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薛丁格算子前兩個固有值差距之下界估計 

 

 

學生：曹智翔 指導教授：許義容 

 

國立交通大學應用數學系（研究所）碩士班 

 

摘       要 

 

在這篇文章中，我們找到一個由一些微分不等式所組成的系統，這個系

統的解可以使 Gradient estimate 成立。適當選取這個系統的解，可以幫

助我們估計薛丁格算子前兩個固有值差距之下界。 
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Abstract 
 
 

We find a system of differential inequalities under which the gradient estimate holds. Using 

appropriately chosen test functions, we find some lower bounds of the gap of the first two 

eigenvalues in the Schrödinger operator. 
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1. Introduction

Let Ω be a smooth bounded domain in Rn, and V be a smooth potential in Ω. The
spectrum of the Dirichlet eigenvalue problem

(1.1)

{
(4− V )f + λf = 0 in Ω ,
f = 0 on ∂Ω.

are discrete, and can be arranged in nondecreasing order as follows

λ1 < λ2 ≤ λ3 ≤ · · · .

It is an interesting problem to find a lower bound for the first gap λ2 − λ1 in terms
of the geometrical invariants of Ω and the given potential function V .

In 1983, consider bounded convex domains Ω with convex potentials V , M. van
den Berg conjectured that the lower bound is 3π2

d2 , where d is the diameter of Ω. In

1985, Bun Wong, Shing-Tung Yau and Stephen S.-T. Yau [1] showed that λ ≥ π2

4d2 ,

where λ = λ2 − λ1. Qihuang Yu and Jia-Qing Zhong [2] later proved that λ ≥ π2

d2

by using the log-convexity of the first eigenfunction and choosing an appropriate test
function. For some special potential function V and for some special domain Ω, the
conjecture has been proved. In 1989, Mark S. Ashbaugh and Rafael Benguria [4]

proved that λ ≥ 3π2

d2 for one-dimensional case under the additional assumption that
V is a symmetric “single-well” potential.

Another direction of estimate on the lower bound λ is considering the quantity of
“global log-convexity.” In [5], Shing-Tung Yau proved that

λ ≥ θ
π2

d2
+ 2[cos(

√
θπ)]2α

where θ is any constant with 0 < θ < 1
4
, and α > 0 is the infimum of the global

log-convexity of the first eigenfunction,

α = inf
x ∈ Ω

τ ∈ TxΩ
|τ | = 1

(− log f1)ττ .

Shing-Tung Yau [5] gave an interesting estimate on the lower bound of α. He showed
that if V is strictly convex function such that

inf
x ∈ Ω

τ ∈ TxΩ
|τ | = 1

Vττ ≥ c

for some positive constant c, then α ≥
√

c
2

> 0.
In this thesis, we first derive the following theorem for finding test functions of

gradient estimate. Let v be the normalized ratio of the first two eigenfunctions f1
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and f2,

v =
2f2

f1
− (M −m)

M + m
,

where M = maxx∈Ω(f2

f1
), m = −minx∈Ω(f2

f1
) with M ≥ m and a = M−m

M+m
.

Theorem 1.1. If f is a function of v, and satisfies the following conditions:

(a): f > 0
(b): f ′′ + 2(λ− 2α) ≤ 0
(c): f [f ′′ + 2(λ− 2α)]− 1

2
f ′[f ′ + 2λ(v + a)] < 0

then |∇v|2 ≤ f(v) in Ω.

In 2008, Jun Ling [3] proved that λ ≥ π2

d2 + 0.62α. More detailed, he proved that

λ ≥ π2

d2 + α if a = 0 or a ≥ π2α
4λ

, and λ ≥ π2

d2 + 0.62α if 0 < a < π2α
4λ

. As an application

of Theorem 1.1, we finally show that the lower bound of λ near π2

d2 + α if a near 0.

2. Proof of the Main Theorem

Throughout this thesis, we assume that the the domain Ω is strictly convex, and
the potential function V is strictly convex.

Let f1 and f2 be the first and second eigenfunctions of (1.1). It is well known that
the first eigenfunction f1 must be a positive function and the second eigenfunction
changes sign since

∫
f1f2 = 0. Since f1 > 0, u = f2/f1 is a well-defined function, and

smooth to the boundary of Ω [1].
Suppose

M = max
x∈Ω

u(x) ; −m = min
x∈Ω

u(x).

We may assume that M ≥ m, otherwise, we can use −f2 instead of f2. Setting

v =

(
u− M −m

2

)/(
M − M −m

2

)
=

2u− (M −m)

M + m
,(2.2)

then v is a smooth function on Ω and maxx∈Ω v(x) = 1; minx∈Ω v(x) = −1.
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By computing, we have

4v =
∑

i

vii =
2

M + m

∑
i

uii =
2

M + m

∑
i

(
f2

f1

)
ii

=
2

M + m

∑
i

(
(f2)iif1 − f2(f1)ii

f 2
1

− 2
(f1)i

f1

(f2)if1 − f2(f1)i

f 2
1

)

=
2

M + m

(
f14f2 − f24f1

f 2
1

+ 2
∑

i

(− log f1)iui

)

=
2

M + m

(
f1(−λ2f2 + V f2)− f2(−λ1f1 + V f1)

f 2
1

+ 2∇(− log f1)∇u

)
= −λ

2u

M + m
+ 2∇(− log f1)∇v,

4v = −λ(v + a) + 2∇v · ∇(− log f1),(2.3)

where

(2.4) a =
M −m

M + m
; 0 ≤ a < 1.

Since ∂
∂n

f1 |∂Ω 6= 0, here n is the outward normal of ∂Ω, using (2.3), v satisfies the

Neumann boundary condition ∂
∂n

v |∂Ω= 0.

Proof of Theorem 1.1. Define a function on Ω by

(2.5) P (x) = |∇v|2 − f(v)

where f satisfies (a),(b) and (c).

Case 1: If P (x) attains its maximum at x0 ∈ ∂Ω, we can choose an orthonormal
frame l1, l2, . . . , ln around x0 such that ln is perpendicular to ∂Ω and pointing
outward. Since P (x0) is the maximum of P (x),

0 ≤ ∂P

∂xn

(x0) = 2
n−1∑
i=1

vivin + 2vnvnn − f ′(v)vn

= 2
n−1∑
i=1

vivin,(2.6)

where the notation ∂/∂xn is denote the restriction of ln on ∂Ω.
From the definition of the second fundamental form of ∂Ω in Rn, we have

(2.7) vin = −
n−1∑
j=1

hijvj

3



where (hij) is the second fundamental form and (hij) is positive definite.
Putting (2.7) into (2.6), we obtain

(2.8) 0 ≤ −2
n−1∑
i,j=1

hijvivj ≤ 0.

This implies that v1 = v2 = · · · = vn−1 = 0, and hence ∇v(x0) = 0. Therefore,
we have P (x) ≤ P (x0) = −f(x0) < 0 which implies |∇v|2 < f(v).

Case 2: If P (x) attains its maximum at x0 ∈ Ω and ∇v(x0) = 0, then we have
the same conclusion as above.

Case 3: If P (x) attains its maximum at x0 ∈ Ω and ∇v(x0) 6= 0. First, we
compute the Laplacian of P (x) for x ∈ Ω,

4P (x) =
∑

j

Pjj

= 2
∑
i,j

v2
ij + 2

∑
i,j

vivijj − f ′′(v)
∑

j

v2
j − f ′(v)

∑
j

vjj

= 2
∑
i,j

v2
ij + 2∇v · ∇(4v)− f ′′(v)|∇v|2 − f ′(v)4v

= 2
∑
i,j

v2
ij + 2∇v · ∇[−λ(v + a) + 2∇v · ∇(− log f1)]

−f ′′(v)|∇v|2 − f ′(v)[−λ(v + a) + 2∇v · ∇(− log f1)]

= 2
∑
i,j

v2
ij + [−2λ− f ′′(v)]|∇v|2 +4

∑
i,j

vjvij(− log f1)i︸ ︷︷ ︸
+4
∑
i,j

(− log f1)ijvivj + λf ′(v)(v + a)

−2f ′(v)
∑

i

vi(− log f1)i︸ ︷︷ ︸
= 2

∑
i,j

v2
ij + [−2λ− f ′′(v)]|∇v|2 + 4

∑
i,j

(− log f1)ijvivj

+λf ′(v)(v + a) +2∇P · ∇(− log f1)︸ ︷︷ ︸(2.9)

At x0, we have ∇P (x0) = 0, i.e., 2
∑

i vivij − f ′(v)vj = 0 for all j.
We can choose an orthonormal frame around x0 such that

v1(x0) 6= 0 , vi(x0) = 0 for 2 ≤ i ≤ n.
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Hence at x0, 2v1v1j = f ′(v)vj for all j, which implies,

(2.10) v1j =
1

2
f ′(v)

vj

v1

=

{
1
2
f ′(v) if j = 1,

0 otherwise.

Thus,

0 ≥ 4P (x0) ≥ 2v2
11 + [−2λ− f ′′(v)]|∇v|2

+4
∑
i,j

(− log f1)ijvivj + λf ′(v)(v + a)

=
1

2
[f ′(v)]2 + [−2λ− f ′′(v)]v2

1 + 4(− log f1)11v
2
1 + λf ′(v)(v + a)

≥ 1

2
[f ′(v)]2 + [4α− 2λ− f ′′(v)]v2

1 + λf ′(v)(v + a)

=
1

2
[f ′(v)]2 + [4α− 2λ− f ′′(v)][|∇v|2 − f(v)]

+f(v)[4α− 2λ− f ′′(v)] + λf ′(v)(v + a).(2.11)

Rewrite (2.11), we have

f(v)[f ′′(v) + 2(λ− 2α)] − 1

2
f ′(v)[f ′(v) + 2λ(v + a)]

≥ −[f ′′(v) + 2(λ− 2α)]P (x0).(2.12)

The inequality (2.12) holds for any arbitrary P (x) = |∇v|2 − f(v), there is
no restriction on f . Now, let σ = maxx∈Ω[|∇v|2−f(v)]. Suppose |∇v|2 > f(v)

somewhere, then σ > 0 and f̃ = f + σ satisfies (2.12) for P̃ = |∇v|2 − f̃(v)

and there exists a point x0 ∈ Ω such that maxx∈Ω P̃ (x) = P̃ (x0) = 0. Hence,
at x0

(f + σ)[f ′′ + 2(λ− 2α)]− 1

2
f ′[f ′ + 2λ(v + a)] ≥ 0,

σ[f ′′ + 2(λ− 2α)] + f [f ′′ + 2(λ− 2α)]− 1

2
f ′[f ′ + 2λ(v + a)] ≥ 0,

which is impossible. Thus σ ≤ 0 and |∇v|2 ≤ f(v) for all x ∈ Ω.

�

Remark. The result holds if Ω is a smooth strictly convex domain in a Riemannian
manifold with nonnegative Ricci curvature.

These conditions (a), (b) and (c) can simplify if we let w = v + a.

Corollary 2.1. If ϕ is a function of w = v + a, w ∈ [−1 + a, 1 + a], ϕ satisfies the
following conditions:

(a′): ϕ > 0
(b′): ϕ′′ + 2(λ− 2α) ≤ 0

5



(c′): ϕ[ϕ′′ + 2(λ− 2α)]− 1
2
ϕ′[ϕ′ + 2λw] < 0

then |∇w|2 ≤ ϕ(w) in Ω.

3. Lower bounds

In this section, we use Theorem 1.1 and its corollary to derive some interesting
lower bound. The following Theorem was proved by Shing-Tung Yau [5], and the
proof is similarly to Theorem 1.1.

Theorem 3.1. λ ≥ 2α.

Proof. We repeat the process of Theorem 1.1. Let P (x) = |∇v|2 and P (x0) = max P .

Case 1: If x0 ∈ ∂Ω or x0 ∈ Ω with ∇v(x0) = 0. then |∇v|2(x) = P (x) ≤
P (x0) = |∇v|2(x0) = 0. This implies that v1 = v2 = · · · = vn = 0 for x ∈ Ω.
Thus v is a constant which is impossible.

Case 2: If x0 ∈ Ω and ∇v(x0) 6= 0. From (2.12) we have

0 ≥ −2(λ− 2α)P (x0),

0 ≤ 2(λ− 2α),

λ ≥ 2α.

�

Bun Wong, Shing-Tung Yau and Stephen S.-T. Yau [1] use gradient estimate to
show that λ ≥ π2/4d2. Here we verify this result by choosing an appropriate test
function that satisfies the assumption(a′), (b′) and(c′).

Theorem 3.2.

λ ≥
[
π

2
+ arcsin

(
1− a

1 + a

)]2
/

d2.

Proof. If we choose ϕ(w) with following form [2]

ϕ(w) = λ(b2 − w2)

for b > 1 + a, w ∈ [−1 + a, 1 + a] and w = v + a. Then ϕ satisfies (a′), (b′) and (c′).
Thus |∇w|2 ≤ λ(b2 − w2) in Ω. Hence,

(3.13)
√

λ ≥ |∇w|√
b2 − w2

.

Suppose that x1 and x2 ∈ Ω such that w(x1) = −1 + a, w(x2) = 1 + a, and let L
be the line segment between x1 and x2. L lies on Ω completely, because it is convex.
We integrate both sides of (3.13) along L from x1 to x2 and obtain

(3.14)
√

λd ≥
∫
L

|∇w|√
b2 − w2

dl ≥ arcsin

(
1 + a

b

)
− arcsin

(
−1 + a

b

)
.

6



Letting b −→ 1 + a, we have

(3.15)
√

λd ≥ π

2
− arcsin

(
−1 + a

1 + a

)
.

�

Remark. If a = 0, then λ ≥ π2/d2 [2]. Furthermore, since

I(a) =

[
π

2
+ arcsin

(
1− a

1 + a

)]2
/

d2

is a continuous function of a, the lower bound near π2/d2 as a near 0.

Jun Ling[3] gave several lower bounds for different a. He showed that λ ≥ π2

d2 +α if

a = 0 or a ≥ δπ2

4
where δ = α

λ
. And λ ≥ π2

d2 + 0.62α for 0 < a < δπ2

4
. However, using

the same argument as above, we find that an estimate of the lower bound which is
a continuous function of a, and show that the lower bound is almost π2

d2 + α when a
near 0.

Theorem 3.3.

λ ≥ 1

d2

(∫ π/2

arcsin[(−1+a)/(1+a)]
1dt
)3

∫ π/2

arcsin[(−1+a)/(1+a)]
z(t)dt

where z(t) = δ
(
1 + 2t tan t + t2

(cos t)2
+ −π2/4

(cos t)2

)
+ 1 and δ = α

λ

In particular, if a = 0 we have λ ≥ π2

d2 + α.

Proof. Let t = arcsin
(

w
b

)
where w = v +a, b > 1+a and let z be a function of t such

that z(t) > 0 for t ∈ [arcsin
(−1+a

b

)
, arcsin

(
1+a

b

)
]. Consider the test function with

following form:

(3.16) ϕ(w) = λb2 cos2 t z(t)

By direct computation, we have

d

dw
ϕ(w) = −2λb sin t z + λb cos t z′(3.17)

d2

dw2
ϕ(w) = −2λz − 3λ

sin t

cos t
z′ + λz′′(3.18)

Putting (3.16)–(3.18) into (c′), one can get

λb2 cos2 t z

[
λz′′ − 3λ

sin t

cos t
z′ − 2λz + 2(λ− 2α)

]
−

1

2
[λb cos t z′ − 2λb sin t z][λb cos t z′ − 2λb sin t z + 2λw] < 0(3.19)

7



Dividing both sides of the above inequality by 2b2λ2z > 0, we have

1

2
cos2 t z′′ − sin t cos t z′ − z + 1− 2δ cos2 t +

z′

4z
cos t[2 sin t z − cos t z′ − 2 sin t] < 0(3.20)

where δ = α/λ.
From (3.20), we find that if z(t) satisfies the following conditions:

(i): z(t) > 0 for t ∈ [arcsin
(−1+a

b

)
, arcsin

(
1+a

b

)
]

(ii): −2λz − 3λ sin t
cos t

z′ + λz′′ + 2(λ− 2α) ≤ 0

(iii): 1
2
cos2 t z′′ − sin t cos t z′ − z + 1− 2δ cos2 t ≤ 0

(iv): z′[2 sin t z − cos t z′ − 2 sin t] ≤ 0

where the left hand side of (iii) and (iv) are not all zero at the same t, then ϕ(w) =
λb2 cos2 t z(t) satisfies (a′), (b′) and (c′). Furthermore, from the corollary we know
|∇w|2 ≤ ϕ(w). Now, we must find a function z(t) that satisfies these conditions. To
simplify this problem, we let z(t) = δ

cos2 t
y(t) + 1 and solve y(t) that satisfies:

(i′): y(t) > − cos2 t
δ

(ii′): 1
2
y′′ + 1

2
tan t y′ − 2 cos2 t ≤ 0

(iii′): 1
2
y′′ + tan t y′ − 2 cos2 t ≤ 0

(iv′): y′[2 sin t y + cos t y′] ≥ 0

where the left hand side of (iii′) and (iv′) are not all zero at the same t. Solve the
differential equation (iii′), we have

(3.21) y0(t) = cos2 t + 2t sin t cos t + t2 + C1(t + sin t cos t) + C2

where C1 and C2 are constants. Put (3.21) into (ii′), we have

(3.22) (2t + C1) sin t cos t ≥ 0

which implies C1 = 0. If we take C2 = −π2

4
, then y0(t) satisfies (i′), (ii′) and (iii′).

Now we have to modify y0(t) to get an appropriate test function ϕ(w). Let yε(t) =
y0(t) + ε cos2 t, where ε > 0 is a constant. Then we can find that yε(t) satisfies all
conditions for sufficient small ε. Thus

ϕε(w) = λb2 cos2 t

(
δ

cos2 t
yε(t) + 1

)
is an appropriate test function that satisfies |∇w|2 ≤ ϕε(w). Letting ε → 0, we have

|∇w|2 ≤ ϕ(w), where ϕ(w) = λb2 cos2 t

(
δ

cos2 t
y0(t) + 1

)
.

8



To estimate the lower bound of λ, we integrate both sides of |∇w|2 ≤ ϕ(w) as in
Theorem 3.2, we obtain

√
λd ≥

∫ w=1+a

w=−1+a

1

b cos t

1√
z(t)

dw

=

∫ arcsin[(1+a)/b]

arcsin[(−1+a)/b]

1√
z(t)

dt

≥

(∫ arcsin[(1+a)/b]

arcsin[(−1+a)/b]

1dt

) 3
2
/(∫ arcsin[(1+a)/b]

arcsin[(−1+a)/b]

z(t)dt

) 1
2

for any arbitrary constnat b > 1 + a. Theorem follows as we let b −→ 1 + a. �

Remark. The lower bound

Ĩ(a) =
1

d2

(∫ π/2

arcsin[(−1+a)/(1+a)]
1dt
)3

∫ π/2

arcsin[(−1+a)/(1+a)]
z(t)dt

is a continuous function of a ∈ [0, 1). Thus the lower bound of λ in Theorem 3.3 near
π2

d2 + α as a near 0.
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