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Shimura correspondence

Student : Jia Ming Lin Advisor : Professor Yifan Yang

Department ( Institute ) of Applied Mathematics
National Chiao Tung University
ABSTRACT

In 1973, G.Shimura defined modular forms of half-integral weight
by using theta-function. He showed that there are Hecke operators
on half-integral weight modular forms, and he found that there is a
correspondence between each eigenvalue for Hecke operator for
integral weight modular form and half-integral weight modular form.
And it is the so-called Shimura correspondence.

On the other hand, eta-function is a modular form of weight (1/2)
in Shimura's sense. In this paper, we study the space of half-integral
weight modular forms defined by eta-function, so that we may find
some congruence of partition functions. Historically, these spaces
were first studied by Li Guo and Ken Ono in their paper “The
partition function and the arithmetic of certain modular

L-functions” . They proved that in some case these space are



isomorphic to space of integral-weight modular forms which is
eigenspace of some operators. Now we make more general results,
and we compute the dimensions in our cases. For the isomorphism,
we try to prove it by using trace formula, but it is so complicated that

we have not figured it out yet.
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Chapter 1

Introduction

In 1973, G.Shimura[4] laid the foundations of a theory of half integral weight modular forms with level M is always
divisible by 4. We consider the space of cusp forms denoted by S}, /2 (M, x) mainly, where k is a positive odd number and
x is a Dirichlet character. Firstly, Shimura showed that there are Hecke operations T),> for every natural number n with
ged(n, M) = 1. Secondly, in the Main Theorem and its corollary, Shimura associated half integral weight modular forms
with modular forms of integral weight. It is the so-called Shimura correspondence. In S.Niwa’s paper [5], he proved that
Sk/2(M, x) is always isomorphic to Sy_1(M/2).

Later, W. Kohnen in his paper[7] looked for a subspace which corresponds to the space of cusp forms of weight 2k on
To(M/4), where M /4 is square free. Elements contained in the subspace are cusp forms and with Fourier expansions of

the form
) a(n)q",
n>1,(—1)kn=0,1(4)

and he denoted this subspace by S,;':Ll /2(M ,X). And we can introduce Hecke operators 7 (n?) on S:H /2(M ,x) for
all n prime to M. He set up a theory of newforms similar to Atkin-Lehner-Li-Miyake. There is a canonically defined

subspace Sgi“l’/Q(M, x) C S:H/Q(M, X) and a canonical decomposition

S]:rJrl/Q(Mv X) — @ | Slrcliv{/Z(dv X)|U(T2)
r,d>1,rd|N

(where U (1?) is the operator replacing the nth Fourier coefficient of a modular form by its 7?nth one, and N = M /4), and
S /2(M , X) isomorphic to space of newforms S5 (V) C Sor (V) (space of cusp forms with weight 2k over I'g(IV))
as Hecke modules. In particular, we have a strong “multiplicity 1 theorem” for ST /2(M ,X)- See Remark 2.8.1.

In this thesis, we focus on a special subspace of Sy 1/2(I'0(576)), defined by

Srs(To(N)) = {n(247)" f(247) : f(7) € M(T'o(N))},

where N is a positive integer. It is known that 7(247) is a weight 3 modular form on I'o(576) with character x12. Y.Yang
proved in [8] that this subspace is an invariant subspace of Sj1/2(I'o(576)) under the action of the Hecke algebra when
N = 1. Then he discovered some new congruences of the the partition function p(n) by applying Hecke operators on the
subspace S, ;. A remarkable result of [8] is

me2eE—1n 4+ 1
p 24

)EO mod m,
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where m > 13 is a prime number, K is a positive integer determined by Hecke operators applying on the subspace
Sy.s(To(1)), n is positive integer depend on the Hecke operator, and  is any positive integer.

Our main result is concerned with the space S, 5(I'g(3)). We compute some examples in Maple, and conjecture that
Sr.s(I'o(3) and S, 5(I'g(2) are also an invariant subspace of Sy, /5(I'9(576)) for » = 1,5 and 7, s = 2, 4,6, 8, and some
Hecke operators. Moreover, Yang conjecture that S, s(I'g(1) isomorphic to a space of newforms of integral weight(see
Proposition 3.2.1) as Hecke module when » = 1,5,7,11,13,17,19, 23. And here we also make a similar conjecture, but
in our case, we can only find the correspondences for r = 1,5,7. Forr = 11,13,17,19, 23 we will check our conjecture
fails by computing dimensions.

The invariance of S, ; in our cases(N = 2, 3) can most likely be proved by a way similar to the proof of theorem 2 in
[8], but we have not work it out. One of the key points in the proof is the choice of

h(r) = n(1)** " g(r/24) = n(C7)** ()" f(7),

where [ is a prime number. When N = 3 we have to make some modification on h.

And now in this thesis, we observe some Hecke operator acting on the basis of S, ; and claim invariance by checking
Fourier coefficients(see example 4.1.1).

Furthermore S, 5(I'9(2)) and S, s(I'¢(3)) isomorphic to a space of newforms of weight 2s+r —1 on some congruence
subgroups as Hecke modules.



Chapter 2

Standard Definition and Background

2.1 Notations

Z : set of integers.

H : upper half plane.

N : positive integer.

p : prime number.

SL2(Z) : special linear group over Z of dimension 2.

Ry : fundamental domain of congruence subgroup I' in S L4 (Z).

2.2 Congruence subgroup ['y(V)

If N is any positive integer we define I'g(V) to be the set

To(N) = {(Cc‘ Z) € SLy(Z) : N|c}.

It is a subgroup of SLy(Z) of finite index.
In particular, if p is a prime and let ST = —1/7 and T'7 = 7+ 1 be the generators of SLy(Z) , then for every V in SLo(Z),
but not in T'y(p), there exists an element P € T'y(p) and an integer k, 0 < k < p, such that

V = PST".
Let R be the fundamental domain of SL(Z). Then
p—1
Rry) = RU | ST*(R),
k=0

where p is a prime.
Generally, we can also compute the index of T'g(/N) in SLy(Z) and find the coset representations. Explicitly,

[SLa(2) : To(N)] = 2N [[ (1 +1/).
p|N
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and let v; = <ZJ ZJ> € SLy(Z), j = 1,2. The following three statement are equivalent:
i %

1. The right cosets I'o(N)yiand T'g(N)y; are equal.

2. ¢1dy = cady; mod N.

3. There exist an integer r with ged(r, N) = 1 such that ¢; = rcg and dy = rda mod N.
Then we have

Theorem 2.2.1. Let S be the set of pairs (c,d) € Z* with gcd(c,d, N) = 1. Define an equivalence relation on S by
(c1,d1) ~ (ca,d2) if and only if c1ds = cady mod N. Then the coset representations of T'o(N) SLo(Z) is

{(Z 2) € SLy(Z) : (¢,d) € S/ N}’

* ok . (a b
where <c d) means the matrix (c d) € SLo(Z).

Theorem 2.2.2. A set of inequivalent cusps for To(N) is given by

{E :¢|N,a=1,...,gcd(c, N/c),ged(a, c) = 1}.

S
Hence the number of inequivalent cusps is

> é(ged(e, Nfc)),

c|N
where ¢ is the Euler totient function.

Theorem 2.2.3. (a) The number vy of inequivalent elliptic points of order 2 for T'o(N) is equal to the number of solutions
of v?> +1 = 0in Z/NZ. That is, when 4| N, v2=0, and when 4 { N,

LG

p|N.p odd
-1\ . .
where | — | is the Jacobi symbol.
p

(b) The number vs3 of inequivalent elliptic points of order 3 for T'o(N) is equal to the number of solutions of t>+x+1 = 0
in Z/NZ. That is, when 9| N, v3=0, and when 9 { N,

= I0-(5)

-3
where () is the Jacobi symbol.
p
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2.3 Atkin-Lehner involutions

Let N be a positive integer > 2. Let n be a divisor of IV such that gcd(n, N/n) = 1. The elements in

1 an b 9 _
w"_{\/ﬁ<cN dn ),adn —ch—n}

are the Atkin-Lehner involutions, which normalize I'o(N). The set of I'g(/V') union all possible Atkin-Lehner involutions
is denoted by I'§j (V).

2.4 Modular forms of integral weight

Here we let k be a positive integer. Let a = (i b) be an element of GLJ (R) (general linear group over R with positive

d

determinant).

Definition 2.4.1. Let f be a meromorphic function on H and « as above. Then we define
F(D)l[elk = det(a)*/?(cr +d)* f(ar) (k €N).

Then we call a holomorphic function on H is a modular form of weight k£ with respect to a congruence subgroup I" of
SLo(Z) if f satisfies:

1. f(7)|[a)x = f(7), where & € T and 7 € H,

2. f is holomorphic at every cusp of I.

Since (é 1) €T, f(r+1)= f(7)|[e]x = f(). Hence f has a Fourier expansion of the form

oo
n
E anqg ",
n=0

where ¢ = €*™7 and a,, € H. If f(7) is vanish at all cusps, ag = 0 in the Fourier expansion, and we call such f cusp
form.
We denote by

1. M, (T') the set of all holomorphic modular forms.
2. Sj(T") the set of all cusp forms.
And there are dimension formulas:

Theorem 2.4.2. Let T" be a subgroup of finite index of SLo(Z). Assume that the genus of X (T')(the compactified modular
curve I'\ H*) is g. Let ¢ be the number of inequivalent cusps of T, and ey, . . ., e, be the orders of inequivalent elliptic
points. Let k be an even integer. We have

(=Dg-D+ T |s0- D]+ 5 s>

dim M, (T) = 9+c—1, ifk =2,
1, ifk=0,
0, ifk <O0.
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and
dim M (T) — ¢, ifk > 2,
dim Sk(T') =< g, ifk =2,
0, ifk <0.

2.5 Hecke operators on integral weight modular forms

Hecke(1937) introduced a certain ring of operators acting on modular forms. The commutativity of this ring leads to Euler
products associated with modular forms. Here we make a brief guide to Hecke operators.

For N € N, if @ € GL3 (Z) and To(N) and a~'T'g(N)a are commensurable. By [1, sec.1.4], The double coset
To(N)al'g(N) is a finite union of right cosets:

h
Lo(N)alo(N) = | J To(N)as,

=1

where a; € GLJ (Z) and h = [['o(N) : = 'T'o(N)a]. Then we define a linear operator [['o(N)aI'o(N)] on My,(To(N))
by

FITo(N)aTo(N)]k = > flos

In particular, for n € N with ged(n, N) = 1 we denote by

T, = n**1[[(N) ( (1) 2 >F0(N)]k

the Hecke operator of degree n.

Proposition 2.5.1. Let the q-expansion of a modular form f is ).~ a;q’, for a prime p we have

AT = (api + 0" asp)d’.

i>0

We can define an inner product called Peterson inner product on the vector space of cusp forms of weight k& on I'o (V).

The precise formula is
xdy
[SLa(Z / / v

where D is the fundamental domain of T'g(N) and we write 7 = x + iy for 7 € H.With respect to this inner product on
the space of cusp forms, we can show that T, is self-adjoint if n and N are relatively prime, and thus diagonalizable.

We call f a Hecke eigenform if f is non-vanishing modular form on I'g (V) and a simultaneous eigenfunction for all
Hecke operators.

When N = 1, then it can be proved that every Hecke operators commute with each other i.e. 1., T, = T,,T},. So
we have a nice result from linear algebra that is there is a basis consisting entirely of Hecke eigenforms such that all the
Hecke operators are simultaneously diagonalizable. The space of cusps forms of weight k on I'g(1) is spanned by Hecke
eigenforms. Then the Fourier coefficients a; of f satisfying the following:

1. (5] #O

2. if a; = 1, then the coefficients a; are multiplicative.

(f,9) =
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Thus we may adjust any Hecke eigenform by a constant so that a; = 1. Such Hecke eigenform is called normalized.
And it was shown that the L-function of a Hecke eigenform has a Euler product.

Theorem 2.5.2. [1, Theorem1.4.4] If f is a simultaneous eigenform, then

Qnp _s e s\ —
L(s, f) =) EZH(l—app S phTitEe)
P

For example, S12(T'o(1)) is a one dimensional vector space spanned by a normalized Hecke eigenform A(7) =
(1) = Y02, 7(n)q"™, where 7 € H and 7(n) are Ramanujan’s tau functiona. Here we obtain the Euler product

formula
> ) _ [[a-rpp+pt—2)~"

ns
p

of Ramanujan and Mordell.
But in the cases of N > 1, Si,(I'o(N)) may not have a basis consisting entirely of simultaneous eigenforms for all
Hecke operators 7;,. Here is an example.

Example 2.5.3. Consider the Hecke operator T acts on S4(I'¢(16)). Then the Jordan form for 7% is
010
(0) (0] 0]
0 0 0

Thus, there does not exist a basis whose elements are all simultaneous eigenforms for all Hecke operator.

Butif f = fo:l an,q™ is a simultaneous eigenform for all 7},, then f still has the property that T, f = a,, f and its
L-function has the Euler product

— an —8\— —s —1-2s\—

L) =) = =[]0 —awp )" [TO —app™ +p*72) 7
n=1 p|N ptN

The main reason for this is that some of the cusp forms in Sy (T'o(NV)) actually have level smaller than N.

Lemma 2.5.4. [9] Let M, N € N and M dividing N. Then we have S;(To(M)) € S;(To(N)). And let f € S;(To(M)),
then for any h | (N/M), the function f(h1) € S;(T'o(N)).

Proof. By assumption Let N = kM for some k € Z, and let (;V Z) € I'y(N). So

<C?V Z) - (ck%w Z) € To(M),

thus we have S;(Tg(M)) € Si(To(N)).

Lety = ( cCZlV Z . And note that,
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. , a hb
By assumption h | (N/M), wehave v’ = [ . d € To(M).
h
So
f(hyr) = f(y/ (k7)) = (eN7 + d)" f (7).

Then f(h7) is a cusp form on I'y (V).
O

To define such cusp forms precisely, Let f(7) € S(To(V)) satisfies f(7) = g(h7) for some simultaneous eigenform
g(1) € To(M) with M|N and h|(N/M), then f is called an oldf orm. The space spaned by all oldforms are denoted by
Se(T(N)). And the orthogonal complement of SP14(T'o(N)) in S (I'o(IN)) is call space of new forms, denoted by
Spe¥(To(N)). In particular, The space SV (I'o(IV)) has a basis consisting of simultaneous eigenforms for all T, with
ged(n,N) = 1.

Now we introduce some theorems we will use:

Define the degeneracy map oy, as:
ap 2 Sg(To(M)) — Sk(To(N))
by
an(f(7)) = f(h7),

where h is the divisors of N/M if N is divisible by M.

Proposition 2.5.5. We have a decomposition

SkTo(N) = P P aa(Sp™ (To(M))). Q.1

M|N d|N/M

2.6 Modular forms of half integral weight

From now on we let k be an positive odd integer.

To define the modular forms of half integral weight, one may try to make a definition similar to modular forms of
integral weight: Let + be a discrete subgroup of GLJ (R). Assume that f is a holomorphic (or meromorphic) function on
H, and it satisfies an appropriate condition at cusps. Then f is a modular form of weight k/2 if

Fom) = (er +d)*2f(r),

where v € I'and 7 € H.
Suppose we accept this definition. Then we have a statement:

Proposition 2.6.1. [3] Let TV C SLy(Z) be any congruence subgroup. Let | be a modular form of weight k /2 satisfies
the above definition. Then f = 0.

Proof. T" is a congruence subgroup of SLy(Z), so we can assume that for some N > 2

T(N) = {7 €SLy(Z) i 7 = (é 2) mod N} cT.

_(N+1 N (1 0
a={"_N 1-n) P={_Nn 1)

Let
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and we compute

5= -N24+N+1 N
WP= N2_2o2N 1-N)°

For any nonzero modular form of weight k/2, by the definition we require that
flar) = (=N7+ (1 = N)*2f(r)
and
f(Br) = (N7 +1)*2f(7).

Therefore,
flaBr) = (=N(Br) + (1 = N)*2 f(57)
= (=N(B7)+ (1 = N)?(=N7 + 1)¥2 f(7)

_Nr k/2
= (_NTNH + (1 —N)) (=N 4+ 1)*2f(7)

By applying the definition to the matrix a3 directly, we have

flapr) = (N* = 2N)r + (1 = N))*2 f(r)

This implies that

—NT

((N? =2N)7+ (1 = N)*? = (m

k/2
o, — N)) (=NT 4 1)k/2, (2.2)
When £ is even, this equality holds. We may assume that k& = 1. Then since the two expressions in the radicals on the right
are in lower half plane, the right side is the product of two complex number in the fourth quadrant(we take the branch of the
square root having argument in (— /2, 7/2]). But the left side is in the first quadrant, since (N? —2N)7+ (1 — N) € H.
Hence (2.2) is wrong by a factor of -1 for k = 1, and also for any odd k.
O

To see why this definition fails. Note that square root function is multivalued, so our choice of a branch of the square
root necessary led to problems. We may handle this group by requiring that our modular forms act on a covering space of
GLj (IR), where we allow all branches of the square root simultaneously.

Z) € GL$ (R) act on HUR J{oo} by a(7) = (aT + b)/(cT + d). Let B denote the set
b

d

a
Let an element o« = <c

of all couples (o, ¢(7)) formed by an element (Z ) of GLF and a holomorphic function ¢ on H such that

¢ =t - det(a)"V?(er + d),
where t € T? = {7 € C : |7| = 1}. Define the law of multiplication by

(@, (7)) (B,9(7)) = (B, p(B(7))¢(7)),

we can make ‘B a group.

Let £ = (a, ¢) € B, we define the action of £ on C|J{oo} to be the same as that of «. Furthermore, for a complex
valued function f(7) on H and an integer k, we define a function f|[£]; on H by

(fIIER) () = F(E(NS(T)".
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Note that f[[£n]x = (f|[&]x)[[M]k-

Let the function P be the natural projection map defined as:
P:%B — GL} (R),
by
(o, 9) — a.

And we denote by L : I' — A the inverse map of P.
Let A be a Fuchsian subgroup of 5 satisfying the following:

1. P(A), the projection of A onto SLy(R) is a discrete subgroup, and this projection is one to one.
2. The fundamental domain Rp(a) is of finite measure with respect to the invariant measure y 2dxdy.
3. If —1 € P(A), then its preimage is (—1, 1).

We call a meromorphic function f(7) on H an automorphic form of weight k/2 with respect to A if the following
conditions are satisfied:

1. f|[€]x = fforall £ € A.
2. f is meromorphic at each cusp of P(A), where P(A) is the projection of A on GL3 (R).

We denote by G, (A) the vector space of all such f which are holomorphic on H and for which ¢,, = 0 if n < 0, and
further by Sy (A) the subspace of G (A) consisting of all f for which ¢y = 0 if » = 0 at every cusp of P(A).

We should now specialize our discussion to the case where A is obtained from a congruence subgroup of SLy(Z).
Let Ag(M) denote the image of I'g(M) under L, for every positive integer M divisible by 4. Define an automorphic
factor j(v, 7) by

: O(y1)
= To(4). 2.3
](777—) 9(7_) ) fOT 2y € 0( ) ( )
where
00 = 0o ! .
0(7_) L~ Z e27rzn =t Z qn . g= e27'rz7' (2.4)
and Tisinon H.
Then we have by [3, p.148]
) = (;) (e7 +d), @5)
. fa b . -1\ . . e . -1
if e 47y € T'9(4). In Equation (2.5), T is the Jacobi symbol. Note that if d is negative, we set i
()
civa
Here we put v* = (v, j(v, 7)), then we consider a cusp form f(7) satisfying
FOI e = f(r) - ()" (2.6)

for all (CCL 2) =y € T'g(4). Let x be a Dirichlet character modulo M. We denote by Gy (M, x)(resp.Sk (M, x)) the set

of all elements f of G (Ay(M)) satisfying
Ik =x(d) - f
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forall vy € T'o(M).

Then the half integral weight modular forms of weight k/2 over T'o(M) denoted by Gj(Ag(M)) is the complex
vector space of all such f. If f € G (Ao(M)), we see that f(7 + 1) = f(7), since <L1) } ,1) € Ag(M). Hence the
Fourier expansion of f has the form f(7) = >"°°  a,¢"™, where ¢ = ¢*™*".

And then we can define a linear operator on Gj,(Ag(M)) for each prime p.

2.7 Hecke operator T, on Gy, )5(M, )

Let f(7) = Z ag(n)q" in Gy 2(To(M), x). Let m be a square of a positive integer, and
n=0

o= (1 O), € = (o, m'/?).

0 m

Suppose we have a disjoint union

T T

Ao(M)EANM) = | Ag(M)E, (disjoint), Ty (M)aTo(M) = ] To(M)a,.

v=1 v=1
We define a linear operator on Sy, /2(M, x) by
[Ao(M)EAG(M)]k )2 : Grya(M, x) — G2 (M, x),
by I
£ FlIAG(M)EAG(M)]jpy2 = m*/ DTN " (ay) fl [k /2,
v=1

which is independent of choice of the representative of &,,.

Definition 2.7.1. The Hecke operator T}, on Gy, /2(M, x) is given by

FITom = FI[D0(M)EAG(M)]ij2 = m*/ D71 " x(a,) FI1E ]2

v=1
where ¢ = <<(1) 2) ,m1/4) and P(&,) = (O:f I) .

If m is not a square and ged(N,m) = 1, then [Ag(M)EAo(M)] is a zero operator on Gy, /5(M, x). So we can
consider 7;,, only for square m.
In [4] Shimura proved that

T2 : f(1) — i (af(p2n) +x(p) <

) P lag(n) + x(pQ)p”‘laf(n/pz)) q". 2.7)
n=0

and if n is not divisible by p?, af(n/p?) = 0.
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2.8 Shimura correspondence

One can define certain liftings of cusp forms of k/2 on T'g(M) to cusp forms of weight 2k on I'y(M’) for a certain M’
depending on M ; these liftings commute with the action of Hecke operators.

Suppose f is a common eigen-function of the operator 7}, for all prime p, and let f|7},> = w,, f. Define a function F" on
H by

F(r)=) A", A,€C,

n=1

Z Ann—s — H[l _ pr_s + X(p)ka—Q—Qs]—17
n=1 D

if k > 5, F is a cusp form of weight k& — 1 over I'g(IV) with character x>

In Shimura’s original theorem, the determination of the level M’ was a little complicated. However, it was been shown
([5]) that one can always take M’ = M /2.

Next let us focus on the space S,:'/Q (4N) (Kohnen space) of cusp forms of weight k/2 on T'g(4N) (N € N is square

free). Recall that the space S:/2(4N ) is the set consisting of elements with the Fourier series of the form

Z a(n)q".

n>1,(—1)kn=0,1(4)

Let f = ) cmq™ bein Si/2(4N, x). Then define
m>1

e(=1)*km

= )pklcm +pk20m/p2> qm

Topana®N = 3 me+nm<

m>1,e(—1)Fm=0,1(4)

If we define Pertersson inner product by

(f.9) = F()g(T)y*/*2dady (v = Rer,y = Rer),
Rr

[To(4) : T7
then Ty, /2 4,y (p) generate a commutative C-algebra of hermitean operators, and the space S,j/z (M, x) has an orthogonal

basis consisting of common eigenfunctions of all operators Ty, /2 4n,y (P)-
Next we define the space of oldforms in Sy /2(M, x) to be

> (Suy2(d, X) + Skya(d, X)|U(N?/d?))

d|N,d<N

new

and the space of newforms S} 7 (M, x) to be the orthogonal complement of the space of oldforms in S,‘:/Z(M ,X). And
since the operator u(f) is an isomorphism between S;/2(M ,Xx) and S;/Q(M ), it is enough to study S,j/z(M ), where f is
the conductor of x, and denote by u(f) to be the restriction of U (f) to SZ'/Q(M 2 X)-

Let H v be the Hecke algebra spanned by the elements Io(N) (& 9) To(N), where a,d > 0, a|d and ged(d, 2N) = 1.
Define a linear map R from Hy to Endc(Sy,(4N)) by

R <F0(N) ((g 2)) FO(N)> — a(ad)*-/2 {AO(ALN) ((‘g ;2) : (ad)k/Q) A0(4N)]

+
S5 (4N)
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Then R is a representation of H x[6]. Also, we have a representation

R:Hy — Endc(Sp_1(N))

R (FO(N) ((8 2)) FO(N)) = (ad)F2 [FO(N) (g 2) FO(N)L1

Since R and R are semisimple and in [7] Kohnen showed that

tr(R(E), SF(AN)) = tr(R(E). Sir (V).

defined by

the representations R and R are equivalent.
Recall that for every prime divisor p for N the operator U(p) preserves S5 (N) and that U(p) = —p*~'w),, on

STV (N), where wljx o 18 Atkin-Lehner involution on Sa (/') defined by

(o, B € Z,p*B — 4Na = p).

wﬁ?k(f(ﬂ):Pk(4NT+p5)_2kf( ¥ty )

ANT 4 pB

And there are analogous results for newforms of half integral weight.

One can define an involution on S}, /2(M ,X) as follows. For each prime prime divisor p of N, we define an ”Atkin-
Lehner involution” W (p) by

W(p) = (( b - ;b )(%) _kp"“'/“(zuvr +pb)k/2> ,

where a and b are integers with p?b — 4Na = p. In particular, for each prime divisor p of N we put

Wy =p AT2U ()W (p)

and define 6:/’5 (4N) as the subspace of S;/2(4N ) consisting of the forms whose nth Fourier coefficients vanish for
—1)kn = et =+,
(%) = F1; then we set w1, = ()~ why yu() and SEE(AN, x) = S A(AN)u(f).
The operator wé\f /2,y 18 @ hermitean involution on 52/2(4N , X) whose (+)-eigenspace is Gf/’g (4N, x). In particular,
for each prime divisor of N we have an orthogonal decomposition

S+

Fa(AN) = G (AN, X) @ 65 (4N, x).

k/2 k/2

If p does not divide f, then wé\”k/m coincides with (%) pfk/4+1/2U(p)W(p)\S;/2(4N, X), and 6:/5(4]\[, X) coincide

with the subspace of S,j/Q (4N, x) consisting of the forms whose Fourier coefficients vanish for n with (%) =
Fl1.

The space 5273"(4]\[ , X) has an orthogonal basis of common eigenfunctions for all operators Ty, /2 4n,y (p) (p prime,
p does not divide N), uniquely determined up to multiplication by non-zero complex numbers. These eigenfunctions are
also eigenfunctions for the operators U (p?) (p prime, p|INV), the corresponding eigenvalues being +pk/2-3/2 If f is such
an eigenfunction and )\, is the eigenvalue by respect to Ty, /5 4,y (p) (resp. U (p?)), then there is an eigenfunction F' €



14 CHAPTER 2. STANDARD DEFINITION AND BACKGROUND

STV (N), uniquely determined up to multiplication with a nonzero complex number, which satisfies Ty —1 n (p)(F) =
M\ F (resp. U(p?)(F) = A, F) for all prime p does not divide N (resp. p|N). The Fourier coefficients are related as

follows: if f = Z anq” and F' = Z A,q", and if D is a fundamental discriminant with (—1)*D > 0, then

n>1 n>1

L(s—k+1,x <D>) Z aipjn2n”* = a(|D|) Z A,n~%.

n>1 n>1

Then we define a map ¢p i/2-1/2 N,y by

> bud" = Y| D ox(@) (S) db/2=32 (ij) g

n>1 n>1 \ d|n

maps S,j/g (4N, x) to S_1(N), Soy (4N, x) to S2°% (N') and for every prime divisor p of N, 6’;2 (4N, x)N Sirs (4N, x)
to S, (N) () SBe (). Tt satisfies

Ti/2,Nx(P)PDk/2-1/2.Nx = €Dk/2-1/2,Nx Th—1,8(D)

for all prime p with p t N and U(p2)@D7k/2,1/2,N’X = ¢p,k/2—-1/2,N,xU(p) for all prime p with p|N. There exist a
linear combination of the ¢ 1 /2_1/2,n, Which maps SE;S’MN, X)( resp. Gki,/'g(llN, X)N S,??;V (4N, x))isomorphically
onto P (N) (resp. Sit (N) () SPe (V).

Remark 2.8.1. We see that 5397 (4N, x) and 53] (V) are isomorphic, and since strong multiplicity one theorem holds
for 537 (), also holds for 375 (4N, X).

But it is naturally to ask that does multiplicity one theorem hold for the set of all cusp forms of half-integral weight
over I'o(M)?

The answer is not. Take Sy3/2(I0(4)) for an example. By [?] we know that S;3,2(I'9(4)) isomorphic to S12(I'o(2))
as modules over the Hecke Algebra. Note that dim S12(I'g(2)) = 2. And then we compute the matrix representations for
the Hecke operators T}, on S12(I'9(2)) directly, we see that for p = 3, the Jordan form of the matrix representation is

252 0
0 252 /°
It is diagonalizable, so there are two linearly independent eigenfunctions in S12(T'g(2)) with same eigenvalue. Note that

S12(T'o(2)) is spanned by {n(7)%4,n(27)%*}, so S12(T'o(2)) = S¢X4(Iy(2)). That is say multiplicity one theorem does
not hold for S15(I'o(2)), so does Sy3/2(T0(4)).



Chapter 3

Explicit formulas

In this chapter we compute the dimensions of some spaces corresponding to S, s(I'¢(3)) which is defined in introduction.
As we mentioned in the introduction, our conjecture holds for » = 1,5, 7 and fails for » = 11,13,17,19, 23. But there
maybe some space of newforms corresponding to S, ;(I'g(3)) for large r. From now on, we always let ¢ be a positive
even number.

3.1 Dimension of S;(I'y(2), ¢;) and S;(I'o(3), €2)

Proposition 3.1.1. Let SV (T'y(2), €1) denote the space of newforms of weight t(t is even) on T'(2) that is eigenfunction
for wsy with eigenvalues e¢1.Then the dimension of this space is

13t/8] — [¢/3], ifer =1
t— [3t/8) — [t/3] — |t/4) —1, ifer=—L.

Before proving this proposition, we shall prove a lemma first.

dim 57" (o (2), 1) = { 3.1)

Lemma 3.1.2. Let S:(T'0(2), €1) denote the space of cusp forms of weight t(t is even) on T'y(2) that is eigenfunctions for
wo with eigenvalue €1.Then the dimension of this space is

13t/8] + [t/4] —t/2  ifer
t/2 — 3t/8] —1 if er

1
—1.

(3.2)

dim(S;(Tp(2),€1)) = {

Proof. Since T'y(2) is of genus 0, the group I'y (2) = T'o(2) U wal'o(2) is of genus 0, where ws is the Atkin-Lehner
involution on T'y(2).
And the genus formula says

vol(T'§ (2) \ H) 1 < 1. ¢
=1 R 1——)—— 33
9= ovol(SLa(Z) \H) 2 ;( o) 3-3)
where vol(T"\ H) is the volume of the fundamental domain I"\ H, r is the number of elliptic points, ey, . . . , e, is the order

of inequivalent elliptic point, and c is number of cusps.
Since [SLy(Z) : To(2)] = 3, the fundamental domain of I'j (2) is equal to 2 of the fundamental domain of SLs(Z).

Than we have ,

1 1 1
0=14+=— 1—-—)—=.
+8 nZ::l( en) 2

15
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. . 1 . + 1 . . 0 _]_ 1
(Note that I'g(2) has two inequivalent cusp are 0, 3, but in I'§(2), 0 and 5 are equivalent, since 2 0 3= 0).

Thus we have .

1 5
Sa--5

n=1

So we can see that there are one elliptic point of order 2, and one elliptic point of order 4.
Then
dim(8;(To(2)), +) = [3t/8] + [t/4] —t/2.

Since dim(S¢(T'0(2)) = [t/4] — 1, we have

dim(S;(To(2), —)) = t/2 — |3t/8] — 1.

O
Now we can prove the proposition.
Proof of proposition 3.1.1. Let f € S;(I'¢(1)) and wy the Atkin-Lehner involution on I'y(2)
0 -1
Wy = (2 0 ) .
Then we have
wa(f(7) +2°f(27)) = (f(7) + 2° £ (27)) | [wale
= f(7) | [wale + 2°£(27) | [wo]e
= det(ws)/?(=27)7t f (;) + 2t det(wo)¥/2(—27) "t f (;)
= det(wg)t/2(—27)_tf ((? _01> 2T> +2f det(wg)t/2(—27)_tf (_7_1>
= f(r) + 2" f(27).
So the eigenvalue of wy respect to f(7) + 2¢ f(27) is 1. And we also have if f € S;(To(1))
wa(7(7)) = 2§ (2r) o
wa(f(27)) =27 (7).

Let {f1(7), f2(7),..., fu(T)} be a basis for S¢(T'o(1)). Then {f1(27), f2(27),..., fn(27)} is a basis for a3.5:(T'o(1)),
where « is the degeneracy map we defined in chapter 2. Let Q is a subspace of S;(T'o(2), +) defined as

Q = Span{fl(T) + 2tf1(27—)a AR fn(T) + 2nfn(27_)}

‘We claim that
St(To(2), +) = S§™(Lo(2), +) & Q.

By Theorem?2.1, we know that

51(To(2)) = Si(To(1)) @ a8y (To(1)) @ S (To(2))-
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Suppose we have a g(7) € SP¥(T'y(2), +) ( Q. Since @ C S:(To(1))PaaS:(To(1)) and SP¥(To(2), +) C SP™(To(2)),
9 € Si(To(1)) © aaSi(Lo(1)) 57" (To(2)) = {0}
Next given any f € S;(I'0(2),+). Since S¢(T'0(2),+) C S¢(T'p(2)), we can write f as

f= Zaifi(T) + Zbifi(QT) + h(7),

i=1

where h € SpV(T'g(2)). Because of f € S¢(T'0(2), +) and newforms are Hecke eigenforms of ws, woh = h. Then By
wy f = f and Equation(3.4), we have

2! Zaifi@T) +27 Zbifi(T) +h(r) = Zaifi(T) + Zbifi(QT) + h(7)

=>Z a; —bi) fi(21) = Y _(ai —27'bi) fi(r)

i=1
— Z —27') fi(r) =
So f € SpV(T'o(2), +) ® Q, and then S;(T'9(2), +) = SfV(T'o(2), +) © Q.

Therefore,
dim S}V (T (2), +) = dim S (T'o(2), +) — dim S¢(T'o(1)
= |3t/8] + [t/4] —t/2 — [t/3] — [t/4] +t/2
= [3t/8] — [t/3]

To compute dim SV (Ty(2), —), we follow the same process as above but change f(7) + 2! f(27) to f(7) — 2¢ f(27).
O

Similarly, we have formulas for dimension of S;(T'0(3), €2) and SP°¥(I'y(3), €2).
Proposition 3.1.3. Let S;(T'o(3), €2) denote the space of cusp forms of weight t(t is even) on T'o(3) that is eigenfunctions
for w3 with eigenvalue €3.Then the dimension of this space is
[3t/8] + [t/4] —t/2, ifex =1,

dim(S¢(T'9(3), €2)) = {t/Q —3t/8] —1 ifea = —

Moreover, let SP°¥ (T'(3), €2) denote the space of newforms of weight t(t is even) on T'(3) that is eigenfunction for ws
with eigenvalues €. Then the dimension of this space is

t/12] — |t ifeo = 1
dim SP°Y(To(3), €2) = [5t/12] — [¢/3], l_'fEQ
E- [5t/12] —2(t/4] ~ 1, ifea= -
Proposition 3.1.4. Dimension of S}V (T'g(4), €3) is

)_ 0 lf€3:1
T\ Lk/3] - k4] ifes = —1.

where €3 is the eigenvalue of Atkin Lehner involution wy.

dim S?CW (Fo(4)7 €3
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3.2 Dimension of S;(I'y(6), €1, €2)

Proposition 3.2.1. Let SV (T'g(6), €1, €2) denote the space of newforms of weight t(t is even) on T'o(6) that is eigen-
function for ws, w3 with eigenvalues €1, €s. Then the dimension of this space is

olt/4] + [t/3] — [3t/8] — |5t/12], ifer =1, e =1
. | 1st/a2) — (3t/s), ifer =1, e =1,
dim S (To(6)ev€2) =4 my 1) 1 (3e/8) — |5/12].  ifer = -1, e =1,
[t/4] + |3t/8] + |5t/12] —t+1,  ifer =—1, e =—1.

We prove some lemmas first.

Lemma 3.2.2. Let S;(I'0(6), €1, €2) denote the space of cusp forms of weight t(t is even) on I'4(6) that is eigenfunctions
for ws, ws with eigenvalues €1, €. Then the dimension of this space is

3t/4] —t/2, ifer =1, e=1,
t/2—|t/4| -1, ifeg=1, e =-1,
t/2—|t/4] -1, ifeg=-1, e =1,
12— t/4] =1, ifer=—1, e =—1.

Proof. To(6) is genus 0, so T'g (6) = I'o(6) Uwalg(6) UwsTo(6) Uwslo(6) is genus 0. {0, 3
cusps of ['y(6), but in I'§ (6), we have only one inequivalent cusp, since

2+ =1 1
w2(0)_(6 ~2> %
and also w3(0) = %, we(0) = co. The fundamental domain of I'j (6) is equal to 3 of fundamental domain of SLs(Z),
since the index [SL2(Z,T(6))]=12. And we have

dim St (FO(G)v €1, 62)

. 3, 3, 00} are inequivalent

r

F 1
o —— iw— — _
0 T er) 2’

=l

where r is the number of inequivalent elliptic points, and e; is the order of each elliptic point. then

r

m* 3
2(1—;):5.

n=1

so we can see that T'd (6) has three elliptic points of order 2.
And then by dimension formula of modular forms, we have dim(S;(I'o(6),+,+)) = 3|t/4] — t/2.
For the others, we first compute the inequivalent cusps and elliptic points by similar method above. Define that

1. (F0(6), +, —) = FO(G) U w2F0(6).
2. (F0(6), -, +) = Fo(G) @] w3F0(6).
3. (P0(6), -, —) = F0(6) U U)GFO(G)
-)

And we see that all of (I'o(6), + (FO(G), —,+),and (I'4(6), —, —) have 2 inequivalent elliptic points of order 2 and 2
inequivalent cusps. So dim(St(Fo( ), +, ) dim(8;(To(6), + —)) = dim(&;(To(6), —, —)) = 5 (dim(S,(T'o(6)))—
O
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Lemma 3.2.3. Let f € Si(Do(2)), then gi(1) := f(7) 4+ (=1)'32 f(37) € S:(T'o(6)). Moreover the eigenvalue of
Atkin-Lehner operator ws with respect to g; is (—1)%, where i={1,2}.

Proof. By previous lemma, we see that g;(7) € S¢(I'g(6)).
31

6 3 )

Note that ws(f(7)) = f(7) | [ws]+,

Let wg =

and f (2:1;) = f(y37) = (27 + 3)" f(37), where v = < ; ;) ) So we have
_ t/2 e (3THLN i)
wsl (7)) = (det(wg))2(67 +3)" 5 (202 ) =327 (31), 65)
and
_ t/2 ¢ STHLNY _ i
w(£(37)) = (Aet(wg))2(6r +8)7f (3 (222) ) =32 f(r) 66)
Therefore, w3(9i(7)) = gi(7) lfws), = (—1)'gi-
O

Similarly, we can prove following:

Lemma 3.2.4. Let f € S;(To(3)), then hi(t) == f(1) + (=1)72% f(27) € S;(To(6)). Moreover the eigenvalue of
Atkin-Lehner operator wo with respect to h; is (—1)%, where i={1,2}.

And now we can prove the proposition.

Proof of Proposition3.2.1. We prove the case €¢; = €5 = 1, and the others are same. By Equation 2.1 we have an unique
decomposition of S¢(T'(6))

S¢(T'o(6)) =Se(Lo(1)) & 2S¢ (To(1))asSt(To (1)) St (Lo (1))
P 577 (To(2)) @ asSp™ (To(2))
D SV (To(3)) @ aa Sy (Lo (3))
P spev (1o (6))

2

6 4

If f(1) € 5¢(I'9(1)) and let wy = ( 1) be the atkin-lehner involution on I'g(6), then we have

wa f(1) = Qt/z(GT +4)7tf <2: 1 i)

=22(6r +4)7" f ((; i) 27>

=22 f(2r).
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Let wg = <2 :13> be the atkin-lehner involution on I'g(6), then we have

ws f(r) = 37367 +3)'f <2Z i ;)

= 3267 +3)7f ((; ;)) 3r)

=32 f(37).

If f(27) € a25¢(T'o(1)), then we have

wa f(27) = 21/2(67 +4) ' f ( -

= 2/2(67 4 4)7tf (2: ki 1)

=22(6r +4)7f ((g ;) T>

=2""2f(),

and

wa f(27) =32(61+ 3) 7t f <

=312(67r +3)7f <G g) 67)

=P llofi e

If f(37) € @35, (I'p(1)), then we have

wa f(37) = 21/2(67 +4)7 f (

=22(6r +4)7tf <G i) 67)

= 2t/2f(6T)7

and

wsf(37) = 31267 +3)7f (

= 312(67 +3)7'f ((g D T)

= 37t/2f(7').
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If f(67) € aSt(T(1)), then we have

wo f(67) = 2t/2(67’+4)7tf <127’—|—6)

67 + 4

67+ 3
:2t/2 47t
(67 +4) f<37+2>

e (3 3

=272 f(37),

and

wsf(67) = 31/2(67 + 3)" f (187 + 6)

67+ 3

= 3'/2(6r +3)""f <GT i f)

27 +
=3"2(67+3)7'f <<‘:’ f) 27)

=3712f(2r).

Letg = af(7) + bf(27) + cf(37) + df (67), where a, b, ¢, d are scalars such that wog = g, and w3g = g. Then we have
a linear system

P/ 2 | B () RN ) a 0
0 0 22 —1] (5 0

ittt e AEIE | | o 3.7
URRSERP0) f \C 0

Note that this system has only one solution that is (a,b,c,d) = (1,2/2,3!/2 6!/2). If f(r) € SPe¥(T5,+), then by
Lemma 3.2.4 and Lemma 3.2.3 we know that

ws f(r) = 3/2f(37)

and
ws f(37) =372 (7)

If f(7) € SpeV(T's, +), then by Lemma 3.2.4 and Lemma 3.2.3 we know that
wa f(r) = 212 f(27)

and
wa f (27) = 272 f(7)

Now we let
Vi = span {fi(r) + 342 f,(37) : f; is basis of St(FO(Q))}
Vo = span {gi(T) + 21/2g,(27) : g; is basis of St(I‘O(S))}

V3 = span {hi(T) +2121h;(27) + 3Y/2h;(37) + 6'/2h;(67) : h; is basis of St(FO(l))} .
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By considering the decomposition of S;(T'(6)) and the calculations above we have
S¢(To(6), +,4) = Sy (To(6), +,+) V1 & V2 @ V3.
So
dim SPY (T (6), +, +) = dim S (T'o(6), +, +) — dim V; — dim Vo — dim V5 = 2[t/4] + |t/3] — |3t/8] — |5t/12].
O

Proposition 3.2.5. Dimension of SV (T (12), €2, €3) is:

0 l‘.fGQ = 1a63 = 17

5k/12| — |k/3 ) =1 =-1
dim S ([0 (12), €2, €3) = [5k/12] = [k/3] l.f€2 8 ’

0 lf62 = —1,63 = 1,

21k/4) — |Bk/12] ifea =—1,e5 = —1,
where €3 is the eigenvalue of the atkin-lehner involution w,.

Theorem 3.2.6. (2] Let f = 07 | anq™ € My(Lo(N), ®), where ¢ be a Dirichlet character with conductor c. Let X be
a primitive Dirichlet character modulo m. Then

Fox=>Y xm)a.qg" (3.3)

n>0
and f @ x € My(To(M), px?), where M is the least common multiple of N, cm, m?2. If f is a cusp form, so is f @ x.

Corollary 3.2.7. Let f € S;(T'o(N)), and x —4 be a primitive Dirichlet character modulo 4. Then f@x_4 € S;(To(16N"), X2 ,),
where N’ = lem(16, N)/16. Similarly, Let x12 be Dirichlet primitive character modulo 12, then f@x12 € S;(Do(144N"), x35),
where N’ = lem(144, N) /144.

Conjecture 3.2.8. Letr € {1,5,7}, and s be a non-negative even integer.
Define
Srs(To(3)) = {n(247)" f(247) : f € M,(To(3))}. (3.9

Then S, s(I'0(3)) is an invariant subspace of St 1s(L'o(576), X12) under the action of the Hecke algebra. That is for all
primes { # 2,3 and all f € S, s(T0(3)), we have f | T2 € S, s(To(3)).

Furthermore, let S}V (T (6), €1, €2) denote the space of newforms of weight t on T'g(6) that are eigenfunctions for ws
and ws with eigenvalues € and €3, respectively.

Let also S} (T'(2), €1) denote the space of newforms of weight t on T'y(2) that are eigenfunctions for wq with eigenvalue
€1.

Then they have
Srs(To(3)) =V aeWw, (3.10)
where
new 2 3
V= Sr+23—1(F0(6)7 7)) s ) @ x12,
and

W= 51551002 (2 ) o 823500 (2) (2 o s st (2) - (20 e

r r r r



3.2. DIMENSION OF S7(To(6), €1, €2) 23

For convenience, we let
‘1/ p— new
1 = Pr42s— 1F027()

2
Wa = 233, 1F (©): (), (7)),
Ws = 5393, 1(To(6), (2) . — (3))-

And moreover, we also have a conjecture for Sy s(T'o(2)). Letr € {1,5,7}

Su(0(2) = 8125100~ (2) = (2 @ xae @51 aTot12ca= (2o, Gap

r

where €3 is the eigenvalue of Atkin-Lehner involution wy on T'(12) and is always negative with respect to Sp™ (I'o(12)).
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Chapter 4

Result

4.1 ST,S(FO(3))

Example 4.1.1. Consider Sy 2(T'0(3)) = {n(247)f(247)
3G2(37) — Ga(71)

be the Eisentein series, then f =

: f(’T) c Mg(ro(?)))} in SQ+1/2(F0(576),X12). Let GQ(T)

is a modular form on I'y(3) of weight 2. And by the dimension

2
formula for the modular forms, we know that dim M»(T(3)) = 1, so {f} is a basis. Thus {7(247) f(247)} is a basis for
S1,2(T'0(3)), now we apply Hecke operators T},2 on this basis.

For example, let p = 5, then the g-expansion of 1(247) f (247)|Ts= is

6¢ + 66¢%° + 138¢* — 21647 + 216¢°7 — 138¢'2! — 648¢'*® + 150¢'%° + 432¢'%% — 864¢%'7 . . ..
and 61(247) f(247) — n(247) f(247)|Ts> = O(¢**') means that the initial segment of g-expansions of 67(247) f(247)
and 7(2471) f(247)|T52 agree more than g[SLQ(Z) : T'o(576)]/12 terms, thus 1(247) f(247)|T52 = 61(247) f(247). It is

similar for other prime numbers, and we have the following table.

517

11

13

17

19

S12(T0(3)) | 6 ] 16

-12

38

-126

-20

On the other hand, since (2) =1and ( %) = 1, by Proposition 3.1.1 and Proposition 3.2.1 we know that

r

So VW is S§V(T'o(6),+,+) ® x—4. We compute the basis of space of newforms by Sage, and the g-expansion of the
basis of SPV(Lo(6), +,+) ® x—a4 is

q+3¢> +6¢° +16¢" +9¢° — 12¢™* + 38¢"3 + 32¢** + 18¢*° — 1264¢'" — 204" + O(¢*°).

And next case are concerned with » = 5,7 and s = 2.

Example 4.1.2. S, 2(I'¢(3)) Forr =5,7.

25
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a. For S572(F0(3)).
Note that,
dim V' = dim S2¢%_, (To(6), +, ):0,

dim W, = dim S2%_, (To(2), —
dim W = dim S3¢%_; (o (6), — ) = 1,
dim W3 = dim S3¢%_; (T'o(6), —, +) = 0.

So from our conjecture
S5.2(T'0(3)) = 5574 1 (To(6), — —) @ X4

And we compute eigenvalues for T2, p = 5,7,11,13,17,19 on Ss,2(by Maple)

5 7 11 13 17 19
S5.2(To(3)) | -144 | 1576 | -7332 | -3802 | -6606 | -24860
(By Sage.)The normalized newform in S§$%_ (I'o(6), —, —) is

q+ 8¢ +27¢% + 64¢* — 114¢° + 216¢° — 1576¢" +512¢° + . . .,
then we twist this newform by x _4:
q—27¢% — 114¢° 4 1576¢7 4 729¢° — 7332¢™" — 3802¢"3 + 3078¢® — 66064¢'" — 248604¢'° + O(¢*°).

We can find this normalized newform in Sg(I'g(48)), and its Atkin-Lehner eigenvalues for wy and w3 are -1 and
1(the eigenvalue of w3 change to -1 since we twist by x _4), respectively.

b. For 55’2(1_‘()(3)).
Next we deal with the case r = 7.
Note that,
dimV = dim S7¢%_ 1 (Fo(6), +, +) 0,
dim W; = dim S'?i‘z 1( 0(2)7 —|—)
dim Wy = dim S7$%_ 1 (T'o(6), +, )
dim W3 = dim S7¢%_;(I'o(6), —, +)

From our conjecture
S7.2(T0(3)) = 5751 (To(6), +, =) @ x4

And we compute eigenvalues for 72, p = 5,7,11,13,17,19 on S7 2(T'o(3))

5 7 11 13 17 19
S72(To(3)) | 2694 | 3544 | -29580 | -44818 | -101934 | 895084

(By Sage.)The normalized newform in S7$%_ (I'o(6), 4, —) is

q — 16¢% + 81¢> + 256¢* + 2694¢° — 1296¢° — 3544¢" — 4096¢° + . . .,
then we twist this newform by x _4:
q—81¢> +2694¢° + 3544¢" +6561¢° — 29580¢" " — 44818¢* +218214¢"° — 101934¢*™ + 8950844 + O(¢*°).

We can find this normalized newform in S10(T'9(48)), and its Atkin-Lehner eigenvalues for wy and w3 are -1 and
1( the eigenvalue of w3 change to 1 since we twist by x_4), respectively.
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For the cases r = 11,13, 17,19, 23. Our conjecture never holds by checking the dimensions of .S, 2(T'(3)) and V & W.
By Proposition 3.1.1 and Proposition 3.2.1, we have

3 ifr=11,
2 ifr =13,
dimVeW=<2 ifr=17,
3 ifr=19,
3 ifr=23.

Example 4.1.3. Forr = 1,5,7 and s = 4. Note that
dim STA(FO (3)) =2
a. For 5174(F0(3)).
Note that,
dim Wy = dim ST$E_; (T'o(2), +
dim Wy = dim ST$¥_; (T'o(6), +, +
dim W3 = dim SP$%_1 (Lo (6), +

So from our conjecture
S5.2(T0(3)) 22 S755-1(To(6), =, —) ® x12 P S5 (To(2), +) @ x4

And we compute eigenvalues for T2, p = 5,7,11,13,17,19 on Ss,2(by Maple)

5 7 11 13 17 19
Si1a | 144 | 1576 | 7332 | -3802 | 6606 | -24860
-210 | -1016 | -1092 | 1382 | 14706 | 39904

(By Sage.)The normalized newform in ST$%_; (I'o(6), —, —) is
g+ 8¢% + 27¢% + 64¢* — 144¢° + 216¢° — 157647 + 512¢° + . . .,
then we twist this newform by x12:
q+114¢° 4+ 157647 + 7332¢"* — 3802¢"2 + 660647 — 24860¢° + O(¢20)

We can find this normalized newform in Sg(I'g(144)), and its Atkin-Lehner eigenvalues for wy and w3 are -1 and
-1, respectively.

(By Sage.)The normalized newform in ST$%_ (I'o(2), +) is
q—8¢% +12¢> + 64¢* — 210¢° — 96¢° + 101647 — 512¢% + .. ..
then we twist this newform by x _4:
q+12¢° — 210¢° — 101647 — 2043¢° — 1092¢*! + 1382¢™2 + 2520¢"° + 1470647 + 39940¢*° + O(¢*°).

We can find this normalized newform in Sg(T'o(16)), and its Atkin-Lehner eigenvalues for wy is -1
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b. For S5)4(F0(3)).
Note that,
dimV = dim Sgi‘g_l(l“o(ﬁ
dim Wy = dim SE¢E_ 1 (To(
dim W = dim SgT%_ 1(To(6),—, —) =1,
dlmW3 = d1m5'5+8 1(F0(6) B +) =0.

+
=
I
\.H

From our conjecture

S5.4(To(3)) 22 S55%_1(To(6), +,+) ® x12 P 51 (T0(6), +,—) ® x4

And we compute eigenvalues for 72, p = 5,7,11,13,17,19 on S5 4(I'o(3))

5 7 11 13 17 19
Ss.4 | -5766 | -72464 | -408948 | -2482858 | -5422914 | -15166100
3630 | -32936 | 758748 | 1367558 | 8290386 | 10867300

(By Sage.)The normalized newform in S§$%_ (I'o(6), +, +) is

q — 32¢°% — 243¢> + 1024¢" + 5766¢° + 7776¢° + 72464¢" — 32768¢° +
then we twist this newform by x12:
q — 5766¢° — 72464¢" — 408948¢" + 1367558¢'% — 542291447 — 151661004¢'° + O(¢*°)
We can find this normalized newform in S72(To(144)).
(By Sage.)The normalized newform in S§¢%_; (I'o(6), —, —) is
q + 32¢% + 243¢> + 1024¢* + 3630¢° + 7776¢° + 3293647 + 32768¢° +

then we twist this newform by y_4:

q — 243¢% 4 3630¢° — 3293647 + 59049¢° + 758748¢! — 2482858¢'3 + 829038647 + 108673004 + O(¢*°)
We can find this normalized newform in S12(I'o(144)).

c. For 5714(1_‘0(3)).
Note that,
dim V' = dim S2¢%_ (T(6), —, +)
dim W7 = dim §2%_, (To(2), +) =
dim Wy = dim S2%_; (Lo(6), + ) 0,
dim W3 = dim S7¢%_ 1 (I'o(6), 4+, +) = 0.

From our conjecture

S7,4(To(3)) = SP7%_1(To(6), = +) © x12 €D S77%_1(To(2), +) © x4

And we compute eigenvalues for T2, p = 5,7,11,13,17,19 on S7 4(T'o(3))

5 7 11 13 17 19
S7.4 | -54654 | -176336 | -1619772 | -24028978 | 60569298 | -190034876
3990 | 433432 | 6612420 | -10878466 | 154665054 | 243131740
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(By Sage.)The normalized newform in S7$%_ (I'o(6), —, +) is

q + 64¢% — 729¢° + 4096¢* + 54654¢° — 46656¢° + 176336¢" + 262144¢% + .. ..

then we twist this newform by x12:

q — 54654¢° — 176336¢" + 6612420¢*" — 2402897843 + 154665054¢'" — 1900348764 + O(¢**)

We can find this normalized newform in S12(I'g(144)).
(By Sage.)The normalized newform in S7¢%_; (I'o(2), +) is

q — 64¢% — 18364¢> + 40964¢* + 3990¢° + 117504¢° — 433432¢" — 262144¢° + . . .,

then we twist this newform by x _4:

q+1836¢°+3990¢°+433432¢" +1776573¢° —1619772¢" 1 —108784664¢ '3 +60569298¢" " +-243131740¢*°4+-0(¢*°),
We can find this normalized newform in S12(T'9(16)).

Example 4.1.4. Forr =1,5,7 and s = 8. dim S,.6(I'0(3)) = 3.

a. For Sy 3.
Note that,

dim V = dim S}, _,(To(6), —, —) = 1
dim Wy = dim S7$Y,_; (Fo(2), +
dim Wy = dim S7$%5_1 (Co(6), +, +
dim W3 = dim S7$Y,_; (To(6), +

From our conjecture

$1,6(T0(3)) = 575121 (To(6), = +) ® x12 ED{STTHa1 (Lo (6), +, +) @ S75%2-1(To(6), +, —)} © x4

And we compute eigenvalues for TZ?, p=>5,7,11,13,17,19 on S1 6(T'0(3))

5 7 11 13 17 19

S1,6(T0(3)) | -3630 | -72464 | 531420 | 1332566 | 5422914 | -2901404
5766 | 50008 | -758748 | -2482858 | -8290386 | 10867300

-11730 | -32936 | 408948 | 1367558 | -5109678 | -15166100

(By Sage.)The normalized newform in S7$Y,_;(I'o(6), —, —) is
q + 32¢% + 243¢% + 1024¢" + 3630¢° + 77764° 4 3293647 + 32768¢° + .. ..
then we twist this newform by x12:
q — 3630¢° — 32936¢" — 758748¢" — 2482858¢'% — 829038647 + 108673004¢'° + O(¢*°)

We can find this normalized newform in S12(I'g(144)).
(By Sage.)The normalized newform inST$Y,_ (I'o(6), +, +) is

q — 32¢% — 243¢% + 1024¢™ + 5766¢° + T776¢° + 72464¢" — 32768¢5 + .. .,
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then we twist this newform by y_4:
q+243¢3+5766¢° —72464¢" +59049¢°+408948¢ ' +1367558¢ 3 +1401138¢1°+5422914¢ " 151661004 +0(¢*°)

We can find this normalized newform in S12(T'o(48)).

new

1+1271(1—‘0(6)7 +, —) is
q — 32¢% + 243¢> + 1024¢* — 11730¢° — 7776¢° — 50008¢" — 32768¢% + .. .,

(By Sage.)The normalized newform in

then we twist this newform by x _4:
q—11730¢° + 500084 4 59049¢° + 5314204 + 133256642 +2850390¢° — 51096784 " —2901404¢*° +O(¢*°)
We can find this normalized newform in S12(T¢(48)).

b. For 8576.
Note that,
dim V = dim S2%,_, (To(6), +, +) = 1,
dim Wy = dim S3¢%,_4(I'o(2), =) =0,
dim Wy = dim S2$%¥,_4 (Lo (6), —, —)
dim W3 = dim S2$¥,_ (o (6), —, +)

L,
L.

From our conjecture
S5.6(T0(3)) 2 55751 (To(6), +,+) ® xa2 D552 1(To(6), —, =) @ S5 1 (Fo(6), — )} ® x4

And we compute eigenvalues for Tg, p=>5,7,11,13,17,19 on S5 6(I'0(3))

5 7 11 13 17 19
S5,6(T0(3)) | -114810 | -762104 | 103451700 | -104365834 | -3173671566 | 5895116260
77646 | 3034528 | 110255052 | 56047862 997689762 | -2163188180
314490 | -2025056 | -48011172 | 285130118 | 1930104414 | -4934015444

new

(By Sage.)The normalized newform inS2$Y,  (I'o(6), +, +) is
q — 128¢% — 2187¢> + 16384¢* — 3144904° + 279936¢° + 202505647 — 2097152¢% + . . .,
then we twist this newform by x12:
q + 314490¢° — 202505647 + 110255052¢*" + 56047862¢' 4 1930104414¢"' " — 2163188180¢*° + O(¢*")

We can find this normalized newform in S16(I'g(144)).

new

(By Sage.)The normalized newform inSgY,  (I'o(6), —, —) is
q + 128¢% + 2187¢% + 16384¢" + 77646¢° + 279936¢° + 762104¢" + 2097152¢° + . ..

then we twist this newform by x _4:

q — 2187¢> 4 T7646¢° — 762104¢" + 4782969¢° — 48011172¢' + 285130118¢*® — 169811802¢*°
— 317367156647 + 58951162604 + O(¢*°)
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We can find this normalized newform in S16(T9(48)).
(By Sage.)The normalized newform inSg$Y, _ (I'o(6), +, —) is
g+ 128¢% — 2187¢% + 16384¢* — 114810¢° — 279936¢° — 3034528¢" + 2097152¢% + .. .,
then we twist this newform by x _4:

q + 2187¢% — 114810¢° + 3034528¢" + 4782969¢° + 103451700¢"" — 104365834¢*> — 2510894704¢*°
+997689762¢"" — 4934015444¢° + O(¢*°).

We can find this normalized newform in S16(I'9(48)).

c. For S76.
Note that,
dim V' = dim 52, (Lo(6), —, +) = 1,
dim Wy = dim 529, _;(T'o(2),+) = 0,
dim Wy = dim 525, _, (To(6), +,—) =1,
dim W3 = dim 52, 1 (To(6), +,4) = 1.

From our conjecture
S5,6(T0(3)) = S77121(To(6), = +) @ x12 {721 (To(6), +, =) @ S75Y5-1 (To(6), +, +)} © X1

And we compute eigenvalues for 772, p = 5,7,11,13,17,19 on S7 (I'o(3))

5 7 11 13 17 19

S76(T0(3)) | 645150 | -24959264 | -1159304460 | -5425661314 | -35551782594 | -5778498836
199650 | -3974432 500068668 2801062862 | -5466992958 | 64354589764
-72186 | 8640184 125556420 | 4227195518 | 32979662226 | 53889877060

(By Sage.)The normalized newform inS?$Y, _ (I'o(6), —, +) is
q + 256¢% — 6561¢° + 65536¢* — 199650¢° — 1679616¢° + 24959264¢" + 1677721645 + . . .,
then we twist this newform by x12:
q+ 1996504 — 24959264¢" + 1255564204 + 4227195518¢*2 — 3555178259447 4 643545897644 + O(¢*°).

We can find this normalized newform in S15(I'g(144)).

(By Sage.)The normalized newform inS?$Y, _; (I'o(6), +, —) is
q — 256¢% + 6561¢° + 65536¢" — 72186¢° — 1679616¢° — 8640184¢" — 16777216¢° + .. .
then we twist this newform by x _4:

q — 6561¢° — 72186¢° + 8640184¢" + 43046721¢° — 1159304460¢*" + 2801062862¢> + 473612346¢°
+ 32979662226¢'7 — 57784988364 + O(¢*°).

We can find this normalized newform in S15(T'9(48)).
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(By Sage.)The normalized newform inS?$Y, _ (I'o(6), +, +) is
q — 256¢% — 6561¢° + 65536¢" + 645150¢° + 1679616¢° + 3974432¢" — 16777216¢° + . ..,
then we twist this newform by y_4:

q+ 6561¢% + 645150¢° — 3974432¢" + 43046721¢° + 500068668¢'1 — 5425661314¢3 + 42328291504¢*°
— 5466992958¢*7 + 53889877060¢° + O(¢*°),

We can find this normalized newform in S15(I'9(48)).

For the cases r = 11,13, 17,19, 23. Our conjecture never holds by checking the dimensions of .S, 2(T'0(3)) and V & W.
By Proposition 3.1.1 and Proposition 3.2.1, we have

3 ifr=11,
2 ifr=13,
dimVeW =72 ifr =17,
3 ifr=19,
3 ifr=23.

Example 4.1.5. Forr = 1,5,7 and s = 8. dim S, g(I'¢(3)) = 3.

a. For S 5.
Note that,

From our conjecture
S1.8(T0(3)) = S75Y6_1 (To(6), =, =) @ x12 P{ST$o 1 T0(2), +) & S75Y5_1(To(6), +,+)} @ x4

And we compute eigenvalues for Tg, p=>5,7,11,13,17,19 on S1 6(I'0(3))

5 7 11 13 17 19
S16(T0(3)) | -314490 | -2025056 | 95889948 | 56047862 | -1355814414 | 5895116260
90510 | -762104 | 48011172 | -59782138 | -1930104414 | -2163188180
-77646 56 | -110255052 | 285130118 | 3173671566 | -3783593180

(By Sage.)The normalized newform inS}$Y, _ (I'o(6), —, —) is
q + 32¢% + 243¢% + 1024¢* + 3630¢° + 77764° 4 3293647 + 32768¢° + .. ..
then we twist this newform by x12:
q — 3630¢° — 3293647 — 758748¢'! — 2482858¢% — 829038647 + 10867300¢° + O(¢*°)

We can find this normalized newform in S12(I'g(144)).
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(By Sage.)The normalized newform inST$Y,_ (I'o(6), +, +) is
q — 32¢% — 243¢> + 1024¢" + 57664° + T776¢° + 72464¢" — 32768¢° + ...,
then we twist this newform by y_4:
q+243¢°+-5766¢° —72464¢" +59049¢°+408948¢ 1 +1367558¢ 5 +1401138¢°+-5422914¢ 7 — 1516610042 +0(¢*°)

We can find this normalized newform in S12(T'y(48)).

(By Sage.)The normalized newform inS7$Y, _; (I'o(6), +, —) is
q — 32¢% + 243¢> + 1024¢* — 11730¢° — 7776¢° — 50008¢" — 32768¢% + .. .,
then we twist this newform by x _4:
q—11730¢° + 500084 4 59049¢° + 5314204 + 133256642 +2850390¢° — 51096784 —2901404¢*° +O(¢*°)

We can find this normalized newform in S12(T'9(48)).

b. For 8578.
Note that,
dim V = dim S2%%_; (To(6), +, +) = 1,
dim W7 = dim S2¥s_; (To(2), —) = 0,
dim Wy = dim S2$%_4 (Lo (6), —, —)
dim W3 = dim S2%_1 (o (6), —, +)

L,
L.

From our conjecture
S5,8(T0(3)) = S25Y6-1(To(6), +,+) ® x12 DL 61 (To(6), —, —) & S5SV6_1 (To(6), — +)} ® x4

And we compute eigenvalues for Tg, p=>5,7,11,13,17,19 on S5 6(I'0(3))

5 7 11 13 17 19
S55(T0(3)) | -114810 | -762104 | 103451700 | -104365834 | -3173671566 | 5895116260
77646 | 3034528 | 110255052 | 56047862 997689762 | -2163188180
314490 | -2025056 | -48011172 | 285130118 | 1930104414 | -4934015444

(By Sage.)The normalized newform inSg$Ys_ (I'o(6), +, +) is
q — 128¢% — 2187¢> + 16384¢* — 3144904° + 27993645 + 202505647 — 2097152¢% + . . .,
then we twist this newform by y12:
q + 314490¢° — 2025056¢" + 110255052¢* + 56047862¢' + 1930104414¢7 — 2163188180¢'° + O(¢*°)

We can find this normalized newform in Sz0(I'g(144)).

(By Sage.)The normalized newform inSg$%Ys_ (I'o(6), —, —) is
q + 128¢° + 2187¢> + 16384¢" + 77646¢° + 27993645 + 762104¢" + 2097152¢° + . ..

then we twist this newform by x _4:
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q — 2187¢> + T7646¢° — 762104¢" + 4782969¢° — 48011172¢" + 285130118¢'® — 169811802¢*°
— 317367156647 + 5895116260¢° 4+ O(¢*°)

We can find this normalized newform in Saq(T¢(48)).

(By Sage.)The normalized newform inSg$Ys_ (I'o(6), +, —) is
q + 128¢% — 21874 + 16384¢* — 114810¢° — 279936¢° — 3034528¢" + 2097152¢% + . . .,
then we twist this newform by x _4:

q + 2187¢% — 114810¢° + 3034528¢" + 4782969¢° + 103451700¢*! — 104365834¢*> — 2510894704¢*°
+997689762¢"" — 4934015444¢° + O(¢*°).

We can find this normalized newform in Soq(T'y(48)).

c. For 57,8~
Note that,

S+
dim W, = dim S29%Y6_ (To(2), +)

( =0,
dim Wy = dim S2%s_, (To(6), +, —) = 1,
dim W = dim S2%s_; (T(6),+, +) = 1.

From our conjecture

S7.5(L0(3)) = 751 (Lo (6), — +) © x12 D561 (To(6). +, =) & 57461 (Lo(6), +,+)} © x—a

And we compute eigenvalues for TZ?, p=>5,7,11,13,17,19 on S7 5(T'o(3))

5 7 11 13 17 19
S7.8(Tp(3)) | 645150 | -24959264 | -1159304460 | -5425661314 | -35551782594 | -5778498836
199650 | -3974432 500068668 2801062862 | -5466992958 | 64354589764
-72186 | 8640184 125556420 | 4227195518 | 32979662226 | 53889877060

new

(By Sage.)The normalized newform inS?$%¢_ (I'o(6), —, +) is
g+ 256¢% — 6561¢° + 65536¢* — 199650¢° — 1679616¢° + 24959264¢" + 16777216¢° + . . .,
then we twist this newform by x12:
q+1996504° — 24959264¢" + 1255564204 +4227195518¢*% — 355517825944 4 643545897644 + O(¢*°).

We can find this normalized newform in Sgo(IT'o(144)).

new

(By Sage.)The normalized newform inS?$%s_ (I'o(6), +, —) is

q — 2564 + 6561¢°> + 65536¢* — 72186¢° — 1679616¢° — 8640184¢7 — 16777216¢° + . ..
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then we twist this newform by y_4:

g — 6561¢° — 72186¢° + 8640184¢" + 43046721¢° — 1159304460¢*" + 2801062862¢> + 473612346¢°
+ 32979662226¢"7 — 57784988364 + O(¢*°).

We can find this normalized newform in Sao(T'o(48)).

(By Sage.)The normalized newform inS?%s_ (I'o(6), +, +) is
q — 256¢°% — 6561¢° + 65536¢" + 6451504 + 16796164¢° + 3974432¢" — 16777216¢° + .. .,
then we twist this newform by x _4:

q 4+ 6561¢% + 645150¢° — 3974432¢" 4 43046721¢° + 500068668¢'1 — 5425661314¢"3 + 42328291504¢*°
— 5466992958¢'7 + 538898770604 + O(¢*°),

We can find this normalized newform in S22 (T'9(48)).

For the cases r = 11,13, 17,19, 23. Our conjecture never holds by checking the dimensions of .S, 2(T'¢(3)) and V & W.
By Proposition 3.1.1 and Proposition 3.2.1, we have

3 ifr =11,
2 ifr =13,

dmVaeW =<2 ifr=17,
3 ifr =19,

3 ifr=23.

42 S, (I'0(2))

We take
V = Sp(To(6), — (2),— (2)) ® x12,
U= S?ew(ro(6)7€3, - (%)) & X12;

for convenience.

Example 4.2.1. Forr =1,5,7and s = 2.

a. For SLQ (Fo (2))
Note that,

)

dimV = dim SV (T'(6), —, —) = 0,
dim U = dim S7%(To(12), —,—) = 1.
So from our conjecture
S12(T0(2)) = 5155 _1(To(12), —, —) @ x12
And we compute eigenvalues for T2, p = 5,7,11,13,17,19 on Ss,2(by Maple)

57 [11]13]17] 19
S12(To(2)) | 18 | -8 | 36 | -10 | -18 | 100
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(By Sage.)The normalized newform in ST$%_; (I'0(12), —, —) is
g+ 3¢> — 18¢° + 8¢7 + 9¢° + 36¢* — 104" + . ..
then we twist this newform by x12:
q+18¢° — 8¢" + 36¢*" — 10¢'3 — 18¢'7 4 100¢*° 4+ O(¢*°)
We can find this normalized newform in S4(I'g(144)), and its Atkin-Lehner eigenvalues for w4 and ws are -1 and
-1, respectively.

b. For S5 2(T'0(2)).
Note that,
dim Uy = dim S§°¥(Ty(6), +,+) =0,
dim Uy = dim S§¥ (T (12), —, +) = 1.
So from our conjecture
S5,2(T0(2)) = 55551 (T0(12), =, =) ® xa2
And we compute eigenvalues for 72, p = 5,7,11,13,17,19 on Ss,2(by Maple)
5 7 11 13 17 19
S5.2(T(2)) | 378 | 832 | -2484 | 14870 | 22302 | 16300
(By Sage.)The normalized newform in ST _; (I'o(12), —, —) is

q— 27¢% — 378¢° — 832¢" + 729¢° — 2484¢" + 148704 + . ..

then we twist this newform by x12:
q+18¢° — 8¢" + 36¢*" — 104" — 18¢'7 4 100¢*° 4+ O(¢*°)
We can find this normalized newform in S4(T'g(144)), and its Atkin-Lehner eigenvalues for w4 and ws are -1 and

-1, respectively.

c. For S72(T0(2)).
Note that,
dim Uy = dim S§¥(Ty(6), —, +) = 0,
dim Uy = dim S§¥ (T (12), —, +) = 1.
So from our conjecture
S7,2(L0(2)) = 575 _1(To(12), =, —) ® x12
And we compute eigenvalues for T2, p = 5,7,11,13,17,19 on S7.2(by Maple)

5 7 11 13 17 19
S72(T0(2)) | 990 | -8576 | 70596 | -2530 | 200574 | 695620

(By Sage.)The normalized newform in S7¢%_; (I'o(12), —, —) is
q — 81¢3 4+ 990¢° + 8576¢" + 6561¢° + 705964 — 25303 + ...
then we twist this newform by x12:
q+18¢° — 8¢" + 36¢*" — 10¢'3 — 18¢'7 4 100¢"° 4+ O(¢*°)

We can find this normalized newform in S10(I'g(144)), and its Atkin-Lehner eigenvalues for w4 and w3 are -1 and
-1, respectively.
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For the cases r = 11,13,17, 19, 23. Our conjecture never holds by checking the dimensions of S, 2(I'¢(2)) and Uy & Us.
By Proposition 3.2.1 and Proposition 3.2.5, we have

3 ifr=11,
2 ifr =13,
dimU, @ Uy =<2 ifr=17,
3 ifr=19,
3 ifr=23.

Example 4.2.2. Forr =1,5,7,s =6
a. For S 6(I'g(2)).
Note that,

dim U; = dim S$% ((6), —, —) = 1,
dim U2 = dim S]r_lgeW(FO(12)a s _) =

So from our conjecture
S1.12(T0(2)) = 87 (Tp(6), - —) @ x12 ) S1Y> 1 (To(12), - —) ® x12

And we compute eigenvalues for 772, p = 5,7,11,13,17,19 on S1 6(I'9(2))(by Maple)

5 7 11 13 17 19
S16(T0(2)) | -3630 | -9128 | 668196 | 2052950 | -1604178 | 10867300
2862 | -32936 | -758748 | -2482858 | -8290386

(By Sage.)The normalized newform in ST, _; (I'o(6), —, —) is

q + 32¢° + 243¢> + 1024¢* + 3630¢° + 7776¢° + 32936¢" + 32768¢° + . ..
then we twist this newform by x12:
q — 3630¢° — 3293647 — 758748¢" — 2482858¢% — 829038647 + 10867300¢° + O(¢*°)

We can find this normalized newform in S12(I'g(144)).

(By Sage.)The normalized newform in ST$Y,_;(I'o(12), —, —) is

g+ 3¢ —18¢° +8¢" +9¢° + 36¢* — 10¢'3 + ...
then we twist this newform by x2:
q+18¢° — 8¢" + 36¢*" — 10¢'3 — 18¢*7 4 100¢*° 4+ O(¢*°)

We can find this normalized newform in Sg(I'y(144)), and its Atkin-Lehner eigenvalues for w4 and w3 are -1 and
-1, respectively.

b. For 55’2(1_‘0(2)).
Note that,
dim U; = dim SV (T'y(6), +,+) = 0,
dim Uy = dim Sp¥ (T (12), —, +) = 1.
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So from our conjecture
S5,2(Lo(2)) = 55551 (Lo(6), = —) ® x12

And we compute eigenvalues for 72, p = 5,7,11,13,17,19 on Ss.2(by Maple)

517 [ 11 13 17 19
S52(T0(2)) | 378 | 832 | -2484 | 14870 | 22302 | 16300

(By Sage.)The normalized newform in ST$%_; (I'o(12), —, —) is

q—27¢% — 378¢° — 832¢" + 729¢° — 2484¢"" + 1487043 + . ..
then we twist this newform by x12:
q+18¢° — 8¢" + 36¢"" — 10¢" — 18¢"" + 100¢"* + O(¢*°)

We can find this normalized newform in S4(T'g(144)), and its Atkin-Lehner eigenvalues for w4 and ws are -1 and
-1, respectively.

c. For S72(I'0(2)).
Note that,
dim U1 = dim S;leW(FO(G)a B +) = 0’
dim Uy = dim SP°¥ (I'y(12), —, +) = 1.

So from our conjecture
S572(T0(2)) = 5755 1(To(6), — —) @ x12

And we compute eigenvalues for T2, p = 5,7,11,13,17,19 on S7,2(by Maple)

5 7 11 13 17 19
S7.2(T0(2)) | 990 | -8576 | 70596 | -2530 | 200574 | 695620
(By Sage.)The normalized newform in S7¢% | (I'o(12), —, —) is

q — 81¢% + 990¢° + 8576¢" + 6561¢° + 705964 — 2530¢™% + ...
then we twist this newform by y12:
q+18¢° — 8¢" + 364" — 104" — 18¢'7 + 100¢*° + O(¢*°)

We can find this normalized newform in S1(I"0(144)), and its Atkin-Lehner eigenvalues for wy and wg are -1 and
-1, respectively.

For the cases r = 11,13,17, 19, 23. Our conjecture never holds by checking the dimensions of S, 2(I'¢(2)) and Uy & Us.
By Proposition 3.2.1 and Proposition 3.2.5, we have

3 ifr =11,
2 ifr =13,
dimU, @Us =2 ifr =17,
3 ifr=19,
3 ifr=23.
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