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Abstract

We find a system of differential inequalities under which the gradient estimate holds. Using
appropriately chosen test functions, we find some lower bounds of the gap of the first two

eigenvalues in the Schrodinger operator.
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1. INTRODUCTION

Let 2 be a smooth bounded domain in R™ and V' be a smooth potential in 2. The
spectrum of the Dirichlet eigenvalue problem

(A=V)f+Af=0 in Q,
(1.1) {f:O on Q.

are discrete, and can be arranged in nondecreasing order as follows
M <A< A<

It is an interesting problem to find a lower bound for the first gap Ao — Ay in terms
of the geometrical invariants of {2 and the given potential function V.
In 1983, consider bounded convex domains {2 with convex potentials V', M. van

2

den Berg conjectured that the lower bound is 3%, where d is the diameter of . In

1985, Bun Wong, Shing-Tung Yau and Stephen S.-T. Yau [1] showed that A > %,
where A\ = Ay — A\;. Qihuang Yu and Jia-Qing Zhong [2] later proved that A > Z—;
by using the log-convexity of the first eigenfunction and choosing an appropriate test
function. For some special potential function V' and for some special domain €2, the
conjecture has been proved. In 1989, Mark S. Ashbaugh and Rafael Benguria [4]
proved that A > 32—; for one-dimensional case under the additional assumption that
V' is a symmetric “single-well” potential.

Another direction of estimate on the lower bound A is considering the quantity of
“global log-convexity.” In [5], Shing-Tung Yau proved that

2
Tr
A > Hﬁ + 2[cos(VOm) P
1

where ¢ is any constant with 0 < 6 < 7, and a > 0 is the infimum of the global

log-convexity of the first eigenfunction,

a= inf (—=log fi)rr

Q
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Shing-Tung Yau [5] gave an interesting estimate on the lower bound of a. He showed
that if V' is strictly convex function such that

inf V., > ¢
z€eQ
T €Ty
IrT=1
for some positive constant ¢, then o > /% > 0.

In this thesis, we first derive the following theorem for finding test functions of
gradient estimate. Let v be the normalized ratio of the first two eigenfunctions f;



and fs,

. 2% — (M —m)
M+m ’
where M = maxweﬁ(%), m= — minmeﬁ(%) with M > m and a = Aj\f[jrm

Theorem 1.1. If f is a function of v, and satisfies the following conditions:

(a): f>0
(b): f" +2(\—2a) <0
(©): fIf" +2(A = 20)] = 3f'[f' + 2A\(v + a)] <0

then |Vo|> < f(v) in Q.

In 2008, Jun Ling [3] proved that A\ > T +0.62a. More detailed, he proved that

az
/\ZZ—z—l—aifa:OoraZf—f‘, and/\zg—j+0.62a1f0<a<7f—/\o‘. As an application

2

of Theorem 1.1, we finally show that the lower bound of A near % + « if a near 0.

2. PROOF OF THE MAIN THEOREM

Throughout this thesis, we assume that the the domain € is strictly convex, and
the potential function V' is strictly convex.

Let fi and fy be the first and second eigenfunctions of (1.1). It is well known that
the first eigenfunction f; must be a positive function and the second eigenfunction
changes sign since [ fifo = 0. Since f; >0, u = fo/f1 is a well-defined function, and
smooth to the boundary of Q [1].

Suppose

M = maxu(z) ; —m = minu(x).
z€S z€S

We may assume that M > m, otherwise, we can use — f, instead of f5. Setting

o= (=25 S (-2

2u — (M —m)
2.2
(2. —a—m),
then v is a smooth function on Q and max, gv(z) = 1; min, g v(z) = —1.



By computing, we have

2 2 f

% %

2 2)iif1 — fo(J1)ii 1)i (J2)if1 — Ja(S1)s
_ Z((f)f f2(f1) _2(f)(f)f f(f))

M+m - VEd 1 fi
2 ANfy — foN
_ M+m<f1 fzflzfQ f1+2;<_10gf1)iui>
2 —Xofo+ Vi) = fa(=Mfi+V
_ M+m<f1( 2.f2 f2)f12f2( 1h fl)—l—ZV(—logfl)Vu)
2u
= —AM+m+2V(—logf1)Vv,
(230\v = —Av+a)+2Ve-V(=log fi1),
where
(2.4) a_%;Z;ogad.

Since % f1 laa# 0, here n is the outward normal of 0%, using (2.3), v satisfies the
Neumann boundary condition %v lag= 0.

Proof of Theorem 1.1. Define a function on £ by
(2.5) P(z) = Vo - f(v)
where f satisfies (a),(b) and (c).

Case 1: If P(z) attains its maximum at xy € 0f2, we can choose an orthonormal
frame [y, s, ..., [, around xq such that [, is perpendicular to 92 and pointing
outward. Since P(xp) is the maximum of P(x),

8P n—1
0< (xg) = 2 Z ViVin + 20,000 — f'(V)vy
" i=1

n—1
(26) = 2 Z ViUVin,
=1

where the notation d/0x,, is denote the restriction of I, on 0f.
From the definition of the second fundamental form of 92 in R", we have

n—1
(2.7) Vin = — Y hijv;
j=1



where (h;;) is the second fundamental form and (h;;) is positive definite.
Putting (2.7) into (2.6), we obtain

n—1
(2.8) 0<—2 Z hijvw; < 0.
ij=1
This implies that v; = vy = -+ - = v,,_1 = 0, and hence Vuv(zy) = 0. Therefore,

we have P(z) < P(xg) = —f(x¢) < 0 which implies |Vv|* < f(v).

Case 2: If P(z) attains its maximum at zy € Q and Vu(zg) = 0, then we have
the same conclusion as above.

Case 3: If P(x) attains its maximum at xy € Q and Vo(zg) # 0. First, we
compute the Laplacian of P(z) for x € Q,

AP(z) = ZP]]
= 2 Z Uz‘Qj + 2 Z VU455 — f//(’U) Z UJQ‘ - f/(U> Z Ujj
i irj J

J
= QZU% +2Vv-V(Av) — f(v)|Vo]? — f/(v)Av
.3
= QZU% +2Vu-V[=Av+a) +2Vv - V(—log f1)]
.3
f' (@) Vo — f(w)[=Mu+a) + 2V - V(= log f1)]
- 221)@-2]- + [=2X =" (v)]| Vu? +42Ujvij(— log f1);
.3

i"j

(. /

+4Z log f1)ivivy + Af'(v)(v + a)

_2f sz lOg fl

= 22 —2X — f"(v) |Vv|2+4z log f1)ijviv;

(2.9) +)\f (v)(v+a) +2VP - V(- log fl),

At zy, we have VP(z) =0, i.e., 2> . vv;; — f'(v)v; = 0 for all j.
We can choose an orthonormal frame around xg such that

v1(zo) # 0, vi(xg) =0 for 2 <i < n.



Hence at zg, 2v;v1; = f'(v)v; for all j, which implies,

(210) vy = 1]"’(1))& — { %f’(l}) lfj = 1:

0 otherwise.
Thus,
0 > AP(zg) > 207 +[-2X — f"(v)]| Vo[
+4) " (=log fr)ijvivy + Af'(v)(v + a)
2¥)

= LR+ 20— ) + A~ log f)ut? + A(0) (v + a)

2
> SUFE)P + o= 20— 7)) +Af @)+ a)
= IO+ Ha - 20— POV - )]
(2.11) Ff(0)[da — 23 — f"(0)] + A (v) (v + a).
Rewrite (2.11), we have
FOIF @)+ 20— 20— 2P WD)+ 220 + )]
(2.12) > [f"(0) % 2(X — 20)]P(x0).

The inequality (2.12) holds for any arbitrary P(z) = |Vv|? — f(v), there is
no restriction on f. Now, let o = max, g[|Vv|*— f(v)]. Suppose |Vv|? > f(v)
somewhere, then o > 0'and f = f + o satisfies (2.12) for P = |[Vv[> — f(v)
and there exists a point x4 €  such that max, o P(z) = P(x) = 0. Hence,
at xg

(f + 0)f" +200 = 20)] = S 1f + 20w + @) 2 0,

ol + 200 — 20)] + FIf" +2(A — 20)] — L[+ 2A(w + )] 2 0,

which is impossible. Thus o < 0 and |Vv|? < f(v) for all z € Q.
0

Remark. The result holds if €2 is a smooth strictly convex domain in a Riemannian
manifold with nonnegative Ricci curvature.

These conditions (a), (b) and (¢) can simplify if we let w = v + a.

Corollary 2.1. If ¢ is a function of w =v +a, w € [-1 +a,1 + a], ¢ satisfies the
following conditions:

(@’): >0

(b): ¢ +2(A—2a) <0



() ple” +2(A = 20)] — 3¢[¢' + 2] <0
then |Vw|? < ¢(w) in Q.

3. LOWER BOUNDS

In this section, we use Theorem 1.1 and its corollary to derive some interesting
lower bound. The following Theorem was proved by Shing-Tung Yau [5], and the
proof is similarly to Theorem 1.1.

Theorem 3.1. \ > 2a.

Proof. We repeat the process of Theorem 1.1. Let P(z) = |Vo|? and P(x) = max P.
Case 1: If 7y € 9Q or 29 € Q with Vu(zg) = 0. then |[Vv[*(z) = P(z) <
P(xg) = |Vv|*(zg) = 0. This implies that v; = vy = --- = v, = 0 for z € Q.
Thus v is a constant which is impossible.
Case 2: If 2y € 2 and Vu(x) # 0. From (2.12) we have

0> —2(\ — 2a)P(xo),
0 < 2(A —2a),
A > 20
0
Bun Wong, Shing-Tung Yau and Stephen S.-T. Yau [1] use gradient estimate to

show that A > 72/4d*. Here we verify this result by choosing an appropriate test
function that satisfies the assumption(a’), (b’) and(c’).

1 2
A > [z + arcsin ( a)} /dz.
2 1+a

Proof. 1f we choose ¢(w) with following form [2]
p(w) = A0* — w?)

forb>1+a, we€ [-1+a,1+a] and w=v+a. Then g satisfies (a'), (b') and ().
Thus |[Vw|* < A(b? — w?) in Q. Hence,
V|
3.13 VA > .
. 2 =
Suppose that z; and x5 € Q such that w(z;) = —1+ a,w(xy) = 1 + a, and let £

be the line segment between z; and x,. £ lies on Q completely, because it is convex.
We integrate both sides of (3.13) along £ from z; to xo and obtain

1 —1
(3.14) Vad > g \/ILY——LLU?CH > arcsin (%) — arcsin ( b"’ a) :

Theorem 3.2.




Letting b — 1 + a, we have

—1
(3.15) VA > g — arcsin ( i a) .

1+a

Remark. If @ = 0, then A > 72/d? [2]. Furthermore, since

I(a) = E + arcsin G;Z)f/%

is a continuous function of a, the lower bound near 72/d? as a near 0.

Jun Ling[3] gave several lower bounds for different a. He showed that A > ” > +aif
a=0ora> % where 6 = £. And A > “ > 4 0.62a for 0 < a < 2= However, using
the same argument as above we find that an estimate of the lower bound which is
a continuous function of a, and show that the lower bound is almost g—j + « when a
near 0.

Theorem 3.3.
/2 &
> l (farcsin[(—1+a)/(1+a)] 1dt>
— 2 rr/2
farcsin[(—lJra)/(l-i—a)] Z(t)dt
where ()—5(1-|—2ttant+(cost)2+(zgst/)4>+1 and 6 = §

In particular, if a = 0 we have A > % d2 + a.

Proof. Let t = arcsin (%) where w =v+a, b > 1+a and let z be a function of ¢ such

that z(t) > 0 for ¢t € [arcsin (_le”’) arcsin (nga)] Consider the test function with
following form:

(3.16) o(w) = Ab*cos®t z(t)
By direct computation, we have
d
(3.17) %ap(w) = —2\bsint z + Abcost 2’
d? ¢
(3.18) wgp(w) = —2\z — 2+ A"
Putting (3.16)—(3.18) into (c¢’), one can get
sint

Mb? cos®t 2 [ A2 — 3\ 2 =2 2+ 2\ —2a)| —

cost

1
(3.19) 5[)\6 cost 2/ —2X\bsint z][Abcost 2" — 2\bsint z + 2 w] < 0



Dividing both sides of the above inequality by 2b°A?z > 0, we have

1
5005215 2" —sintcost 2/ — 2+ 1 — 25 cos®t +

/

(3.20) 42— cost[2sint z — cost 2/ — 2sint] <0
z

where § = a/\.

From (3.20), we find that if z(¢) satisfies the following conditions:
(i): 2(t) > 0 for t € [arcsin (=52) , arcsin (£2)]
(if): =2z — BAZELY 4 A" +2(A —2a) <0
(iii): 1 cos?t 2" —sintcost 2/ —z+1— 26 cos®t <0

(iv): 2/[2sint z — cost 2/ — 2sint] <0

where the left hand side of (iii) and (iv) are not all zero at the same ¢, then ¢(w) =
b2 cos®t z(t) satisfies (a'), (b) and (¢’). Furthermore, from the corollary we know
|Vw|? < p(w). Now, we must find a function z(t) that satisfies these conditions. To
simplify this problem, we let z(t) = —%-y(t) + 1 and solve y(t) that satisfies:

(1): y(t) > =

(ii'): 3y + tant y' — 2cos’t <0
(iii'): 1y” + tant ¢ — 2cos?t <0
(iv'): y'[2sint y + cost y'] = 0

where the left hand side of (iii") and (iv') are not all zero at the same t. Solve the
differential equation (iii’), we have

(3.21) Yo(t) = cos®t + 2tsintcost + 12 +Cy(t + sint cost) + Oy

where C} and Cj are constants. Put (3.21) into (ii’), we have

(3.22) (2t 4+ Cy)sintcost > 0

which implies C; = 0. If we take Cy = ’T”Q, then yo(t) satisfies (i'), (it’) and (iii’).
Now we have to modify yo(t) to get an appropriate test function p(w). Let y.(t) =

yo(t) + ecos®t, where € > 0 is a constant. Then we can find that y.(¢) satisfies all
conditions for sufficient small e. Thus

)
0 (w) = A\b* cos® t (@ye(t) + 1>

is an appropriate test function that satisfies |Vw|? < ¢ (w). Letting ¢ — 0, we have

2 N2 2
IVw|* < ¢(w), where p(w) = \b* cos”t (coth

yo(t) + 1> .



To estimate the lower bound of A\, we integrate both sides of [Vw|? < p(w) as in
Theorem 3.2, we obtain

/X wEte 1
Ad > / ——=dw
w=—1+a DCOST \/2(t)

arcsin[(1+a)/b] 1
_ / L
arcsin[(—1+a)/b] Z(t)

arcsin[(1+a)/b] % arcsin[(1+a)/b] %
/ 1dt / S(t)dt
arcsin[(—1+a)/b] arcsin[(—1-+a)/b]

for any arbitrary constnat b > 1 4+ a. Theorem follows as we let b — 1 + a. U

IV

Remark. The lower bound

w/2 5
~ 1 <farcsin[(fl+a)/(1+a)] 1dt>

](CL) — —2
w/2
d farcsin[(—1+a)/(1+a)]Z(t)dt

is a continuous function of a € [0, 1). Thus the lower bound of A in Theorem 3.3 near
g—;—i—oz as a near 0.
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