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Abstract

This work briefly reviews the history of chaos theory and elucidates the relationship

among chaos, Lyapunov exponent, topological entropy, strange attractor, snapback re-

peller, and Sarkovskii’s theorem, connecting them to each other using a relational graph.

Mathematical and computer-assisted tools can be used to determine whether maps or

systems are chaotic by finding a quantity or sometimes identifying the existence of a

property. In ecology, Satake’s generalized resource budget model that modified from

Isagi’s resource budget model, Satake and Iwasa proved by computing the positive Lya-

punov exponent that if the depletion coefficient k is greater than one, then the system

is chaotic. However, a positive Lyapunov exponent means only sensitivity in Devaney’s

chaos. Therefore, this work presents mathematical views and a numerical analysis on

Satake’s model, using the “snapback repeller method” to prove that the model is chaotic

in Devaney’s sense (involving transitivity, density, and sensitivity). Moreover, this work

also overcomes the omission of Satake’s paper (Satake & Iwasa, 2000) when the deple-

tion coefficient k is a positive integer. Furthermore, the end of this work investigates

the difference between odd depletion coefficients and even depletion coefficients.

Keywords: Li-Yorke’s chaos, Davaney’s chaos, topological entropy, snapback repeller,

Sarkovskii’s theorem, resource budget model.
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1 Introduction

In recent decades, chaotic theory has advanced rapidly. This work discusses definitions of

chaos and their relationships. Many mathematical tools can be used to measure or describe

the “chaotic” condition of systems. This work introduces the commonly utilized Lyapunov

exponent and topological entropy, and most importantly connects these tools to chaos. The

strange attractor is considered. Like the Lorenz attractor, although it has an attract property,

it exhibits “unstable”, meaning that its interior exhibits a “sensitive dependence on initial

conditions”, which phenomena are together identified as “strange”. Finally, a computer-

assisted method, involving snapback repellers, is introduced: if a system has a snapback

repeller, then it is chaotic.

1.1 History of Chaos

In 1960, the meteorologist Edward Lorenz was working on the problem of weather predic-

tion. In 1961, he discovered the “butterfly effect” while trying to forecast the weather. This

phenomenon, the “butterfly effect” refers to the sensitive dependence on initial conditions in

chaos theory. Lorenz called the image he obtained when he graphed the associated equations

the “Lorenz attractor”. Lorenz was the discoverer of chaos and its first true experimental

researcher.

A decade later (1971), David Ruelle and Floris Takens elucidated a phenomenon they

called a “strange attractor”, and in so doing, gave birth to a whole new area of chaos theory.

The association of “turbulence” with a strange attractor was revolutionary [77].

The word “chaos” was coined by James A. Yorke [55]. According to one investigation [52],

many scientists believe that the “existence” and “uniqueness” of a solution to a ordinary

difference equation if the system is smooth is required by the Poincarè-Bendixson theorem,

even when the system has more than over two dimensions. They considered that such a

solution was “regular” and that convergence to such an (almost) periodic or quasi-periodic

solution is unaffected by noise. Whenever the solution was irregular, they regarded the

problem as a computing error. However, in 1974, Li and Yorke solved the logistic model

problems of the ecologist Robert May, and an increasing number of scientists no longer thought

that these problems involved computing mistakes. In the following year, Li and Yorke revised

their draft, which had been written one year earlier and published it in 1975 [55].

At that time, chaos was not a science, or even a cohesive theory. During the 1970s, several

brave scientists such as Robert May, Mitchell Feigenbaum, and Benoit Mandelbrot, were so

1



intrigued with the new concept of chaos that they began to research it.

In 1989, Devaney explicitly defined chaos [21]. Diamond [22, 23], Marotto [23, 57], Wig-

gins [98], Robinson [74] and Martelli [59] also provided their definitions of chaos in 1976, 1978,

1991, 1998, and 1999, respectively.

The existence of chaotic dynamics has been discussed in the mathematical literature for

many decades with important contributions by Poincaré, Birkhoff, Cartwright, Littlewood,

Levinson, Smale, and Kolmogorov and his students, among others. The field is now undergo-

ing explosive growth, and has various applications across a wide range of scientific disciplines,

including–ecology [20, 33, 34, 61, 80, 86, 95, 102], economics [82], physics [73], sociology [78],

anthropology [70, 71], biology [18, 65], chemistry, engineering, fluid mechanics, and many

others. Specific examples of chaotic time-dependence include the convection of a fluid that

is heated from below, simple models of the annual variation of insect populations, stirred

chemical reactor systems, and determination of the limits on the length of reliable weather

forecasting. The number of such examples continues to increase [31].

Many studies have applied these definitions, and some have emphasized their mutual

relationships [7, 8, 30, 35, 46, 47, 60, 97].

1.2 Definitions of Chaos

The chaos of a map has been defined in several ways [46]. Although the comment “so many au-

thors, so many definitions,” is true, a basic component of all definitions is the unpredictability

of the behavior of the trajectory which is determined with some certain error. (The associated

phenomenon is usually described in terms of sensitive dependence on initial conditions.)

The definitions of chaos of Devaney and of Li and Yorke are considered herein because

they are fundamental and widely accepted:

Definition 1.1 (Devaney [21]). Let X be a metric space. A continuous map f : X → X is

said to be chaotic on X if

(D1) f is topologically transitive. That is, for any pair of nonempty open sets U, V ⊂ X there

exists k > 0 such that fk(U) ∩ V 6= ∅;

(D2) periodic points are dense in X;

(D3) f has sensitive dependence on initial conditions,meaning that, there exists δ > 0 such

that, for any x ∈ X and any neighborhood N of x, there exists y ∈ N and n ∈ N such

that |fn(x)− fn(y)| > δ.

2



Intuitively, a topologically transitive map has points that eventually move under iteration

from one arbitrarily small neighborhood to any other. Consequently, a dynamical system

cannot be decomposed into two disjoint open sets that are invariant under the map. Notably,

if a map possesses a dense orbit, then it is necessarily topologically transitive. The converse

is also true (for compact subsets of R or S1).

A map possesses sensitive dependence on initial conditions if there exist points arbitrarily

close to x that are eventually separated from x by at least δ under iteration of f . Importantly,

not all points close to x need eventually to separate from x under iteration, but at least one

such point must exist in every neighborhood of x. If a map possesses sensitive dependence

on initial conditions, then for all practical purposes, the dynamics of the map defy numerical

computation. Small rounding errors in the computation become magnified upon iteration.

The results of numerical computation of an orbit, no matter how accurate, may bear no

resemblance whatsoever to the real orbit.

In summary, a chaotic map possesses three ingredients, which are: indecomposability,

an element of regularity, and unpredictability. A chaotic system cannot be broken down or

decomposed into two subsystems (two invariant open subsets) that do not interact under f

because of topologically transitivity. In the midst of this random behavior, however, is an

element of regularity, which is exhibited by the periodic points that are dense. The system is

unpredictable because of the sensitive dependence on initial conditions [21].

Banks, Brooks, Cairns, Davis, and Stacey proved that (D1) and (D2) imply (D3).

Theorem 1.2 ([8]). If f : X → X is transitive and has dense periodic points, then f has

sensitive dependence on initial conditions.

Vellekoop and Berglund proved that (D1) alone can imply (D2) and (D3) on intervals.

Theorem 1.3 ([97]). Let I be a (not necessarily finite) interval and f : I → I a continuous

function and topologically transitive map. Then (1) the periodic points of f are dense in I

and (2) f has sensitive dependence on initial conditions.

Remark 1.4 ([7]). Assaf and Gadbois demonstrated that (D1) and (D3) do not imply (D2)

by giving the example X = S1 \
{
ei2πp/q|p, q ∈ Z, q 6= 0

}
equipped with the usual arclength

metric d and f : X → X defined by f(eiθ) = ei2θ. They also demonstrated that (D2)

and (D3) do not imply (D1) by giving the examples X = S1 × [0, 1], where S1 is the unit

circle and [0, 1] is the unit interval with the standard metrics and f : X → X defined by

f(eiθ, t) = (ei2θ, t).

3



The definition of chaos in the sense of Li and Yorke is now introduced.

Definition 1.5 (Li and Yorke [55]). Let I be an interval of the real line and f : I → I a

continuous function. f is chaotic if f has an uncountable scrambled set S ⊂ I which satisfies

the following condition:

(i) for every p, q ∈ S with p 6= q,

lim sup
n→∞

|fn(p)− fn(q)| > 0 and lim inf
n→∞

|fn(p)− fn(q)| = 0;

(ii) for every p ∈ S and periodic point q ∈ I,

lim sup
n→∞

|fn(p)− fn(q)| > 0.

Li and Yorke defined only “chaos” on an interval, Huang and Ye extended the interval to

general metric space.

Definition 1.6 ([35]). Let (X, f) be a dynamical system, where X is a compact metric space

with metric d, and f : X → X is continuous and surjective. A subset S ⊂ X is a scrambled

set (for f), if any different points x and y from S are proximal and not asymptotic:

lim sup
n→∞

d(fn(x), fn(y)) > 0 and lim inf
n→∞

d(fn(x), fn(y)) = 0.

The function f is said to be chaotic in the sense of Li-Yorke, if there exists an uncountable

scrambled set.

Li and Yorke proved that if a map has a periodic point with period 3, then the map

has Li-Yorke chaos and implies the existence of all other periods. (Detailed discussions see

Appendix A)

Theorem 1.7 ([21, 55]). Let f : R → R be continuous. If f has a periodic point with period 3,

then

(1) for every k = 1, 2, . . ., there is a periodic point having period k;

(2) f is chaotic in the sense of Li-Yorke.

Chaos in the sense of Devaney is stronger than that in the sense of Li-Yorke. The rela-

tionship is given by the following two theorems.

Theorem 1.8 ([46]). Suppose f : I → I is continuous, where I is an interval on the real line.

If f is topologically transitive (in the sense of Devaney’s chaos), then it is Li-Yorke chaotic.

4



Theorem 1.9 ([35, 90]). Let V be a compact set of a metric space (X, d), containing infinitely

many points. If a map f : V → V is continuous, surjective, and chaotic in the sense of

Devaney on V , then it is chaotic in the sense of Li-Yorke.

Remark 1.10. The converse statement is incorrect [46].

Various versions of “chaos”, such as those defined by Diamond, Marotto, Martelli, Robin-

son, Wiggins and many others, also exist. Detailed discussions have been presented else-

where [22, 23, 57, 59, 74, 98].

1.3 Topological Entropy

Definition 1.11 ([53]). Let X be a sample space where X contains n events w1, w2, ..., wn with

probability p1, p2, ..., pn, respectively. The Shannon’s entropy with respect to X is defined

by

H(p1, ..., pn) = −
n∑

i=1

pi log(pi).

The following holds.

Theorem 1.12 ([53]). In the above definition,

H

(
1

n
, ...,

1

n

)

= logn

= max

{

H(p1, ..., pn) : pi ≥ 0,
n∑

i=1

pi = 1

}

.

Based on studies [53, 54], conducted in 1948, Shannon introduced a definition of entropy

for use in information theory to establish the concept of “uncertain quantities” [83]. Later,

in 1958, Kolmogorov used Shannon’s entropy to formalize the entropy on dynamical systems

and opened the door to established the foundation of ergodic theory. This “Kolmogorov’s

entropy” was improved and revised by his student Sinai in 1959. The revised version is called

“Kolmogorov-Sinai entropy” or “Measure-theoretic entropy”.

Definition 1.13 ([53, 75]). Suppose (X,Σ, µ) is a probability measure space, that is, X is

a set, Σ is a σ-algebra of subsets of X, and µ is a probability on Σ. Let f : X → X be a

measurable function. Arbitrarily choose a finite partition Ā = {A1, ..., An}, that is, Ai ∈ Σ,

Ai ∩ Aj = ∅, and
n⋃

i=1

Ai = X. The entropy of f with respect to Ā is defined by

hµ

(
f, Ā

)
= lim sup

n→∞

H

(

f−n(Ā)|
n−1∨

i=0

f−i(Ā)

)

,

5



where Ā∨B̄ =
{
A ∩B : A ∈ Ā, B ∈ B̄

}
, and Ā and B̄ are finite partitions. The Kolmogorov-

Sinai entropy of f is defined by

hµ(f) = sup
{
hµ(f, Ā) : Ā is the finite partition of X

}
.

Remark 1.14. If f is measure-preserving transformation, then

hµ(f, Ā) = lim sup
n→∞

H

(

f−n(Ā)|
n−1∨

i=0

f−i(Ā)

)

= lim
n→∞

H

(

f−n
(
Ā
)
|
n−1∨

i=0

f−i
(
Ā
)

)

= lim
n→∞

1

n
H

(
n−1∨

i=0

f−i(Ā)

)

for any finite partition Ā of X. Although this equation is not more easily understood or

interpreted than the foregoing definition, its equivalent condition can be more conveniently

computed [53].

Modeled after Kolmogorov-Sinai entropy, “topological entropy” was defined by Adler,

Konhein, and McAndrew for topologically conjugate invariance in 1965 [2].

Definition 1.15 ([2, 53, 54]). Suppose (X, T ) is a dynamical system, where X is a compact

Hausdorff space and T : X → X is a continuous map. For an open cover Ā of X, let N(Ā)

be defined as the smallest cardinality of a subcover of Ā. If Ā and B̄ are open covers of X,

then their common refinement is defined as Ā ∨ B̄ = {A ∩ B : A ∈ Ā, B ∈ B̄}. Let

n∨

i=0

T−i(Ā) = Ā ∨ T−1(Ā) ∨ · · · ∨ T−(n−1)(Ā),

where T−k(Ā) = {T−k(A) : A ∈ Ā}, and define

htop(T, Ā) = lim
n→∞

1

n
logN

(
n∨

i=0

T−i(Ā)

)

.

The topological entropy of (X, T ) is defined as the supremum

htop(T ) = sup
{
htop(T, Ā) : Ā is the finite open cover of X

}
.

Remark 1.16. N(Ā) is finite because of compactness, and the limit exists for any open cover

Ā.

If the space is compact metric, then the following definition is equivalent to the above

notion [12] and it is more useful [4].

6



Definition 1.17 ([12, 15, 74]). Let f : X → X be a continuous map on the space X with

metric d. A set S ⊂ X is called (n, ǫ)-separated for f for n a positive integer and ǫ > 0

provided that for every pair of distinct points x, y ∈ S, x 6= y, there is at least one k with

0 ≤ k < n such that d(fk(x), fk(y)) > ǫ. The number of different orbits of length n (as

measured by ǫ) is defined by

r(n, ǫ, f) = {#(S) : S ⊂ X is a (n, ǫ)-separated set for f },

where #(S) is the cardinality of elements in S. Let

htop(ǫ, f) = lim sup
n→∞

log(r(n, ǫ, f))

n
,

and define the topological entropy of f as

htop(f) = lim
ǫ→0,ǫ>0

htop(ǫ, f).

Remark 1.18. Here, only two definitions are introduced. See other references for topological

entropy [9, 13, 29, 96].

Example 1.19 ([74]). Let f : S1 → S1 have a covering map F : R → R given by F (x) = 2x.

This map is called the doubling map. The distance on S1 is the one inherited from R by taking

x to x mod 1. Therefore, points near 1 are close to points near 0. Two points x and y stay

within ǫ of each other for n−1 iterations of f if and only if |x−y| ≤ ǫ2−(n−1) (as points in R).

If points are separated by a distance of exactly ǫ2−(n−1) in [0, 1), then the maximum number

of points is [ǫ−12n−1]. However, the last point to the right is close to the first point on the left

when considered modulo 1 in S1, so there are [ǫ−12n−1] − 1 points in S1. These points can

be spread apart slightly to make them (n, ǫ)-separated. Therefore, r (n, ǫ, f) = [ǫ−12n−1] − 1,

where [a] is the integer part of a. Then,

htop(ǫ, f) = lim sup
n→∞

log ([ǫ−12n−1]− 1)

n

= lim sup
n→∞

log (ǫ−1) + (n− 1) log(2)

n

= log(2)

for any ǫ > 0, so htop(f) = log(2).

The following theorem relates the topological entropy to the Kolmogorov-Sinai entropy:

Theorem 1.20 ([24]). If K is compact and f : K → K is continuous, then htop(f) =

sup{hµ(f) : µ is an ergodic measure with respect to f }.

7



Remark 1.21. An invariant measure µ satisfies the equation µ(f−t(K)) = µ(K), t > 0.

An invariant probability measure µ may be decomposable into several pieces, each of which is

again invariant. If it is not so decomposable, then it is said to be ergodic.

Once the topological entropy has been computed, whether systems are chaotic or not is

known.

Theorem 1.22 ([51]). If a continuous map of the interval has positive topological entropy,

then it is chaotic according to the definition of Li and Yorke.

Remark 1.23 ([28, 51, 92]). The converse of this theorem is incorrect. Xiong [101] and

Smı́tal [92] given counterexamples.

In general metric space, a similar result is obtained:

Theorem 1.24 ([10]). If the dynamical system (X, T ) has positive topological entropy, where

X is compact metric space and T is surjective and continuous, then it is chaotic in the sense

of Li and Yorke.

Consider the continuous map on the compact interval, the relationship between positive

topological entropy and Devaney’s chaos is equivalent:

Theorem 1.25 ([48, 50, 51, 63]). Let f be a continuous map of a compact interval I to itself.

f has positive topological entropy if and only if f is chaotic in the sense of Devaney.

Let f : X → X and g : Y → Y be two maps. f and g are said to be topologically

conjugate if there exists a homeomorphism h : X → Y such that h ◦ f = g ◦ h. The

homeomorphism h is called a topological conjugacy. Mappings that are topologically

conjugate have completely equivalent dynamics [21].

Adler, Konhein, and McAndrew established “topological entropy” for invariant of topo-

logically conjugate, such that if two maps are topologically conjugate, then their topological

entropies are equal as follows:

Theorem 1.26 ([2, 54, 74]). Let f : X → X and g : Y → Y be two continuous maps, where

X and Y are invariant compact sets under f and g, respectively. That is, f(X) ⊂ X and

g(Y ) ⊂ Y . If f and g are topologically conjugate, then htop(f) = htop(g).

This basic result that is used to help calculate the entropy, relates the entropy of a map

f to a power fk of f.

Theorem 1.27 ([74]). Assume f : X → X is uniformly continuous or X is compact, and k

is an integer with k ≥ 1. Then htop(f
k) = k · htop(f).
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1.4 Lyapunov Exponent

The Lyapunov exponent is usually computed to measure the exponential rate at which nearby

orbits are moving apart. It is used in a diagnostic method that has been proven to be the

most useful dynamical diagnostic method for chaotic systems in chaos theory [1, 74, 99, 100].

Therefore, an expression for the growth rate of the derivative of a function f : R → R as the

number of iterations increases is sought. Let x0 be an initial value and δ > 0 (δ can sufficiently

small). By Taylor’s expansion [74], |fn(x0 + δ) − fn(x0)| ≈ |(fn)′(x0)|δ. If |(fn)′(x0)| ∼ Ln,

where L is a linear function, then
1

n
log(|(fn)′(x0)|) ∼ log(L).

Definition 1.28 ([74]). Let f : R → R be a C1 function. For each point x0, define the

Lyapunov exponent of x0, λ(x0), as follows:

λ(x0) = lim sup
n→∞

1

n
log(|(fn)′(x0)|)

= lim sup
n→∞

1

n

n−1∑

k=0

log(|f ′(xk)|),

where xj = f j(x0).

Remark 1.29. Oseledec [68] showed that the limit exists for almost all points.

Remark 1.30. Assume λ(x0) > 0, which implies that

log(|(fn)′(x0)|) ≈ nλ(x0) or |(fn)′(x0)| ≈ enλ(x0) = L(x0)
n,

where L(x0) = eλ(x0) > 1, and

|fn(x0 + δ)− fn(x0)| ≈ |(fn)′(x0)|δ ≈ L(x0)
nδ → ∞

as n → ∞. Therefore, a positive Lyapunov exponent means sensitive dependence on initial

conditions, this result is very important and useful since it enables a single quantity to be

computed to determine whether a chaotic process is highly sensitive to initial conditions [74,

100].

In the case of m variables with x ∈ Rm, the derivative
df

dx
is replaced by the Jacobian

matrix, which is evaluated at x: Dxf = (
∂fi
∂xj

), and is called the spectrum of Lyapunov

exponents [24]. In a deterministic system, the positivity of the largest Lyapunov exponent

is a necessary but not sufficient condition to guarantee the existence of chaos. For example,

suppose f : R → R is defined by f(x) = 2x, it is sensitive dependence on initial conditions,

but it is not transitive. However, fulfillment of this condition is often sufficient [100].
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Katok proved the following theorem, which relates the Lyapunov exponent to topological

entropy:

Theorem 1.31 ([41]). If a C1+α-diffeomorphish f , α > 0, of a compact manifold has a

Borel probability invariant continuous ergodic measure with non-zero Lyapunov exponents,

then htop(f) > 0. (That is, the map is chaotic in the sense of Devaney and of Li and Yorke).

Remark 1.32.

(1) X is called a compact manifold if it is a manifold that is compact as a topological space,

where the manifold is a second countable Hausdorff space that is locally homeomorphic

to Euclidean space;

(2) f : X → X is a Cr-diffeomorphish if f is a Cr-homeomorphism such that f−1 is also Cr.

Pesin also proved the relationship in other situations:

Theorem 1.33 ([24]). If ρ is an invariant ergodic measure with compact support under the

diffeomorphism f of a finite-dimensional manifold and ρ has smooth density with respect to

the Lebesgue measure, then htop(ρ) =
∑

positive λi.

1.5 Strange Attractor

Roughly, an attractor is an invariant set to which all nearby orbits converge. Hence, attractors

are the sets that one “sees” when a dynamical system is iterated on a computer [21]. First,

the following is defined:

Definition 1.34 ([21, 74]). A compact region N ⊂ M is called a trapping region for f if

f(N) ⊂ int(N), where M is a (smooth) compact manifold and f : M → M is a diffeomor-

phism.

Since f(N) is compact and f(N) ⊂ int(N), the sets fn(N) are all compact and nested

for k ≥ 0. Therefore

Λ =
⋂

n≥0

fn(N)

is a compact, nonempty set. Λ is the set of points whose full orbits, both forward and

backward, remain in N for all time [21].

Definition 1.35 ([21, 74]). A set Λ is called an attracting set for f if there exists a trapping

region N such that Λ =
⋂

k≥0

fk(N).
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Remark 1.36. Λ is an invariant set [21].

Definition 1.37 ([21, 74]). An ǫ-chain or a pseudo-orbit of length n from x to y for a map

f is a sequence {x = x0, ..., xn = y} such that for all 1 ≤ j ≤ n, d(f(xj−1), xj) < ǫ. Let X be

a set. The ǫ-chain limit set of X for f is the set

Ω+
ǫ (f) = {x ∈ X : ∀n ≥ 1, ∃ y ∈ X and ǫ-chain from y to x of length greater than n}.

Then, the forward chain limit set of X is the set

Ω+(f) =
⋂

ǫ>0

Ω+
ǫ (f).

Finally, the chain recurrent set of f is the set

R(f) = {x : there exists an ǫ-chain from x to x for all ǫ > 0}.

Definition 1.38 ([74]). The following relation ∼ on R(f) is defined: x ∼ y if y ∈ Ω+(x) and

x ∈ Ω+(y). Two such points are called chain equivalent, and the relation is an equivalence

relation. The equivalence classes are called the chain components of R(f). If f has a single

chain component on an invariant set Λ, then f is said to be chain transitive on Λ.

Definition 1.39 ([74]). A set Λ is called an attractor if it is an attracting set and f |Λ is

chain transitive, so Λ ⊂ R(f).

Remark 1.40. In the above definition,

(1) Sometimes, f |Λ may wish to be assumed to be topologically transitive [74].

(2) Other definitions of attractors are in common use [21, 24, 62, 64, 76].

The omega limit set ω(x) of a point x ∈ M is the collection of all accumulation points for

the sequence {x, f(x), f 2(x), ...} of successive images of x. If some metric for the topological

space M is chosen, then ω(x) can also be described as the smallest closed set S such that the

distance from fn(x) to the nearest point of S tends to zero as n → ∞. A set Λ is said to

be the likely limit set if it is the smallest closed of M with ω(x) ⊂ Λ for every point x ∈ M

outside of a set of measure zero [28, 62]. Interestingly, the following properties are identified:

Theorem 1.41 ([62]). This likely limit set Λ is well defined and is an attractor for f . In

fact, Λ is the unique maximal attractor, which contains all others.

Theorem 1.42 ([62]). If S is a compact set of positive measure with the property with f(S) ⊂
S, then S necessarily contains at least one attractor.
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Now, the definition can be presented:

Definition 1.43 ([74]). An invariant set Λ is called a strange attractor if it is an attractor

and f has positive Lyapunov exponent on Λ (meaning that it has sensitive dependence on initial

conditions).

1.6 Snapback Repeller

Generally, proving that a dynamical system has chaotic behavior is difficult. Most techniques

for making such a determination involve computer simulations, which apply the arithmetic of

the Lyapunov exponent, find a period doubling bifurcation, and perform other tasks that are

associated with numerical dynamical systems. However, obtaining such results by rigorous

mathematical proofs is difficult.

A dynamical system with diffeomorphism has chaotic behavior that can be proved by using

known methods, such as the existence of Smale horseshoe, transversal homoclinic orbits, or

heteroclinic orbits. Noninvertible maps have chaotic behavior that can be identified by the

existence of snapback repellers. However, for general focus problems, applying the above

methods without computer-assistance is difficult. In most cases, the verification must be

carried out with the aid of a computer and many investigations on the verification of chaotic

behavior using computer-assisted techniques for continuous dynamical systems and discrete

dynamical systems have been published [69].

In 1978, Marotto defined the snapback repeller. The existence of snapback repellers is

adopted to determine whether a system is chaotic or not.

Definition 1.44 ([57]). Let p∗ ∈ Rn, Br(p
∗) be the open ball in Rn of radius r centered at

the point p∗, and Df(p∗) be the Jacobi matrix of f evaluated at p∗. Suppose f : Rn → Rn

be differentiable in Br(p
∗), the point p∗ is an expanding fixed point of f in Br(p

∗) if

f(p∗) = p∗ and all eigenvalues of Df(x) exceed 1 in norm for all x ∈ Br(p
∗).

Definition 1.45 ([57]). Suppose p∗ is an expanding fixed point of f in Br(p
∗) for some r > 0.

p∗ is said to be a snapback repeller of f if there exists a point x0 ∈ Br(p
∗) with x0 6= p∗

and some positive integer m such that fm(x0) = p∗ and det(Dfm(x0)) 6= 0.

The surprising main related result [57] is the following theorem, proven formerly by

Marotto in 1978.

Theorem 1.46 ([57]). If f : Rn → Rn has a snapback repeller, then f is chaotic in the sense

of Li and Yorke.
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The above theorem states that if snapback repellers can be found, then the system ex-

hibits Li-Yorke’s chaos. However, there exists an error in Marotto’s paper [57]. Proving

Theorem 1.46, Marotto used the statement that if

(A): f satisfies that “expanding fixed point” condition in Definition 1.44, then

(B): there exists a constant s > 1 such that ‖f(x)− f(y)‖ > s‖x− y‖ for all x, y ∈ Br(p
∗).

But, (A) does not imply (B) (the converse is true). Chen, Hsu & Zhou [16] and Li &

Chen [49] gave two counterexamples to point out that the above statement is not true. As a

result, the proof of Theorem 1.46 is in error.

In order to modify Marotto’s definition and theorem, many authors like Shi, Chen, and

Yu [87, 89, 90] proposed their improved version of Definition 1.44, Definition 1.45, and Theo-

rem 1.46. Furthermore, Marotto also redefined the definition of snapback repeller as follows.

Definition 1.47 ([58]). Let f : Rn → Rn be differentiable in Br(p
∗) and p∗ be a fixed point of

f with all eigenvalues of Df(p∗) exceeding 1 in norm, and there exists a constant s > 1 such

that ‖f(x)− f(y)‖ > s‖x− y‖ for all x, y ∈ Br(p
∗). Suppose there exists a point x0 ∈ Br(p

∗)

with x0 6= p∗ and some positive integer m such that fm(x0) = p∗ and det(Dfm(x0)) 6= 0.

Then p∗ is called a snapback repeller of f .

Remark 1.48.

(1) The result of Theorem 1.46 remains essentially unchanged, as long as one refers to the

above revised definition [58].

(2) Actually, Definition 1.45 and Definition 1.47 are all true and have no problems in above

discussions in one-dimensional space R which can be verified by applying the mean value

theorem [87]. In principle this work still uses original definition of snapback repeller

(Definition 1.45).

(3) In one-dimensional space R, the Jacobi matrix Df(p∗) = f ′(p∗) and

det(Dfm(x0)) = (fm)′(x0)

= f ′(fm−1(x0)) · f ′(fm−2(x0)) · · ·f ′(f(x0)) · f ′(x0)

= f ′(xm−1) · f ′(xm−2) · · ·f ′(x1) · f ′(x0),

where xj = f j(x0), 1 ≤ j ≤ m− 1.
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Definition 1.49 ([87, 89]). Let snapback repeller p∗, f , m, and x0 be the same as Defini-

tion 1.47. p∗ is said to be a nondegenerate snapback repeller of f if there exist positive

constants µ and δ0 such that Bδ0(x0) ⊂ Br0(p
∗) and ‖fm(x) − fm(y)‖ ≥ µ‖x − y‖ for all

x, y ∈ Bδ0(x0); p∗ is called a regular snapback repeller of f if f(Br0(p
∗)) is open and

there exists a positive constant δ∗0 such that Bδ∗
0
(x0) ⊂ Br0(p

∗) and p∗ is an interior point of

fm(Bδ(x0)) for any positive constant δ ≤ δ∗0.

The snapback repeller in Marotto’s theorem is nondegenerate and regular. If f is contin-

uously differentiable in some neighborhood of xj and det(Df(xj)) 6= 0 with 0 ≤ j ≤ m − 1,

then f is chaotic in the sense of Devaney.

Theorem 1.50 ([56, 87, 88, 89, 90]). Let snapback repeller p∗, f , m, and x0 be the same as

Definition 1.47. If f is C1 in some neighborhood of xj, det(Df(xj)) 6= 0, 0 ≤ j ≤ m− 1, and

f has a snapback repeller p∗, then f is chaotic in the sense of Devaney.

Remark 1.51. Chen, Hsu and Zhou [16] proved that if f : Rn → Rn is C1 and it has a

snapback repeller, then f is chaotic in the sense of Devaney. The ecological model in this

paper is not C1, hence we prefer using Theorem 1.50 to using the theorem of Chen, Hsu and

Zhou.

Based on Devaney’s chaos and Li-Yorke’s chaos in Section 1.2, this work establishes a

relational graph of chaos and relative checking methods (Figure 6). In Theorem 1.22, Theo-

rem 1.24, and Theorem 1.25. A continuous map on a compact interval (or a surjective and

continuous map on a compact matric space) has positive topological entropy implying that

the map has both Devaney’s chaos and Li-Yorke’s chaos. At the same time, in Theorem 1.46

and Theorem 1.50, if a map could find a snapback repeller, then it also exhibits Devaney’s

chaos and Li-Yorke’s chaos.

In Remark 1.30, a positive Lyapunov exponent exhibits only sensitivity but transitivity,

but in Theorem 1.31, if a C1+α-diffeomorphism map (α > 0) of a compact manifold has a

Borel probability invariant continuous ergodic measure and a positive Lyapunov exponent,

then its topological entropy is positive. Furthermore, it exhibits both Devaney’s chaos and

Li-Yorke’s chaos. On the other hand, in the hypothesis of Theorem 1.33, it has a positive

Lyapunov exponent when the map has a positive topological entropy. Furthermore, it is a

strange attractor when the map has a positive Lyapunov exponent and an attractor.
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Figure 1: Relational graph of chaos and relative checking methods.

2 Ecological Model

Many trees in forests reproduce intermittently, rather than at a constant rate [79]. A number

of flowers and fruits are produced in a particular year (called a mast year) but very little

reproductive activity occurs during several subsequent years until the next mast year. This

“synchronous production of highly variable amount of seeds from year to years by a population

of plants” is called masting [79]. Perfect periodicity in reproduction is rarely observed, and

the intervals between masting are rather irregular.

Several explanations of the masting phenomenon have been proposed [3, 5, 6, 17, 19, 25,

26, 27, 32, 36, 37, 39, 40, 43, 44, 45, 67, 72, 85, 91, 93, 94]. They involve environmental

fluctuations, weather conditions, swamping predators, the weight of young deer, bird popu-

lations, the reproductive success of bears, increased efficiency of wind pollination, attraction

to seed distributions, cue masting, and the dispersing animals. However, most of these hy-

potheses explain neither the mechanism of masting nor the mechanism by which the timing

of reproduction varies among individuals [79].
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2.1 Isagi’s Resource Budget Model

Figure 2: Resource budget model of an individual plant [38].

Isagi, Sugimura, Sumidaa and Ito proposed a simple model of the mechanism of masting

that was based on the resource budget of an individual tree [38]. They assumed that a constant

amount of photosynthate is produced by each tree annually, given that the environmental

conditions are constant from year to year. In Figure 2, photosynthate (PS) is consumed for

the growth and the maintenance of the tree; any that is not used by the plant is stored in a

pool within the tree. The amount of PS was constant from year to year. In one year when

the accumulated PS exceeded a threshold (LT ), the amount of accumulated PS minus LT was

used for flowering, and is regarded as the cost of flowering Cf . Hence, whenever the amount

of photosynthate accumulated in preceding years was large, the tree was inclined to flower

more, and the amount of flowering in a year also depended on the amount of photosynthetic

products that had accumulated in the previous years. The amount of accumulated PS was

decreased to LT after the flowering. The flowers were pollinated and bore fruits at a cost of

Ca. The ratio Ca/Cf was assumed to be constant RC . After the fruiting had been completed,

the amount accumulated was LT −Ca = LT −RCCf . In the model, PS accumulates annually,

until the tree flowers again when the amount exceeds LT .

Isagi et al. performed several numerical simulations [38], which RC was an important role

in their model. In Figure 3, when RC < 1, the amount of seed production was constant every

year. When RC ≥ 1, mast years appeared. A higher RC value was associated with larger
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intervals between mast years, and therefore, a higher rate of crop failure. When RC = 1, the

autocorrelation values between seed production and lagged values of the prior seed production

reciprocated between two specific values. In this case, the mast and non-mast years are

predictable because the interval is regular. As RC increases, the model is less able to predict

masting.

Figure 3: Time series of Ca with various Rcs. For all plates, Ps, LT , and Cf(0) were 3.0, 6.0,

and 2.5, respectively. Results were excluded for the initial 50 years [38].

2.2 Satake’s Generalized Resource Budget Model

Let S(t) be the amount of energy reserved at the beginning of year t. If the sum S(t) + PS is

below the threshold LT , then the tree does not reproduce and saves all of its reserved energy

for the following year. If the sum exceeds LT , then the tree uses energy for flowering.

Isagi et al. assumed that the energy expenditure for flowering exactly equals the excess,

S(t)+PS−LT . Satake and Iwasa generalized Isagi’s model, the amount of energy expenditure

for flowering is proportional to the excess, a(S(t) + PS − LT ), where a is a positive constant.

Flowering trees may be pollinated and set seeds and fruits. The cost for fruits is assumed to
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be proportional to the cost of flowers, and is expressed as RCa(S
(t) + PS − LT ). After the

reproductive stage, the energy reserves of the tree have fallen to

S(t) +PS − a(S(t) +PS −LT )−RCa(S
(t) +PS −LT ) = S(t) +PS − a(RC +1)(S(t) +PS −LT ).

Therefore,

S(t+1) =







S(t) + PS, if S(t) + PS ≤ LT ,

S(t) + PS − a(RC + 1)(S(t) + PS − LT ), if S(t) + PS > LT .
(1)

Define the non-dimensionalized variable Y (t) = (S(t) + PS − LT )/PS, equation (1) is now

rewritten as

Y (t+1) =







Y (t) + 1, if Y (t) ≤ 0,

−kY (t) + 1, if Y (t) > 0,
(2)

where k = a(RC + 1) − 1. The parameter k denotes the degree of resource depletion after a

reproductive year divided by the excess amount of energy in reserve before that year, and is

called the depletion coefficient [79]. Notably, the quantity Y (t) is positive if and only if the

tree exhibits some reproductive activity in year t.

After rescaling, the dynamics (2) include only a single parameter k. Other parameters

such as PS or LT do not affect the essential features of the dynamics if k remains the same.

In Isagi’s model, a = 1 is assumed and the depletion coefficient is the same as the ratio of the

fruiting cost to the flowering cost, k = RC . Since the maximum value of Y (t+1) equals one

when Y (t) = 0, the minimum value of Y (t+1) equals −k + 1. Thus, the possible range of Y (t)

contained in [−k + 1, 1].

3 Mathematical Analysis

The following definitions are present for convenience later:

Definition 3.1. The composition of two functions is denoted by f ◦ g(x) = f(g(x)). The

n-fold composition of f with itself recurs repeatedly in the sequel. The function f is denoted

by fn(x) = f ◦ · · · ◦ f(x), where n is an iterative number.

Now, Satake’s model (2) is analyed mathematically.

Proposition 3.2. If k ≤ −1, then Y (t) tends to infinity.
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Proof. By definition of Y , if Y (t) ≤ 0, then there exists a t̄ > 0 such that Y (t̄) ∈ (0, 1]. Let

Y0 = Y (t̄) and Ym = Y (t̄+m). When k = −1, Ym = Y0 +m for all m > 0 is to be shown. When

m = 1, Y1 = −kY0 + 1 = Y0 + 1. Suppose Yj = Y0 + j, since Yj > 0,

Yj+1 = −kYj + 1 = (Y0 + j) + 1 = Y0 + (j + 1).

By mathematical induction, Ym = Y0 +m for all m > 0. Then,

lim
m→∞

Ym = lim
m→∞

Y0 +m = ∞.

When k < −1, since k < −1 and −k > 1, Ym > 0 for all m > 0. Next, Ym = (−k)mY0 +

(−k)m−1+ · · ·+(−k)+1 for all m > 0 is to be shown. Now, Y1 = −kY0+1 is known. Suppose

Yj = (−k)jY0 + (−k)j−1 + · · ·+ (−k) + 1, since Yj > 0,

Yj+1 = −kYj + 1

= −k
[
(−k)jY0 + (−k)j−1 + · · ·+ (−k) + 1

]
+ 1

= (−k)j+1 + (−k)j + · · ·+ (−k)2 + (−k) + 1.

Again, by mathematical induction, Ym = (−k)mY0 + (−k)m−1 + · · ·+ (−k) + 1 for all m > 0,

and

Ym = (−k)mY0 + (−k)m−1 + · · ·+ (−k) + 1 = (−k)mY0 +
1− (−k)m

1− (−k)
. (3)

Hence,

lim
m→∞

Ym = lim
m→∞

[

(−k)mY0 +
1− (−k)m

1 + k

]

= ∞.

Proposition 3.3. If −1 < k < 1, then Y (t) converges to the stable equilibrium
1

k + 1
.

Proof. When 0 < k < 1, since Y0 ∈ (0, 1], Y1 = −kY0 + 1 ∈ (0, 1). Assume Yj ∈ (0, 1),

Yj+1 = −kYj + 1 is also contained in (0, 1). By mathematical induction, Ym ∈ (0, 1) for all

m > 0. Since

Ym = (−k)mY0 + (−k)m−1 + · · ·+ (−k) + 1 = (−k)mY0 +
1− (−k)m

1− (−k)

and 0 < k < 1, | − k| < 1, let m tend to infinity,

lim
m→∞

Ym =
1

1 + k
.

If k = 0, Ym = 1 for all m > 0, then

lim
m→∞

Ym = 1 =
1

1 + k
.
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When −1 < k < 0, 0 < −k < 1, Y1 = −kY0+1 > 0. Suppose Yj > 0, now Yj+1 = −kYj+1 > 0

because −k > 0 and Yj > 0. Hence, Ym > 0 for all m > 0. From (3),

lim
m→∞

Ym = lim
m→∞

[

(−k)mY0 +
1− (−k)m

1− (−k)

]

=
1

1 + k
.

Since k is the depletion coefficient, k > 0 can be assumed. Therefore, from Proposition 3.3,

if 0 < k < 1, then the tree reproduces every year at a constant rate.

Proposition 3.4. If k = 1, then there exists a number of periodic points with period 2

corresponding to different initial conditions.

Proof. By hypothesis Y0 ∈ (0, 1],

Y1 = −kY0 + 1 = −Y0 + 1 ∈ [0, 1).

If Y1 = 0, then Y2 = 1 and Y3 = 0 = Y1. If Y1 ∈ (0, 1), then Y2 = −Y1+1 = −(−Y0+1)+1 =

Y0.

Hence, if k = 1, there are a number of two-point cycles corresponding to different initial

conditions. (Isagi’s model satisfies Proposition 3.3 and Proposition 3.4.)

In one study [79], Satake and Iwasa identified chaos by finding a positive Lyapunov ex-

ponent if k > 1. Of course, some authors regard the positive Lyapunov exponent as the

definition of chaos because sensitivity is the most important property of chaotic systems and

is easily observed. However, a positive Lyapunov exponent means only that the model is sen-

sitive dependence on initial conditions. The goal here is to prove chaos by identifying dense

periodic subsets and transitivity rather than sensitivity (as in the chaos of Devaney). In this

work, the model is proven to exhibit Devaney’s chaos by identifying snapback repellers.

Theorem 3.5. If k >

(

1

2
+

√

23

108

)1/3

+

(

1

2
−
√

23

108

)1/3

≈ 1.3247, then the system is

chaotic in Devaney’s sense.

Proof. First, p∗ =
1

1 + k
is a fixed point of Y ; let g = Y −1. Since |g′(p∗)| < 1, there exists

r > 0 with U = (p∗ − r, p∗ + r), U ⊂ (0, 1) such that lim
m→∞

gm(x) = p∗ if x ∈ U . Choose

g(p∗) =
−k

1 + k
< 0 and g2(p∗) =

2k + 1

k2 + k
> 0.

Let g(p∗) > −k + 1 and check g2(p∗) < 1, then k2 − k − 1 > 0. Solve the inequality,

k >
1 +

√
5

2
≈ 1.6180 or k <

1−
√
5

2
≈ −0.6180.
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Choosing k >
1 +

√
5

2
allows j to be found such that

gj(p∗) > 0 for all j ≥ 3

by the definition of Y . Computing |gj(p∗)− p∗|, yield |g(p∗)− p∗| = 1 =
1

k0
, and

|gj(p∗)− p∗| = 1

kj−1

for all j ≥ 2 by mathematical induction. Hence, |gj(p∗) − p∗| decreases to 0 as j tends to

infinity. That is, for this r, there exists a natural number J > 0 such that

gj(p∗) ∈ U as j ≥ J.

Fix J and let x0 = gJ(p∗), then x0 ∈ U and Y J(x0) = p∗. Since |Y ′(p)| = k > 1 for all

p ∈ U , and (Y J)′(x0) 6= 0, p∗ is a snapback repeller of Y .

Next, choose the (upper-right) fixed point p∗∗ =
2

1 + k
of Y 2. Suppose h = (Y 2)−1 and

choose

h(p∗∗) <
1

k
and h2(p∗∗) >

1

k
.

Let

h(p∗∗) > −k + 2 and h2(p∗∗) < 1,

yielding

k4 − k3 − k2 + 1 = (k − 1)(k3 − k − 1) > 0.

In Appendix B, the cubic equation is solved exactly. Hence, solving this inequality,

k >

(

1

2
+

√

23

108

)1/3

+

(

1

2
−
√

23

108

)1/3

≈ 1.3247 or k < 1.

Selecting k >

(

1

2
+

√

23

108

)1/3

+

(

1

2
−
√

23

108

)1/3

, yields j such that

hj(p∗∗) >
1

k
for all j ≥ 3

by the definition of Y 2. By mathematical induction,

|hj(p∗∗)− p∗∗| = k − 1

kj+1

for all j ≥ 1. Therefore, |hj(p∗∗)− p∗∗| is decreasing and

lim
j→∞

|hj(p∗∗)− p∗∗| = lim
j→∞

k − 1

kj+1
= 0. (4)
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Since |h′(p∗∗)| < 1, there exists r > 0 with V = (p∗∗ − r, p∗∗ + r), V ⊂ (
1

k
, 1) such that

lim
m→∞

hm(x) = p∗∗ if x ∈ V.

For this r, from (4), there exists a natural number J ′ > 0 such that

hj(p∗∗) ∈ V as j ≥ J ′.

Fix this J ′, let y0 = hJ ′

(p∗∗), then y0 ∈ V and (Y 2)J
′

(y0) = p∗∗. Since |(Y 2)′(p)| = k > 1

for all p ∈ V , and
[
(Y 2)J

′
]′
(y0) 6= 0, p∗∗ is a snapback repeller of Y 2.

Finally, Y 2 has an (upper-right) snapback repeller
2

1 + k
as

k >

(

1

2
+

√

23

108

)1/3

+

(

1

2
−
√

23

108

)1/3

.

By Theorem 1.50, Y 2 is chaotic in the Devaney sense. Then, from Theorem 1.25, htop(Y
2) > 0.

Since htop(Y
2) = 2 · htop(Y ) by Theorem 1.27, htop(Y ) > 0. From Theorem 1.25, Y is chaotic

in Devaney’s sense as

k >

(

1

2
+

√

23

108

)1/3

+

(

1

2
−
√

23

108

)1/3

.

Remark 3.6. Let k0 =
1 +

√
5

2
≈ 1.6180 and k1 =

(

1

2
+

√

23

108

)1/3

+

(

1

2
−
√

23

108

)1/3

≈

1.3247. The term kp will be used later; it denotes the critical point with respect to the sys-

tem (2) under the iterative number 2p.

In the above theorem, the “snapback repeller method” is used when the iterative number

is two to find k1 such that the system has Devaney’s chaos when k > k1. Next, when k

is between 1 and k1, a snapback repeller is still required as the iterative number increases.

However, when iterative number of Y is odd and 1 < k ≤ k1, the system has only one fixed

point, and the “snapback repeller method” fails, but when iterative number of Y is even

but not two to the power of any natural number, Theorem 3.5 can not be improved upon.

Therefore, the last case to be considered is that in which the iterative number is two to the

power of any natural number in system (2).

Theorem 3.7. For 1 < k ≤ k1, the system is chaotic in Devaney’s sense.
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Proof. When the iterative number is two to the power of any natural number, the general

form of Y 2p can be represented to

Y 2p(x) =







L2p(x), x ∈
[

Cp−3

(
1

k

)

, Cp−2

(
1

k

)]

,

R2p(x), x ∈
[

Cp−2

(
1

k

)

, 1

]

,

where p ∈ N,

L2p(x) =







−kR2p(x) + k + 1, p is odd,

−R2p(x) + k + 1

k
, p is even,

R2p(x) = L2p−1R2p−1(x),

and j ∈ N

Cj =







Cj−1AACj−1, j is odd,

Cj−1BCj−1, j is even

with C0 = C−1BC−1, where C−1(x) ≡ x and C−2 ≡ 0. It is similar to Theorem 3.5 in which

the snapback repeller of system (2) can be found by numerical computation for p ≥ 2.

p kp

0 1.618033988749895 (≡ k0)

1 1.324717957244745 (≡ k1)

2 1.134724138401520 (≡ k2)

3 1.068297188920740 (≡ k3)

4 1.032770966453956 (≡ k4)

5 1.016443864419055 (≡ k5)

6 1.008140050503278 (≡ k6)

7 1.004160992268882 (≡ k7)

8 1.003664292317828 (C1)

9 1.003795792338565 (C2)

Table 1: When k > kp , system (2) is chaotic in Devaney’s sense as determined by numerical

computation in Matlab. The result of Y 1 and Y 2 in Theorem 3.5 is above dotted line, and

the iterative number n greater than two is below the dotted line.

Therefore, do the same steps as in Theorem 3.5 are used, and Matlab and Maple are used
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p kp

0 1.618033988749894848204586834365638117720309179805762862135448622705261

1 1.324717957244746025960908854478097340734404056901733364534015050302828

2 1.134724138401519492605446054506472840279667226382801485925149551668237

3 1.068297188920841276369429588323878282093631016920833444507611946647007

4 1.032770966441042909329492888334744856652058371140403253917031540208661

5 1.016443864059417072092280201941787277910662321454134609733959043245535

6 1.008140032021166342336675311408118208893644908964048997902342844304787

7 1.004073666388692740274952354135845754211121309836120298287534443071976

8 1.002031776333416997088893271971142972647918937489170894541068546238239

9 1.001016116350239987853959635630193675245706270323947596435520337219342

10 1.000507743074500114948189347177723859179135821018512700930688524462566

11 1.000253885799306497646948038000941319259507014651397354037337963961327

Table 2: When k > kp , system (2) is chaotic in Devaney’s sense as determined by numerical

computation in Maple. The result of Y 1 and Y 2 in Theorem 3.5 is above dotted line, and

the iterative number n greater than two is below the dotted line.

to perform numerical computation and establish the following table to determine the iteration

and the regions of k where the system is chaotic in Devaney’s sense. Including the result of

Y 1 and Y 2 in Theorem 3.5, we have Table 1 and Table 2 (see Appendix C).

The k’s regions of Y 2p are found by determining the roots of polynomial with degree

2p+1. However, in Table 1, since the limitation of computer’s binary representation only four

bytes in Matlab, the results of (C1) and (C2) have large errors. Hence, in Table 2, the

representation extended to 100 digits to reveal more accurate results in Maple.

In the numerical analysis, the speed at which a convergent sequence approaches its limit

is called the rate of convergence. A sequence kp converges linearly to L if there exists a

number M ∈ (0, 1) such that lim
p→∞

kp+1 − L

kp − L
= M , and the number M is called the rate of

convergence [81]. The sequence kp is provided in Table 2, and the value
kp+1 − L

kp − L
is presented

in Table 3. Decreasing trend point of view of k1, k1,. . . , kp in Table 2 and the result in Table 3

demonstrate that the sequence kp converges linearly to the greatest lower bound 1 at a rate of

convergence of 0.5. Hence, the system (2) is necessarily chaotic as long as k > 1. A computer
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p (kp+1 − 1)/(kp − 1)

0 0.52540469157943422769003322478664651351376649047830696763492605159518883

1 0.41489586699997431299925477792765572121310751072840368371184368616710443

2 0.50694099610638878113952349805380330694715113829015656080921537994903761

3 0.47982892061671168115785962262331467488250827627624491318606863118921204

4 0.50178148053706772234152456827894503210609893138022208365602874183801158

5 0.49501941829205944983109846713194236053127665283014625698323313050315463

6 0.50044844763510476499969515141640000606898362052434282373474249083429693

7 0.49875864627908427712294912377763749255500672526772548623019825923679742

8 0.50011230740694058357812570761070978087582752392863114119242456520421925

9 0.49968989710695575574326476020722865297776557761856147868459186532735834

10 0.50002808912057385358698942088743772381022001594295705733873847542234191

Table 3: Rate of convergence of kp.

that can manipulate a number with more digits and that has a larger memory can yield more

accurate result.

Therefore, Theorem 3.5 and Theorem 3.7 prove that Satake’s generalized resource budget

model is chaotic in the sense of Devaney when the depletion coefficient k > 1. This section

mathematically interprets the dynamics of system (2) when k > 1. The next section will

analyze Satake’s model by calculation for k > 1.

4 Numerical Simulation

The bifurcation diagram (Figure 4) of system (2) with iterations given by the same random

initial values that the theoretical results of Proposition 3.2–3.4 satisfy for k ≤ 1. For k > 1,

Theorem 3.5 and Theorem 3.7 yield rigorous mathematical and numerical results that show

that system (2) is chaotic in Devaney’s sense. However, the system (2) eventually converges

to periodic points when the initial value is a rational number and the depletion coefficient is

a natural number.

Theorem 4.1. For any initial value x ∈ Q and k ∈ N, Y (t)(x) is eventually periodic.

Proof. Without loss of generality, x ∈ Q ∩ [−k+1, 1]. Let x =
q

p
∈ Q with p ∈ N and q ∈ Z.
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Figure 4: Bifurcation diagram of a single tree. The horizontal axis represents the depletion

coefficient k, and the vertical axis represents Y (t) for many units of time t.

Suppose S =

{
j

p
∈ [−k + 1, 1]

∣
∣
∣
∣
j ∈ Z

}

, then x =
q

p
∈ S. The cardinality of S is denoted by

|S|, and

|S| =

∣
∣
∣
∣

{
j

p
∈ [−k + 1, 1]

∣
∣
∣
∣
j ∈ Z

}∣
∣
∣
∣

= k

∣
∣
∣
∣

{
j

p
∈ (0, 1]

∣
∣
∣
∣
j ∈ Z

}∣
∣
∣
∣
+ 1

= kp+ 1.

For any x =
j

p
∈ S,

Y (x) =







j

p
+ 1 =

j + p

p
, if x ∈ [−k + 1, 0],

(−k)j

p
+ 1 =

(−k)j + p

p
, if x ∈ (0, 1],

then Y (x) ∈ S, that implies Y (S) ⊆ S. Hence, Y n(x) ∈ S for all n ∈ N as x =
j

p
, and

S1 ≡ {Y 1(x), Y 2(x), . . . , Y kp+2(x)} ⊆ S.

Since S1 ⊆ S and |S| = kp + 1, |S1| ≤ |S| and there exists Y i(x) ∈ S, for some i such that
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Y i(x) = Y kp+2(x) derived from the Pigeonhole Principle. It implies that the system has a

periodic solution with the period at most kp+ 2− i.

According to Theorem 4.1, when the initial value x is a rational number and k is a natural

number, the initial value eventually converges to a periodic point independently of k. It

is no doubt that x only can be expressed using finite digits in binary representation in the

computer. Therefore, for any simulation in the computer the initial value is always a rational

number such that system (2) eventually goes to a periodic solution under k ∈ N.

Satake et al. [79] used the stochastic variable and the probability distribution density to

elucidate in which situation k is a natural number. They assumed a stable distribution to

show that the system converges to the periodic cycle {−k + 1, . . . , 0, 1} for all k is an odd

number or an even number.

In Figure 5 (Figure 4), the system indeed converges to a periodic point with period k + 1

and the periodic cycle is {−k+1, . . . , 0, 1} when k is a positive even number (see Figure 5 (a)

& (c)). This means that the even number under the computer’s binary representation lets

initial value x to carry that it converges to a “lower” period. However, the behavior is not like

“lower” periodic when k is a positive odd number (see Figure 5 (b) & (d)). Moreover, whether

the distribution that was proposed by Satake et al. is in fact stable is herein unknown. This

section proposes an well explanation.

The following theorem show that why system (2) converges to a periodic point with period

k+1, where the periodic cycle is {−k+1,−k+2, . . . , 0, 1} when k is a positive even number.

Theorem 4.2. Under a binary representation with finite digits, if k is a positive even number,

then Y (t) converges to the periodic cycle {−k + 1,−k + 2, . . . , 0, 1} with period k + 1.

Proof. Assume k = 2n, n ∈ N. Let x = 0.x1x2 · · ·xp ∈ (0, 1) with xi ∈ {0, 1}. Since

−kx+ 1 = −(2n)x+ 1 = −2(nx) + 1 = −2y + 1,

where y = nx = y1.y2 · · · ypyp+1 and a binary representation with a number of finite digits is
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Figure 5: Iterative number t v.s Y (t) when k is a positive even number. The system converges

to a lower periodic cycle with period k + 1; however, when k is a positive odd number, the

dynamics are not lower periodic. (a) k = 2; (b) k = 3; (c) k = 4; (d) k = 5.

used, only k = 2 can be considered. Hence,

Y (x) = −x1.x2x3 · · ·xp0 + 1

=







−0.x2x3 · · ·xp0 + 1, if x1 = 0,

−1.x2x3 · · ·xp0 + 1, if x1 = 1

=







0.(1− x2) · · · (1− xp−1)(2− xp) 0
︸︷︷︸

1 zero

, if x1 = 0,

−0.x2x3 · · ·xp0, if x1 = 1.

Therefore,

Y 2(x) =







−(1− x2).(1− x3) · · · (1− xp−1)(2− xp)00 + 1, if x1 = 0,

0.(1− x2)(1− x3) · · · (1− xp−1)(2− xp)0, if x1 = 1

=







−0.(1− x3) · · · (1− xp−1)(2− xp)00, if x1 = 0 and x2 = 0,

0.x3x4 · · ·xp 00
︸︷︷︸

2 zeros

, if x1 = 0 and x2 = 1,

0.(1− x2) · · · (1− xp−1)(2− xp) 0
︸︷︷︸

1 zero

, if x1 = 1,

28



Y 3(x) =







0.x3x4 · · ·xp00, if x1 = 0 and x2 = 0,

−(1− x2).(1− x3) · · · (1− xp−1)(2− xp)00 + 1, if x1 = 1

=







0.x3x4 · · ·xp 00
︸︷︷︸

2 zeros

, if x1 = 0, x2 = 0 or x1 = 1, x2 = 1,

−0.(1− x3) · · · (1− xp−1)(2− xp)00, if x1 = 1 and x2 = 0,

and

Y 4(x) = 0.x3x4 · · ·xp 00
︸︷︷︸

2 zeros

, if x1 = 1 and x2 = 0.

Hence, there exists positive integers n1 and n2 such that

Y n1(x) = 0.(1− x2) · · · (1− xp−1)(2− xp) 0
︸︷︷︸

1 zeros

and Y n2(x) = 0.x3x4 · · ·xp 00
︸︷︷︸

2 zeros

.

Suppose

Y nk(x) =







0. (1− xk+1) · · · (1− xp−1)(2− xp)
︸ ︷︷ ︸

(p−k) terms

00 · · ·0
︸ ︷︷ ︸

k zeros

, if k ∈ 2N− 1,

0. xk+1xk+2 · · ·xp
︸ ︷︷ ︸

(p−k) terms

00 · · ·0
︸ ︷︷ ︸

k zeros

, if k ∈ 2N.

Then

Y nk+1(x) = Y (Y nk(x))

=







−1. (1− xk+2) · · · (1− xp−1)(2− xp)
︸ ︷︷ ︸

(p−k−1) terms

00 · · ·0
︸ ︷︷ ︸

(k+1) zeros

+1, if k ∈ 2N− 1 and xk+1 = 0,

−0. (1− xk+2) · · · (1− xp−1)(2− xp)
︸ ︷︷ ︸

(p−k−1) terms

00 · · ·0
︸ ︷︷ ︸

(k+1) zeros

+1, if k ∈ 2N− 1 and xk+1 = 1,

−0. xk+2xk+3 · · ·xp
︸ ︷︷ ︸

(p−k−1) terms

00 · · ·0
︸ ︷︷ ︸

(k+1) zeros

+1, if k ∈ 2N and xk+1 = 0,

−1. xk+2xk+3 · · ·xp
︸ ︷︷ ︸

(p−k−1) terms

00 · · ·0
︸ ︷︷ ︸

(k+1) zeros

+1, if k ∈ 2N and xk+1 = 1

=







−0. (1− xk+2) · · · (1− xp−1)(2− xp)
︸ ︷︷ ︸

(p−k−1) terms

00 · · ·0
︸ ︷︷ ︸

(k+1) zeros

, if k ∈ 2N− 1 and xk+1 = 0,

0. xk+2xk+3 · · ·xp
︸ ︷︷ ︸

(p−k−1) terms

00 · · ·0
︸ ︷︷ ︸

(k+1) zeros

, if k ∈ 2N− 1 and xk+1 = 1,

0. (1− xk+2) · · · (1− xp−1)(2− xp)
︸ ︷︷ ︸

(p−k−1) terms

00 · · ·0
︸ ︷︷ ︸

(k+1) zeros

, if k ∈ 2N and xk+1 = 0,

−0. xk+2xk+3 · · ·xp
︸ ︷︷ ︸

(p−k−1) terms

00 · · ·0
︸ ︷︷ ︸

(k+1) zeros

, if k ∈ 2N and xk+1 = 1,
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Y nk+2(x) = Y (Y nk+1(x))

=







0. xk+2xk+3 · · ·xp
︸ ︷︷ ︸

(p−k−1) terms

00 · · ·0
︸ ︷︷ ︸

(k+1) zeros

, if k ∈ 2N− 1 and xk+1 = 0,

0. (1− xk+2) · · · (1− xp−1)(2− xp)
︸ ︷︷ ︸

(p−k−1) terms

00 · · ·0
︸ ︷︷ ︸

(k+1) zeros

, if k ∈ 2N and xk+1 = 1.

Hence, there is a nk+1 ∈ N such that

Y nk+1(x) =







0. xk+2xk+3 · · ·xp
︸ ︷︷ ︸

(p−k−1) terms

00 · · ·0
︸ ︷︷ ︸

(k+1) zeros

, if k ∈ 2N− 1,

0. (1− xk+2) · · · (1− xp−1)(2− xp)
︸ ︷︷ ︸

(p−k−1) terms

00 · · ·0
︸ ︷︷ ︸

(k+1) zeros

, if k ∈ 2N.

By mathematical induction,

Y nj (x) =







0. (1− xj+1) · · · (1− xp−1)(2− xp)
︸ ︷︷ ︸

(p−j) terms

00 · · ·0
︸ ︷︷ ︸

j zeros

, if j ∈ 2N− 1,

0. xj+1xj+2 · · ·xp
︸ ︷︷ ︸

(p−j) terms

00 · · ·0
︸ ︷︷ ︸

j zeros

if j ∈ 2N

for all j ∈ N with j ≤ p. When j = p, Y np(x) = 0. 00 · · ·0
︸ ︷︷ ︸

p zeros

. Therefore, Y (x) converges to the

periodic cycle {−k + 1,−k + 2, . . . , 0, 1}.

Moreover, when the initial x could be represented in base-β with a finite number of digits,

system (2) converges to periodic cycle {−k+1, . . . , 0, 1} under k = βm with m ∈ N (β ∈ N).

However, when k is a odd number, the following theorem explains that system (2) cannot

converge to the periodic point with periodic cycle {−k + 1,−k + 2, . . . , 0, 1}.

Theorem 4.3. Under the binary representation with a finite number of digits, if k is a positive

odd number, then Y (t) can not converge to the periodic cycle S ≡ {−k + 1,−k + 2, . . . , 0, 1}
as the initial value x /∈ S.

Proof. Let x be the same as in Theorem 4.2 and consider only k = 3. Since x 6= 0, let the

first nonzero digits be xm, 1 ≤ m ≤ p. That is,

x = 0.x1 · · ·xm−1xm 0 · · ·0
︸ ︷︷ ︸

(p−m) zeros

= 0.x1 · · ·xm−11 0 · · ·0
︸ ︷︷ ︸

(p−m) zeros

.
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Hence,

Y (x) = −x1.(x1 + x2)(x2 + x3) · · · (1 + xm−1)1 0 · · · 0
︸ ︷︷ ︸

(p−m) zeros

+1

=







−0.x2(x2 + x3) · · · (1 + xm−1)1 0 · · · 0
︸ ︷︷ ︸

(p−m) zeros

+1, if x1 = 0,

−1.(1 + x2)(x2 + x3) · · · (1 + xm−1)1 0 · · ·0
︸ ︷︷ ︸

(p−m) zeros

+1, if x1 = 1

=







0.(1− x2)(1− (x2 + x3)) · · · (1− (1 + xm−1))1 0 · · ·0
︸ ︷︷ ︸

(p−m) zeros

, if x1 = 0,

−0.(1 + x2)(x2 + x3) · · · (1 + xm−1)1 0 · · ·0
︸ ︷︷ ︸

(p−m) zeros

, if x1 = 1

=







0.(1− x2)(1− (x2 + x3)) · · · (1− (1 + xm−1))1 0 · · ·0
︸ ︷︷ ︸

(p−m) zeros

, if x1 = 0,

−0.1(x2 + x3) · · · (1 + xm−1)1 0 · · · 0
︸ ︷︷ ︸

(p−m) zeros

, if x1 = 1 and x2 = 0,

−1.0(1 + x3) · · · (1 + xm−1)1 0 · · ·0
︸ ︷︷ ︸

(p−m) zeros

, if x1 = 1 and x2 = 1,

Y 2(x) =







0.0(1− (x2 + x3)) · · · (1− (1 + xm−1))1 0 · · ·0
︸ ︷︷ ︸

(p−m) zeros

, if x1 = 1 and x2 = 0,

−0.0(1 + x3) · · · (1 + xm−1)1 0 · · ·0
︸ ︷︷ ︸

(p−m) zeros

, if x1 = 1 and x2 = 1,

and

Y 3(x) = 0.1(1− (1 + x3)) · · · (1− (1 + xm−1))1 0 · · ·0
︸ ︷︷ ︸

(p−m) zeros

, if x1 = 1 and x2 = 1.

That is, there exists an n1 ∈ N such that

Y n1(x) = 0.x
[n1]
1 x

[n1]
2 · · ·x[n1]

m−1x
[n1]
m 0 · · · 0

︸ ︷︷ ︸

(p−m) zeros

, x
[n1]
i ∈ {0, 1}, i 6= m,

whose first nonzero digit x
[n1]
m is also 1. Assume

Y nk(x) = 0.x
[nk]
1 x

[nk]
2 · · ·x[nk]

m−1x
[nk]
m 0 · · ·0

︸ ︷︷ ︸

(p−m) zeros

, x
[nk]
i ∈ {0, 1}, i 6= m,
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whose first nonzero digit x
[nk]
m is also 1, then

Y nk+1(x) = −x
[nk ]
1 .(x

[nk]
1 + x

[nk]
2 )(x

[nk]
2 + x

[nk]
3 ) · · · (1 + x

[nk]
m−1)1 0 · · · 0

︸ ︷︷ ︸

(p−m) zeros

+1

=







−0.x
[nk ]
2 (x

[nk]
2 + x

[nk]
3 ) · · · (1 + x

[nk]
m−1)1 0 · · ·0

︸ ︷︷ ︸

(p−m) zeros

+1, if x
[nk]
1 = 0,

−1.(1 + x
[nk]
2 )(x

[nk]
2 + x

[nk]
3 ) · · · (1 + x

[nk]
m−1)1 0 · · · 0

︸ ︷︷ ︸

(p−m) zeros

+1, if x
[nk]
1 = 1

=







0.(1− x
[nk]
2 )(1− (x

[nk]
2 + x

[nk]
3 )) · · · (1− (1 + x

[nk]
m−1))1 0 · · · 0

︸ ︷︷ ︸

(p−m) zeros

, if x
[nk]
1 = 0,

−0.(1 + x
[nk]
2 )(x

[nk]
2 + x

[nk]
3 ) · · · (1 + x

[nk]
m−1)1 0 · · · 0

︸ ︷︷ ︸

(p−m) zeros

, if x
[nk]
1 = 1

=







0.(1− x
[nk]
2 )(1− (x

[nk]
2 + x

[nk]
3 )) · · · (1− (1 + x

[nk]
m−1))1 0 · · · 0

︸ ︷︷ ︸

(p−m) zeros

, if x
[nk]
1 = 0,

−0.1(x
[nk]
2 + x

[nk]
3 ) · · · (1 + x

[nk]
m−1)1 0 · · ·0

︸ ︷︷ ︸

(p−m) zeros

, if x
[nk]
1 = 1 and x

[nk]
2 = 0,

−1.0(1 + x
[nk]
3 ) · · · (1 + x

[nk]
m−1)1 0 · · ·0

︸ ︷︷ ︸

(p−m) zeros

, if x
[nk]
1 = 1 and x

[nk]
2 = 1,

Y nk+2(x) =







0.0(1− (x
[nk]
2 + x

[nk]
3 )) · · · (1− (1 + x

[nk]
m−1))1 0 · · ·0

︸ ︷︷ ︸

(p−m) zeros

, if x
[nk]
1 = 1 and x

[nk]
2 = 0,

−0.0(1 + x
[nk]
3 ) · · · (1 + x

[nk]
m−1)1 0 · · ·0

︸ ︷︷ ︸

(p−m) zeros

, if x
[nk]
1 = 1 and x

[nk]
2 = 1,

and

Y nk+3(x) = 0.1(1− (1 + x
[nk]
3 )) · · · (1− (1 + x

[nk]
m−1))1 0 · · ·0

︸ ︷︷ ︸

(p−m) zeros

, if x
[nk]
1 = 1 and x

[nk]
2 = 1.

Hence, there exists an nk+1 ∈ N such that

Y nk+1(x) = 0.x
[nk+1]
1 x

[nk+1]
2 · · ·x[nk+1]

m−1 x[nk+1]
m 0 · · · 0

︸ ︷︷ ︸

(p−m) zeros

, x
[nk+1]
i ∈ {0, 1}, i 6= m,

whose first nonzero digit x
[nk+1]
m is also 1. By mathematical induction,

Y nj(x) = 0.x
[nj ]
1 x

[nj ]
2 · · ·x[nj ]

m−1x
[nj ]
m 0 · · ·0

︸ ︷︷ ︸

(p−m) zeros

, x
[nj ]
i ∈ {0, 1}, i 6= m,

its first nonzero digit x
[nj ]
m is still 1 for all j ∈ N. That is, no n ∈ N exists such that Y n(x) = 0.

Hence, Y can not converge to the periodic cycle {−k + 1,−k + 2, . . . , 0, 1}.

Therefore, from Theorem 4.3, even though x is represented in binary using a finite number

of digits in computers, Y does not converge to the periodic cycle {−k + 1,−k + 2, . . . , 0, 1}
when k is an odd number. The above theorem revises the statement of integers k in a

investigation [79].
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5 Conclusions

The relationship among chaos, Lyapunov exponent, topological entropy, strange attractors,

and snapback repellers is elucidated. The conditions under which they are equivalent to each

other or imply each other are identified.

Satake and Iwasa proved that the generalized budget resource model is chaotic when k > 1

by computing the Lyapunov exponent, but their proof was not clear. However, the model has

no periodic points with period three when k <
√
2, so we can not to prove that it is chaotic

by the existence of periodic points with period three. Therefore the existence of snapback

repellers was used to prove theoretically and numerically that the model exhibits Devaney’s

chaos when k > 1.

Any rational number eventually converges to a periodic point when k is a natural number,

and the periodic point are found. Under the binary representation with a finite number of

digits, if k represents an even number, then Y converges to the periodic cycle {−k + 1,−k +

2, . . . , 0, 1} with period k + 1, but if k represents an odd number, then Y cannot converge to

the same periodic cycle even if its points are rational numbers.

Appendix A

Consider the following ordering of the natural numbers:

3 ⊲ 5 ⊲ 7 ⊲ · · · ⊲ 2 · 3 ⊲ 2 · 5 ⊲ 2 · 7 ⊲ · · · ⊲ 22 · 3 ⊲ 22 · 5 ⊲ 22 · 7 ⊲ · · ·

⊲ 23 · 3 ⊲ 23 · 5 ⊲ 23 · 7 ⊲ · · · · · · ⊲ 23 ⊲ 22 ⊲ 2 ⊲ 1.

That is, first list all odd numbers except one, followed by 2 times the odds, 22 times the

odds, 23 times the odds, etc. This exhausts all the natural numbers with the exception of the

powers of two which we list last, in decreasing order. This is the Sarkovskii’s ordering of the

natural numbers. This ordering allows us to state Sarkovskii’s Theorem.

Theorem A.1 (Sarkovskii’s Theorem [84]). Let f : R → R be a continuous function, and

suppose f has a periodic point of prime period k. If k ⊲ m in the Sarkovskii’s ordering, then

f also has a periodic point of period m.

In above theorem, period 3 is the greatest period in the Sarkovskii’s ordering and there-

fore implies the existence of all other periods, Devaney, Li and Yorke have the same result.

Furthermore, Li and Yorke proved that if a map has a periodic point with period 3, then the

map has Li-Yorke chaos.
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Theorem A.2 ([21, 55]). Let f : R → R be continuous. If f has a periodic point with

period 3, then

(1) for every k = 1, 2, . . ., there is a periodic point having period k;

(2) f is chaotic in the sense of Li-Yorke.

Therefore, from Theorem A.1 and Theorem A.2, if f has only finitely many periodic

points, then they all necessarily have periods which are powers of two. Conversely, if f has

a periodic point whose period is not a power of two, then f necessarily has infinitely many

period points.

Definition A.3 ([21]). Let f(p∗) = p∗ and f ′(p∗) > 1. A point x0 is called homoclinic to

p∗ if x0 ∈ W u
loc(p

∗) = {the maximal such open interval about p∗} and there exists n > 0 such

that fn(x0) = p∗.

Remark A.4. If p∗ has a homoclinic point, then p∗ is also called a snapback repeller.

Definition A.5 ([21]). A homoclinic point, together with its backward orbit and forward orbit,

is called a homoclinic orbit. A homoclinic orbit is called nondegenerate if f ′(x) 6= 0, for

all points x on the orbit.

Theorem A.6 ([21]). Suppose f admits a nondegenerate homoclinic point to p∗. Then, every

neighborhood of p∗ contains infinitely many distinct periodic points.

Comparing Theorem A.2 with Theorem A.6, if f has a periodic point whose period is not

a power of two or f has a nondegenerate homoclinic point, then f necessarily has infinitely

many period points. The relationship of periodic point whose period is not a power of two

and homoclinic point is given by the following theorem.

Theorem A.7 ([11]). f has a periodic point whose period is not a power of two if and only

if f has a homoclinic point.

From the above theorem, if f has homoclinic point, then f has a periodic point whose

period is not a power of two. Bowen and Franks have shown in [14] that if f has a periodic

point whose period is not a power of two, then the topological entropy of f is positive.

Therefore, from Theorem 1.25, f is chaotic in the sense of Devaney. Naturally we have the

following theorem.

Theorem A.8. If f has a periodic point with period 3, then f has Devaney’s chaos.

Hence, combining the result of Theorem A.2 and Theorem A.8, we know that if f has a

periodic point with period 3, then it is Devaney’s chaotic and Li-Yorke’s chaotic.

34



Strange attractors
Devaney’s chaos Li-Yorke’s chaos

- transitivity

- periodic points are dense

- sensitivity

Lyapunov exponent
Topological entropy

Kolmogorov-Sinai entropy

(5)

Snapback repellers

(1) (2)

(3), (4)

(6), (7)

(8)

(9), (10)

(11)

(12)

period 3

(13)

(14)

(1) Theorem 1.50 (7) Theorem 1.24

(2) Theorem 1.46 (8) Theorem 1.20

(3) Theorem 1.8 (9) Theorem 1.31

(4) Theorem 1.9 (10) Theorem 1.33

(5) Theorem 1.25 (11) Definition 1.28 (13) Theorem A.2

(6) Theorem 1.22 (12) Definition 1.43 (14) Theorem A.8

Figure 6: Relational graph of chaos and relative checking methods including period three.

Appendix B

In mathematics, a cubic function has the form

f(x) = ax3 + bx2 + cx+ d,

where a 6= 0. If f(x) = 0, then the equation is called a cubic equation. The cubic equation

will be solved exactly here [42, 66].

Suppose

x = y − b

3a
. (5)

Now,

a

(

y − b

3a

)3

+ b

(

y − b

3a

)2

+ c

(

y − b

3a

)

+ d = 0. (6)

Expanding and simplifying (6), yields

ay3 +

(

c− b2

3a

)

y +

(

d+
2b3

27a2
− bc

3a

)

= 0. (7)
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Converting (7) into the form

y3 + ey + f = 0, (8)

where

e =
1

a

(

c− b2

3a

)

and f =
1

a

(

d+
2b3

27a2
− bc

3a

)

.

Let

y = z − e

3z
. (9)

Substituting this equation into (8),

z6 + fz3 − e3

27
= 0.

One more substitution, w = z3, yields the quadratic equation

w2 + fw − e3

27
= 0. (10)

Solving the quadratic equation (10),

w = z3 = −f

2
±
√

f 2

4
+

e3

27
. (11)

Six values of z can be determined from (11), since a square root has two possible values (±),

and a cubic root has three. The six possible values of z yield the six possible values of y

(Equation (9)), but the three values of y will be identical to the other three. Therefore, three

values of y, and three values of x (Equation (5)) are obtained. The three roots are

x1 = − b

3a
+

3

√
√
√
√ bc

6a2
− b3

27a3
− d

2a
+

√
(

b3

27a3
+

d

2a
− bc

6a2

)2

+

(
c

3a
− b2

9a2

)3

+
3

√
√
√
√ bc

6a2
− b3

27a3
− d

2a
−
√
(

b3

27a3
+

d

2a
− bc

6a2

)2

+

(
c

3a
− b2

9a2

)3

,

x2 = − b

3a
+

−1 +
√
3i

2

3

√
√
√
√ bc

6a2
− b3

27a3
− d

2a
+

√
(

b3

27a3
+

d

2a
− bc

6a2

)2

+

(
c

3a
− b2

9a2

)3

+
−1 −

√
3i

2

3

√
√
√
√ bc

6a2
− b3

27a3
− d

2a
−
√
(

b3

27a3
+

d

2a
− bc

6a2

)2

+

(
c

3a
− b2

9a2

)3

,

x3 = − b

3a
+

−1 −
√
3i

2

3

√
√
√
√ bc

6a2
− b3

27a3
− d

2a
+

√
(

b3

27a3
+

d

2a
− bc

6a2

)2

+

(
c

3a
− b2

9a2

)3

+
−1 +

√
3i

2

3

√
√
√
√ bc

6a2
− b3

27a3
− d

2a
−
√
(

b3

27a3
+

d

2a
− bc

6a2

)2

+

(
c

3a
− b2

9a2

)3

.
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Appendix C

First, compute Y 2p , p = 2, 3, 4, and 5. Choose the polynomial that passes through upper-right

periodic point, and select its left polynomial at the same time. Then

Y 2(x) =







k2x− k + 1, x ∈
[

0,
1

k

]

,

−kx + 2, x ∈
[
1

k
, 1

]

,

Y 22(x) =







k2x− 2k + 2, x ∈
[
1

k
, B

(
1

k

)]

,

−k3x+ 2k2 − k + 1, x ∈
[

B

(
1

k

)

, 1

]

,

Y 23(x) =







k6x− 2k5 + k4 − k3 + 2k2 − k + 1, x ∈



B

(
1

k

)

, BAAB
︸ ︷︷ ︸

C1

(
1

k

)


 ,

−k5x+ 2k4 − k3 + k2 − 2k + 2, x ∈
[

C1

(
1

k

)

, 1

]

,

Y 24(x) =







k10x− 2k9 + k8 − k7 + 2k6 − 2k5 + 2k4 − k3 + k2 − 2k + 2,

x ∈



C1

(
1

k

)

, C1BC1
︸ ︷︷ ︸

C2

(
1

k

)


 ,

−k11x+ 2k10 − k9 + k8 − 2k7 + 2k6 − 2k5 + k4 − k3 + 2k2 − k + 1,

x ∈
[

C2

(
1

k

)

, 1

]

,

and

Y 25(x) =







k22x− 2k21 + k20 − k19 + 2k18 − 2k17 + 2k16 − k15 + k14 − 2k13 + k12

−k11 + 2k10 − k9 + k8 − 2k7 + 2k6 − 2k5 + k4 − k3 + 2k2 − k + 1,

x ∈



C2

(
1

k

)

, C2AAC2
︸ ︷︷ ︸

C3

(
1

k

)


 ,

−k21x+ 2k20 − k19 + k18 − 2k17 + 2k16 − 2k15 + k14 − k13 + 2k12 − k11

+k10 − 2k9 + k8 − k7 + 2k6 − 2k5 + 2k4 − k3 + k2 − 2k + 2,

x ∈
[

C3

(
1

k

)

, 1

]

,

where A(x) =
1

k
(1−x), B(x) =

1

k
(2−x). Next, to find the generated form Y 2p , the following

algorithm is established. Let L21(x) = k2x − k + 1, R21(x) = −kx + 2, R22(x) = L21R21(x),
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L22(x) =
−R22(x) + k + 1

k
, R23(x) = L22R22(x), and L23(x) = −kR23(x) + k + 1, then

Y 21(x) =







L21(x), x ∈
[

0,
1

k

]

,

R21(x), x ∈
[
1

k
, 1

]

,

Y 22(x) =







L22(x), x ∈
[
1

k
, B

(
1

k

)]

,

R22(x), x ∈
[

B

(
1

k

)

, 1

]

,

Y 23(x) =







L23(x), x ∈
[

B

(
1

k

)

, C1

(
1

k

)]

,

R23(x), x ∈
[

C1

(
1

k

)

, 1

]

,

and

Y 2p(x) =







L2p(x), x ∈
[

Cp−3

(
1

k

)

, Cp−2

(
1

k

)]

,

R2p(x), x ∈
[

Cp−2

(
1

k

)

, 1

]

,

where p ∈ N, p ≥ 4,

L2p(x) =







−kR2p(x) + k + 1, p is odd,

−R2p(x) + k + 1

k
, p is even,

R2p(x) = L2p−1R2p−1(x),

and j ∈ N, j ≥ 2,

Cj =







Cj−1AACj−1, j is odd,

Cj−1BCj−1, j is even.

Therefore, the algorithm yields the general form Y 2p in Theorem 3.7, and the “snapback

repeller method” can be applied to the iterative number 2p to identify the regions of k in

which system (2) exhibits Devaney’s chaos.
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