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針對補償混合卜松隨機過程或碎形布朗運動的橋

學生：吳姿慧 

 

指導教授：吳慶堂

國立交通大學應用數學系碩士班 

摘        要 

 

 

由 Föllmer, Wu, Yor, (1999) 中我們知道特定的隨機微分方程式的解會

是一個布朗運動。在本論文中，我們討論有哪些隨機微分方程它們的解會是

一個補償混合卜松過程。藉此，我們可以製造出新的補償混合卜松過程。同

時，我們也討論一些隨機微分方程的解，觀察它們是不是碎形布朗運動。 
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A Bridge with Respect to the    
Compensated Compound Poisson Process  

or the Fractional Brownian Motion 
 

 
Student：Tzu-Hui Wu 
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National Chiao Tung University 

ABSTRACT 

 

From Föllmer, Wu, Yor(1999) we know when the Brownian motion with 
nonzero linear drift is again a Brownian motion. In this thesis, instead of 
Brownian motion we discuss the case of compensated Poisson processes with 
nonzero. So we can construct new compensated compound Poisson processes. We 
also discuss whether the solutions of some particular form of stochastic 
differential equations are fractional Brownian motions. 
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CHAPTER 1

Introduction

We consider some generalization of Brownian bridge. We want to change the Brownian

motion which is in a Brownian bridge to a compensated Poisson process or a compensated

compound Poisson process. We also try to change the Brownian motion which is in a

Brownian bridge to a fractional Brownian motion. Then we discuss about what are the

properties of these processes. We consider the process

Xt = Bt − tB1, for 0 ≤ t ≤ 1 (1.1)

where B is a Brownian motion is a Brownian bridge from 0 to 0 on [0, 1] (see Shreve [14]

Definition 4.7.4). Denote by (FBt ) the filtration generated by B. The Brownian bridge

(Xt) 0≤t≤1 is not adapted to the filtration (FBt ) 0≤t≤1. In the following we consider the

Brownian Bridge which is adapted to the filtration (FBt ) 0≤t≤1. Consider the stochastic

differential equation

dXt = dBt +
−Xt

1− t
dt (1.2)

with the initial value X0 = 0. The solution (Xt) 0≤t<1 of (1.2) is given by

Xt = (1− t)
∫ t

0

1

1− s
dBs, for 0 ≤ t < 1.

Then the process (Xt) 0≤t<1 is a Brownian bridge from 0 to 0 on [0, 1) and it has the same

law of the Brownian bridge which is in (1.1) (see Shreve [14] Section 4.7). The process

(Xt) 0≤t<1 is adapted to the filtration (FBt ) 0≤t<1. Now we consider two independent Brow-

nian motions (Bt) t≥0 and (B̃t) t≥0. The solution (Xt) 0≤t≤1 of the stochastic differential

equation

dXt = dBt +
B̃1 −Xt

1− t
dt

1



2 1. INTRODUCTION

with the initial value X0 = 0 is given by

Xt = (1− t)
∫ t

0

1

1− s
dBs + B̃1 t, for 0 ≤ t < 1. (1.3)

The process (Xt) 0≤t<1 in (1.3) is a standard Brownian motion with respect to the filtra-

tion (FXt ) 0≤t<1 which is the filtration generated by (Xt) 0≤t<1 and the process (Xt) 0≤t<1

converges to the final value B̃1 (cf., for example, Jeulin-Yor [7]). The following solution

(Xt) 0≤t<1 of the stochastic differential equation

dXt = dBt +
B̃t −Xt

1− t
dt

with the initial value X0 = 0 is given by

Xt = (1− t)
∫ t

0

1

1− s
dBs + (1− t)

∫ t

0

B̃s

(1− s)2
ds, for 0 ≤ t < 1. (1.4)

The process (Xt) 0≤t<1 in (1.4) converges to B̃1 P-a.s. as t→ 1 and (Xt) 0≤t<1 is no longer

a Brownian motion (see Föllmer, H. [5]).

In Shreve [14] we see the introduction about compensated Poisson process and com-

pensated compound Poisson process. We know their basic properties from Shreve [14].

In Chapter 2 we change the Brownian motion which is in a Brownian bridge to a compen-

sated Poisson process. We will see some bridges with respect to the compensated Poisson

process start from zero to fixed points and see a bridge between two independent com-

pensated Poisson processes. In Chapter 3 we will construct a new compensated Poisson

process and a new compensated compound Poisson process.

In the last chapter we introduce the fractional Brownian motion and its basic prop-

erties. The fractional Brownian motion was first introduced by Kolmogorov [10]. Man-

delbrot and Van Ness [11] established the integral representation for fractional Brownian

motion on the whole real line. By the approach of [12], we have the integral representa-

tion for fractional Brownian motion on a finite interval. These integral representations are

all integrals of deterministic integrands with respect to the Brownian motion. Then we
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know that the fractional Brownian motion is adapted to the filtration which is generated

by the Brownian motion. Gani, Heyde, Jagers, Kurtz [6] tell us a fractional Brownian

motion is not a semimartingale, so we can’t use Itô stochastic calculus which is defined for

semimartingales to define the stochastic integral with respect to the fractional Brownian

motion. In Section 4.2 we have the definition for the Wiener integral of a deterministic

integrand with respect to the fractional Brownian motion for the Hurst index H >
1

2

(see Gani, Heyde, Jagers, Kurtz [6]). From the definition we know that the Brownian

motion which is in the integral representation for the fractional Brownian motion can be

represented by an integral with respect to the fractional Brownian motion. Hence, we

know that the Brownian motion and the fractional Brownian motion generate the same

filtration. In Section 4.3 we will see a bridge with respect to the fractional Brownian

motion starts from zero to a fixed point and a bridge between the fractional Brownian

motion and a random variable.





CHAPTER 2

A Bridge with Respect to the Compensated Poisson Process

Let (Ω,F ,P) be a probability space. In this chapter we consider the properties of

the stochastic process if the Brownian bridge is driven by a compensated Poisson process

instead of the Brownian motion. First we would introduce some basic properties of Poisson

process.

2.1. Poisson Process

Definition 1. A random variable τ is said to have exponential distribution if τ is a

random variable with the probability density function

f(t) =

 λe−λt, if t ≥ 0,

0, if t < 0,

where λ is a positive constant. We also say that τ is an exponential random variable.

Let (τn)n∈N be a sequence of independent exponential random variables, all with the

same parameter λ. Let

Sn =
n∑
k=1

τk,

i.e., S1 = τ1, S2 = τ1 + τ2, · · · .

Definition 2. The Poisson Process (Nt) is defined by

Nt = inf {n− 1 : Sn > t} = max {n : Sn ≤ t}.

Moreover, we say that (Nt) is a Poisson process with intensity λ.

5



6 2. A BRIDGE WITH RESPECT TO THE COMPENSATED POISSON PROCESS

The Poisson process (Nt) is right-continuous in t and it has stationary independent

increments, i.e., for 0 ≤ t0 < t1 < · · · < tm, the random variables

Nt1 , Nt2 −Nt1 , · · · , Ntm −Ntm−1

are stationary and independent. The mean and variance of Nt are given by

E [Nt] = λt and Var (Nt) = λt

respectively. The Poisson process is no more a martingale. We consider a martingale

which has similar properties of Poisson process.

Definition 3. Let (Nt) be a Poisson process with intensity λ. The stochastic process

defined by

Mt = Nt − λt, t ≥ 0,

is called the compensated Poisson process.

Denote by (FNt ) and (FMt ) the filtrations generated by (Nt) and (Mt), respectively.

From the definition of the compensated Poisson process, we know that FMt = FNt , for

all t ≥ 0. The compensated Poisson process (Mt) with intensity λ is a martingale with

respect to the filtration (FNt ). In next two sections we will discuss about some models

with respect to the compensated Poisson process.

2.2. A Bridge Starts from Zero to a Fixed Point

Consider the process

Xt = Mt − tM1, for 0 ≤ t ≤ 1

which is a bridge with respect to the compensated Poisson process from 0 to 0 on [0, 1].

Because the term M1 is in the difinition of Xt, for 0 ≤ t ≤ 1, the bridge Xt is not adapted
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to the filtration (FNt ). We shall later obtain a different process which is also from 0 to 0

but is adapted to the filtration (FNt ).

We consider the stochastic differential equation

dXt = dMt +
−Xt

1− t
dt (2.1)

with the initial value X0 = 0. The equation can be solved by applying the Itô’s formula

to the function

f(t, x) = x exp

{∫ t

0

1

1− s
ds

}
=

x

1− t
.

We have

ft(t, x) =
x

(1− t)2
, fx(t, x) =

1

1− t
, fxx(t, x) = ftx(t, x) = fxt(t, x) = 0.

The Itô’s formula implies

f(t,Xt) =
Xt

1− t
=

∫ t

0

Xs

(1− s)2
ds+

∫ t

0

1

1− s
dXs. (2.2)

From (2.1), we obtain∫ t

0

Xt

(1− s)2
ds+

∫ t

0

1

1− s
dXs =

∫ t

0

1

1− s
dMs. (2.3)

By (2.2) and (2.3), we have that the explicit formula of solution Xt, for 0 ≤ t < 1 is given

by

Xt = (1− t)
∫ t

0

1

1− s
dMs, for 0 ≤ t < 1. (2.4)

Due to (2.4) we see that (Xt) is adapted to the filtration (FNt ), for 0 ≤ t < 1. From

Shreve [14] we have the following theorem.

Theorem 4 (Theorem 11.4.5, Shreve [14]). Consider the jump process (Xt) given by

Xt = X0 +

∫ t

0

Γs dBs +

∫ t

0

Θs ds+ Jt,

where Γ, Θ are adapted processes, B is an adapted Brownian motion, and J is an adapted,

right-continuous pure jump process with J0 = 0 having finitely many jumps on finite
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interval. Assume the process (Xt) is a martingale, the integrand Φ is left-continuous and

adapted, and satisfies

E
[∫ t

0

Φ2
s Γ2

s ds

]
<∞, for all t ≥ 0.

Then the stochastic integral

∫ t

0

Φs dXs is a martingale.

Since the compensated Poisson process (Mt) is a martingale, the process

∫ t

0

1

1− s
dMs

is also a martingale. Then Xt has zero mean for all t. Next, we compute the value of

the variance of Xt and use the mean and variance of Xt to see where the process (Xt)

approaches when t→ 1−.

Theorem 5. Consider the process (Xt) 0≤t<1 which is given by (2.4). For 0 ≤ t < 1,

we have that the variance of Xt is given by

Var(Xt) = −λt2 + λt. (2.5)

Proof. For 0 ≤ t < 1,

E
[
X2
t

]
= (1− t)2 E

[(∫ t

0

1

1− s
dMs

)2
]
.

We will apply the Itô’s formula to

(∫ t

0

1

1− s
dMs

)2

, so that we can get the value of

E

[(∫ t

0

1

1− s
dMs

)2
]

. We set for 0 ≤ t < 1,

Yt =

∫ t

0

1

1− s
dMs

=

∫ t

0

1

1− s
dNs − λ

∫ t

0

1

1− s
ds.

Note that the continuous part of Yt, Y
c
t , is given by dY c

s =
−λ

1− s
ds. Take f(x) = x2 so

that f
′
(x) = 2x, f

′′
(x) = 2. The Itô’s formula implies

f (Yt) = f(Y0) +

∫ t

0

f
′
(Ys) dY

c
s +

1

2

∫ t

0

f
′′
(Ys) dY

c
s dY

c
s +

∑
0<s≤t

[f(Ys)− f(Ys−)] .
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Then we have

Y 2
t = Y 2

0 +

∫ t

0

2Ys dY
c
s +

1

2

∫ t

0

2 dY c
s dY

c
s +

∑
0<s≤t

[
Y 2
s − Y 2

s−

]

=

∫ t

0

2Ys

(
−λ

1− s

)
ds+

∑
0<s≤t

[
Y 2
s − Y 2

s−

]
. (2.6)

Next, we take the expectation of both sides of (2.6) and use Fubini’s theorem

E
[
Y 2
t

]
= −2λ

∫ t

0

1

1− s
E [Ys] ds+ E

[∑
0<s≤t

(
Y 2
s − Y 2

s−

)]
.

Since E [Ys] = 0, we obtain

E
[
Y 2
t

]
= E

[∑
0<s≤t

(
Y 2
s − Y 2

s−

)]
. (2.7)

The sum
∑

0<s≤t

(
Y 2
s − Y 2

s−

)
can be transformed to an integral with respect to the Poisson

process (Nt) by using the fact

Ys − Ys− =
1

1− s
∆Ns,

and

(Ys − Ys−)2 =
1

(1− s)2
∆Ns.

Then we have that

∑
0<s≤t

[
Y 2
s − Y 2

s−

]
=

∑
0<s≤t

[
(Ys − Ys−)2 + 2 (Ys − Ys−)Ys−

]

=
∑

0<s≤t

[
1

(1− s)2
∆Ns + 2

1

1− s
∆Ns Ys−

]

=

∫ t

0

(
1

(1− s)2
+

2

1− s
Ys−

)
dNs. (2.8)



10 2. A BRIDGE WITH RESPECT TO THE COMPENSATED POISSON PROCESS

We change the form of the last integral so that we can get the mean of it easierly.∫ t

0

(
1

(1− s)2
+

2

1− s
Ys−

)
dNs =

∫ t

0

(
1

(1− s)2
+

2

1− s
Ys−

)
dMs

+

∫ t

0

(
1

(1− s)2
+

2

1− s
Ys−

)
λ ds.

(2.9)

Since Ys− is left continuous in s, for 0 ≤ s < 1 and (Mt) is a martingale, the process∫ t

0

(
1

(1− s)2
+

2

1− s
Ys−

)
dMs is also a martingale. So we see that

E
[∫ t

0

(
1

(1− s)2
+

2

1− s
Ys−

)
dMs

]
= 0. (2.10)

Due to (2.8), (2.9), (2.10) and by Fubini’s theorem, we have

E

[∑
0<s≤t

(
Y 2
s − Y 2

s−

)]
=

∫ t

0

(
1

(1− s)2
+

2

1− s
E [Ys− ]

)
λ ds. (2.11)

Now we compute the value of the right side of (2.11). E [Ys− ] = 0 since E [Ys] = 0, for

0 ≤ s < 1. From (2.7) and (2.11), we obtain

E
[
X2
t

]
= (1− t)2 E

[
Y 2
t

]
= (1− t)2

∫ t

0

1

(1− s)2
λ ds

= −λt2 + λt.

Since E [Xt] = 0, we know that Var(Xt) = −λt2 + λt. �

We have known the mean and variance of Xt, then we can use these to see where

the process (Xt) 0≤t<1 approaches as time approaches 1. Since E [Xt] = 0 and Var(Xt) =

−λt2 + λt which converges to 0 as t → 1−, we obtain that Xt → 0 P-a.s. as t → 1−.

The process (Xt) 0≤t<1 is a bridge from 0 to 0 on [0, 1] and it is adapted to the filtration(
FNt
)

0≤t<1
.
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In the following we see a process with respect to the compensated Poisson process

starting from 0 to b, for some constant b. Consider the stochastic differential equation

dXt = dMt +
b−Xt

1− t
dt, (2.12)

where (Mt) is a compensated Poisson process with intensity λ, b is a constant and X0 = 0.

We can solve the stochastic differential equation by the same method as before. Then we

obtain the solution Xt, for 0 ≤ t < 1 which is given by

Xt = (1− t)
∫ t

0

1

1− s
dMs + bt, for 0 ≤ t < 1. (2.13)

Then we obtain E [Xt] = bt. By Theorem 5, we have

Var (Xt) = Var

(
(1− t)

∫ t

0

1

1− s
dMs

)
= −λt2 + λt.

Since we have known that the first term of (2.13) converges to 0 P-a.s as t→ 1−, we have

that Xt → b P-a.s. as t→ 1−. Hence, we see that the process (Xt) is a bridge from 0 to b

and is adapted to the filtration
(
FNt
)
. We have discussed about a bridge with respect to

the compensated Poisson process from 0 to a fixed point. In next section, we will discuss

about a bridge between two independent compensated Poisson process.

2.3. A Bridge between two Independent Compensated Poisson Processes

We consider the stochastic differential equation

dXs = dMs +
M̃s −Xs

1− s
ds,

where M is a compensated Poisson process with intensity λ, M̃ is another compensated

Poisson process which has the same intensity λ is independent of M and X starts from 0.
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We can also use the same method as before to solve the stochastic differential equation

and get the solution Xt, for 0 ≤ t < 1, is given by

Xt = (1− t)
∫ t

0

1

1− s
dMs + (1− t)

∫ t

0

M̃s

(1− s)2 ds, for 0 ≤ t < 1. (2.14)

The process (Xt) 0≤t<1 has another form by applying Itô product rule to the second term

of (2.14)

Xt = (1− t)
∫ t

0

1

1− s
dMs + (1− t)

[
M̃t

1

1− t
−
∫ t

0

1

1− s
dM̃s

]

= (1− t)
∫ t

0

1

1− s
dMs + M̃t − (1− t)

∫ t

0

1

1− s
dM̃s. (2.15)

We have known that the process which has the form as (2.4) converges to 0 P-a.s. as

t→ 1−, so the first term and the third term in (2.15) both converge to 0 P-a.s. as t→ 1−.

Then Xt → M̃1 P-a.s. as t → 1−. The process (Xt) 0≤t<1 is a bridge from 0 to M̃1 on

[0, 1].

Remark 6. Suppose that the process (Xt) 0≤t<1 is given by

Xt = Mt +

∫ t

0

M̃s −Xs

1− s
ds. (2.16)

The filtration (FXt ) 0≤t<1 which is generated by (Xt) 0≤t<1 contains the information about

when (Xt) 0≤t<1 jumps. Since the second term of (2.16) is continuous in t, (Xt) 0≤t<1

jumps at the same time as (Mt) 0≤t<1 jumps. So the filtration (FXt ) 0≤t<1 contains the

information about when (Mt) 0≤t<1 jumps, i.e., (Mt) 0≤t<1 is adapted to (FXt ) 0≤t<1. From

(2.16), we know that (M̃t) is also adapted to (FXt ) 0≤t<1. Hence, we obtain the Doob-

Meyer decomposition of (Xt) 0≤t<1 in its own filtration
(
FXt
)

0≤t<1
. We may regard X as

a semimartingale in its natural filtration
(
FXt
)

0≤t<1
.
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Consider two independent compensated Poisson processes (Mt) t≥0 and (M̃t) t≥0. The

stochastic process X is given by

Xt = Mt +

∫ t

0

Zs ds, (2.17)

where M is a Poisson process and the drift Z depends linearly on X and M̃ . We want

to characterize those cases where X is again a compensated Poisson process. Since the

second term of (2.17) is continuous in t, we have that (Xt) jumps at the same time as

(Mt) jumps. So (Mt) is adapted to the filtration
(
FXt
)
. Suppose (Xt) is a compensated

Poisson process. Since X and M all start from 0, and they jump at the same time, X

is just equal to M . So the process

∫ t

0

Zs ds is equal to zero. Recall that the process

(Xt)0≤t<1 which is given by (2.16) is a semimartingale in its natural filtration
(
FXt
)

0≤t<1
,

but it is not a compensated Poisson process since the second term of (2.16) is not equal

to zero.

The integral with respect to time in (2.17) makes X and M jump simultaneously. In

next chapter, we will transform the second term of (2.17) to an integral with respect to

the compensated Poisson process which is independent of M . Then the process M and

the integral together decide when the process X jumps.





CHAPTER 3

Construction of a New Compensated Compound Poisson

Process

We have discussed about whether X is a compensated Poisson process in the model

Xt = Mt +

∫ t

0

Zs ds.

We will transform the above integral to an integral with respect to the compensated

Poisson process which is independent of M and characterize those cases where X is again

a compensated Poisson process. Since the jump size of Poisson process is equal to 1,

we will extend the discussion to the compensated compound Poisson process which has

random jump sizes.

3.1. Construction of a New Compensated Poisson Process

We consider the process X which is given by

Xt = Mt +

∫ t

0

f(s) dM̃s, (3.1)

where M is a compensated Poisson process with intensity λ, M̃ is another compensated

Poisson process with intensity λ̃ is independent of M and f is a deterministic differentiable

function. We want to know the form of the moment generating function of Xt, for t ≥ 0,

so that we can see in which cases the process X given by (3.1) is again a compensated

Poisson process. The moment generating function of Xt, for t ≥ 0 is given by

ϕXt(u) = E [exp {uMt}] · E
[
exp

{
u

∫ t

0

f(s) dM̃s

}]
.

15
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In Shreve [14] we have known that the moment generating function for the compensated

Poisson process Mt is given by

E [exp {uMt}] = exp {λt (eu − u− 1)} .

So we only need to focus on the expectation

E
[
exp

{
u

∫ t

0

f(s) dM̃s

}]
.

Lemma 1. Consider the process ∫ t

0

f(s) dM̃s,

where M̃ is a compensated Poisson process with intensity λ̃ and f is a nonrandom differ-

entiable function. Then it’s moment generating function is given by

E
[
exp

{
u

∫ t

0

f(s) dM̃s

}]
= exp

{
λ̃

(∫ t

0

(
euf(s) − 1

)
ds− u

∫ t

0

f(s) ds

)}
.

Proof. We will apply the Itô’s formula to

exp

{
u

∫ t

0

f(s) dM̃s − λ̃
(∫ t

0

(
euf(s) − 1

)
ds− u

∫ t

0

f(s) ds

)}
,

so that we can know it is a martingale. We set for t ≥ 0,

Yt = u

∫ t

0

f(s) dM̃s − λ̃
(∫ t

0

(
euf(s) − 1

)
ds− u

∫ t

0

f(s) ds

)
and

Zt = exp {Yt} .

Note that the continuous part of Ys, Y
c
s , is given by

dY c
s = λ̃

(
−euf(s) + 1

)
ds.

Take f(x) = ex so that f
′
(x) = ex, f

′′
(x) = ex. The Itô’s formula implies

Zt = Z0 +

∫ t

0

Zs dY
c
s +

1

2

∫ t

0

Zs dY
c
s dY

c
s +

∑
0<s≤t

[Zs − Zs− ] . (3.2)
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Since Y c
s is the continuous part of Ys, we can change the integrand Zs which is in the second

term of (3.2) to Zs− . When the Poisson process Ñ jumps at time s, Zs = Zs− × euf(s).

When (Ñt) does not jump at time s, Zs = Zs− . So we have

Zs − Zs− = Zs−
(
euf(s) − 1

)
∆Ñs.

Then

Zt = 1 + λ̃

∫ t

0

Zs−
(
−euf(s) + 1

)
ds+

∑
0<s≤t

[
Zs−

(
euf(s) − 1

)
∆Ñs

]

= 1 +

∫ t

0

Zs−
(
euf(s) − 1

)
d
(
M̃s − Ñs

)
+

∫ t

0

Zs−
(
euf(s) − 1

)
dÑs

= 1 +

∫ t

0

Zs−
(
euf(s) − 1

)
dM̃s.

Since M is a martingale and Zs−
(
euf(s) − 1

)
is left continuous in s, the above integral is

also a martingale. So the process (Zt) is a martingale and we have E [Zt] = 1, i.e.,

E
[
exp

{
u

∫ t

0

f(s) dM̃s − λ̃
(∫ t

0

(
euf(s) − 1

)
ds− u

∫ t

0

f(s) ds

)}]
= 1.

Hence, we obtain

E
[
exp

{
u

∫ t

0

f(s) dM̃s

}]
= exp

{
λ̃

(∫ t

0

(
euf(s) − 1

)
ds− u

∫ t

0

f(s) ds

)}
.

�

Moreover, we have that the moment generating function of Xt is given by

ϕXt(u) = exp {λt (eu − u− 1)} · exp

{
λ̃

(∫ t

0

(
euf(s) − 1

)
ds− u

∫ t

0

f(s) ds

)}

= exp

{
λt (eu − u− 1) + λ̃

∫ t

0

(
euf(s) − 1

)
ds− λ̃u

∫ t

0

f(s) ds

}
. (3.3)

Next, we use (3.3) to see in which cases the process X is a compensated Poisson process.

If f ≡ 0, then it is obvious that Xt = Mt. In the following proposition we set f 6= 0.
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Proposition 2. Let the stochastic process (Xt) satisfy (3.1). Then (Xt) is a compen-

sated Poisson process if and only if f ≡ 1. Moreover, (Xt) has the intensity λ+ λ̃.

Proof. “ =⇒ ” : The moment generating function for compensated Poisson process

must be as the form
(

exp
{
λ̂t (eu − u− 1)

})
, for some constant λ̂. Suppose that (Xt) is

a compensated Poisson process with intensity λ̂. We let the moment generating function

of Xt equal to
(

exp
{
λ̂t (eu − u− 1)

})
, i.e.

exp

{
λt (eu − u− 1) + λ̃

∫ t

0

(
euf(s) − 1

)
ds− λ̃u

∫ t

0

f(s) ds

}
= exp

{
λ̂t (eu − u− 1)

}
.

Then we get the equation

λt (eu − u− 1) + λ̃

∫ t

0

(
euf(s) − 1

)
ds− λ̃u

∫ t

0

f(s) ds = λ̂t (eu − u− 1) . (3.4)

We differentiate with respect to t on both sides of (3.4)

λ (eu − u− 1) + λ̃
(
euf(t) − 1

)
− λ̃uf(t) = λ̂ (eu − u− 1) .

We differentiate with respect to t again

λ̃ueuf(t)f
′
(t)− λ̃uf ′(t) = 0 .

Then we get

λ̃uf
′
(t)
(
euf(t) − 1

)
= 0 .

This implies that f
′
(t) = 0 or euf(t) − 1 = 0. So we have that f(t) is a constant. Set

f ≡ C, where C is a positive constant. From (3.1), we have

Xt = Mt + CM̃t .

The moment generating function of Xt is given by

ϕX(u) = exp
{
λt (eu − u− 1) + λ̃t

(
euC − uC − C

)}
.



3.1. CONSTRUCTION OF A NEW COMPENSATED POISSON PROCESS 19

Suppose the following equation holds

exp
{
λt (eu − u− 1) + λ̃t

(
euC − uC − C

)}
= exp

{
λ̂t (eu − u− 1)

}
.

Then we have

λt (eu − u− 1) + λ̃t
(
euC − uC − C

)
= λ̂t (eu − u− 1) .

We differentiate with respect to u twice, then we get

λeu + λ̃C2euC = λ̂eu.

We multiply e−u on both sides of the above formula

λ+ λ̃C2eu(C−1) = λ̂ .

Then

eu(C−1) =
λ̂− λ
λ̃C2

.

Hence, we obtain C = 1 and then λ̂ = λ+ λ̃ .

“⇐= ” : Since f ≡ 1, we have Xt = Mt+M̃t. We will show that the law of X agrees with

the law of a compensated Poisson process which has intensity λ+ λ̃. Denote by
(
FM, M̃
t

)
the filtration generated by M and M̃ . Let

Zt = exp {uMt − λt (eu − u− 1)} .

By the proof of Lemma 1, we have that the process (Zt) is a martingale with respect to(
FM, M̃
t

)
. Let

Z̃t = exp
{
uM̃t − λ̃t (eu − u− 1)

}
.

(Z̃t) is also a martingale with respect to
(
FM, M̃
t

)
. The two processes (Zt) and (Z̃t) are

independent and they are all martingales with respect to the filtration
(
FM, M̃
t

)
. From

(3.3), we know that the moment generating function of Xt is

ϕXt(u) = exp
{(
λ+ λ̃

)
t (eu − u− 1)

}
.
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For fixed u ∈ R, the process V
(u)
t is defined by

V
(u)
t = exp

{
uXt −

(
λ+ λ̃

)
t (eu − u− 1)

}
= Zt Z̃t .

We will show that
(
V

(u)
t

)
is a martingale with respect to the filtration

(
FM, M̃
t

)
. For

0 < s < t,

E
[
V

(u)
t

∣∣∣∣FM, M̃
s

]
= E

[
Zt Z̃t

∣∣∣∣FM, M̃
s

]

= E
[
(Zt − Zs)

(
Z̃t − Z̃s

)
+ Zs Z̃t + Zt Z̃s − Zs Z̃s

∣∣∣∣FM, M̃
s

]

= E
[
(Zt − Zs)

(
Z̃t − Z̃s

) ∣∣∣∣FM, M̃
s

]
+ E

[
Zs Z̃t

∣∣∣∣FM, M̃
s

]

+ E
[
Zt Z̃s

∣∣∣∣FM, M̃
s

]
− E

[
Zs Z̃s

∣∣∣∣FM, M̃
s

]
.

Since Zt − Zs, Z̃t − Z̃s are independent of FM, M̃
s and Zs, Z̃s are adapted to FM, M̃

s , we

have

E
[
V

(u)
t

∣∣∣∣FM, M̃
s

]
= E

[
(Zt − Zs)

(
Z̃t − Z̃s

)]
+ ZsE

[
Z̃t

∣∣∣∣FM, M̃
s

]
+ Z̃sE

[
Zt

∣∣∣∣FM, M̃
s

]
− Zs Z̃s

= E [(Zt − Zs)] · E
[(
Z̃t − Z̃s

)]
+ Zs Z̃s + Zs Z̃s − Zs Z̃s

= Zs Z̃s = V (u)
s .

So the process
(
V

(u)
t

)
is a martingale with respect to

(
FM, M̃
t

)
. For fixed u2 ∈ R and

0 < t1 < t2,

V
(u2)
t1 = E

[
V

(u2)
t2

∣∣∣∣FM, M̃
t1

]
.
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Now fixed u1 ∈ R. Since
V

(u1)
t1

V
(u2)
t1

is adapted to FM, M̃
t1 , we have

V
(u1)
t1 = E

[
V

(u1)
t1 V

(u2)
t2

V
(u2)
t1

∣∣∣∣FM, M̃
t1

]

= E
[
exp {u1Xt1 + u2 (Xt2 −Xt1)}

∣∣∣∣FM, M̃
t1

]
· exp

{
−
(
λ+ λ̃

)
t1 (eu1 − u1 − 1)

}
· exp

{
−
(
λ+ λ̃

)
(t2 − t1) (eu2 − u2 − 1)

}
.

Now we use the martingale property of V
(u1)
t and we take expectation of both sides of the

above formula

1 = V
(u1)

0

= E
[
V

(u1)
t1

]
= E [exp {u1Xt1 + u2 (Xt2 −Xt1)}]

· exp
{
−
(
λ+ λ̃

)
t1 (eu1 − u1 − 1)

}
· exp

{
−
(
λ+ λ̃

)
(t2 − t1) (eu2 − u2 − 1)

}
.

So we obtain

E [exp {u1Xt1 + u2 (Xt2 −Xt1)}]

= exp
{(
λ+ λ̃

)
t1 (eu1 − u1 − 1)

}
· exp

{(
λ+ λ̃

)
(t2 − t1) (eu2 − u2 − 1)

}
.

Since the above joint moment generating function factors into the product of moment

generating functions, Xt1 and Xt2 − Xt1 must be independent. We also know that the

moment generating function of Xt2 −Xt1 is

ϕXt2−Xt1
(u) = exp

{(
λ+ λ̃

)
(t2 − t1) (eu − u− 1)

}
.

Next, we computer the joint moment generating function of the random variables Xt1 ,

Xt2 , · · · , Xtn , for 0 < t1 < t2 < · · · < tn, so that we can know whether X is a compensated
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Poisson process. For 0 < t1 < t2 < · · · < tn, the joint moment generating function of the

random variables Xt1 , Xt2 , · · · , Xtn is given by

ϕXt1 ,Xt2 ,··· ,Xtn
(u1, u2, · · · , un)

= E
[
exp

{
unXtn + un−1Xtn−1 + · · ·+ u1Xt1

}]
= E

[
exp

{
un
(
Xtn −Xtn−1

)
+ (un−1 + un)

(
Xtn−1 −Xtn−2

)
+ · · ·+ (u1 + u2 + · · ·un)Xt1

}]
= E

[
exp

{
un
(
Xtn −Xtn−1

)}]
· E
[
exp

{
(un−1 + un)

(
Xtn−1 −Xtn−2

)}]
·

· · ·E [exp {(u1 + u2 + · · ·un)Xt1}] .

We have known the form of the moment generating function of increments of X, then we

obtain

ϕXt1 ,Xt2 ,··· ,Xtn
(u1, u2, · · · , un)

= exp
{(
λ+ λ̃

)
(tn − tn−1) (eun − un − 1)

}
· exp

{(
λ+ λ̃

)
(tn−1 − tn−2)

(
e(un−1+un) + (un−1 + un)− 1

)}
·

· · · exp
{(
λ+ λ̃

)
t1
(
e(u1+u2+···+un) − (u1 + u2 + · · ·+ un)− 1

)}
.

This is the moment generating function for a compensated Poisson process with intensity

λ+ λ̃. This completes the proof. �

3.2. Compensated Compound Poisson Process

Let (Nt) be a Poisson process with intensity λ and let Y1, Y2, . . . be a sequence of

independent, identically distributed random variables with mean β, where β = E [Yi].

The random variables Y1, Y2, . . . are independent of the Poisson process (Nt).

Definition 3. The stochastic process (Qt) defined by

Qt =
Nt∑
i=1

Yi , t ≥ 0
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is called the compound Poisson process.

The compound Poisson process (Qt) jumps at the same time as the Poisson process

(Nt) jumps. The jump sizes of the compound Poisson process are random. The com-

pensated compound Poisson process (Qt − βλt) is a martingale. In this chapter, we only

regard the compound Poisson process which has finitely many possible jump sizes on finite

interval. The following theorem says that a compound Poisson process can be regarded

as a sum of independent Poisson processes each has fixed jump-size.

Theorem 4 (Shreve [14] Theorem 11.3.3.). Let y1, y2, . . . , yM be a finite set of nonzero

numbers and let p(y1), p(y2),. . . , p(yM) be positive numbers that sum to 1. Let Y1, Y2, . . .

be a sequence of independent, identically distributed random variables with P (Yi = ym) =

p(ym), m = 1, . . . ,M . Let (Nt) be a Poisson process with intensity λ and define the

compound Poisson process

Qt =
Nt∑
i=1

Yi .

For m = 1, . . . ,M , let N
(m)
t denote the number of jumps in Q of size ym in [0, t]. Then

Nt =
M∑
m=1

N
(m)
t and Qt =

M∑
m=1

ymN
(m)
t ,

where the process N (1), . . . , N (M) are independent Poisson processes and each N (m) has

intensity λp(ym).

The theorem tells us the fact that a compound Poisson process can be represented by

some independent Poisson processes each has fixed jump-size. We will use this theorem

to construct a new compensated compound Poisson process.

3.3. Construction of a New Compensated Compound Poisson Process

We consider two independent compound Poisson process which have some conditions

as follows. Let y1, y2, . . . , yM be a finite set of nonzero numbers and let p(y1), p(y2),
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. . . , p(yM) be positive numbers whose summation is identical to 1. Let Y1, Y2, . . . be

a sequence of independent, identically distributed random variables with P (Yi = ym) =

p(ym), m = 1, . . . ,M and E [Yi] = β. Let (Nt) be a Poisson process with intensity λ and

define the compound Poisson process

Qt =
Nt∑
i=1

Yi . (3.5)

For m = 1, . . . ,M , let N
(m)
t denote the number of jumps in Q of size ym in [0, t]. Then

we have

Qt =
M∑
m=1

ymN
(m)
t ,

where the process N (1), . . . , N (M) are independent Poisson process, and each N (m) has

intensity λp(ym).

Let ỹ1, ỹ2, . . . , ỹM̂ be another finite set of nonzero numbers and let p̃(ỹ1), p̃(ỹ2),

. . . , p̃(ỹM̂) be positive numbers that sum to 1. Let Ỹ1, Ỹ2, . . . be another sequence of

independent, identically distributed random variables with P
(
Ỹi = ỹm

)
= p̃(ỹm), m =

1, . . . , M̃ , E[Ỹi] = β̃ and Ỹ1, Ỹ2, . . . are independent of the sequence Y1, Y2, . . .. Let (Ñt) be

a Poisson process with intensity λ̃ and it is independent of (Nt). Define another compound

Poisson process

Q̃t =
Ñt∑
i=1

Ỹi . (3.6)

For m = 1, . . . , M̃ , let Ñ
(m)
t denote the number of jumps in Q̃ of size ỹm in [0, t]. Then

we have

Q̃t =
M̃∑
m=1

ỹmÑ
(m)
t ,

where the process Ñ (1), . . . , Ñ (M̃) are independent Poisson process, and each Ñ (m) has

intensity λ̃p̃(ỹm).

Consider the stochastic process X which is given by

Xt = (Qt − βλt) +

∫ t

0

f(s) d
(
Q̃s − β̃λ̃s

)
, (3.7)
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where f is a nonrandom differentiable function and f 6= 0. We use the similar method in

Section 3.1 to see that in which cases X is again a compound Poisson process. First, we

want to know the form of the moment generating function of Xt, for t ≥ 0. The moment

generating function of Xt, for t ≥ 0 is given by

ϕXt(u) = E [exp {u (Qt − βλt)}] · E
[
exp

{
u

∫ t

0

f(s) d
(
Q̃s − β̃λ̃s

)}]
. (3.8)

The following theorem tells us the form of the moment generating function for a compound

Poisson process, so that we can get the form of the moment generating function of Xt.

Theorem 5 (Shreve [14] Section 11.3.2). The moment generating function for the

compound Poisson process (Qt) defined as (3.5) is given by

ϕQt(u) = exp {λt (ϕY1(u)− 1)} .

By the above theorem, we know that the moment generating function of (Qt − βλt)

is given by

ϕ(Qt−βλt)(u) = exp

{
λt

M∑
m=1

p(ym) (euym − 1)− uβλt

}
. (3.9)

We remain to obtain the form of the moment generating function of

∫ t

0

f(s) d
(
Q̃s − β̃λ̃s

)
,

so that we can get the form of the moment generating function of Xt.

Theorem 6. Consider the process

∫ t

0

f(s) d
(
Q̃s − β̃λ̃s

)
,
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where (Q̃t) is given by (3.6) with intensity λ̃, β̃ = E[Ỹi], and f is a nonrandom differen-

tiable function. Then its moment generating function is given by

E
[
exp

{
u

∫ t

0

f(s) d
(
Q̃s − β̃λ̃s

)}]

= exp

λ̃
M̃∑
m=1

[
p̃(ỹm)

∫ t

0

(
euf(s)ỹm − 1

)
ds

] · exp

{
−uβ̃λ̃

∫ t

0

f(s) ds

}
.

Proof.

E
[
exp

{
u

∫ t

0

f(s) d
(
Q̃s − β̃λ̃s

)}]

= E
[
exp

{
u

∫ t

0

f(s) dQ̃s

}]
· exp

{
−uβ̃λ̃

∫ t

0

f(s) ds

}
.

(3.10)

We focus on the first term of (3.10). Using the fact taht Ñ (1), . . . , Ñ (M̃) are independent

Poisson processes, we know that

E
[
exp

{
u

∫ t

0

f(s) dQ̃s

}]
= E

exp

u
∫ t

0

f(s) d

 M̃∑
m=1

ỹmÑ
(m)
s




=
M̃∏
m=1

E
[
exp

{
u

∫ t

0

f(s)ỹm dÑ
(m)
s

}]
. (3.11)

From Theorem 1, we have that for 1 ≤ m ≤ M̃ ,

E
[
exp

{
u

∫ t

0

f(s)ỹm dÑ
(m)
s

}]
= exp

{
λ̃p̃(ỹm)

∫ t

0

(
euf(s)ỹm − 1

)
ds

}
. (3.12)

Due to (3.10), (3.11) and (3.12), we have

E
[
exp

{
u

∫ t

0

f(s) d
(
Q̃s − β̃λ̃t

)}]

= exp

λ̃
M̃∑
m=1

[
p̃(ỹm)

∫ t

0

(
euf(s)ỹm − 1

)
ds

] · exp

{
−uβ̃λ̃

∫ t

0

f(s) ds

}
.

This completes the proof. �
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From (3.8), (3.9) and Theorem 6, we obtain that the moment generating function of

Xt is given by

ϕXt(u) = exp

λt
M∑
m=1

p(ym) (euym − 1)− uβλt+ λ̃
M̃∑
m=1

[
p̃(ỹm)

∫ t

0

(
euf(s)ỹm − 1

)
ds

]

−uβ̃λ̃
∫ t

0

f(s) ds

}
.

(3.13)

Next, we want to see in which cases the process X is a compensated compound Poisson

process.

Proposition 7. Let the stochastic process (Xt) satisfy (3.7). Then (Xt) is a com-

pensated compound Poisson process if and only if f ≡ C. Moreover, (Xt) has intensity(
λ+ λ̃

)
.

Proof. “ =⇒ ” : Suppose that (Xt) is a compensated compound Poisson process

with intensity λ̂. We let the moment generating function of Xt be equal to

exp

λ̂t
M̂∑
m=1

p̂(ŷm)
(
euŷm − 1

)
− uβ̂λ̂t

 , (3.14)

for some M̂ , β̂, ŷm and p̂(ŷm), for 1 ≤ m ≤ M̂ . Let Ŷi denote the size of the ith

jump for X, for i ≥ 1. Then Ŷ1, Ŷ2, . . . are independent and from (3.14) we know that

the distribution of finitely many jump sizes of X is given by P
(
Ŷi = ŷm

)
= p̂(ŷm), for

1 ≤ m ≤ M̂ . The mean of Ŷi is equal to β̂. Suppose that the following equation holds

exp

λt
M∑
m=1

p(ym) (euym − 1)− uβλt+ λ̃
M̃∑
m=1

[
p̃(ỹm)

∫ t

0

(
euf(s)ỹm − 1

)
ds

]
− uβ̃λ̃

∫ t

0

f(s) ds


= exp

λ̂t
M̂∑
m=1

p̂(ŷm)
(
euŷm − 1

)
− uβ̂λ̂t

 .
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Then we have the equation

λt
M∑
m=1

p(ym) (euym − 1)− uβλt+ λ̃
M̃∑
m=1

[
p̃(ỹm)

∫ t

0

(
euf(s)ỹm − 1

)
ds

]
− uβ̃λ̃

∫ t

0

f(s) ds

= λ̂t

M̂∑
m=1

p̂(ŷm)
(
euŷm − 1

)
− uβ̂λ̂t.

We differentiate with respect to t on both sides of the above equation

λ
M∑
m=1

p(ym) (euym − 1)− uβλ+ λ̃

M̃∑
m=1

p̃(ỹm)
(
euf(t)ỹm − 1

)
− uβ̃λ̃f(t)

= λ̂
M̂∑
m=1

p̂(ŷm)
(
euŷm − 1

)
− uβ̂λ̂ .

If we differentiate with respect to t again, then we obtain

uλ̃f
′
(t)

M̃∑
m=1

p̃(ỹm)ỹm
(
euf(t)ỹm

)
− uβ̃λ̃f ′(t) = 0 .

Then

uλ̃f
′
(t)

 M̃∑
m=1

p̃(ỹm)ỹm
(
euf(t)ỹm

)
− β̃

 = 0 .

This implies that f
′
(t) = 0 or

M̃∑
m=1

p̃(ỹm)ỹm
(
euf(t)ỹm

)
− β̃ = 0 . (3.15)

We differentiate with respect to t on both sides of (3.15), then we have

uf
′
(t)

M̃∑
m=1

p̃(ỹm)(ỹm)2
(
euf(t)ỹm

)
= 0 .

So we know that f must be a constant. Set f ≡ C, where C is a constant. From (3.7),

we have

Xt = (Qt − βλt) + C
(
Q̃t − β̃λ̃t

)
.
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The moment generating function of Xt is given by

ϕXt(u) = exp

λt
M∑
m=1

p(ym) (euym − 1)− uβλt+ λ̃t
M̃∑
m=1

p̃(ỹm)
(
euCỹm − 1

)
− uβ̃λ̃Ct


= exp

(λ+ λ̃
)
t

 M∑
m=1

(
λp(ym)

λ+ λ̃

)
(euym − 1) +

M̃∑
m=1

(
λ̃p̃(ỹm)

λ+ λ̃

)(
euCỹm − 1

)
−u
(
λ+ λ̃

)
t

(
λβ

λ+ λ̃
+

λ̃Cβ̃

λ+ λ̃

)}
.

This implies that X is a compensated Poisson process with intensity
(
λ+ λ̃

)
and the

distribution for finitely many jump sizes of X is given by

P
(
Ŷi = ym

)
=
λp(ym)

λ+ λ̃
, for 1 ≤ m ≤M

and

P
(
Ŷi = Cỹn

)
=
λ̃p̃(ỹn)

λ+ λ̃
, for 1 ≤ n ≤ M̃ .

We also know that the mean of Ŷi, for i ≥ 1 is given by

E[Ŷi] =
λβ

λ+ λ̃
+

λ̃Cβ̃

λ+ λ̃
.

“ ⇐= ” : If f ≡ C, then we have Xt = (Qt − βλt) + C
(
Q̃t − β̃λ̃t

)
. We will show that

the law of X agrees with the law of a compensated compound Poisson process which has

intensity λ+ λ̃. Set

Zt = exp

{
u (Qt − βλt)−

(
λt

M∑
m=1

p(ym) (euym − 1)− uβλt

)}
.

We will show that (Zt) is a martingale. Since β =
∑M

m=1 ymp(ym), we obtain

Qt − βλt =
M∑
m=1

ym

(
N

(m)
t − λp(ym)t

)
.

Then we have

Zt = exp

{
u

M∑
m=1

ym

(
N

(m)
t − λp(ym)t

)
−

(
λt

M∑
m=1

p(ym) (euym − 1)− uβλt

)}
.
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Set

Yt = u

M∑
m=1

ym

(
N

(m)
t − λp(ym)t

)
−

(
λt

M∑
m=1

p(ym) (euym − 1)− uβλt

)
.

Note that

dY c
s =

(
−λ

M∑
m=1

p(ym) (euym − 1)

)
ds.

Take f(x) = ex so that f
′
(x) = ex, f

′′
(x) = ex. The Itô’s formula implies

Zt = Z0 +

∫ t

0

Zs dY
c
s +

1

2

∫ t

0

Zs dY
c
s dY

c
s +

∑
0<s≤t

[Zs − Zs− ] . (3.16)

Since Y c
s is the continuous part of Ys, we can change the integrand Zs which is in the

second term of (3.16) to Zs− . When the compound Poisson process Q jumps at time s,

the jump size of Q at time s must be equal to one of y1, y2,· · · , yM . If the jump size of Q

at time s is equal to ym, for some m, then we have Zs = Zs− × euym . If Q does not jump

at time s, then Zs = Zs− . So we have

Zs − Zs− =
M∑
m=1

Zs− (euym − 1) ∆N (m)
s .

Then

Zt = 1 +

∫ t

0

Zs−

(
−λ

M∑
m=1

p(ym) (euym − 1)

)
ds+

∑
0<s≤t

M∑
m=1

Zs− (euym − 1) ∆N (m)
s .

Set M
(m)
t = N

(m)
t − λ p(ym) t, for 1 ≤ m ≤ M . Then M (m) is a compensated Poisson

process with intensity λp(ym) and M (m) is a martingale. We have

Zt = 1 +
M∑
m=1

∫ t

0

Zs− (euym − 1) d
(
M (m)

s −N (m)
s

)
+

M∑
m=1

∑
0<s≤t

Zs− (euym − 1) ∆N (m)
s

= 1 +
M∑
m=1

∫ t

0

Zs− (euym − 1) d
(
M (m)

s −N (m)
s

)
+

M∑
m=1

∫ t

0

Zs− (euym − 1) dN (m)
s

= 1 +
M∑
m=1

∫ t

0

Zs− (euym − 1) dM (m)
s .
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SinceM (m) is a martingale and Zs− (euym − 1) is left continuous in s,

∫ t

0

Zs− (euym − 1) dM (m)
s

is also a martingale. The sum of finitely many martingales is a martingale, so the pro-

cess (Zt) is a martingale. Denote by
(
F N(1),··· , N(M), Ñ(1),··· , Ñ(M̃)

t

)
the filtration generated

by N (1), · · · , N (M), Ñ (1), · · · , Ñ (M̃). The process (Zt) is a martingale with respect to(
F N(1),··· , N(M), Ñ(1),··· , Ñ(M̃)

t

)
. Set

Z̃t = exp

uC (Q̃t − β̃λ̃t
)
−

λ̃t M̃∑
m=1

p̃(ỹm)
(
euCỹm − 1

)
− uCβ̃λ̃t

 .

By the similar method, we have that Z̃t is also a martingale with respect to(
F N(1),··· , N(M), Ñ(1),··· , Ñ(M̃)

t

)
. The two processes (Zt) and (Z̃t) are independent and they

are all martingales with respect to the filtration
(
F N(1),··· , N(M), Ñ(1),··· , Ñ(M̃)

t

)
. From (3.13),

we know that the moment generating function of Xt is given by

ϕXt(u) = exp

λt
M∑
m=1

p(ym) (euym − 1)− uβλt+ λ̃t
M̃∑
m=1

p̃(ỹm)
(
euCỹm − 1

)
− uCβ̃λ̃t


= exp

(λ+ λ̃
)
t

 M∑
m=1

(
λp(ym)

λ+ λ̃

)
(euym − 1) +

M̃∑
m=1

(
λ̃p̃(ỹm)

λ+ λ̃

)(
euCỹm − 1

)
−u
(
λ+ λ̃

)
t

(
λβ

λ+ λ̃
+

Cλ̃β̃

λ+ λ̃

)}
.

For the sake of simplicity, we let

η t(u) = exp

(λ+ λ̃
)
t

 M∑
m=1

(
λp(ym)

λ+ λ̃

)
(euym − 1) +

M̃∑
m=1

(
λ̃p̃(ỹm)

λ+ λ̃

)(
euCỹm − 1

)
−u
(
λ+ λ̃

)
t

(
λβ

λ+ λ̃
+

Cλ̃β̃

λ+ λ̃

)}
.

For fixed u ∈ R, the process V
(u)
t is defined by

V
(u)
t =

exp {uXt}
η t(u)

= Zt Z̃t.
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Since Zt−Zs, Z̃t− Z̃s are independent of F N(1),··· , N(M), Ñ(1),··· , Ñ(M̃)

s and Zs, Z̃s are adapted

to F N(1),··· , N(M), Ñ(1),··· , Ñ(M̃)

s , we can use the same method as the proof in Proposition 2

to show that V
(u)
t = Zt Z̃t is a martingale with respect to

(
F N(1),··· , N(M), Ñ(1),··· , Ñ(M̃)

t

)
. For

fixed u2 ∈ R and 0 < t1 < t2, V
(u2)
t1 = E

[
V

(u2)
t2

∣∣∣∣FM, M̃
t1

]
. Now fixed u1 ∈ R. Since

V
(u1)
t1

V
(u2)
t1

is adapted to F N(1),··· , N(M), Ñ(1),··· , Ñ(M̃)

t1 , we have

V
(u1)
t1 = E

[
V

(u1)
t1 V

(u2)
t2

V
(u2)
t1

∣∣∣∣F N(1),··· , N(M), Ñ(1),··· , Ñ(M̃)

t1

]

= E
[
exp {u1Xt1 + u2 (Xt2 −Xt1)}

∣∣∣∣F N(1),··· , N(M), Ñ(1),··· , Ñ(M̃)

t1

]
· η−1

t1
(u1) · η−1

t2−t1(u2).

Now we use the martingale property of V
(u1)
t . We take expectation of both sides of the

above formula

1 = E
[
V

(u1)
t1

]
= E [exp {u1Xt1 + u2 (Xt2 −Xt1)}] · η−1

t1
(u1) · η−1

t2−t1(u2).

So we obtain

E [exp {u1Xt1 + u2 (Xt2 −Xt1)}] = η t1(u1) · η t2−t1(u2).

Since the above joint moment generating function factors into the product of moment

generating functions, Xt1 and Xt2 − Xt1 must be independent. We also know that the

moment generating function of Xt2 −Xt1 is

ϕXt2−Xt1
(u) = exp

(λ+ λ̃
)

(t2 − t1)

 M∑
m=1

(
λp(ym)

λ+ λ̃

)
(eu2ym − 1) +

M̃∑
m=1

(
λ̃p̃(ỹm)

λ+ λ̃

)(
eu2Cỹm − 1

)
−u2

(
λ+ λ̃

)
(t2 − t1)

(
λβ

λ+ λ̃
+

Cλ̃β̃

λ+ λ̃

)}
.
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For 0 < t1 < t2 < · · · < tn, the joint moment generating function of the random variables

Xt1 , Xt2 ,· · · , Xtn is given by

ϕXt1 ,Xt2 ,··· ,Xtn
(u1, u2, · · · , un)

= E
[
exp

{
un
(
Xtn −Xtn−1

)}]
· E
[
exp

{
(un−1 + un)

(
Xtn−1 −Xtn−2

)}]
·

· · ·E [exp {(u1 + u2 + · · ·+ un)Xt1}]

= exp

(λ+ λ̃
)

(tn − tn−1)

 M∑
m=1

(
λp(ym)

λ+ λ̃

)
(eunym − 1) +

M̃∑
m=1

(
λ̃p̃(ỹm)

λ+ λ̃

)(
eunCỹm − 1

)
−un

(
λ+ λ̃

)
(tn − tn−1)

(
λβ

λ+ λ̃
+

Cλ̃β̃

λ+ λ̃

)}

· exp

{(
λ+ λ̃

)
(tn−1 − tn−2)

[
M∑
m=1

(
λp(ym)

λ+ λ̃

)(
e(un−1+un)ym − 1

)

+
M̃∑
m=1

(
λ̃p̃(ỹm)

λ+ λ̃

)(
e(un−1+un)Cỹm − 1

)
−(un−1 + un)

(
λ+ λ̃

)
(tn−1 − tn−2)

(
λβ

λ+ λ̃
+

Cλ̃β̃

λ+ λ̃

)}

· · · exp

(λ+ λ̃
)
t1

 M∑
m=1

(
λp(ym)

λ+ λ̃

)(
e(u1+···+un)ym − 1

)
+

M̃∑
m=1

(
λ̃p̃(ỹm)

λ+ λ̃

)(
e(u1+···+un)Cỹm − 1

)
−(u1 + · · ·+ un)

(
λ+ λ̃

)
t1

(
λβ

λ+ λ̃
+

Cλ̃β̃

λ+ λ̃

)}
.

This is the moment generating function for a compensated compound Poisson process

with intensity λ+ λ̃. This completes the proof. �





CHAPTER 4

A Bridge with Respect to the Fractional Brownian Motion

In this chapter, we introduce the fractional Brownian motion and some properties

of this process. We change the Brownian motion which is in the Brownian bridge to a

fractional Brownian motion and check if the new process converges.

4.1. Fractional Brownian Motion

Let (Ω,F ,P) be a probability space. The process (Xt) is a Gaussian process if for

all 0 ≤ t1 < t2 < · · · < tn, the random variables Xt1 , Xt2 ,· · · , Xtn are jointly normally

distributed. The jointly normally distribution of the random variables Xt1 , Xt2 ,· · · , Xtn

is determined by the means and covariances of these random variables. So the law of a

Gaussian process is entirely determined by the mean function E [Xt] and the covariance

function Cov (Xt, Xs), for t, s ≥ 0.

Definition 1. A fractional Brownian motion (B
(H)
t ) t≥0 with Hurst index H ∈ (0, 1)

is a continuous and centered Gaussian process with the covariance function

E
[
B

(H)
t B(H)

s

]
= RH(t, s) =

1

2

(
s2H + t2H − |t− s|2H

)
. (4.1)

The fractional Brownian motion was first introduced by Kolmogorov in [10] and stud-

ied by Mandelbrot and Van Ness in [11], where a stochastic integral representation of this

process in terms of a standard Brownian motion was established. By the above definition

we know that a fractional Brownian motion has the following properties.

(1) Self-similarity: From (4.1) we know that the process {a−H B(H)
at , t ≥ 0} and

{B(H)
t , t ≥ 0} have the same law, for any a > 0.

35
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(2) Stationary increments: From (4.1) we have that the increments of the fractional

Brownian motion in [s, t] has a normal distribution with zero mean and variance

E
[(
B

(H)
t −B(H)

s

)2
]

= |t− s|2H .

So B
(H)
t+s −B

(H)
s has the same law of B

(H)
t , for s, t ≥ 0.

For H =
1

2
, the covariance function is R 1

2
(t, s) = min(s, t), then the process B( 1

2
) is a

standard Brownian motion. However, for H 6= 1

2
, the increments of the process are not

independent. Now we discuss the integral representations for the fractional Brownian

motion. The integral representation for fractional Brownian motion on the whole real line

which is given by

B
(H)
t =

1

CH

∫
R

[(
(t− s)+

)H− 1
2 −

(
(−s)+

)H− 1
2 dBs

]
, (4.2)

where B is a Brownian motion, H ∈ (0, 1) and

CH =

(∫ ∞
0

(
(1 + s)H−

1
2 − sH−

1
2

)2

ds+
1

2H

) 1
2

is obtained by Mandelbrot and Van Ness in [11]. For s ∈ R, t ≥ 0 the function ft(s) =

((t− s)+)
H− 1

2 − ((−s)+)
H− 1

2 satisfies

∫
R
f 2
t (s) ds <∞, so the stochastic integral on the

right side of (4.2) is well defined. The following integral representation for fractional

Brownian motion is over a finite interval. By [12], for H >
1

2
, the fractional Brownian

motion can be represented as

B
(H)
t =

∫ t

0

K
(1)
H (t, s) dBs, for t ≥ 0 (4.3)

where (Bt) is a standard Brownian motion and

K
(1)
H (t, s) = C

(1)
H s

1
2
−H
∫ t

s

|u− s|H−
3
2 uH−

1
2 du,

where C
(1)
H =

[
H(2H − 1)

β
(
2− 2H,H − 1

2

)] 1
2

and t > s. For H <
1

2
, the integral representation

on the finite interval is different from the integral representation for H >
1

2
. By [12], for
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H <
1

2
, the fractional Brownian motion can be represented as

B
(H)
t =

∫ t

0

K
(2)
H (t, s) dBs, for t ≥ 0,

where (Bt) is a standard Brownian motion and

K
(2)
H (t, s) = C

(2)
H

[(
t

s

)H− 1
2

(t− s)H−
1
2 −

(
H − 1

2

)
s

1
2
−H
∫ t

s

(u− s)H−
1
2uH−

3
2 du

]

where C
(2)
H =

[
2H

(1− 2H)β(1− 2H, H + 1
2
)

] 1
2

and t > s. In Section 1.8 of [6], we know

that the fractional brownian motion is not a semimartingale, for H 6= 1

2
. So we can not

use Itô stochastic calculus which is defined for semimartingales to define the stochastic

integral with respect to the fractional brownian motion. In next section the definition of

the integral of deterministic processes with respect to a fractional brownian motion will

be introduced.

4.2. Wiener Integrals for the Fractional Brownian Motion for H >
1

2

The stochastic integrals of deterministic processes with respect to a Gaussian process

are called Wiener integrals. Let (B
(H)
t ) t≥0 be a fractional brownian motion with Hurst

index H >
1

2
on the probability space (Ω, F , P). Fix a time interval [0, T ]. For 0 = t0 <

t1 < · · · < tn = T the stochastic integral of a step function of the form

ϕt =
n∑
i=1

aiI(ti−1, ti](t)

is naturally defined by

∫ T

0

ϕt dB
(H)
t =

n∑
i=1

ai

(
B

(H)
ti −B

(H)
ti−1

)
.

The integral can be extended to general functions by using the convergence in L2(Ω).

Denote by H the closure of (L2([0, T ]), <,>H) with respect to the scalar product defined
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as

〈f, g〉H = H(2H − 1)

∫ T

0

∫ T

0

f(r) g(u) |r − u|2H−2 du dr. (4.4)

Then H is a Hilbert space. Section 2.1 of [6] tells us the mapping ϕ −→
∫ T

0

ϕt dB
(H)
t ,

where ϕ is a step function on [0, T ] can be extended to a linear isometry betweenH and the

Gaussian subspace of L2(Ω) which is spanned by the random variables {B(H)
t ; t ∈ [0, T ]}.

Section 2.1 of [6] also tells us the definition of the Wiener integral of the deterministic

function with respect to the fractional Brownian motion.

Definition 2. ForH >
1

2
and ψ ∈ H, the Wiener integral of the deterministic function

ψ with respect to the fractional Brownian motion B(H) is defined as∫ T

0

ψs dB
(H)
s =

∫ T

0

(K
(1)∗
H ψ)(s) dBs, (4.5)

where (Bt) is a standard Brownian motion and

(K
(1)∗
H ψ)(s) =

∫ T

s

ψt
∂K

(1)
H

∂t
(t, s) dt

which is a square-integrable function.

The integral on the right side of (4.5) is well defined for ψ ∈ H and we get the

representation of the Wiener integral of the deterministic function with respect to the

fractional brownian motion in terms of an integral with respect to the Brownian motion.

If ψ = (K
(1)∗
H )−1I [0, t], then we have

Bt =

∫ t

0

(
(K

(1)∗
H )−1I [0, t]

)
(s) dB(H)

s . (4.6)

From (4.3) and (4.6), we know that B(H) and B generate the same filtration. Due to the

isometry property of the mapping ψ −→
∫ T

0

ψt dB
(H)
t , where ψ ∈ H , we have

∥∥∥∥ ∫ T

0

ψs dB
(H)
s

∥∥∥∥2

L2(Ω)

= ‖ψ‖2
H,
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i.e.,

E

[(∫ T

0

ψt dB
(H)
t

)2
]

= H(2H − 1)

∫ T

0

∫ T

0

ψr ψu |r − u|2H−2 du dr. (4.7)

The left side of (4.7) is the variance of the Wiener integral of the deterministic function ψ

with respect to the fractional brownian motion B(H). In next section we use the variance

of the Wiener integral to know where the integral converges.

4.3. A Bridge with Respect to the Fractional Brownian Motion

Let (B
(H)
t ) be a fractional brownian motion with Hurst index H >

1

2
. Consider the

stochastic differential equation

dXt = dB
(H)
t +

b−Xt

1− t
dt,

with the initial value X0 = 0 and some constant b. The solution (Xt) 0≤t≤1 is given by

Xt = (1− t)
∫ t

0

1

1− s
dB(H)

s + bt. (4.8)

Since the fractional brownian motion B(H) is a centered Gaussian process, the process

(1− t)
∫ t

0

1

1− s
dB(H)

s is also a centered Gaussian process. Then we have

E
[
(1− t)

∫ t

0

1

1− s
dB(H)

s

]
= 0.

We will use the variance of the first term of (4.8) to see where the process (Xt) approaches

as t→ 1.

Theorem 3. Suppose that the process (Xt) 0≤t<1 satisfies (4.8). Then we have that

Xt → b P-a.s. as t→ 1.

Proof. From the formula (4.7), we get

E

[(
(1− t)

∫ t

0

1

1− s
dB(H)

s

)2
]

= (1− t)2H(2H − 1)

∫ t

0

∫ t

0

|r− u|2H−2 1

1− r
1

1− u
du dr.

(4.9)
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By Fubini’s theorem, we obtain

(1− t)2H(2H − 1)

∫ t

0

∫ t

0

|r − u|2H−2 1

1− r
1

1− u
du dr

= 2H (2H − 1) (1− t)2

∫ t

0

∫ r

0

(r − u)2H−2 1

1− r
1

1− u
du dr.

(4.10)

Since 0 ≤ u ≤ r ≤ t ≤ 1, we know that
1

1− u
≤ 1

1− r
. Then we have

2H (2H − 1) (1− t)2

∫ t

0

∫ r

0

(r − u)2H−2 1

1− r
1

1− u
du dr

≤ 2H(2H − 1)(1− t)2

∫ t

0

∫ r

0

(r − u)2H−2 1

(1− r)2
du dr

= 2H(1− t)2

∫ t

0

r2H−1 1

(1− r)2
dr.

Since r ≤ 1, we get

2H(1− t)2

∫ t

0

r2H−1 1

(1− r)2
dr ≤ 2H(1− t)2

∫ t

0

1

(1− r)2
dr

= 2Ht(1− t).

Then we obtain

E

[(
(1− t)

∫ t

0

1

1− s
dB(H)

s

)2
]
≤ 2Ht(1− t)

which converges to 0 as t → 1. So we have that the process (1− t)
∫ t

0

1

1− s
dB(H)

s

converges to 0 P-a.s. as t → 1. Finally, we know that the process (Xt) 0≤t≤1 converges

to b P-a.s. as t→ 1. �

The process (Xt) 0≤t≤1 which satisfies (4.8) is a bridge with respect to the fractional

Brownian motion from 0 to fixed point b. Next, we have a bridge with respect to the

fractional Brownian motion from 0 to a random variable. Let Y be a random variable.

Consider the stochastic differential equation

dXt = dB
(H)
t +

Y −Xt

1− t
dt
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with the initial value X0 = 0. The solution (Xt) 0≤t≤1 is given by

Xt = (1− t)
∫ t

0

1

1− s
dB(H)

s + t Y. (4.11)

By the proof of Theorem 3, we have that the process (Xt) 0≤t≤1 satisfying (4.11) con-

verges to Y P-a.s. as t→ 1.

In the following we want to know whether the process (Xt) 0≤t≤1 is a fractional Brown-

ian motion if we let Y be a standard normally distributed random variable with E [Y ] = 0

and Var(Y ) = 1. From (4.11) we know (Xt) 0≤t≤1 is a centered Gaussian process. Now

we see whether E [X2
t ] is equal to t2H . If E [X2

t ] 6= t2H , then (Xt) 0≤t≤1 is not a fractional

Brownian motion. The variance of Xt is given by

E
[
X2
t

]
= (1− t)2 E

[(∫ t

0

1

1− s
dB(H)

s

)2
]

+ t2 E
[
Y 2
]

+ 2t(1− t)E
[
Y

(∫ t

0

1

1− s
dB(H)

s

)]
.

B(H) and Y are independent and Y ∼ N(0, 1), then we have

E
[
X2
t

]
= (1− t)2 E

[(∫ t

0

1

1− s
dB(H)

s

)2
]

+ t2

+ 2t(1− t)E[Y ] · E
[∫ t

0

1

1− s
dB(H)

s

]

= (1− t)2 E

[(∫ t

0

1

1− s
dB(H)

s

)2
]

+ t2

From (4.9) and (4.10), we have that

E
[
X2
t

]
= t2 + 2H (2H − 1) (1− t)2

∫ t

0

∫ r

0

(r − u)2H−2 1

1− r
1

1− u
du dr. (4.12)

By Taylor’s formula, we have
1

1− u
=
∞∑
k=0

uk. Then we obtain

∫ r

0

(r − u)2H−2 1

1− u
du =

∞∑
k=0

∫ r

0

(r − u)2H−2 uk du. (4.13)
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The first term of (4.13) is ∫ r

0

(r − u)2H−2 du =
1

2H − 1
r2H−1.

The second term of (4.13) is∫ r

0

(r − u)2H−2 u du =

∫ r

0

1

2H − 1
(r − u)2H−1 du

=
1

(2H − 1)(2H)
r2H .

For all k ∈ Z, for n = 1, we have that∫ r

0

(r − u)2H+k un du =

∫ r

0

(r − u)2H+k u du

=

∫ r

0

1

2H + k + 1
(r − u)2H+k+1 du

=
1

(2H + k + 1)(2H + k + 2)
r2H+k+2.

Suppose that for all k ∈ Z, for n = m− 1, the following equation holds∫ r

0

(r − u)2H+k um−1 du =
(m− 1)!

(2H + k + 1)(2H + k + 2) · · · (2H + k +m)
r2H+k+m. (4.14)

For n = m, we have∫ r

0

(r − u)2H+k um du =

∫ r

0

1

2H + k + 1
(r − u)2H+k+1mum−1 du

=
m

2H + k + 1

∫ r

0

(r − u)2H+k+1 um−1 du.

Let k̃ = k + 1. Due to (4.14), we obtain∫ r

0

(r − u)2H+k um du =
m

2H + k̃

∫ r

0

(r − u)2H+k̃ um−1 du

=
m!

(2H + k̃)(2H + k̃ + 1) · · · (2H + k̃ +m)
r2H+k̃+m

=
m!

(2H + k + 1)(2H + k + 2) · · · (2H + k +m+ 1)
r2H+k+m+1
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By induction on n, the result∫ r

0

(r − u)2H+k un du =
n!

(2H + k + 1)(2H + k + 2) · · · (2H + k + n+ 1)
r2H+k+n+1

holds for all n ∈ N. Then we get∫ r

0

(r − u)2H−2 1

1− u
du =

∞∑
k=0

k!

(2H − 1)(2H) · · · (2H + k − 1)
r2H+k−1.

Then we obtain∫ t

0

∫ r

0

(r − u)2H−2 1

1− r
1

1− u
du dr

=

∫ t

0

1

1− r

(
∞∑
k=0

k!

(2H − 1)(2H) · · · (2H + k − 1)
r2H+k−1

)
dr

=
∞∑
k=0

k!

(2H − 1)(2H) · · · (2H + k − 1)

∫ t

0

1

1− r
r2H+k−1dr.

Since
1

1− r
=
∞∑
j=0

r j, we get

∫ t

0

∫ r

0

(r − u)2H−2 1

1− r
1

1− u
du dr

=
∞∑
k=0

k!

(2H − 1)(2H) · · · (2H + k − 1)

∫ t

0

∞∑
j=0

r2H+k+j−1 dr

=
∞∑
k=0

∞∑
j=0

k!

(2H − 1)(2H) · · · (2H + k − 1)

∫ t

0

r2H+k+j−1 dr

=
∞∑
k=0

∞∑
j=0

k!

(2H − 1)(2H) · · · (2H + k − 1)
· 1

2H + k + j
t2H+k+j.

From (4.12), we have that the variance of Xt is given by

E
[
X2
t

]
= t2 + (2H)(2H − 1)(1− t)2

∞∑
k=0

∞∑
j=0

k!

(2H − 1)(2H) · · · (2H + k − 1)
· 1

2H + k + j
t2H+k+j.

(4.15)
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Suppose the following equation holds

t2 + (2H)(2H − 1)(1− t)2

∞∑
k=0

∞∑
j=0

k!

(2H − 1)(2H) · · · (2H + k − 1)
· 1

2H + k + j
t2H+k+j = t2H .

Then

(2H)(2H − 1)(1− t)2

∞∑
k=0

∞∑
j=0

k!

(2H − 1)(2H) · · · (2H + k − 1)
· 1

2H + k + j
tk+j = 1− t2−2H .

Let s = 1− t, then we have that

(2H)(2H − 1)s2

∞∑
k=0

∞∑
j=0

k!

(2H − 1)(2H) · · · (2H + k − 1)
· 1

2H + k + j
(1− s)k+j

= 1− (1− s)2−2H . (4.16)

Since

1− (1− s)2−2H = 1−
∞∑
m=0

2− 2H

m

 (−s)m

= (2− 2H)s+
∞∑
m=2

2− 2H

m

 (−s)m.

But from (4.16), the exponent of s in every term on the left side of (4.16) is larger than

two. Then we know that E [X2
t ] 6= t2H , for 0 < t ≤ 1. Thus (Xt) 0≤t≤1 is not a fractional

Brownian motion.
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[1] Alòs, E., Mazet, O. and Nualart, D. (1999) Stochastic calculus with respect to frac-

tional Brownian motion with Hurst parameter less than 1/2. Stoch. Proc. Appl. 86,

121-139.
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