, respectively.
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figure.
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Fig. 3.4 (a) Simulation results for different applied select-gate biased dependence on
the lateral and vertical electric fields in the neutral-gap region of WSG-SONOS

memory in DT mode.
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Fig. 3.4 (b) Simulation results for different applied word-line biased dependence on

the lateral and vertical electric fields in the neutral-gap region of WSG-SONOS

memory in DT mode.
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Fig. 3.4 (c) Simulation results for different applied bit-line biased dependence on the
lateral and vertical electric fields in the neutral-gap region of WSG-SONOS memory
in DT mode.
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Fig. 3.5 (a) The linear dependence between delta V14 and word-line biased in DT

mode of the WSG-SONOS memory at different supply charges (Qsupply charge = lpom X

TraM).
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Fig. 3.5 (b) The linear dependence between delta V4 and bit-line biased in DT mode

of the WSG-SONOS memory at different supply charges (Qsupply charge = lpom X Trem)-
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Fig. 3.6 Comparison of (a) traditional SSI (b) dynamic-threshold SSI (c) body-bias

enhanced SSI programming schemes.
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Fig. 3.7 Programming characteristics of WSG-SONOS memory as a function of Vsg

and V. at fixed Vg =4V with Tpgv=100ns for each mode. Typical bell-shaped

distribution of the threshold voltage shift is observed in normal and body modes

(VWeII:0-45 V).
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Fig. 3.8 Comparison of electrical field variations for each mode. (Normal-mode:
Vs=0.7 V ~ DT mode: Vsg=Vwe=0.55V ~ Body mode: Vsc=0.75, Vwe=0.45 V)
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Fig. 3.9 Programming efficiency with the same supply charge (Qsupply charge =lpem X

Trem) under V=9V, Vw =10V and V=11V for each mode, respectively.
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Fig. 3.10 Programming characteristics of the WSG-SONOS memory with multilevel

operation in DT mode.
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Fig. 3.11 Erasing characteristics of the WSG-SONOS memory across different

multilevel states. The different initial multilevel states were erased using the same Vg|,

while the erasing time is lower than 5 ms programming in DT mode.
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Fig. 3.12 (a) The Ip-Vg characteristics of different multilevel states programmed by
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Fig. 3.12 (b) The Vty distribution of the WSG-SONOS memory at different

programming levels under DT-mode.
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Fig. 3.13 2-bit/cell characteristics of WSG-SONOS memory programmed using

DTSSI under forward-read (FR) and reverse-read (RR), respectively. The inset figure
shows the good Ip-V ¢ curves of reading bit-1 and bit-2 for WSG-SONOS memory.
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Fig. 3.14 The superior second bit effect characteristics of WSG-SONOS memory for

different multilevel states programmed using DTSSI.
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Fig. 3.15 Endurance characteristics across different multilevel states of the
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Fig. 3.16 Data retention characteristics for different multilevel states obtained from

the WSG-SONOS memory under both programming modes at high baking

temperature (250°C).
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Fig. 3.17 (a) Word-line and (b) bit-line disturbances of WSG-SONOS memory with
ONO layers (5/8/10 nm) in DT mode in NOR-type architecture.
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Multi-level states: “10” state~ “01” state - “00” state
DT-Mode: VWL:9V N VWL:10V N VWL:].].V

Bit-1
operation

Program DT 200ns | 9~11V| 4V OV [ 0.45V | 0.45V

Mode | Time | Vw. Vo Vs Vse | Vwei

Erase BTBT 5ms -4V 6V ov ov ov

Sweep | Sweep
Read [Reverse “. " | "oy | 18V | OV 16V [ OV

Table 3.1 Multilevel operating conditions for the WSG-SONOS memory in a
NOR-type architecture.

Write/Erase/Read Performance for Multi-level Operation

MLC State “11” State “10” -State “01” State “00” State
Programe Voltage Initial State V=9V Vi =10V V=11V
Programming Time N.A 110nS 140nS 200nS
Erase VOltage Initial State VWL:'4V VWL:'4V VWL:'4V
Erasing Time N.A 3mS 4mS 5mS
Programming Current
(@Vsg=0.45V) 0-25uA
Read Current 1.2uA

Reliability for Multi-level Operation

MLC State “11” State “10” State “01” State “00” State
Gate Disturbance 0.01v 0.01v 0.01v 0.01v
Drain Disturbance 0.01v 0.01v 0.08v 0.11v
2nd Bit Effect 0.18V 0.15V 0.06V 0.01v
Endurance 1E4 Times 0.17v 0.05v 0.05V 0.14v
250°C (28hours) 0.02v 0.05v 0.11v 0.18v

Table 3.2 High-performance and high-reliability of multilevel operation for the
WSG-SONOS memory in a NOR-type architecture.
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Vt
A

VWL Disturbance

\ Reverse Read

00 State

Y

Initial Sense .
Real Sense margin(0.53V)

margin(0.93V)

01 State

Y

Initial Sense | .
margin(0.9V) Real Sense margin(0.51V)

10 State

Y

Initial Sense .
margin(0.87V) Real Sense margin(0.46V)

11 State

Y

2 bit/cell with multi-level operation in
WSG-SONOS memory under DT-mode

Voltage of WL disturbance (More than 13V)

WL Voltage of Reverse Read (0~8V)

Power Consumption for Low Operation
Voltage issue

10k P/E with retention loss of programming
state”00 “for thermal effect(180mV)

2" pit effect (60mV)/10k Endurance charge
effect of programming State (50mV)

10k P/E with retention loss of programming
State“01” for thermal effect(110mV)

2" pit effect(150mV)/10k Endurance charge
effect of programming State (50mV)

10K P/E with retention loss of programming
State 10 for thermal effect (50mV)

2" bit effect(180mV)/10k Endurance charge
effeget of erasing State (170mV)

Over Erasure & difficult to Erase boundary

I
»

Table 3.3 Sense margin of 2 bit/cell with multilevel operation for the WSG-SONOS

memory in a NOR-type architecture.
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Chapter 4

The Zero-Temperature-Coefficient Point Modeling of DTMOS

4.1 Introduction

According to the general CMOS technology application in our life, it has been a
growing interest in designing circuits and devices that operate reliably with low power
consumption over a widespread temperature range from 298 K to 398 K. As a result, it
is desirable to operate circuits designed at zero-temperature-coefficient (ZTC) point
where the driving current must be insensitive to the temperature in the extreme
environment. Generally, the existence of ZTC point is due to its reciprocal
compensation between the effective mobility (uf) and threshold voltage (V) at
elevated operated temperature in MOSFET [4.1-4.3]. There are also many published
paper to confirm the existence and advanced to derive the theory of ZTC point by
combining the experimental data, the error values between the theoretical predicted
results and row data are lower than 5% and 14% in the linear and saturation region,
respectively [4.4-4.5]. From the results-of these ZTC point model, it can be found that
while more physical factors are considered would effectively reduce the error values
between the theoretical modeling and experiment data. As a result, we try to develop a
ZTC point modeling for both long channel and short channel devices with detailing
physical insights in CMOS integration. In the thesis, the definition of ZTC point can
be expressed as:

%o

And the ZTC point means that gate voltage value of device while driving current (Ip)

(4.1)

wouldn’t vary with temperature. It should be noted that, the developed modeling of
ZTC point is obtained by the least squares method which minimizes the differences
between the left and right-hand sides of the initial definition over a specified operating
temperature range T; to T¢ [4.1-4.3]. Combining the method with clear physical
insights, it leads the ZTC model to be more accurate. Besides, the idea of attaining
high performance with low power consumption by using dynamic threshold (DT)
technique [4.6-4.8] applications has become popular in the development of a number
of MOS technologies, including 6T-SRAM, RFID circuit, multiplier, and low voltage

analog circuit [4.9-4.11]. However, the DT technique operated at elevated temperature
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should seriously degrade the performance, caused by the phonon scattering, which
results in some of the reference circuit failures. To solve these unstable temperature
problems, the zero-temperature-coefficient (ZTC) point which is an important
parameter for stable CMOS integrated circuit work over an operated temperature is
applied [4.4-4.5], as mentioned before. In the thesis, the ZTC design criterion for a
stable integrated circuit under consideration of elevated temperature DT operation
means that to drive circuits at an optimal gate voltage with temperature independence
is desired. Based on these concepts [4.4-4.5] and [4.12], for the first time, we derived
and verified the zero temperature coefficient (ZTC) point model of a DTMOS
transistor for operations at typical room temperatures to military range (25°C to
125°C).

4.2 Experiment

4.2.1 Device Fabrication

The Metal gate/High-k advanced. transistors used in this work were fabricated by
state-of-the-art 300 mm wafer with foundry technology. To reduce the low quality
interaction between gate dielectric and silicon bulk, the interfacial layer was formed
by chemical oxide. In turn, the gate dielectric-with [Hf]/(Hf+Si) were deposited by
atomic-layer deposition (ALD) techniques. N, ambient annealing was used to
decrease the dielectric defects. It followed by a 100A physical vapor deposition (PVD)
metal film (including: TaC and TiN) and a 1000A polysilicon gate capping layer.
After gate patterning, halo implantation was used to optimize the short channel
control for short channel devices. Eventually, BEOL process is following a

high-temperature annealing to active the source/drain junction of device.

2.2.2 Measurement setup
The DTMOS are operated by connecting the gate with the substrate electrically
by using keithley 708A. The substrate bias may thus be given as:

Vs = oV (0<a<1) (4.2)

The « is defined as a constant ratio of the dynamical biases between the gate and the

substrate. Due to the limitation of Vgs<0.7V under DT mode, the validation range of

a is also defined in equation (4.2). Devices operated under normal and DT-modes
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while the =0 and a > 0, respectively. In our experiment, we compare the ZTC point
characteristics of three different gate stack system (Poly/HfSiON, TaC/HfSiON and
TiN/HfSION) both under normal and DT-modes. For the third part of the chapter 4,
we define the Vty of devices by using the maximum transconductance linear
extrapolate method. The DC measurement with using Keithley 4200 semiconductor
parameter analyzer is at different operated temperature over 298 K to 398 K.
Furthermore, we extract the effective mobility with using split C-V method for both
under normal and DT-modes. The split C-V characteristics are measured at a
frequency of 1 MHz with different metal gate devices to extract the gate to channel
(Csc) and gate to bulk capacitance (Cgg) by using HP 4284 LCR parameter analyzer
[4.13]. Finally, we summarize the advantages of DTMOS in the conclusions of the

chapter 4.

4.3 Results and Discussions

4.3.1 The Zero-Temperature-Coefficient Point Modeling of DTMOS

Figure 4.1 shows the Ip-V characteristics of NMOS transistor with ZTC for
both under normal and DT-modes at elevated temperature over 298 K to 398 K,
respectively. The ZTC point is 0.85 V of DT-mode which shows the higher driving
current with low operation voltage than normal-mode. Figure 4.2 shows the Cgc
characteristics extracted from split C-V measurement with fixed body-bias mode.
Figure 4.3 and Fig. 4.4 show the effective mobility versus surface charge density
characteristics with elevated temperature over 298 K to 398 K and fixed body-bias
mode, respectively. The effective mobility largely enhances due to its reduction of
depletion charge. On the other hand, the effective mobility would also decrease
resulting from phonon scattering as increasing of temperature. Figure 4.5 shows the
Gm characteristics similar to the effectively mobility while continue increase the
operated temperature under DT mode. For easily to discuss the affects of phonon
scattering, we use G, characteristics to extract the degradation factor K; dependence
of temperature. In addition, in order to accurately express the ZTC point analytical
solutions for DTMOS, employing an appropriate analytical drain current model is
important. As a result, our DTMOS ZTC point theory is based on the simple and
accurate charge sheet approximation of the MOSFET drain current model with
depletion approximation which considers both the linear and saturate regions by
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simultaneously including the channel potential and body effect [4.14]. For DTMOS,
the drain current expressions may be expressed as

Linear region:

W m

los = T Coxtn {(VG —V; (T Vs » Vs ))‘/Ds - EVDSZ} (4.3)

Saturation region:
2
los = W Coxty (VG Vi (T Vis Vs )) (4.4)
L m

Where

m=1+ 6 (4.5)

S—_ dv; 1 / gesN, 4.6)
dVBS Cox 2(2¢fp _VBS )

m is the body effect coefficient, Co is the gate oxide capacitance per unit area, s, is
the effective channel mobility, uniform channel doping N, is assumed here, and W and
L are the channel width and length, respectively. As same as mentioned before,
because the DTMOS transistors are operated by connecting the gate with the substrate,

the substrate bias may thus be given as:

Vgs = aVy (0<a<l) (4.7)

The « is defined as a constant ratio of the dynamical biases between the gate and the
substrate. Due to the limitation of Vp.wen<0.7V under DT mode, the validation range

of «is also defined in equation (4.7). Devices operated under normal and DT-modes

while the o =0 and a > 0, respectively.

Furthermore, the effective mobility dependence on operation temperature, for an
ideal MOS transistor, is usually given as:
Linear region:

Hnq (Tf ) _ Gm,max (Tf ) — (Tr_fJKl (48)

#(T) G (T

Saturation region:

il (Tf ) _Gn (Tf XVG,(ZTC) _VT,i)m(Tf ) _ T_f -
1,(T)  Go(TWs orey = Vo I(T) [ T j (4.9)

Where Ti; is the initial room absolute temperature and Kj is the corresponding constant,

smaller than the previous reports, which is extracted from the transconductance
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degradation of ZTC point at elevated operation temperature, as shown in Fig. 4.5. By
using the method, the mobility variations of DTMOS caused by the threshold voltage

decrease with different temperature have also been included.
As we known that: 1, oc (Vo —V; ). To increase the accuracy of DTMOS

ZTC modeling, especially for sub-micron device, we may correct the power

dependence of square term under saturation mode by following extraction:

ID,SaL(VGSZ) (Vesz _VT JX

_ (4.10)
VGSl _VT

ID,Sat.(V681)

@Vss2>Ves1>Vo (z1c)
Generally, in published papers, the value of X equals 2, corresponding to the ideal
square law for long channel device. However, the theoretical value under saturation
region always brings about quite notable error more than 10%. Therefore, we try to
estimate the actual power dependence with using the experiment data in behalf of
reducing the prediction errors [4.4-4.5].

In this chapter, the V14 is extracted by the maximum transconductance linear
extrapolation method [4.13]. The assumptions of V1 dependence on temperature and

body bias are modeled simultaneously in the following approximate expressions:

VT (T |VBS 1VDS ) = pOT + rOVBS + UVDS + qo (411)
where
dV Average
o, = dTT (4.12)
Average
r— (VTZ(T,VBSZ,VDS)_VTl(T!VBSUVDS )) (413)
° VBS 2 _V881 Ti~Tf Vag<0.6V
Average
n= (VTZ(T’VBS 'VDSZ)_VTl(T’VBS ’VDSl)) (4.14)
VDSZ _VD81 Ti~Tf Vs <06V
Average
do :VT (Ti ’VBS ’VDS )_ rOVBS - pOTi B UVDS‘ (4.15)

Ti~Tf VBs<0.6V
The po, Qo, N and ry are average values extracted from the experimental data. Py is
affect by the temperature effect, qq is affect by the body effect and n is affect by the

DIBL effect, especially for short channel device. Further, the temperature dependence
of the body effect coefficient may be approximated by the expression:
m=1+06 =1+ sT +1t (4.16)
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s=d0 (4.17)
dT Ti~T;
do
t=0(T )-T. — 4.18
(T:) AT (4.18)

A main reason is increasing of n; while increases operated temperature. In addition,

the DIBL effect may also be approximated by the following expression:

n=uT +v (4.19)
where
u= 97 (4.20)
dT Ti~T¢
dn
v=nlT )-T — 4.21
77( |) 1 d-I- T=Ti ( )

The detailed physical expressions of dV/dT and d&/dT may also be found in the
reference [4.14].

After deriving the initial definition of dlps/dT=0 under DTMOS ZTC model, and
using the least-squares method to ensure drain current independence over the
temperature range T; to T [4.4-4.5], the expression of both linear and saturate regions
can be obtained as following:

Linear region:

2
A valzTe) - vy + (\ﬁ L dVTj - Mo\ gt — 0 (422)
dV o K.\ 2 dT = dT 2

Saturation region:

2

d o 2mT kil
v k| ve(@me) - v+ T <|dr =0 (4.23)
Vo 7T (mKl + T de

As a consequence, by substituting the assumptions described by equations
(4.7)-(4.21) into the results, the expression (4.22) and (4.23) can be rewritten as:

Linear region:
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2
T (sV
4 |Ve(ZTO)~(peT +raV, +1Vo +q0)+?( L poj

: dT =0

o (4.24)
TI
€ —\@(H sT +1)
2
Saturation region:
d 2p,T(+sT+t) |
: J; {VG (ZTC)—(pyT +1,aV, +7Vps +0, )+ < (1°+ - +t)+sT} dT =0 (4.25)

Consequently, by solving the equations, we propose formulations for the linear
and saturation region of the ZTC point model of the DTMOS transistor, respectively:

Linear region:

[po +UVp + SVZDS )(1—&](1 +T, )+VDS (1+1)+2(qy +VVps )

1

21— ar,) (4.26)

V,'"(zTC)=

Saturation region:

(b1, o ot s )- (e T [ 2 ]{1_( (T TH

K K, +1 T -T T+T
VGSat(Z-]—C)E l+ 2(1_ar) 1 1+ f i |+ 5
0
(4.27)
where
T§ = M (428)

4.3.2 The Validation of Zero-Temperature-Coefficient Point Modeling of DTMOS
The proposed model is verified using the experimental data obtained from our
DTMOS device in which channel length and width is 1 and 10 um for long channel
device and 0.1 and 10 um for short channel device, respectively. Figure 4.6 shows the
threshold voltage dependences on the temperature from 25°C to 125°C with different
body biases. The physical parameters po, Qo, and ro of the ZTC point model for
DTMOS can be extracted easily from our model. In general, the threshold voltage
decrease with increasing body bias can be considered a continued reduction of the
depletion region in DTMOS, as shown in Fig. 4.7. The straight black line shows that
the body bias varies dynamically with gate bias under different alpha ratios and the

crossover points shows a gradual reduction in threshold voltage, due to the increase in
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n; with increasing operating temperature. The inset of Fig. 4.8 shows the temperature
dependence of the body effect coefficient over the temperature range of 298K to 398K.
The characteristic features so and to in our ZTC point model of DTMOS are extracted
from the slope and extrapolated point of a body effect coefficient versus absolute
temperature curve, simultaneously. Figure 4.9 and Fig. 4.10 show the K; degradation
factors dependence of temperature with different alpha ratios under linear and
saturation regions, respectively. The higher carrier energy results in the lower values
of K; degradation factors. It can also prove the large enhancement of mobility while
operated under DT mode, indirectly. At the same time, the error between our model
and experiment is almost neglected, proving our G, extraction method for K;
degradation factors is feasible. The V¢ zrc) and K; dependence of body bias are both
shown in Fig. 4.11. It can be found that our fixed body bias mode of ZTC model can
still perform excellent prediction results with quite low mismatch to the row data at
elevated temperature environment. The detail expressions of fixed body bias ZTC
model both under linear and saturation are shown in Table. 4.1. Furthermore, Fig. 4.12
shows the ZTC point of DTMOS can be determinate by row data with different alpha
ratios condition under fixed body-bias mode. The maximum error can be reduced
smaller than 1% for Poly/SiO, NMOS. The clear comparison results between our
DTMOS ZTC model and experimental data under linear and saturation regions are
both shown in Fig. 4.13. The maximum error about 1.5% happens at the transition
region through linear region to saturation region. Different alpha ratios prove the good
agreement between our model and experimental values. In addition, the variation
characteristics of ZTC point operation after stress 2000 sec demonstrate the excellent
reliability for DTMOS due to its low operation voltage, as shown in Fig. 4.14. Similar
to the silicon dioxide device, the HK/MG devices also show the ZTC point
characterization as shown in Fig. 4.15. The V14 and K; degradation factor dependence
of body bias are both shown in Fig. 4.16 and Fig. 4.17. Unlike long channel device,
the short channel device shows the smaller K; degradation factor both under linear
and saturation regions in Fig. 4.18 due to its higher carrier transport energy. Then, the
temperature effects of body effect coefficient can be extracted from Fig. 4.19.
Different to long channel device, the DIBL effect couldn’t be neglected in short
channel device. The temperature effects of DIBL concern parameter can also be
extracted from Fig. 4.20 at elevated temperature from 298 K to 398 K. Finally, we
demonstrate that ZTC point of both long channel and short channel devices for
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traditional or advanced gate stacks can be precise prediction by our DTMOS ZTC
model, for maximum error smaller than 1%, with different behaviors of ZTC point
under saturation region resulting from DIBL effect. The large improvement for
precisely predicted ZTC point can be attracted to the detailed temperature dependence
of physical parameters effect, respectively. The detail physical insights and
expressions of DTMOS ZTC modeling both under linear and saturation are shown in
Table. 4.1, simultaneously. Figure 4.23 and Fig. 4.24 show a clear chart to illustrate
the ZTC point position at an Ip-Vg curve. It locates after the Vry about 0.2 V at linear
region and 0.3 V at saturation, respectively. As we know that DTMOS shows the more
excellent electrical characteristics at low temperature operation, for predicting ZTC
precisely now, the DTMOS operated at quite low temperature can also be performed
more reliable. A design window for different DT technology application now can be
depicted precisely by utilizing our ZTC modeling, as shown in Fig. 4.25. For high
performance operation, the ZTC point would be higher due to increase of power
supply voltage. In addition, the higher alpha ratio provides better subthreshold swing
and DIBL effect for device characteristics. As a result, we give results sufficiently
accurate to predict the ZTC behaviors of DTMOS.

4.4 Summary

Analytical expressions of zero-temperature-coefficient (ZTC) point modeling of
DTMOS transistor are successfully presented in detail. The maximum error smaller
than 1% are obtained in the linear and saturation regions, respectively, confirms the
good agreement between our DTMOS ZTC point model and experimental data. In
addition, we also establish the fixed body-bias ZTC modeling, simultaneously. The
detail physical insights and expressions are also summarized in Table 4.1. The
proposed formulations are useful for future integrated circuit design using DT

technology.
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Fig. 4.1 1p-Vg characteristics and ZTC point of NMOS under normal and DT-modes
at elevated temperature from 298 K to 398 K, respectively.
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Fig. 4.2 Cgc characteristics of NMOS extracted from split C-V method under fixed
body-bias and DT-modes at 298 K, respectively.
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Fig. 4.3 Effective mobility versus surface charge density of NMOS under fixed
body-bias and DT-modes at 298 K, respectively.
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Fig. 4.4 Effective mobility versus surface charge density of NMOS under DT-mode at

elevated temperature from 298 K to 398 K, respectively.
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Fig. 4.5 Ip-Vg, Gn characteristics and ZTC point of Poly/SiO, DTMOS under
DT-mode at elevated temperature from 298 K to 398 K, respectively.
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Fig. 4.6 Temperature dependence of V4 under fixed body-bias mode at elevated
temperature from 298K to 398K.
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Fig. 4.7 Body bias dependence of V14 with different temperature from 298K to 398K

under fixed body-bias mode, respectively.
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Fig. 4.8 Temperature dependence of body factor of Poly/SiO, NMOS at elevated
temperature from 298K to 398K.
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Fig. 4.9 Extraction of mobility degradation factor K; and our prediction model of

Poly/SiO, with different alpha ratios in linear region.
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Fig. 4.10 Extraction of mobility degradation factor K; and our prediction model of

Poly/SiO, with different alpha ratios in saturation region.
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Fig. 4.11 Both Vg ztc) point of fixed body-bias mode and mobility degradation factor

K, dependence of forward body-bias at elevated temperature from 298K to 398K.
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Fig. 4.12 The Vgzrc) point dependence of forward body-bias of Poly/SiO, NMOS

with different alpha ratios at elevated temperature from 298K to 398K. Crossover

points shows the of Vg ztc) point DTMOS.
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Fig. 4.13 The theoretical values of the ZTC point model and actual experimental data
of the DTMOS transistor with different alpha ratios in both the linear and saturation

regions, respectively.
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Fig. 4.14 Reliability characteristics of NMOS ZTC point under DT mode with

different channel length after 2000sec stress.
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Fig. 4.15 Ip-V, Gn characteristics and ZTC point of TaC/HfSION NMOS under
DT-mode at elevated temperature from 298 K to 398 K, respectively.
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Fig. 4.16 Body bias dependence of Vg of TaC/HfSION NMOS with different
temperature from 298K to 398K under fixed body-bias mode, respectively.
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Fig. 4.17 Extraction of mobility degradation factor K; and our prediction model of
TaC/HfSION and Poly/SiO, gate stacks for long channel device in linear and

saturation region, respectively.
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Fig. 4.18 Extraction of mobility degradation factor K; and our prediction model of
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Fig. 4.19 Temperature dependence of body factor of poly/HfSION, TaC/HfSiON and
TiN/HfSION gate stacks at elevated temperature from 298K to 398K.
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Fig. 4.20 Temperature dependence of DIBL effect of TaC/HfSiON and TiN/HfSION
gate stacks at elevated temperature from 298K to 398K.
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Fig. 4.21 The theoretical values of the ZTC point model and actual experimental data

of the DTMOS transistor for long channel device in both the linear and saturation

regions, respectively.
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Fig. 4.22 The theoretical values of the ZTC point model and actual experimental data
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Table 1. Drain current expressions:
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Table. 4.1 The drain current expressions with ZTC point modeling under fixed
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Table 3.

Physical Insight: V. (T, Vi, Vps) = PoT + Ve + Vps + o
o (Vg = V)

E:A._.; = t:A._._ -

Physical parameter extraction:
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X: Power dependence term of ZTC point in saturation region
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Table. 4.2 The detail physical

body-bias and DT-modes.
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Chapter 5

Conclusions and Recommendations for Future Research

5.1 Conclusions

Briefly, the dissertation has involved physical concept of DT technology with
HK/MG MOSFET, WSG-SONOS memory and ZTC model. We describe the merits of
DT technology with using experimental data and ISE simulation tool. Moreover, the
definite physical insight dependence of elevated temperature is also discussed. Major
contributions of each section in thus thesis are summarized as following:

First, the linearly extrapolated threshold voltage of the maximum
transconductance method to extract V14 of DTMOS is proposed and then a body
effect coefficient extraction analytical expression of DTMOS called m-model includes
physical insights is successfully presented in detail. It explains why the DTMOS
shows very excellent gate control ability and quite low off-leakage from energy band
diagram variation. By using our m-model, it provides an important physical meaning
including threshold voltage and body effect coefficient factors for designing body
doping profile and work function adjustment for advanced HK/MG short channel
device. The different alpha ratio between gate and substrate can be used to achieve
our requirement of circuit. In addition, we prove the channel effective mobility can be
enhanced by reducing depletion charge under DT mode using split C-V method. The
un-ideal short channel including V14 roll-off and DIBL effect would also be improved
resulting in lower carrier ballistic transport coefficient and higher injection velocity
from source terminal. The higher overdrive of HK/MG device can be still achieved by
DTMOS.

Second, a novel dynamic-threshold source-side injection (DTSSI) in
WSG-SONOS memory with high performance and reliable multilevel application for
2-bit/cell operation is successfully demonstrated, for the first time. We have
investigated the programming mechanism of DTSSI in detail using the experimental
data and Integrated Systems Engineering (ISE) TCAD simulation tools. It shows that
the supply current (Isg), and the lateral and vertical electric fields adjacent to neutral
gap region are the three major factors affecting programming efficiency under DTSSI
programming mode. We prove the higher programming efficiency to support
high-speed multilevel operation with quite low power consumption can be performed
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by appropriate operating voltages for the WSG-SONOS memory. Moreover, the
greater noise margin between each level state provides higher flexibility for sensor
amplification in circuit design with using DTSSI to achieve programming process.
Further, we also found that the interferences of second bit effect may be almost
ignored when operating 2-bit/cell utilizing DT mode in our device. The superior data
retention and excellent endurance characteristics indicate the high potential of the
WSG-SONOS memory programmed with DTSSI for high-reliability and
high-performance embedded memory applications in the green technology.

Finally, for the first time, the new analytical expressions of
zero-temperature-coefficient (ZTC) point modeling of DTMOS transistor are
successfully presented in detail for both long and short channel device. The maximum
error lower than 1% is obtained in the linear and saturation regions, respectively,
confirms the good agreement between our DTMOS ZTC point model and
experimental data. Moreover, we also establish the fixed body-bias ZTC modeling,
simultaneously. The detail physical insights and expressions are also summarized in
Table 4.1. The proposed formulations are useful for future integrated circuit design

using DT technology.

5.2 Recommendation for Future Research

There are some still unknown physical insights to be studied for future work.
Here are some suggestions as shown as following:

As detailed in our work, the body effect coefficient and metal gate work function
choosing are the key factors for high performance with low power consumption
application. To enhance the overdrive current for higher body effect coefficient factor,
the body doping concentration and profile need to be controlled carefully. However,
the doping fluctuation effect in very short channel device is a critical issue due to its
depletion charge effect dependence of threshold voltage. Although the retrograde
doping profile is used to improve the phenomenon, the threshold voltage variation
affects in deep sub-micron DTMOS is still unclear. As a result, the detail process
effect for discrete doping effect on Vry is suggested to study with using simulation
tools. Furthermore, the adjustment of lower metal work function in DTMOS for very
short channel device is also need to be collocated at the same time.

Besides, the mechanism of WSG-SONOS memory with using DTSSI
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programming method to achieve multi-level with 2-bits/cell application is described
clearly. However, the reliability effect of charge storage lateral spatial distribution
with utilizing DTSSI programming method is still needed to be considered. Especially,
after cycling effect stress, the serious damage both for tunnel oxide and interface
would degrade the reliability resulting from trap-assist-tunneling effect. Once we can
prove the lateral spatial distribution of electron injection is different to hot-hole
injection by utilizing charge pumping method under different programming mode
under, the excellent endurance and good retention of WSG-SONOS memory can be
explained clearly. Moreover, the charge storage vertical spatial distribution with
utilizing DTSSI programming method is needed to be considered, too. It concerns to
the scaled-down issue for good control ability of short channel effect with decreasing
charge trapping layer and oxide thickness. The storage nitride layer with silicon-dots
has demonstrated its excellent reliability and performance for scaling device.
Therefore, it can be predicted that charge storage layer of WSG-SONOS memory uses
nitride layer with silicon-dots can further enhance its electrical characteristics.
Moreover, replacing traditional blocking silicon dioxide layer with high-k material,
such as Al,O3, HfO, and Gd,0s, is suggested to enhance electrical characteristic and
reducing power supply voltage. Finally, the performance and reliability of
WSG-SONOS memory operates at elevated temperature is suggested to study for its
special wrapped-select-gate transistor in its structure. We proposed the DTMOS ZTC
point modeling and detailed the physical insights may help WSG-SONOS memory to
be more stable at different operation temperature in circuit level. Summary, our
recommendations provide the feasibility of DT technology for future green MOSFET

era.
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