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摘         要 

    這篇研究在邊著色的平面磁磚的複雜性。在平面上對邊著色，邊有 p

種顏色選擇的單位方塊並肩排著，相鄰的邊必須要有一樣的顏色，在[12] 

王浩猜測任意可以拼成全平面的磁磚集合就可以週期性的拼成全平面。 

 

  在兩個顏色的邊著色時，胡文貴學長和林松山老師證明王浩的猜測是

成立的，任意可以拼成全平面的磁磚集合就可以週期性的拼成全平面。更

精確的說， 充要 有一個最小週期生成的子集。所有最小週期生成

的集合 C(2) 包含 38 個元素。 

( )B φ∑ ≠ B

 

    本篇論文討論給定一個王浩磁磚(tiles)集合，熵(spatial entropy)

是正值或零可由集合裡的最小週期生成子集(minimal cycles)決定；當集

合中最小週期生成子集的子集合個數大於四組，除了O∪I∪J∪K以外，此

集合有正的熵。 
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ABSTRACT 

    his investigation studies the complexity problems of plane square 

tiling with colored edges . In the edge coloring of a plane, unit squares with 

colored edges of  p colors are arranged side by side such that adjacent tiles 

have the same colors.In [12],Wang conjectured that any set of tiles that can 

tile a plane can tile the plane periodically. 

 

    W.G. Hu and S.S.Lin proved that Wang's conjecture holds when p=2 that 

any set of tiles that can tile a plane can tile the plane periodically. More 

precisely, ( )B φ∑ ≠  if and only if B  has a subset of minimal cycle generator. 

The set of all minimal cycle generators C(2) contains 38 elements.  

 

     In this paper we consider the given a basic set of Wang tiles, the spatial 

entropy is positive or zero can be determined by studying a subset of minimal 

cycles. When the number of minimal cycles in the basic set more than four 

except O∪I∪J∪K, the basic set have positive entropy . 
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1 Introduction

The coloring of unit squares on Z2 has been studied for many years [6].
In 1961, in studying proving theorem by pattern recognition, Wang [10]
started to study the square tiling of a plane. The unit squares with colored
edges are arranged side by side so that the adjacent tiles have the same
color; the tiles cannot be rotated or reflected. Today, such tiles are called
Wang tiles or Wang dominos [4] [6].

The 2 × 2 unit squares is denoted by Z2×2. Let Sp be a set of p (≥ 1)

colors. The total set of all Wang tiles is denoted by Σ2×2(p) ≡ SZ2×2
p . A set B

of Wang tiles, such thatB ⊂ Σ2×2(p), is called a basic set (of Wang tiles). Let
Σ(B) be the set of all global patterns on Z2 that can be constructed from
the Wang tiles in B and P(B) be the set of all periodic patterns on Z2 that
can be constructed from the Wang tiles in B. Clearly, P(B) ⊆ Σ(B). The
nonemptiness problem is to determine whether or not Σ(B) , ∅. In [10],
Wang conjectured that any set of tiles that can tile a plane can tile the plane
periodically, i.e.,

i f Σ(B) , ∅ then P(B) , ∅. (1.1)

However, W.G. Hu and S.S. Lin proved that Wang’s conjecture holds
provide p = 2: any set of Wang tiles with two colors that can tile a plane
can tile the plane periodically.

First,the minimal cycle generator is introduced. B ⊂ Σ2×2(p) is called
a minimal cycle generator if P(B) , ∅ and P(B′) = ∅ whenever B′ ⊂ B.
Denote the set of all minimal cycle generators by C(p). Indeed,In [11]
C(2) has 38 members.Furthermore, under the symmetry group D4 of Z2×2

and the permutation group Sp of colors of horizontal and vertical edges
separately, C(2) can be classified into six classes.

Notably,the nonemptiness problem can easily be determined by study-
ing P(B), as in the case p = 2. More precisely, Σ(B) , ∅ if and only if B has
a subset of minimal cycle generator.

This work show that the complexity of the set of global patterns . In this

study, the first, we show that spatial entropy h(B) ≡ limm→∞,n→∞
log Γm×n(B)

m×n
>

0 then B contain more than two minimal cycles, where Γm×n(B) be the
cardinal number of Σm×n(B). The second, we study all case of choose
arbitrarily two, three, four and five minimal cycles from C(2). It show that
for anyB, ifB contain more than four minimal cycles exceptB = {O, I, J,K}
than h(B) > 0, i.e. if B = ∪iCi i ≥ 4 and B = ∪iCi , { O, I, J,K} then h(B) > 0
where { O, I, J,K}: the first classe of minimal cycle generators in C(2).

The third, show for any B = ∪iCi ∪N then h(B) = 0 where 2 ≤ i ≤ 4, if
h(∪iCi) = 0.
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If B = ∪iCi ∪N . where Ci ∈ C(2) and N : B add tiles but can’t produce
new minimal cycle. then the complexity be determined by B = ∪iCi.

2 Tiles and Minimal cycles

This section discusses edge coloring (Wang tiles). In this section, the unit
square is still denoted by Z2×2. The left, right, bottom and top edges of
the unit square Z2×2 are given by h1(Z2×2), h2(Z2×2), v1(Z2×2) and v2(Z2×2),
respectively. Denote the set of all local patterns with colored edges onZ2×2

(Wang tiles) over S2 by Σ2×2(2).
Σ2×2(2) is given as follows:
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Given B ⊂ Σ2×2(2), let Σm×n(B) be the set of all local patterns on Zm×n

generated by B; Σ(B) be the set of all global patterns generated by B, and
P(B) be the set of all periodic patterns generated by B.

Now, in [11] the symmetry of the unit square Z2×2 is introduced. The
symmetry group of the rectangle Z2×2 is D4, the dihedral group of order
eight. The group D4 is generated by the rotation ρ, through π

2
, and the

reflection m about the y-axis. Denote by D4 = {I, ρ, ρ
2, ρ3,m,mρ,mρ2,mρ3}.

Since, in edge coloring, the permutations of colors in the horizontal and
vertical directions are mutually independent, denote the permutations
of colors in the horizontal and vertical edges by ηh ∈ Sp and ηv ∈ Sp,
respectively. Then, for any B ⊂ Σ2×2(p), define the equivalent class [B] of
B by

[B] =
{

B′ ⊂ Σ2×2(p) : B′ =
(

((B)τ)ηh

)

ηv
, τ ∈ D4 and ηh, ηv ∈ Sp

}

.

More definitions are required.

Definition 2.1. [11] For any B ⊂ Σ2×2(p),
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(i) B is called a cycle generator if P(B) , ∅.

(ii) B is called a minimal cycle generator if P(B) , ∅ and P(B′) = ∅ for
all B′ $ B.

(iii) C(p) is the set of all minimal cycle generators that are subsets of
Σ2×2(p).

From now on, only the case p = 2 is considered. The ordering matrix
Y2;i = [y2;i; j,k] of all local patterns in Σ2×2(2) is denoted by

Y2;1 =

[

y2;1;1,1 y2;1;1,2

y2;1;2,1 y2;1;2,2

]

=

[

O E2

E3 J

]

.

Y2;2 =

[

y2;2;1,1 y2;2;1,2

y2;2;2,1 y2;2;2,2

]

=

[

E4 R

B E1

]

.

Y2;3 =

[

y2;3;1,1 y2;3;1,2

y2;3;2,1 y2;3;2,2

]

=

[

E1 T

L E4

]

.

Y2;4 =

[

y2;4;1,1 y2;4;1,2

y2;4;2,1 y2;4;2,2

]

=

[

I E3

E2 E

]

.

Table A.7. present the tile’s details.

Y2 =
∑4

i=1 Y2;i.

Now, the following result gives the six classes of 38 minimal cycle
generators in C(2) . Tables A.1. present the details of six equivalent classes
of C(2) .

The six classes of minimal cycle generators in C(2) are given as follows.

(1) [{O}],

(2) [{E1,E4}],

(3) [{E1,E1}],

(4) [{B,T}],

(5) [{E1,B,R}],

(6) [{E1,E2,B}].
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3 Recursive Formula and Transition Matrix

For m ≥ 2
The recursive formula are given as follows:

Ym+1;1 =

[

y2;1;1,1Ym;1 + y2;2;1,1Ym;3 y2;1;1,2Ym;1 + y2;2;1,2Ym;3

y2;1;2,1Ym;1 + y2;2;2,1Ym;3 y2;1;2,2Ym;1 + y2;2;2,2Ym;3

]

Ym+1;2 =

[

y2;1;1,1Ym;2 + y2;2;1,1Ym;4 y2;1;1,2Ym;2 + y2;2;1,2Ym;4

y2;1;2,1Ym;2 + y2;2;2,1Ym;4 y2;1;2,2Ym;2 + y2;2;2,2Ym;4

]

Ym+1;3 =

[

y2;3;1,1Ym;1 + y2;4;1,1Ym;3 y2;3;1,2Ym;1 + y2;4;1,2Ym;3

y2;3;2,1Ym;1 + y2;4;2,1Ym;3 y2;3;2,2Ym;1 + y2;4;2,2Ym;3

]

Ym+1;4 =

[

y2;3;1,1Ym;2 + y2;4;1,1Ym;4 y2;3;1,2Ym;2 + y2;4;1,2Ym;4

y2;3;2,1Ym;2 + y2;4;2,1Ym;4 y2;3;2,2Ym;2 + y2;4;2,2Ym;4

]

Ym+1 =
∑4

i=1 Ym+1;i

Given B ⊂ Σ2×2(2), the associated transition matrix Vm(B) is obtained
from Ym. Indeed,for i = 1 ∼ 4 , V2;i(B) = [v2;i; j,k] where v2;i; j,k = 1 if and only
if y2;i; j,k ∈ B. As in edge coloring, the recursive formula of Ym+1 can also be
applied to Vm+1(B) as follows.

Vm+1;1(B) =

[

v2;1;1,1Vm;1 + v2;2;1,1Vm;3 v2;1;1,2Vm;1 + v2;2;1,2Vm;3

v2;1;2,1Vm;1 + v2;2;2,1Vm;3 v2;1;2,2Vm;1 + v2;2;2,2Vm;3

]

.

Vm+1;2(B) =

[

v2;1;1,1Vm;2 + v2;2;1,1Vm;4 v2;1;1,2Vm;2 + v2;2;1,2Vm;4

v2;1;2,1Vm;2 + v2;2;2,1Vm;4 v2;1;2,2Vm;2 + v2;2;2,2Vm;4

]

.

Vm+1;3(B) =

[

v2;3;1,1Vm;1 + v2;4;1,1Vm;3 v2;3;1,2Vm;1 + v2;4;1,2Vm;3

v2;3;2,1Vm;1 + v2;4;2,1Vm;3 v2;3;2,2Vm;1 + v2;4;2,2Vm;3

]

.

Vm+1;4(B) =

[

v2;3;1,1Vm;2 + v2;4;1,1Vm;4 v2;3;1,2Vm;2 + v2;4;1,2Vm;4

v2;3;2,1Vm;2 + v2;4;2,1Vm;4 v2;3;2,2Vm;2 + v2;4;2,2Vm;4

]

.

Vm+1(B) =
∑4

i=1 Vm+1;i(B), Γ(m+1)×(n+1)(B) = |Vn
m+1

(B)|
Γm×n(B)bethecardinalnumbero fΣm×n(B).
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4 Computation of Spatial Entropy

Definition 4.1. Given B ⊂ Σ2×2(2) , define the spatial entropy

h(B) ≡ limm→∞,n→∞
log Γm×n(B)

m×n

where Γm×n(B) be the cardinal number of Σm×n(B).

Now, we use the Theorem 4.2. to estimate the lower bound of spatial
entropy.

Theorem 4.2. Given B ⊂ Σ2×2(2) Let α1, α2..., αk ,where α j ∈ {1, 4}, 1 ≤ j ≤ k
Then, for any m ≥ 2
h(B) ≥ 1

(m−1)×(k)
logρ(Vm;α1

Vm;α2
· · ·Vm;αk

)

And use the following propositions to estimate the upper bound of
spatial entropy.

Proposition 4.3. For p = k, k ∈ N ,if the tiles of B satisfy

a
b

c

da

c

1-1 to

then Γ(n+1)×(n+1)(B) ≤ k(2×n), h(B) = 0

Proof:
Γ4×4(B) ≤ k(2×(4−1)), first of all, we tile first row and column then other

tiles in 4 × 4 local pattern can be decided

Proposition 4.4. In the case of choose two minimal cycles, the spatial case B =

{O,E1,E2,R} is the only class can not use Theorem 4.1 and Proposition 4.2 to
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determine the spatial entropy.Now, show the entropy h(B) = 0, To observe the

stable tile E2 ,and other development is dependent on it .

Proposition 4.5. For p = 2, if the tiles of B satisfy

0 10 0 0

0

0 0

0

1 1 1

1

1

1

1

(+          )

then Γ(n+1)×(n+1)(B) ≤ (n + 2)3n, h(B) = 0

Proof:
For (n+1)×(n+1) local pattern, we first focus on the horizontal direction,

tile every row most n+ 2 possible. Note the spatial tile R= . Tile R is
a trouble for vertical direction but every row most can contain one tile R.
Σ(n+1)×(n+1)(B) have most n tile R. Next, we focus on the vertical direction.
We have n column and most n tile R. So it can be considered as 2×n column.
Then Γ(n+1)×(n+1)(B) ≤ (n + 2)3×n, h(B) = 0

Proposition 4.6. For p = 2, if the tiles of B not contain the following form :

0

1

0

1 and

then Γ(n+1)×(n+1)(B) ≤ (2n + 2)2n, h(B) = 0

Proof:
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Γ(n+1)×(n+1)(B) ≤ (2n + 2)2n, h(B) = 0

Proposition 4.7. For p = 2, if the tiles of B satisfy

0 0 0 1 1 1

0 0

1 1

0

0

1

1 0

10

1 0

10

0

0

0

1

1 0

10

1

0 0

1 1

0

0

1 10

1

0

0

1

0

0

1

+

+

or or

or

or+

+

OR

then Γ(n+1)×(n+1)(B) ≤ cn × (n + 2)n × kn ,h(B) = 0

where c: the tile’s number of B and k: the tile’s number of
0 1

Proof:
For (n + 1) × (n + 1) local pattern , if we first focus on first row then

Γ(n+1)×1(B) ≤ cn. Next, we focus on row just like Proposition 4.5. Now,
when we focus on the vertical direction, it decide on front row. Every
following rows a most k possible. Then Γ(n+1)×(n+1)(B) ≤ cn × (n + 2)n × kn

,h(B) = 0

where c :the tile’s number of B and k:the tile’s number of
0 1

5 The Complexity of B

In this studies, we show if entropy h(B) > 0, then B at least contain two
minimal cycles.

Lemma 5.1. For any B ⊆ Σ2×2,if h(B) > 0 then B = ∪i=n
i=1
Ci ∪N , n ≥ 2

where Ci ∈ C(2) andN : B add tiles can’t produce new minimal cycle .
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A disproof show for any the maximal basic set B contain only one
minimal cycle that h(B) = 0 .

In the proof, choose a representative from the six classes of minimal
cycle generators in C(2) representative. The other by the symmetry group
D2 ofΣ2×2 and the permutation group Sp of colors of horizontal and vertical
edges separately. Table A.2 present the details.

Now, we discuss the complexity ofB = C1∪C2 for anyC1, C2 from C(2).
The method that we choose a representative from the six classes of minimal
cycle generators in C(2) representative. And make every representative to
match other 37 minimal cycle. The other by the symmetry group D2 ofΣ2×2

and the permutation group Sp of colors of horizontal and vertical edges
separately. We determine the entropy for every pair C1∪C2 of by Theorem
4.2. and Proposition 4.3. Table A.3. present the details.

Following this way, we discuss complexity of B = C1 ∪ C2 ∪ C3 for any
C1,C2, C3 from C(2). The method that we choose by

(1) C1 ∪ C2 ∪ C3 in the same classe from the six classes of minimal cycle

(2) C1∪C2, C3 in the different two classes from the six classes of minimal
cycle

(3) C1, C2, C3 in the different classes from the six classes of minimal cycle

And fixC1 to match other all possibleC2,C3. The other by the symmetry
group D2 of Σ2×2 and the permutation group Sp of colors of horizontal and
vertical edges separately. Table A.4. present the details.

And then, we discuss complexity of B = C1 ∪ C2 ∪ C3 ∪ C4 for any C1,
C2, C3, C4 from C(2). The method that we choose by

(1) C1 ∪ C2 ∪ C3 ∪ C4 in the same classe from the six classes of minimal
cycle

(2) C1 ∪ C2 ∪ C3, C4 in the different two classes from the six classes of
minimal cycle

(3) C1 ∪ C2, C3 ∪ C4 in the different two classes from the six classes of
minimal cycle

(4) C1 ∪ C2, C3, C4 in the different three classes from the six classes of
minimal cycle

(5) C1, C2, C3, C4 in the different classes from the six classes of minimal
cycle

8



And fix C1 or the representative of C1 ∪ C2 to match other all possible
other. The other by the symmetry group D2 of Σ2×2 and the permutation
group Sp of colors of horizontal and vertical edges separately.

Particularly, we have that if B = ∪i=4
i=1
Ci then If B , {O, I, J,E} and the

spatial case B , {E1,E4} ∪ {E1,E4} ∪ {E1,E1} ∪ {E4,E4} then h(B) > 0 Table
A.5 present the details.

Now we choose B = C1 ∪C2 ∪C3 ∪C4 ∪C5. we just discuss complexity

ofB = O∪ I∪ J∪E ,the spatial caseB = {E1,E4}∪ {E1,E4}∪ {E1,E1}∪ {E4,E4}

already be considered by B = {E1,E4} ∪ {E1,E4} ,we have h(B) > 0 by
Theorem 4.2. . Particularly, we have that if B = ∪i=n

i=1
Ci then if n = 5 then

h(B) > 0.
Now, given a basic set B ⊆ Σ2×2(2) that we know

(1) If Σ(B) , ∅ if and only if B has a subset of minimal cycle generator.

(2) If entropy h(B) > 0 then B at least contain two minimal cycles.

(3) we understand the complexity of B = ∪i=n
i=1
Ci where Ci ∈ C(2) for any

n ∈ N.

Next step,we want to know how about the spatial entropy of B when
B add some other new tiles but these tiles cann’t add new minimal cycles.
The theorem are given as follows.

Theorem 5.2. B = ∪i=n
i=1
Ci, B

′

= ∪i=n
i=1
Ci ∪ N , where N is the set of tiles which

add to B but can not produce new minimal cycle.
If h(B) = 0 then h(B

′

) = 0.

Given the proof of the theorem, choose the maximal set N and claim
h(B

′

) = 0 where B
′

= ∪i=n
i=1
Ci ∪ N . Table A.6. present the details. After all,

given a basic set B = ∪i=n
i=1
Ci ∪ N ⊆ Σ2×2(2), if we want to understand the

complexity of B then we just focus on B = ∪i=n
i=1
Ci .

Theorem 5.3. Given any basic set B ⊆ Σ2×2(2),B = ∪i=n
i=1
Ci ∪ N N : the set of

tiles in B can’t produce minimal cycle.

(i) if h(∪i=n
i=1
Ci) = 0 if and only if h(B) = 0 .

(ii) if ∪i=n
i=1
Ci, n ≥ 4, ∪i=n

i=1
Ci , {O, I, J,E} then h(B) > 0.

(iii) if ∪i=n
i=1
Ci n ≥ 5 then h(B) > 0.

Notably, then the complexity problem can easily be determined by studying
B = ∪i=n

i=1
Ci, as in the case p = 2. More precisely, whether h(B) > 0 or h(B) = 0

decided by minimal cycles of B.

9



A basic set B have building blocks if tiles can produce (more than)
two rectangular patterns A,B such that h1(A)=h2(A) = h1(B)=h2(B) and
v1(A)=v2(A) = v1(B)=v2(B) where max{m, n} ≥ 2

A B

building blocks

Theorem 5.4. Given a basic set B, if h(B) > 0 then B have building blocks.

Proof:
∀B,h(B) > 0 then ∃m, k > 0 , let α1, α2..., αk ,where α j ∈ {1, 4}, 1 ≤ j ≤ k

such that at least a number on diagonal of (Vm;α1
Vm;α2

· · ·Vm;αk
) greater than

one .

6 APPENDIX A

6.1

The details of six equivalent classes of C(2) are listed in Table A.1.

[{O}] = {{O}, {I}, {J}, {E}}

[{E1,E4}] =

{

{E1,E4}, {E2,E3}, {E1,E4}, {E2,E3}
}

[

{E1,E1}
]

=

{

{E1,E1}, {E2,E2}, {E3,E3}, {E4,E4}
}

[{B,T}] = {{B,T}, {L,R}}

[{E1,B,R}] =

{

{E1,B,R}, {E2,B, L}, {E3,T,R}, {E4,T, L},

{E1,T, L}, {E2,T,R}, {E3,B, L}, {E4,B,R}

}

[{E1,E2,B}] =































{E1,E2,B}, {E1,E3,R}, {E2,E4, L}, {E3,E4,T},

{E1,E2,R}, {E1,E3,B}, {E2,E1, L}, {E2,E4,B},

{E3,E1,T}, {E3,E4,R}, {E4,E2,T}, {E4,E3, L},

{E1,E2,T}, {E1,E3, L}, {E2,E4,R}, {E3,E4,B}































Table A.1
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6.2

The details that if entropy h(B) > 0 ,then B at least contain two minimal
cycles are listed in Table A.2.
B
′

:the maximal basic set B contain only one minimal cycle
B: the maximal basic set that it’s tiles can be actual used to tile a plane

and B ⊆ B
′

.

class representative B
′

h(B
′

)

[{O}] {O} {O,E1,E2,E3,E4,T,R} h(B
′

) = 0 ; B = {O}

[{E1,E4}] {E1,E4} {E1,E4,E2,E3,T,R} h(B
′

) = 0 ; B = {E1,E4}
[

{E1,E1}
]

{E1,E1} {E1,E1,E2,E3,T,R} h(B
′

) = 0 ; B = {E1,E1}

[{B,T}] {B,T} {B,T,E1,E3,E2,E4, L} h(B
′

) = 0 ; B = {B,T}
[{E1,B,R}] {E1,B,R} φ h(B

′

) = 0
[{E1,E2,B}] {E1,E2,B} φ h(B

′

) = 0

Table A.2.

6.3

The details of the complexity of B = C1 ∪ C2 for any C1,C2 from C(2) are
listed in Table A.3.

By the Theorem4.2. to estimate the lower bound of spatial entropy and
the Proposition4.3. to estimate the upper bound of spatial entropy.

(i) Pi:h(B) > 0 by Theorem4.2. .

(1) P1 : ρ(V3,1) = 1.414

(2) P2 : ρ(V3,1) = 1.618

(3) P3 : ρ(V3,1) = 2.618

(4) P4 : ρ(V3,1) = 2

(5) P5 : ρ(V3,1 ×V3,4) = 1.618

(6) P6 : ρ(V3,1 ×V3,4) = 2

(7) P7 : ρ(V3,1 ×V3,4) = 4

(8) P8 : ρ(V3,1 ×V3,1 ×V3,4) = 1.618

(9) P9 : ρ(V3,1 ×V3,4 ×V3,4) = 1.618
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(10) P10 : ρ(V4,1 ×V4,1 ×V4,4) = 6.854

(11) P11 : ρ(V5,1 ×V5,4) = 1.480

(12) P12 : ρ(V6,1 ×V6,4 ×V6,1) = 3.732

(13) P0 : the B ⊃ B
′

where B
′

∈ P(i) , i = 1 ∼ 11.

(ii) 0 : h(B) = 0 by Proposition4.3.

in the same class representative ρ

1 [{O, I}] 0
1 [{O,E}] 0

2 [{E1,E4,E1,E4}] 0
2 [{E1,E2,E3,E4}] P2

3 [{E1,E1,E2,E2}] 0
4 [{B,T,R, L}] 0

5 [{E1,E4,B,R}] 0

5 [{E1,E2,B,T,R}] P1

5 [{E1,E1,B,T,R, L}] P3

6 [{E1,E2,E3,B}] 0

6 [{E1,E2,E1,E2,B, L}] P10

6 [{E1,E2,E3,E4,B}] P11
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in different two classes representative ρ
1&2 [{O,E1,E4}] P0

1&2 [{O,E1,E4}] 0

1&3 [{O,E1,E1}] 0
1&4 [{O,B,T}] 0
1&5 [{O,E1,B,R}] P2

1&5 [{O,E1,T, L}] 0

1&6 [{O,E1,E2,R}] P2

1&6 [{O,E1,E2,T}] 0

2&3 [{E1,E2,E4,E2}] P6

2&3 [{E1,E4,E1}] 0
2&4 [{E1,E4,B,T}] P7

2&5 [{E1,E4,B,R}] P2

2&6 [{E1,E3,E4,E1,T}] P12

2&6 [{E1,E3,E4,E1,T}] P5

2&6 [{E1,E4,E1,E2,T}] P5

3&4 [{E1,E1,B,T}] 0

3&5 [{E1,E1,B,R}] P2

3&5 [{E1,E2,E1,B, L}] P2

3&5 [{E1,E4,E1,T, L}] P2

3&6 [{E1,E2,E1,B}] 0

3&6 [{E1,E2,E4,E1, L}] P5

4&5 [{E1,B,T,R}] 0
4&6 [{E1,E3,B,T,R}] P1

4&6 [{E1,E2,B,T}] 0
5&6 [{E1,E2,B,R}] 0

5&6 [{E1,E2,E4,B,R}] P8

5&6 [{E1,E3,E4,B,R}] P9

5&6 [{E1,E3,E1,B,T,R}] P4

Table A.3

6.4

The details of the complexity of B = C1 ∪ C2 ∪ C3 for any C1,C2,C3 from
C(2). are listed in Table A.4.
ρ(V2,1 ×V2,4) = 4
P0 : the B ⊃ B

′

: B
′

= C1

⋃

C2 and h(B
′

) > 0
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0 : h(B) = 0 by Proposition4.3.
In order to convenience, we let

1 : [{O}]

2 : [{E1,E4}]

3 :
[

{E1,E1}
]

4 : [{B,T}]

5 : [{E1,B,R}]

6 : [{E1,E2,B}]

in the same class representative ρ
1 [{O, I, J,E}] 0

2 [{E1,E2,E3,E4,E2,E3}] P0

3 [{E1,E1,E2,E2,E3,E3}] ρ(V3,1 ×V3,4) = 2.618
4 φ

5 Table A.3. P0

6 [{E1,E2,E3,E4,B}] P0

Note:In different two classes:

1&2 : two minimal cycles in 1 and one minimal cycle in 2.

2&1 : two minimal cycles in 2 and one minimal cycle in 1.
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in different two classes representative ρ

1&2 [{O, J,E2,E3}] 0
1&2 [{O, I,E1,E4}] P0

2&1 [{O,E1,E4,E1,E4}] P0

1&3 [{O,E,E1,E1}] 0

1&3 [{O, I,E1,E1} ρ(V4,1) = 2

1&3 [{O, J,E1,E1}] ρ(V2,1 ×V2,2) = 2

3&1 [{O,E1,E4,E1,E4}] ρ(V3,1) = 2

3&1 [{O,E1,E2,E1,E2}] ρ(V5,1 ×V5,1 ×V5,1 ×V5,1 ×V5,2) = 3
1&4 [{O,E,B,T}] 0
1&4 [{O, I,B,T}] ρ(V4,1 ×V4,2) = 2.618
4&1 [{O,B,T,R, L}] ρ(V3,1) = 1.618
1&5 [{O, I,E1,B,R}] P0

1&5 [{O, J,E1,B,R}] P0

1&5 [{O,E,E1,B,R}] P0

1&5 [{I,E,E1,B,R}] ρ(V4,1 ×V4,2) = 2.618
1&5 [{J,E,E1,B,R}] ρ(V4,1) = 1.414

5&1 [{O,E1,E4,B,R}] ρ(V3,1) = 1.618
1&6 [{O, J,E1,E2,B}] ρ(V5,1 ×V5,1 ×V5,2) = 3
1&6 [{O,E,E1,E2,B}] ρ(V5,1 ×V5,1 ×V5,2 ×V5,2) = 8

6&1 [{O,E1,E2,E3,B}] P0

6&1 {O,E1,E3,E4,B} ρ(V5,2 ×V5,1) = 1.732

6&1 [{O,E1,E2,E3,E4,B}] P0

2&3 [{E1,E4,E1,E4}] 0

2&3 [{E1,E2,E3,E1,E2,E3}] ρ(V3,1 ×V3,1 ×V3,1 ×V3,2 ×V3,2) = 7.873

3&2 [{E1,E4,E1,E4}] 0

3&2 [{E1,E2,E3,E4,E2,E3}] P0

3&2 [{E1,E2,E4,E1,E2}] ρ(V3,1 ×V3,1 ×V3,1 ×V3,2 ×V3,2) = 2
2&4 Table A.3. P0

4&2 Table A.3. P0

2&5 Table A.3. P0

5&2 Table A.3. P0

2&6 Table A.3. P0

6&2 Table A.3. P0

3&4 [{E1,E4,E1,E4,B,T}] P0

3&4 [{E1,E2,E1,E2,B,T}] P0

4&3 [{E1,E1,B,T,R, L}] P0

3&5 Table A.3. P0

5&3 Table A.3. P0
15



in different two classes representative ρ

3&6 [{E1,E2,E1,E2,B}] ρ(V4,1 ×V4,1 ×V4,2 ×V4,2) = 2

6&3 [{E1,E2,E1,E3,B}] ρ(V5,1 ×V5,1 ×V5,1 ×V5,2 ×V5,2) = 3

6&3 [{E1,E2,E1,E4,B}] P0

6&3 [{E1,E2,E1,E3,E4,B}] P0

6&3 [{E1,E1,E3,E4,B}] P0

6&3 [{E1,E2,E3,E1,E4,B}] P0

4&5 [{E1,B,T,R, L}] ρ(V3,1 ×V3,1 ×V3,2 ×V3,2 ×V3,1) = 10.2268

5&4 [{E1,E4,B,T,R}] ρ(V3,1 ×V3,2) = 2.618
4&6 [{E1,E2,B,T,R, L}] P0

6&4 [{E1,E2,E3,B,T}] ρ(V5,1 ×V5,2) = 2.618

6&4 [{E1,E2,E3,E4,B,T}] ρ(V3,1 ×V3,2) = 2.148

5&6 [{E1,E2,E4,B,R}] P0

5&6 [{E1,E2,E4,E1,T, L}] P0

6&5 [{E1,E2,E3,B,R}] ρ(V6,2) = 1.414

6&5 [{E1,E2,E3,E4,B,R}] P0

16



in different three classes representative ρ

1&2&3 [{O,E2,E2,E3}] 0
1&2&3 Table A.3. P0

1&2&4 Table A.3. P0

1&2&5 Table A.3. P0

1&2&6 Table A.3. P0

1&3&4 [{O,E1,E1,B,T}] ρ(V4,1 ×V4,1 ×V4,1 ×V4,2) = 2
1&3&5 Table A.3. P0

1&3&6 [{O,E1,E1,E2,R}] ρ(V4,1 ×V4,1 ×V4,2 ×V4,2) = 2

1&3&6 [{O,E1,E2,E2,R}] ρ(V5,1 ×V5,2 ×V5,2) = 2.618

1&4&5 [{O,E1,B,T, L}] ρ(V4,1 ×V4,1 ×V4,1 ×V4,1 ×V4,2) = 2
1&4&6 [{O,E1,E2,B,T}] ρ(V3,1) = 1.618

1&4&6 [{O,E1,E3,B,T}] ρ(V4,1 ×V4,1 ×V4,2) = 4

1&4&6 [{O,E3,E4,B,T}] ρ(V4,1 ×V4,1 ×V4,2) = 3

1&4&6 [{O,E2,E4,B,T}] ρ(V4,1 ×V4,1 ×V4,2) = 8
1&5&6 [{E,E1,E2,B,R}] ρ(V5,1 ×V5,1) = 2

1&5&6 [{E,E1,E3,B,R}] ρ(V4,1 ×V4,2 ×V4,2 ×V4,2 ×V4,2) = 2
2&3&4 Table A.3. P0

2&3&5 Table A.3. P0

2&4&5 Table A.3. P0

2&4&6 Table A.3. P0

2&5&6 Table A.3. P0

3&4&5 Table A.3. P0

3&4&6 [{E1,E2,E1,B,T}] ρ(V6,1 ×V6,1 ×V6,2) = 3.7321

3&4&6 [{E1,E1,E3,B,T}] ρ(V6,2 ×V6,1 ×V6,2) = 3.7321

3&4&6 [{E1,E2,E1,E4,B,T}] ρ(V3,1 ×V3,2) = 4.4495

3&4&6 [{E1,E1,E3,E4,B,T}] ρ(V3,1 ×V3,2) = 4.4495
4&5&6 [{E1,E2,B,T,R}] ρ(V6,1 ×V6,1 ×V6,2) = 3

4&5&6 [{E1,E3,B,T,R}] ρ(V6,1 ×V6,2 ×V6,2) = 3

Table A.4.

6.5

The details of the complexity of B = C1 ∪ C2 ∪ C3 ∪ C4 for any C1,C2,C3,C4

from C(2). are listed in Table A.5.
P0 : the B ⊃ B

′

: B
′

= C1 ∪ C2 ∪ C3 and h(B
′

) > 0
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0 : h(B) = 0 by Proposition4.3.
In order to convenience,we let

1 : [{O}]

2 : [{E1,E4}]

3 :
[

{E1,E1}
]

4 : [{B,T}]

5 : [{E1,B,R}]

6 : [{E1,E2,B}]

in the same class representative ρ
1 [{O, I, J,E}] 0

other Table A.3. P0

Note:In different two classes:

1&2 : three minimal cycles in 1 and one minimal cycle in 2.

2&1 : three minimal cycles in 2 and one minimal cycle in 1.

in different two classes representative ρ

1&2 [{O, I, J,E1,E4}] P0

1&3 [{O, I, J,E1,E1}] P0

1&4 [{O, I, J,B,T}] P0

other Table A.3. and A.4. P0

Note:In different two classes:

1&2 : two minimal cycles in 1 and two minimal cycle in 2.

2&1 : two minimal cycles in 2 and two minimal cycle in 1.

in different two classes representative ρ

1&3 [{O,E,E2,E1,E1,E2}] ρ(V5,1 ×V5,2) = 6
1&4 [{O, I,B,T,R, L}] P0

2&3 [{E1,E4,E1,E4}] 0
2&3 other P0

other Table A.3. and A.4. P0

Note:In different three classes:
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1&2&3 : two minimal cycles in 1 and one minimal cycle in 2 and one minimal
cycle in 3.

2&3&1 : two minimal cycles in 2 and one minimal cycle in 3 and one minimal
cycle in 1.

3&1&2 :two minimal cycles in 3 and one minimal cycle in 1 and one minimal
cycle in 2.

in different three classes representative ρ

1&2&3 [{O, J,E1,E1,E2,E3}] P0

1&2&3 [{O, J,E2,E2,E3}] P0

2&3&1 Table A.3. P0

2&3&1 Table A.3. P0

3&1&2 Table A.3. P0

other Table A.3. and A.4. P0

in different four classes ρ

1&2&3&4 P0

1&2&3&5 P0

1&2&3&6 P0

other P0

Table A.5.

6.6

h(∪i=n
i=1
Ci) = 0 , B = ∪i=n

i=1
Ci ∪ N , where N :B add tiles but can not produce

new minimal cycle. Choose the maximal setN denote byN
′

.
The details of the complexity of B

′

= ∪i=n
i=1
Ci ∪ N

′

. are listed in Table
A.6.

By the Proposition4.5.,Proposition4.6. and Proposition4.7. to estimate
a upper bound of spatial entropy.

(i) (1) 01:h(B) = 0 by Proposition4.5..

(2) 02 : h(B) = 0 by Proposition4.6..

(3) 03 : h(B) = 0 by Proposition4.7..

(ii) φ : must add new minimal cycle when add any new tile
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For n=2, h(∪i=n
i=1
Ci) = 0

in the same class representative B
′

ρ

1 [{O, I}] [{O, I,E1,E3,E2,E4,T, L}] 01

1 [{O, I}] [{O, I,E1,E3,E2,E4,B, L}] 01

1 [{O,E}] [{O,E,E1,E3,E2,E4,T, L}] 03

1 [{O,E}] [{O,E,E4,E1,E3,T,R}] 02

1 [{O,E}] [{O,E,E1,E3,E2,E4,B, L}] 02

1 [{O,E}] [{O,E,E2,E1,E3,T,R}] 02

1 [{O,E}] [{O,E,E2,E4,E1,E3,T}] 02

2 [{E1,E4,E1,E4}] [{E1,E3,E4,E1,E2,E4,B, L}] 03

3 [{E1,E1,E2,E2}] φ

4 [{B,T,R, L}] φ

5 [{E1,B,R,E2,T,R}] φ

6 [{E1,E2,E3,B}] φ

in different two classes representative B
′

ρ

1&2 [{O,E1,E4}] [{O,E3,E1,E2,E4,B, L}] 02

1&3 [{O,E1,E1}] [{O,E1,E3,E1,E2,B, L}] 03

1&4 [{O,B,T}] [{O,E1,E3,E2,E4,B,T, L}] 02

1&5 [{O,E1,T, L}] φ

1&6 [{O,E1,E3,B}] φ

1&6 [{O,E1,E2,T}] φ

2&3 [{E1,E4,E1}] [{E1,E3,E4,E1,E2,B, L}] 03

2&3 [{E1,E4,E1}] [{E1,E2,E4,E1,E3,T,R}] 03

3&4 [{E1,E1,B,T}] φ

4&5 [{E1,B,T,R}] φ

4&6 [{E1,E2,B,T}] φ
5&6 [{E1,E2,B,R}] φ

For n=3, h(∪i=n
i=1
Ci) = 0

in the same class representative B
′

ρ

1 [{O, J,E}] [{O, J,E,E1,E3,E2,E4,T, L}] 01

1 [{O, J,E}] [{O, J,E,E1,E3,E2,E4,B, L}] 01

1 [{O, J,E}] [{O, J,E,E1,E3,B, L}] 03

1 [{O, J,E}] [{O, J,E,E1,E2,E3,R,T}] 03

Note:In different two classes:
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1&2 : two minimal cycles in 1 and one minimal cycle in 2.

2&1 : two minimal cycles in 2 and one minimal cycle in 1.

in different two classes representative B
′

ρ

1&2 [{O, J,E2,E3}] [{O, J,E1,E2,E3,E4,T, L}] 03

1&3 [{O,E,E1,E1}] [{O,E,E1,E3,E1,E2,B, L}] 03

1&3 [{O,E,E1,E1}] [{O,E,E1,E3,E1,B, L}] 03

1&3 [{O,E,E1,E1}] [{O,E,E1,E2,E1,E3,T,R}] 03

1&3 [{O,E,E1,E1}] [{O,E,E1,E3,E1,E3,T,R}] 03

1&4 [{O,E,B,T}] [{O,E,E1,E3,E2,E4,B,T, L}] 02

2&3 [{E1,E4,E1,E4}] 03

3&2 [{E1,B,T,R}] φ

in different three classes representative B
′

ρ

1&2&3 [{O,E2,E2,E3}] [{O,E1,E2,E2,E3,E4,T, L}] 03

For n=4, h(∪i=n
i=1
Ci) = 0

in the same class representative B
′

ρ

1 [{O, I, J,E}] [{O, I, J,E,E1,E3,E2,E4,T, L}] 01

Table A.6.
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