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半模函式與 Shimura 對應 

學生：林家銘                        指導老師：楊一帆 教授 

國立交通大學應用數學系(研究所)碩士班 

摘         要 

    1973 年，G.Shimura 利用 theta-函數來定義半模函式，並且寫出

Hecke算子作用在半模函式上的一般項。他發現Hecke算子作用在半模函式

上的特徵值與整模函式的特徵值有對應關係，這就是所謂的 Shimura 對

應。  

    另一方面，eta-函數是一個 (1/2) weight 的模函式在 Shimura 的定

義之下。本篇論文當中主要探討用 eta-函數所定義出來的半模函式空間，

這也許會使我們能夠證明出一些分析函數的同於式。歷史上這種由 eta-函

數所定義出來的半模函式空間的研究開使於 Li Guo 和 Ken Ono 在“The 

partition function and the arithmetic of certain modular 

L-functions＂中，並且證明了在某些例子中這種子空間是同構於一個整

模函式的子空間，而這個整模函式的子空間是一些算子的不變子空間。我

們現在把他們的結果更一般化，並且算出對應空間的維度。不過由於時間

的關係，我們仍無法算出對於一般 Hecke 算子的 trace formula，也許在將

來的日子裡會有機會把他算出來。 
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ABSTRACT 

   In 1973, G.Shimura defined modular forms of half-integral weight 

by using theta-function. He showed that there are Hecke operators 

on half-integral weight modular forms, and he found that there is a 

correspondence between each eigenvalue for Hecke operator for 

integral weight modular form and half-integral weight modular form. 

And it is the so-called Shimura correspondence. 

   On the other hand, eta-function is a modular form of weight (1/2) 

in Shimura′s sense. In this paper, we study the space of half-integral 

weight modular forms defined by eta-function, so that we may find 

some congruence of partition functions. Historically, these spaces 

were first studied by Li Guo and Ken Ono in their paper“The 

partition function and the arithmetic of certain modular 

L-functions”. They proved that in some case these space are 
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isomorphic to space of integral-weight modular forms which is 

eigenspace of some operators. Now we make more general results, 

and we compute the dimensions in our cases. For the isomorphism, 

we try to prove it by using trace formula, but it is so complicated that 

we have not figured it out yet. 
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Chapter 1

Introduction

In 1973, G.Shimura[4] laid the foundations of a theory of half integral weight modular forms with level M is always
divisible by 4. We consider the space of cusp forms denoted by Sk/2(M,χ) mainly, where k is a positive odd number and
χ is a Dirichlet character. Firstly, Shimura showed that there are Hecke operations Tn2 for every natural number n with
gcd(n,M) = 1. Secondly, in the Main Theorem and its corollary, Shimura associated half integral weight modular forms
with modular forms of integral weight. It is the so-called Shimura correspondence. In S.Niwa’s paper [5], he proved that
Sk/2(M,χ) is always isomorphic to Sk−1(M/2).

Later, W. Kohnen in his paper[7] looked for a subspace which corresponds to the space of cusp forms of weight 2k on
Γ0(M/4), where M/4 is square free. Elements contained in the subspace are cusp forms and with Fourier expansions of
the form ∑

n≥1,(−1)kn≡0,1(4)

a(n)qn,

and he denoted this subspace by S+
k+1/2(M,χ). And we can introduce Hecke operators T+(n2) on S+

k+1/2(M,χ) for
all n prime to M . He set up a theory of newforms similar to Atkin-Lehner-Li-Miyake. There is a canonically defined
subspace Snew

k+1/2(M,χ) ⊂ S+
k+1/2(M,χ) and a canonical decomposition

S+
k+1/2(M,χ) =

⊕
r,d≥1,rd|N

Snew
k+1/2(d, χ)|U(r2)

(where U(r2) is the operator replacing the nth Fourier coefficient of a modular form by its r2nth one, andN = M/4), and
Snew
k+1/2(M,χ) isomorphic to space of newforms Snew

2k (N) ⊂ S2k(N) (space of cusp forms with weight 2k over Γ0(N))
as Hecke modules. In particular, we have a strong ”multiplicity 1 theorem” for Snew

k+1/2(M,χ). See Remark 2.8.1.
In this thesis, we focus on a special subspace of Sk+1/2(Γ0(576)), defined by

Sr,s(Γ0(N)) := {η(24τ)rf(24τ) : f(τ) ∈Ms(Γ0(N))},

where N is a positive integer. It is known that η(24τ) is a weight 1
2 modular form on Γ0(576) with character χ12. Y.Yang

proved in [8] that this subspace is an invariant subspace of Sk+1/2(Γ0(576)) under the action of the Hecke algebra when
N = 1. Then he discovered some new congruences of the the partition function p(n) by applying Hecke operators on the
subspace Sr,s. A remarkable result of [8] is

p

(
m`2uK−1n+ 1

24

)
≡ 0 mod m,

1



2 CHAPTER 1. INTRODUCTION

where m ≥ 13 is a prime number, K is a positive integer determined by Hecke operators applying on the subspace
Sr,s(Γ0(1)), n is positive integer depend on the Hecke operator, and u is any positive integer.

Our main result is concerned with the space Sr,s(Γ0(3)). We compute some examples in Maple, and conjecture that
Sr,s(Γ0(3) and Sr,s(Γ0(2) are also an invariant subspace of Sk/2(Γ0(576)) for r = 1, 5 and 7, s = 2, 4, 6, 8, and some
Hecke operators. Moreover, Yang conjecture that Sr,s(Γ0(1) isomorphic to a space of newforms of integral weight(see
Proposition 3.2.1) as Hecke module when r = 1, 5, 7, 11, 13, 17, 19, 23. And here we also make a similar conjecture, but
in our case, we can only find the correspondences for r = 1, 5, 7. For r = 11, 13, 17, 19, 23 we will check our conjecture
fails by computing dimensions.

The invariance of Sr,s in our cases(N = 2, 3) can most likely be proved by a way similar to the proof of theorem 2 in
[8], but we have not work it out. One of the key points in the proof is the choice of

h(τ) = η(`2τ)24−rg(τ/24) = η(`2τ)24−τη(τ)rf(τ),

where l is a prime number. When N = 3 we have to make some modification on h.
And now in this thesis, we observe some Hecke operator acting on the basis of Sr,s and claim invariance by checking

Fourier coefficients(see example 4.1.1).
Furthermore Sr,s(Γ0(2)) and Sr,s(Γ0(3)) isomorphic to a space of newforms of weight 2s+r−1 on some congruence

subgroups as Hecke modules.



Chapter 2

Standard Definition and Background

2.1 Notations
Z : set of integers.
H : upper half plane.
N : positive integer.
p : prime number.
SL2(Z) : special linear group over Z of dimension 2.
RΓ : fundamental domain of congruence subgroup Γ in SL2(Z).

2.2 Congruence subgroup Γ0(N)

If N is any positive integer we define Γ0(N) to be the set

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : N |c

}
.

It is a subgroup of SL2(Z) of finite index.
In particular, if p is a prime and let Sτ = −1/τ and Tτ = τ+1 be the generators of SL2(Z) , then for every V in SL2(Z),
but not in Γ0(p), there exists an element P ∈ Γ0(p) and an integer k, 0 ≤ k < p, such that

V = PST k.

Let R be the fundamental domain of SL2(Z). Then

RΓ0(p) = R ∪
p−1⋃
k=0

ST k(R),

where p is a prime.
Generally, we can also compute the index of Γ0(N) in SL2(Z) and find the coset representations. Explicitly,

[SL2(Z) : Γ0(N)] = 2N
∏
p|N

(1 + 1/p).

3



4 CHAPTER 2. STANDARD DEFINITION AND BACKGROUND

and let γj =

(
aj bj
cj dj

)
∈ SL2(Z), j = 1, 2. The following three statement are equivalent:

1. The right cosets Γ0(N)γ1and Γ0(N)γ1 are equal.

2. c1d2 ≡ c2d1 mod N .

3. There exist an integer r with gcd(r,N) = 1 such that c1 ≡ rc2 and d1 ≡ rd2 mod N .

Then we have

Theorem 2.2.1. Let S be the set of pairs (c, d) ∈ Z2 with gcd(c, d,N) = 1. Define an equivalence relation on S by
(c1, d1) ∼ (c2, d2) if and only if c1d2 ≡ c2d1 mod N . Then the coset representations of Γ0(N) SL2(Z) is{(

∗ ∗
c d

)
∈ SL2(Z) : (c, d) ∈ S/ ∼

}
,

where
(
∗ ∗
c d

)
means the matrix

(
a b
c d

)
∈ SL2(Z).

Theorem 2.2.2. A set of inequivalent cusps for Γ0(N) is given by{a
c

: c|N, a = 1, . . . , gcd(c,N/c), gcd(a, c) = 1
}
.

Hence the number of inequivalent cusps is ∑
c|N

φ(gcd(c,N/c)),

where φ is the Euler totient function.

Theorem 2.2.3. (a) The number v2 of inequivalent elliptic points of order 2 for Γ0(N) is equal to the number of solutions
of x2 + 1 = 0 in Z/NZ. That is, when 4|N , v2=0, and when 4 - N ,

v2 =
∏

p|N,p odd

(
1 +

(
−1

p

))
,

where
(
−1

p

)
is the Jacobi symbol.

(b) The number v3 of inequivalent elliptic points of order 3 for Γ0(N) is equal to the number of solutions of x2+x+1 = 0
in Z/NZ. That is, when 9|N , v3=0, and when 9 - N ,

v3 =
∏
p|N

(
1 +

(
−3

p

))
,

where
(
−3

p

)
is the Jacobi symbol.
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2.3 Atkin-Lehner involutions
Let N be a positive integer ≥ 2. Let n be a divisor of N such that gcd(n,N/n) = 1. The elements in

ωn =

{
1√
n

(
an b
cN dn

)
, adn2 − bcN = n

}
are the Atkin-Lehner involutions, which normalize Γ0(N). The set of Γ0(N) union all possible Atkin-Lehner involutions
is denoted by Γ∗0(N).

2.4 Modular forms of integral weight

Here we let k be a positive integer. Let α =

(
a b
c d

)
be an element of GL+

2 (R) (general linear group over R with positive

determinant).

Definition 2.4.1. Let f be a meromorphic function on H and α as above. Then we define

f(τ)|[α]k = det(α)k/2(cτ + d)−kf(ατ) (k ∈ N).

Then we call a holomorphic function on H is a modular form of weight k with respect to a congruence subgroup Γ of
SL2(Z) if f satisfies:

1. f(τ)|[α]k = f(τ), where α ∈ Γ and τ ∈ H,

2. f is holomorphic at every cusp of Γ.

Since
(

1 1
0 1

)
∈ Γ, f(τ + 1) = f(τ)|[α]k = f(τ). Hence f has a Fourier expansion of the form

∞∑
n=0

anq
n,

where q = e2πiτ and an ∈ H. If f(τ) is vanish at all cusps, a0 = 0 in the Fourier expansion, and we call such f cusp
form.

We denote by

1. Mk(Γ) the set of all holomorphic modular forms.

2. Sk(Γ) the set of all cusp forms.

And there are dimension formulas:

Theorem 2.4.2. Let Γ be a subgroup of finite index of SL2(Z). Assume that the genus of X(Γ)(the compactified modular
curve Γ \ H∗) is g. Let c be the number of inequivalent cusps of Γ, and e1, . . . , er be the orders of inequivalent elliptic
points. Let k be an even integer. We have

dimMk(Γ) =


(k − 1)(g − 1) +

∑r
i=1

⌊
k

2
(1− 1

ei
)

⌋
+
kc

2
, if s > 2,

g + c− 1, if k = 2,

1, if k = 0,

0, if k < 0.
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and

dimSk(Γ) =


dimMk(Γ)− c, if k > 2,

g, if k = 2,

0, if k ≤ 0.

2.5 Hecke operators on integral weight modular forms
Hecke(1937) introduced a certain ring of operators acting on modular forms. The commutativity of this ring leads to Euler
products associated with modular forms. Here we make a brief guide to Hecke operators.

For N ∈ N, if α ∈ GL+
2 (Z) and Γ0(N) and α−1Γ0(N)α are commensurable. By [1, sec.1.4], The double coset

Γ0(N)αΓ0(N) is a finite union of right cosets:

Γ0(N)αΓ0(N) =
h⋃
i=1

Γ0(N)αi,

where αi ∈ GL+
2 (Z) and h = [Γ0(N) : α−1Γ0(N)α]. Then we define a linear operator [Γ0(N)αΓ0(N)] on Mk(Γ0(N))

by
f |[Γ0(N)αΓ0(N)]k =

∑
f |αi

In particular, for n ∈ N with gcd(n,N) = 1 we denote by

Tn = n2k−1[Γ0(N)

(
1 0
0 n

)
Γ0(N)]k

the Hecke operator of degree n.

Proposition 2.5.1. Let the q-expansion of a modular form f is
∑
i≥0 aiq

i, for a prime p we have

f |Tp =
∑
i≥0

(api + pk−1ai/p)q
i.

We can define an inner product called Peterson inner product on the vector space of cusp forms of weight k on Γ0(N).
The precise formula is

〈f, g〉 =
1

[SL2(Z) : Γ0(N)]

∫ ∫
D

ykf(τ)g(τ)
dxdy

y2
,

where D is the fundamental domain of Γ0(N) and we write τ = x + iy for τ ∈ H.With respect to this inner product on
the space of cusp forms, we can show that Tn is self-adjoint if n and N are relatively prime, and thus diagonalizable.

We call f a Hecke eigenform if f is non-vanishing modular form on Γ0(N) and a simultaneous eigenfunction for all
Hecke operators.

When N = 1, then it can be proved that every Hecke operators commute with each other i.e. TmTn = TnTm. So
we have a nice result from linear algebra that is there is a basis consisting entirely of Hecke eigenforms such that all the
Hecke operators are simultaneously diagonalizable. The space of cusps forms of weight k on Γ0(1) is spanned by Hecke
eigenforms. Then the Fourier coefficients ai of f satisfying the following:

1. a1 6= 0.

2. if a1 = 1, then the coefficients ai are multiplicative.
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Thus we may adjust any Hecke eigenform by a constant so that a1 = 1. Such Hecke eigenform is called normalized.
And it was shown that the L-function of a Hecke eigenform has a Euler product.

Theorem 2.5.2. [1, Theorem1.4.4] If f is a simultaneous eigenform, then

L(s, f) =
∑ an

ns
=
∏
p

(1− app−s + pk−1+2s)−1

For example, S12(Γ0(1)) is a one dimensional vector space spanned by a normalized Hecke eigenform ∆(τ) =
η24(τ) =

∑∞
n=1 τ(n)qn, where τ ∈ H and τ(n) are Ramanujan’s tau functiona. Here we obtain the Euler product

formula ∑ τ(n)

ns
=
∏
p

(1− τ(p)p−s + p11−2s)−1

of Ramanujan and Mordell.
But in the cases of N > 1, Sk(Γ0(N)) may not have a basis consisting entirely of simultaneous eigenforms for all

Hecke operators Tn. Here is an example.

Example 2.5.3. Consider the Hecke operator T2 acts on S4(Γ0(16)). Then the Jordan form for T2 is 0 1 0
0 0 0
0 0 0


Thus, there does not exist a basis whose elements are all simultaneous eigenforms for all Hecke operator.

But if f =
∑∞
n=1 anq

n is a simultaneous eigenform for all Tn, then f still has the property that Tnf = anf and its
L-function has the Euler product

Lf (s) =
∞∑
n=1

an
ns

=
∏
p|N

(1− app−s)−1
∏
p-N

(1− app−s + pk−1−2s)−1.

The main reason for this is that some of the cusp forms in Sk(Γ0(N)) actually have level smaller than N .

Lemma 2.5.4. [9] Let M , N ∈ N and M dividing N . Then we have St(Γ0(M)) ∈ St(Γ0(N)). And let f ∈ St(Γ0(M)),
then for any h | (N/M), the function f(hτ) ∈ St(Γ0(N)).

Proof. By assumption Let N = kM for some k ∈ Z, and let
(
a b
cN d

)
∈ Γ0(N). So

(
a b
cN d

)
=

(
a b

ckM d

)
∈ Γ0(M),

thus we have St(Γ0(M)) ∈ St(Γ0(N)).

Let γ =

(
a b
cN d

)
. And note that,

hγτ =
a(hτ) + hb
cN
h (hτ) + d

=

(
a hb
cN
h d

)
hτ.
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By assumption h | (N/M), we have γ′ =

(
a hb
cN
h d

)
∈ Γ0(M).

So
f(hγτ) = f(γ′(hτ)) = (cNτ + d)tf(hτ).

Then f(hτ) is a cusp form on Γ0(N).

To define such cusp forms precisely, Let f(τ) ∈ Sk(Γ0(N)) satisfies f(τ) = g(hτ) for some simultaneous eigenform
g(τ) ∈ Γ0(M) with M |N and h|(N/M), then f is called an oldform. The space spaned by all oldforms are denoted by
Sold
k (Γ0(N)). And the orthogonal complement of Sold

k (Γ0(N)) in Sk(Γ0(N)) is call space of newforms, denoted by
Snew
k (Γ0(N)). In particular, The space Snew

k (Γ0(N)) has a basis consisting of simultaneous eigenforms for all Tn with
gcd(n,N) = 1.

Now we introduce some theorems we will use:
Define the degeneracy map αh as:

αh : Sk(Γ0(M)) −→ Sk(Γ0(N))

by
αh(f(τ)) = f(hτ),

where h is the divisors of N/M if N is divisible by M .

Proposition 2.5.5. We have a decomposition

Sk(Γ0(N)) =
⊕
M |N

⊕
d|N/M

αd(S
new
k (Γ0(M))). (2.1)

2.6 Modular forms of half integral weight
From now on we let k be an positive odd integer.

To define the modular forms of half integral weight, one may try to make a definition similar to modular forms of
integral weight: Let γ be a discrete subgroup of GL+

2 (R). Assume that f is a holomorphic (or meromorphic) function on
H, and it satisfies an appropriate condition at cusps. Then f is a modular form of weight k/2 if

f(γτ) = (cτ + d)k/2f(τ),

where γ ∈ Γ and τ ∈ H.
Suppose we accept this definition. Then we have a statement:

Proposition 2.6.1. [3] Let Γ′ ⊂ SL2(Z) be any congruence subgroup. Let f be a modular form of weight k/2 satisfies
the above definition. Then f = 0.

Proof. Γ′ is a congruence subgroup of SL2(Z), so we can assume that for some N > 2

Γ(N) =

{
γ ∈ SL2(Z) : γ ≡

(
1 0
0 1

)
mod N

}
⊂ Γ′.

Let

α =

(
N + 1 N
−N 1−N

)
, β =

(
1 0
−N 1

)
.
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and we compute

αβ =

(
−N2 +N + 1 N
N2 − 2N 1−N

)
.

For any nonzero modular form of weight k/2, by the definition we require that

f(ατ) = (−Nτ + (1−N))k/2f(τ)

and
f(βτ) = (−Nτ + 1)k/2f(τ).

Therefore,

f(αβτ) = (−N(βτ) + (1−N))k/2f(βτ)

= (−N(βτ) + (1−N))k/2(−Nτ + 1)k/2f(τ)

=

(
−Nτ
−Nτ + 1

+ (1−N)

)k/2
(−Nτ + 1)k/2f(τ)

By applying the definition to the matrix αβ directly, we have

f(αβτ) = ((N2 − 2N)τ + (1−N))k/2f(τ)

This implies that

((N2 − 2N)τ + (1−N))k/2 =

(
−Nτ
−Nτ + 1

+ (1−N)

)k/2
(−Nτ + 1)k/2. (2.2)

When k is even, this equality holds. We may assume that k = 1. Then since the two expressions in the radicals on the right
are in lower half plane, the right side is the product of two complex number in the fourth quadrant(we take the branch of the
square root having argument in (−π/2, π/2]). But the left side is in the first quadrant, since (N2− 2N)τ + (1−N) ∈ H.

Hence (2.2) is wrong by a factor of -1 for k = 1, and also for any odd k.

To see why this definition fails. Note that square root function is multivalued, so our choice of a branch of the square
root necessary led to problems. We may handle this group by requiring that our modular forms act on a covering space of
GL+

2 (R), where we allow all branches of the square root simultaneously.

Let an element α =

(
a b
c d

)
∈ GL+

2 (R) act on H
⋃
R
⋃
{∞} by α(τ) = (aτ + b)/(cτ + d). Let B denote the set

of all couples (α, φ(τ)) formed by an element
(
a b
c d

)
of GL+

2 and a holomorphic function φ on H such that

φ2 = t · det(α)−1/2(cτ + d),

where t ∈ T 2 = {τ ∈ C : |τ | = 1}. Define the law of multiplication by

(α, φ(τ))(β, ψ(τ)) = (αβ, φ(β(τ))ψ(τ)),

we can make B a group.
Let ξ = (α, φ) ∈ B, we define the action of ξ on C

⋃
{∞} to be the same as that of α. Furthermore, for a complex

valued function f(τ) on H and an integer k, we define a function f |[ξ]k on H by

(f |[ξ]k)(τ) = f(ξ(τ))φ(τ)−k.
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Note that f |[ξη]k = (f |[ξ]k)|[η]k.
Let the function P be the natural projection map defined as:

P : B −→ GL+
2 (R),

by
(α, φ) 7→ α.

And we denote by L : Γ −→ ∆ the inverse map of P .
Let ∆ be a Fuchsian subgroup of B satisfying the following:

1. P (∆), the projection of ∆ onto SL2(R) is a discrete subgroup, and this projection is one to one.

2. The fundamental domain RP (∆) is of finite measure with respect to the invariant measure y−2dxdy.

3. If −1 ∈ P (∆), then its preimage is (−1, 1).

We call a meromorphic function f(τ) on H an automorphic form of weight k/2 with respect to ∆ if the following
conditions are satisfied:

1. f |[ξ]k = f for all ξ ∈ ∆.

2. f is meromorphic at each cusp of P (∆), where P (∆) is the projection of ∆ on GL+
2 (R).

We denote by Gk(∆) the vector space of all such f which are holomorphic on H and for which cn = 0 if n < 0, and
further by Sk(∆) the subspace of Gk(∆) consisting of all f for which c0 = 0 if r = 0 at every cusp of P (∆).

We should now specialize our discussion to the case where ∆ is obtained from a congruence subgroup of SL2(Z).
Let ∆0(M) denote the image of Γ0(M) under L, for every positive integer M divisible by 4. Define an automorphic
factor j(γ, τ) by

j(γ, τ) =
θ(γτ)

θ(τ)
, for γ ∈ Γ0(4). (2.3)

where

θ(τ) =
∞∑

n=−∞
e2πin2τ =

∞∑
n=−∞

qn
2

, q = e2πiτ (2.4)

and τ is in on H .
Then we have by [3, p.148]

j(γ, τ)2 =

(
−1

d

)
(cτ + d), (2.5)

if
(
a b
c d

)
=γ ∈ Γ0(4). In Equation (2.5),

(
−1

d

)
is the Jacobi symbol. Note that if d is negative, we set

(
−1

d

)
=

−
(
−1

|d|

)
.

Here we put γ∗ = (γ, j(γ, τ)), then we consider a cusp form f(τ) satisfying

f(τ)|[γ∗]k = f(γ(τ)) · j(γ, τ)−k (2.6)

for all
(
a b
c d

)
=γ ∈ Γ0(4). Let χ be a Dirichlet character modulo M . We denote by Gk(M,χ)(resp.Sk(M,χ)) the set

of all elements f of Gk(∆0(M)) satisfying
f |[γ∗]k = χ(d) · f
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for all γ ∈ Γ0(M).
Then the half integral weight modular forms of weight k/2 over Γ0(M) denoted by Gk(∆0(M)) is the complex

vector space of all such f . If f ∈ Gk(∆0(M)), we see that f(τ + 1) = f(τ), since
([

1 1
0 1

]
, 1

)
∈ ∆0(M). Hence the

Fourier expansion of f has the form f(τ) =
∑∞
n=0 anq

n, where q = e2πiτ .
And then we can define a linear operator on Gk(∆0(M)) for each prime p.

2.7 Hecke operator Tm on Gk/2(M,χ)

Let f(τ) =
∞∑
n=0

af (n)qn in Gk/2(Γ0(M), χ). Let m be a square of a positive integer, and

α =

(
1 0
0 m

)
, ξ = (α,m1/4).

Suppose we have a disjoint union

∆0(M)ξ∆0(M) =

r⋃
ν=1

∆0(M)ξν(disjoint), ΓN (M)αΓ0(M) =

r⋃
ν=1

Γ0(M)αν .

We define a linear operator on Sk/2(M,χ) by

[∆0(M)ξ∆0(M)]k/2 : Gk/2(M,χ) −→ Gk/2(M,χ),

by

f 7→ f |[∆0(M)ξ∆0(M)]k/2 = m(k/4)−1 ·
r∑

ν=1

χ(aν)f |[ξν ]k/2,

which is independent of choice of the representative of ξν .

Definition 2.7.1. The Hecke operator Tm on Gk/2(M,χ) is given by

f |Tm = f |[∆0(M)ξ∆0(M)]k/2 = m(k/4)−1 ·
r∑

ν=1

χ(aν)f |[ξν ]k/2,

where ξ =

((
1 0
0 m

)
,m1/4

)
and P (ξν) =

(
aν ∗
∗ ∗

)
.

If m is not a square and gcd(N,m) = 1, then [∆0(M)ξ∆0(M)] is a zero operator on Gk/2(M,χ). So we can
consider Tm only for square m.

In [4] Shimura proved that

Tp2 : f(τ)→
∞∑
n=0

(
af (p2n) + χ(p)

(
(−1)λn

p

)
pλ−1af (n) + χ(p2)p2λ−1af (n/p2)

)
qn. (2.7)

and if n is not divisible by p2, af (n/p2) = 0.
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2.8 Shimura correspondence
One can define certain liftings of cusp forms of k/2 on Γ0(M) to cusp forms of weight 2k on Γ0(M ′) for a certain M ′

depending on M ; these liftings commute with the action of Hecke operators.
Suppose f is a common eigen-function of the operator Tp2 for all prime p, and let f |Tp2 = wpf . Define a function F on
H by

F (τ) =
∞∑
n=1

Anq
n, An ∈ C,

∞∑
n=1

Ann
−s =

∏
p

[1− ωpp−s + χ(p)2pk−2−2s]−1,

if k ≥ 5, F is a cusp form of weight k − 1 over Γ0(N) with character χ2.
In Shimura’s original theorem, the determination of the levelM ′ was a little complicated. However, it was been shown

([5]) that one can always take M ′ = M/2.
Next let us focus on the space S+

k/2(4N) (Kohnen space) of cusp forms of weight k/2 on Γ0(4N) (N ∈ N is square
free). Recall that the space S+

k/2(4N) is the set consisting of elements with the Fourier series of the form∑
n≥1,(−1)kn≡0,1(4)

a(n)qn.

Let f =
∑
m≥1

cmq
m be in S+

k/2(4N,χ). Then define

Tk/2,4N,χ(p)(f) =
∑

m≥1,ε(−1)km≡0,1(4)

(
cp2m+ χ(p)

(
ε(−1)km

p

)
pk−1cm + pk−2cm/p2

)
qm.

If we define Pertersson inner product by

〈f, g〉 =
1

[Γ0(4) : Γ]

∫
RΓ

f(τ)g(τ)yk/2−2dxdy (x = Reτ, y = Reτ),

then Tk/2,4N,χ(p) generate a commutative C-algebra of hermitean operators, and the space S+
k/2(M,χ) has an orthogonal

basis consisting of common eigenfunctions of all operators Tk/2,4N,χ(p).
Next we define the space of oldforms in Sk′/2(M,χ) to be∑

d|N,d<N

(Sk/2(d, χ) + Sk/2(d, χ)|U(N2/d2))

and the space of newforms Snew
k/2 (M,χ) to be the orthogonal complement of the space of oldforms in S+

k/2(M,χ). And
since the operator u(f) is an isomorphism between S+

k/2(M,χ) and S+
k/2(M), it is enough to study S+

k/2(M), where f is
the conductor of χ, and denote by u(f) to be the restriction of U(f) to S+

k/2(M,χ).
LetHN be the Hecke algebra spanned by the elements Γ0(N) ( a 0

0 d ) Γ0(N), where a, d > 0, a|d and gcd(d, 2N) = 1.
Define a linear map R fromHN to EndC(S+

k/2(4N)) by

R

(
Γ0(N)

((
a 0
0 d

))
Γ0(N)

)
= a(ad)(k−4)/2

[
∆0(4N)

((
a2 0
0 d2

)
, (ad)k/2

)
∆0(4N)

]
S+
k/2

(4N)
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Then R is a representation ofHN [6]. Also, we have a representation

R̃ : HN −→ EndC(Sk−1(N))

defined by

R̃

(
Γ0(N)

((
a 0
0 d

))
Γ0(N)

)
= (ad)k−2

[
Γ0(N)

(
a 0
0 d

)
Γ0(N)

]
k−1

Since R and R̃ are semisimple and in [7] Kohnen showed that

tr(R(ξ), S+
k/2(4N)) = tr(R̃(ξ), Sk−1(N)),

the representations R and R̃ are equivalent.
Recall that for every prime divisor p for N the operator U(p) preserves Snew

2k (N) and that U(p) = −pk−1wNp,2k on
Snew

2k (N), where wNp,2k is Atkin-Lehner involution on S2k(N) defined by

wNp,2k(f(τ)) = pk(4Nτ + pβ)−2kf

(
pτ + α

4Nτ + pβ

)
(α, β ∈ Z, p2β − 4Nα = p).

And there are analogous results for newforms of half integral weight.

One can define an involution on Sk/2(M,χ) as follows. For each prime prime divisor p of N , we define an ”Atkin-
Lehner involution” W (p) by

W (p) =

((
p a

4N pb

)
,

(
−4

p

)−k
p−k

′/4(4Nτ + pb)k/2

)
,

where a and b are integers with p2b− 4Na = p. In particular, for each prime divisor p of N we put

wNp,k/2 = p−k/4+1/2U(p)W (p)

and define S±,pk/2(4N) as the subspace of S+
k/2(4N) consisting of the forms whose nth Fourier coefficients vanish for(

(−1)kn
p

)
= ∓1; then we set wNp,k/2,χ = u(f)−1wNp,k/2u(f) and S±,pk/2(4N,χ) = S±,pk/2(4N)|u(f).

The operator wNp,k/2,χ is a hermitean involution on S+
k/2(4N,χ) whose (±)-eigenspace is S±,pk/2(4N,χ). In particular,

for each prime divisor of N we have an orthogonal decomposition

S+
k/2(4N) = S+,p

k/2(4N,χ)⊕S−,pk/2(4N,χ).

If p does not divide f, then wNp,k/2,χ coincides with
(

f
p

)
p−k/4+1/2U(p)W (p)|S+

k/2(4N,χ), and S±,pk/2(4N,χ) coincide

with the subspace of S+
k/2(4N,χ) consisting of the forms whose Fourier coefficients vanish for n with

(
(−1)k−1/2fn

p

)
=

∓1.

The space Snew
k/2 (4N,χ) has an orthogonal basis of common eigenfunctions for all operators Tk/2,4N,χ(p) (p prime,

p does not divide N ), uniquely determined up to multiplication by non-zero complex numbers. These eigenfunctions are
also eigenfunctions for the operators U(p2) (p prime, p|N ), the corresponding eigenvalues being ±pk/2−3/2. If f is such
an eigenfunction and λp is the eigenvalue by respect to Tk/2,4N,χ(p) (resp. U(p2)), then there is an eigenfunction F ∈
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Snew
2k (N), uniquely determined up to multiplication with a nonzero complex number, which satisfies Tk′−1,N (p)(F ) =
λpF (resp. U(p2)(F ) = λpF ) for all prime p does not divide N (resp. p|N ). The Fourier coefficients are related as
follows: if f =

∑
n≥1

anq
n and F =

∑
n≥1

Anq
n, and if D is a fundamental discriminant with ε(−1)kD > 0, then

L(s− k + 1, χ

(
D

·

)
)
∑
n≥1

a|D|n2n−s = a(|D|)
∑
n≥1

Ann
−s.

Then we define a map ϕD,k/2−1/2,N,χ by

∑
n≥1

bnq
n 7→

∑
n≥1

∑
d|n

χ(d)

(
D

d

)
dk/2−3/2b

(
n2

d2
|D|
) qn

maps S+
k/2(4N,χ) to Sk−1(N), Snew

k/2 (4N,χ) to Snew
k−1(N) and for every prime divisor p of N, S±k/2(4N,χ)

⋂
Snew
k/2 (4N,χ)

to S±k−1(N)
⋂
Snew
k−1(N). It satisfies

Tk/2,N,χ(p)ϕD,k/2−1/2,N,χ = ϕD,k/2−1/2,N,χTk−1,N (p)

for all prime p with p - N and U(p2)ϕD,k/2−1/2,N,χ = ϕD,k/2−1/2,N,χU(p) for all prime p with p|N . There exist a
linear combination of the ϕD,k/2−1/2,N,χ which maps Snew

k/2 (4N,χ)( resp. S±.pk/2(4N,χ)
⋂
Snew
k/2 (4N,χ))isomorphically

onto Snew
k−1(N) (resp. S±,pk−1(N)

⋂
Snew
k−1(N)).

Remark 2.8.1. We see that Snew
k/2 (4N,χ) and Snew

k−1(N) are isomorphic, and since strong multiplicity one theorem holds
for Snew

k−1(N), also holds for Snew
k/2 (4N,χ).

But it is naturally to ask that does multiplicity one theorem hold for the set of all cusp forms of half-integral weight
over Γ0(M)?

The answer is not. Take S13/2(Γ0(4)) for an example. By [?] we know that S13/2(Γ0(4)) isomorphic to S12(Γ0(2))
as modules over the Hecke Algebra. Note that dimS12(Γ0(2)) = 2. And then we compute the matrix representations for
the Hecke operators Tp on S12(Γ0(2)) directly, we see that for p = 3, the Jordan form of the matrix representation is(

252 0
0 252

)
.

It is diagonalizable, so there are two linearly independent eigenfunctions in S12(Γ0(2)) with same eigenvalue. Note that
S12(Γ0(2)) is spanned by {η(τ)24, η(2τ)24}, so S12(Γ0(2)) = Sold

12 (Γ0(2)). That is say multiplicity one theorem does
not hold for S12(Γ0(2)), so does S13/2(Γ0(4)).



Chapter 3

Explicit formulas

In this chapter we compute the dimensions of some spaces corresponding to Sr,s(Γ0(3)) which is defined in introduction.
As we mentioned in the introduction, our conjecture holds for r = 1, 5, 7 and fails for r = 11, 13, 17, 19, 23. But there
maybe some space of newforms corresponding to Sr,s(Γ0(3)) for large r. From now on, we always let t be a positive
even number.

3.1 Dimension of St(Γ0(2), ε1) and St(Γ0(3), ε2)

Proposition 3.1.1. Let Snew
t (Γ0(2), ε1) denote the space of newforms of weight t(t is even) on Γ0(2) that is eigenfunction

for w2 with eigenvalues ε1.Then the dimension of this space is

dimSnew
t (Γ0(2), ε1) =

{
b3t/8c − bt/3c, if ε1 = 1

t− b3t/8c − bt/3c − bt/4c − 1, if ε1 = −1.
(3.1)

Before proving this proposition, we shall prove a lemma first.

Lemma 3.1.2. Let St(Γ0(2), ε1) denote the space of cusp forms of weight t(t is even) on Γ0(2) that is eigenfunctions for
w2 with eigenvalue ε1.Then the dimension of this space is

dim(St(Γ0(2), ε1)) =

{
b3t/8c+ bt/4c − t/2 if ε1 = 1

t/2− b3t/8c − 1 if ε1 = −1.
(3.2)

Proof. Since Γ0(2) is of genus 0, the group Γ+
0 (2) = Γ0(2) ∪ w2Γ0(2) is of genus 0, where w2 is the Atkin-Lehner

involution on Γ0(2).
And the genus formula says

g = 1 +
vol(Γ+

0 (2) \H)

12vol(SL2(Z) \H)
− 1

2

r∑
n=1

(1− 1

en
)− c

2
, (3.3)

where vol(Γ\H) is the volume of the fundamental domain Γ\H, r is the number of elliptic points, e1, . . . , er is the order
of inequivalent elliptic point, and c is number of cusps.
Since [SL2(Z) : Γ0(2)] = 3, the fundamental domain of Γ+

0 (2) is equal to 3
2 of the fundamental domain of SL2(Z).

Than we have

0 = 1 +
1

8
−

r∑
n=1

(1− 1

en
)− 1

2
.

15
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(Note that Γ0(2) has two inequivalent cusp are 0, 1
2 , but in Γ+

0 (2), 0 and 1
2 are equivalent, since

(
0 −1
2 0

)
1

2
= 0).

Thus we have
r∑

n=1

(1− 1

en
) =

5

4
.

So we can see that there are one elliptic point of order 2, and one elliptic point of order 4.
Then

dim(St(Γ0(2)),+) = b3t/8c+ bt/4c − t/2.

Since dim(St(Γ0(2)) = bt/4c − 1, we have

dim(St(Γ0(2),−)) = t/2− b3t/8c − 1.

Now we can prove the proposition.

Proof of proposition 3.1.1. Let f ∈ St(Γ0(1)) and w2 the Atkin-Lehner involution on Γ0(2)

w2 =

(
0 −1
2 0

)
.

Then we have

w2(f(τ) + 2tf(2τ)) = (f(τ) + 2tf(2τ)) | [w2]t

= f(τ) | [w2]t + 2tf(2τ) | [w2]t

= det(w2)t/2(−2τ)−tf

(
−1

2τ

)
+ 2t det(w2)t/2(−2τ)−tf

(
−2

2τ

)
= det(w2)t/2(−2τ)−tf

((
0 −1
1 0

)
2τ

)
+ 2t det(w2)t/2(−2τ)−tf

(
−1

τ

)
= f(τ) + 2tf(2τ).

So the eigenvalue of w2 respect to f(τ) + 2tf(2τ) is 1. And we also have if f ∈ St(Γ0(1)){
w2(f(τ)) = 2tf(2τ)

w2(f(2τ)) = 2−tf(τ).
(3.4)

Let {f1(τ), f2(τ), . . . , fn(τ)} be a basis for St(Γ0(1)). Then {f1(2τ), f2(2τ), . . . , fn(2τ)} is a basis for α2St(Γ0(1)),
where α2 is the degeneracy map we defined in chapter 2. Let Q is a subspace of St(Γ0(2),+) defined as

Q = span{f1(τ) + 2tf1(2τ), . . . , fn(τ) + 2nfn(2τ)}.

We claim that
St(Γ0(2),+) = Snew

t (Γ0(2),+)⊕Q.

By Theorem2.1, we know that

St(Γ0(2)) = St(Γ0(1))⊕ α2St(Γ0(1))⊕ Snew
t (Γ0(2)).
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Suppose we have a g(τ) ∈ Snew
t (Γ0(2),+)

⋂
Q. SinceQ ⊂ St(Γ0(1))⊕α2St(Γ0(1)) and Snew

t (Γ0(2),+) ⊂ Snew
t (Γ0(2)),

g ∈ St(Γ0(1))⊕ α2St(Γ0(1))
⋂
Snew
t (Γ0(2)) = {0}.

Next given any f ∈ St(Γ0(2),+). Since St(Γ0(2),+) ⊂ St(Γ0(2)), we can write f as

f =
n∑
i=1

aifi(τ) +
n∑
i=1

bifi(2τ) + h(τ),

where h ∈ Snew
t (Γ0(2)). Because of f ∈ St(Γ0(2),+) and newforms are Hecke eigenforms of w2, w2h = h. Then By

w2f = f and Equation(3.4), we have

2t
n∑
i=1

aifi(2τ) + 2−t
n∑
i=1

bifi(τ) + h(τ) =
n∑
i=1

aifi(τ) +
n∑
i=1

bifi(2τ) + h(τ)

=⇒
n∑
i=1

(2tai − bi)fi(2τ) =
n∑
i=1

(ai − 2−tbi)fi(τ)

=⇒
n∑
i=1

(ai − 2−tbi)fi(τ) = 0

=⇒bi = 2tai.

So f ∈ Snew
t (Γ0(2),+)⊕Q, and then St(Γ0(2),+) = Snew

t (Γ0(2),+)⊕Q.
Therefore,

dimSnew
t (Γ0(2),+) = dimSt(Γ0(2),+)− dimSt(Γ0(1)

= b3t/8c+ bt/4c − t/2− bt/3c − bt/4c+ t/2

= b3t/8c − bt/3c

To compute dimSnew
t (Γ0(2),−), we follow the same process as above but change f(τ) + 2tf(2τ) to f(τ)− 2tf(2τ).

Similarly, we have formulas for dimension of St(Γ0(3), ε2) and Snew
t (Γ0(3), ε2).

Proposition 3.1.3. Let St(Γ0(3), ε2) denote the space of cusp forms of weight t(t is even) on Γ0(3) that is eigenfunctions
for w3 with eigenvalue ε2.Then the dimension of this space is

dim(St(Γ0(3), ε2)) =

{
b3t/8c+ bt/4c − t/2, if ε2 = 1,

t/2− b3t/8c − 1, if ε2 = −1.

Moreover, let Snew
t (Γ0(3), ε2) denote the space of newforms of weight t(t is even) on Γ0(3) that is eigenfunction for w3

with eigenvalues ε2.Then the dimension of this space is

dimSnew
t (Γ0(3), ε2) =

{
b5t/12c − bt/3c, if ε2 = 1

t− b5t/12c − 2bt/4c − 1, if ε2 = −1.

Proposition 3.1.4. Dimension of Snew
t (Γ0(4), ε3) is

dimSnew
t (Γ0(4), ε3) =

{
0 if ε3 = 1

bk/3c − bk/4c if ε3 = −1.

where ε3 is the eigenvalue of Atkin Lehner involution w4.
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3.2 Dimension of St(Γ0(6), ε1, ε2)

Proposition 3.2.1. Let Snew
t (Γ0(6), ε1, ε2) denote the space of newforms of weight t(t is even) on Γ0(6) that is eigen-

function for w2, w3 with eigenvalues ε1, ε2. Then the dimension of this space is

dimSnew
t (Γ0(6), ε1, ε2) =


2bt/4c+ bt/3c − b3t/8c − b5t/12c, if ε1 = 1, ε2 = 1

b5t/12c − b3t/8c, if ε1 = 1, ε2 = −1,

bt/3c − bt/4c+ b3t/8c − b5t/12c, if ε1 = −1, ε2 = 1,

bt/4c+ b3t/8c+ b5t/12c − t+ 1, if ε1 = −1, ε2 = −1.

We prove some lemmas first.

Lemma 3.2.2. Let St(Γ0(6), ε1, ε2) denote the space of cusp forms of weight t(t is even) on Γ0(6) that is eigenfunctions
for w2, w3 with eigenvalues ε1, ε2. Then the dimension of this space is

dimSt(Γ0(6), ε1, ε2)


3bt/4c − t/2, if ε1 = 1, ε2 = 1,

t/2− bt/4c − 1, if ε1 = 1, ε2 = −1,

t/2− bt/4c − 1, if ε1 = −1, ε2 = 1,

t/2− bt/4c − 1, if ε1 = −1, ε2 = −1.

Proof. Γ0(6) is genus 0, so Γ+
0 (6) = Γ0(6) ∪ w2Γ0(6) ∪ w3Γ0(6) ∪ w6Γ0(6) is genus 0. {0, 1

2 , 1
3 ,∞} are inequivalent

cusps of Γ0(6), but in Γ+
0 (6), we have only one inequivalent cusp, since

w2(0) =

(
2 −1
6 −2

)
0 =

1

2
.

and also w3(0) = 1
3 , w6(0) = ∞. The fundamental domain of Γ+

0 (6) is equal to 3 of fundamental domain of SL2(Z),
since the index [SL2(Z,Γ0(6))]=12. And we have

0 = 1 +
3

12
− 1

2

r∑
n=1

(1− 1

er
)− 1

2
,

where r is the number of inequivalent elliptic points, and ei is the order of each elliptic point. then
r∑

n=1

(1− 1

er
) =

3

2
.

so we can see that Γ+
0 (6) has three elliptic points of order 2.

And then by dimension formula of modular forms, we have dim(St(Γ0(6),+,+)) = 3bt/4c − t/2.
For the others, we first compute the inequivalent cusps and elliptic points by similar method above. Define that

1. (Γ0(6),+,−) = Γ0(6) ∪ w2Γ0(6).

2. (Γ0(6),−,+) = Γ0(6) ∪ w3Γ0(6).

3. (Γ0(6),−,−) = Γ0(6) ∪ w6Γ0(6)

And we see that all of (Γ0(6),+,−) ,(Γ0(6),−,+), and (Γ0(6),−,−) have 2 inequivalent elliptic points of order 2 and 2
inequivalent cusps. So dim(St(Γ0(6),+,+)) = dim(St(Γ0(6),+,−)) = dim(St(Γ0(6),−,−)) = 1

3 (dim(St(Γ0(6)))−
dim(St(Γ0(6),+,+))) = t/2− bt/4c − 1.
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Lemma 3.2.3. Let f ∈ St(Γ0(2)), then gi(τ) := f(τ) + (−1)i3
t
2 f(3τ) ∈ St(Γ0(6)). Moreover the eigenvalue of

Atkin-Lehner operator w3 with respect to gi is (−1)i, where i={1, 2}.

Proof. By previous lemma, we see that gi(τ) ∈ St(Γ0(6)).

Let w3 =

(
3 1
6 3

)
.

Note that w3(f(τ)) = f(τ) | [w3]t,

and f
(

3τ + 1

6τ + 3

)
= f(γ3τ) = (2τ + 3)tf(3τ), where γ =

(
1 1
2 3

)
. So we have

w3(f(τ)) = (det(w3))t/2(6τ + 3)−tf

(
3τ + 1

6τ + 3

)
= 3t/2f(3τ), (3.5)

and

w3(f(3τ)) = (det(w3))t/2(6τ + 3)−tf

(
3

(
3τ + 1

6τ + 3

))
= 3−t/2f(τ). (3.6)

Therefore, w3(gi(τ)) = gi(τ) |[w3]t= (−1)igi.

Similarly, we can prove following:

Lemma 3.2.4. Let f ∈ St(Γ0(3)), then hi(τ) := f(τ) + (−1)i2
t
2 f(2τ) ∈ St(Γ0(6)). Moreover the eigenvalue of

Atkin-Lehner operator w2 with respect to hi is (−1)i, where i={1, 2}.

And now we can prove the proposition.

Proof of Proposition3.2.1. We prove the case ε1 = ε2 = 1, and the others are same. By Equation 2.1 we have an unique
decomposition of St(Γ0(6))

St(Γ0(6)) =St(Γ0(1))⊕ α2St(Γ0(1))α3St(Γ0(1))α6St(Γ0(1))⊕
Snew
t (Γ0(2))⊕ α3S

new
t (Γ0(2))⊕

Snew
t (Γ0(3))⊕ α2S

new
t (Γ0(3))⊕

Snew
t (Γ0(6))

If f(τ) ∈ St(Γ0(1)) and let w2 =

(
2 1
6 4

)
be the atkin-lehner involution on Γ0(6), then we have

w2f(τ) = 2t/2(6τ + 4)−tf

(
2τ + 1

6τ + 4

)
= 2t/2(6τ + 4)−tf

((
1 1
3 4

)
2τ

)
= 2t/2f(2τ).
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Let w3 =

(
3 1
6 3

)
be the atkin-lehner involution on Γ0(6), then we have

w3f(τ) = 3t/2(6τ + 3)−tf

(
3τ + 1

6τ + 3

)
= 3t/2(6τ + 3)−tf

((
1 1
2 3

)
3τ

)
= 3t/2f(3τ).

If f(2τ) ∈ α2St(Γ0(1)), then we have

w2f(2τ) = 2t/2(6τ + 4)−tf

(
4τ + 2

6τ + 4

)
= 2t/2(6τ + 4)−tf

(
2τ + 1

3τ + 2

)
= 2t/2(6τ + 4)−tf

((
2 1
3 2

)
τ

)
= 2−t/2f(τ),

and

w3f(2τ) = 3t/2(6τ + 3)−tf

(
6τ + 2

6τ + 3

)
= 3t/2(6τ + 3)−tf

((
1 2
1 3

)
6τ

)
= 3t/2f(6τ).

If f(3τ) ∈ α3St(Γ0(1)), then we have

w2f(3τ) = 2t/2(6τ + 4)−tf

(
6τ + 3

6τ + 4

)
= 2t/2(6τ + 4)−tf

((
1 3
1 4

)
6τ

)
= 2t/2f(6τ),

and

w3f(3τ) = 3t/2(6τ + 3)−tf

(
9τ + 3

6τ + 3

)
= 3t/2(6τ + 3)−tf

((
3 1
2 1

)
τ

)
= 3−t/2f(τ).
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If f(6τ) ∈ α6St(Γ0(1)), then we have

w2f(6τ) = 2t/2(6τ + 4)−tf

(
12τ + 6

6τ + 4

)
= 2t/2(6τ + 4)−tf

(
6τ + 3

3τ + 2

)
= 2t/2(6τ + 4)−tf

((
2 3
1 2

)
3τ

)
= 2−t/2f(3τ),

and

w3f(6τ) = 3t/2(6τ + 3)−tf

(
18τ + 6

6τ + 3

)
= 3t/2(6τ + 3)−tf

(
6τ + 2

2τ + 1

)
= 3t/2(6τ + 3)−tf

((
3 2
1 1

)
2τ

)
= 3−t/2f(2τ).

Let g = af(τ) + bf(2τ) + cf(3τ) + df(6τ), where a, b, c, d are scalars such that w2g = g, and w3g = g. Then we have
a linear system 

2t/2 −1 0 0
0 0 2t/2 −1

3t/2 0 −1 0
0 3t/2 0 −1



a
b
c
d

 =


0
0
0
0

 . (3.7)

Note that this system has only one solution that is (a, b, c, d) = (1, 2t/2, 3t/2, 6t/2). If f(τ) ∈ Snew
t (Γ2,+), then by

Lemma 3.2.4 and Lemma 3.2.3 we know that

w3f(τ) = 3t/2f(3τ)

and
w3f(3τ) = 3−t/2f(τ)

If f(τ) ∈ Snew
t (Γ3,+), then by Lemma 3.2.4 and Lemma 3.2.3 we know that

w2f(τ) = 2t/2f(2τ)

and
w2f(2τ) = 2−t/2f(τ)

Now we let

V1 = span
{
fi(τ) + 3t/2fi(3τ) : fi is basis of St(Γ0(2))

}
V2 = span

{
gi(τ) + 2t/2gi(2τ) : gi is basis of St(Γ0(3))

}
V3 = span

{
hi(τ) + 2t/2hi(2τ) + 3t/2hi(3τ) + 6t/2hi(6τ) : hi is basis of St(Γ0(1))

}
.
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By considering the decomposition of St(Γ0(6)) and the calculations above we have

St(Γ0(6),+,+) = Snew
t (Γ0(6),+,+)⊕ V1 ⊕ V2 ⊕ V3.

So

dimSnew
t (Γ0(6),+,+) = dimSt(Γ0(6),+,+)− dimV1 − dimV2 − dimV3 = 2bt/4c+ bt/3c − b3t/8c − b5t/12c.

Proposition 3.2.5. Dimension of Snew
t (Γ0(12), ε2, ε3) is:

dimSnew
t (Γ0(12), ε2, ε3) =


0 if ε2 = 1, ε3 = 1,

b5k/12c − bk/3c if ε2 = 1, ε3 = −1,

0 if ε2 = −1, ε3 = 1,

2bk/4c − b5k/12c if ε2 = −1, ε3 = −1,

where ε3 is the eigenvalue of the atkin-lehner involution w4.

Theorem 3.2.6. [2] Let f =
∑∞
n=1 anq

n ∈ Mt(Γ0(N), φ), where φ be a Dirichlet character with conductor c. Let χ be
a primitive Dirichlet character modulo m. Then

f ⊗ χ =
∑
n≥0

χ(n)anq
n. (3.8)

and f ⊗ χ ∈Mt(Γ0(M), φχ2), where M is the least common multiple of N , cm, m2. If f is a cusp form, so is f ⊗ χ.

Corollary 3.2.7. Let f ∈ St(Γ0(N)), and χ−4 be a primitive Dirichlet character modulo 4. Then f⊗χ−4 ∈ St(Γ0(16N ′), χ2
−4),

whereN ′ = lcm(16, N)/16. Similarly, Let χ12 be Dirichlet primitive character modulo 12, then f⊗χ12 ∈ St(Γ0(144N ′), χ2
12),

where N ′ = lcm(144, N)/144.

Conjecture 3.2.8. Let r ∈ {1, 5, 7}, and s be a non-negative even integer.
Define

Sr,s(Γ0(3)) = {η(24τ)rf(24τ) : f ∈Ms(Γ0(3))}. (3.9)

Then Sr,s(Γ0(3)) is an invariant subspace of S r
2 +s(Γ0(576), χ12) under the action of the Hecke algebra. That is for all

primes ` 6= 2, 3 and all f ∈ Sr,s(Γ0(3)), we have f | T`2 ∈ Sr,s(Γ0(3)).
Furthermore, let Snew

t (Γ0(6), ε1, ε2) denote the space of newforms of weight t on Γ0(6) that are eigenfunctions for w2

and w3 with eigenvalues ε1 and ε2, respectively.
Let also Snew

t (Γ0(2), ε1) denote the space of newforms of weight t on Γ0(2) that are eigenfunctions forw2 with eigenvalue
ε1.
Then they have

Sr,s(Γ0(3)) ∼= V ⊕W, (3.10)

where

V = Snew
r+2s−1(Γ0(6),−

(
2

r

)
,−
(

3

r

)
)⊗ χ12,

and

W = {Snew
r+2s−1(Γ0(2),

(
2

r

)
)⊕ Snew

r+2s−1(Γ0(6),

(
2

r

)
,

(
3

r

)
)⊕ Snew

r+2s−1(Γ0(6),

(
2

r

)
,−
(

3

r

)
)} ⊗ χ−4.
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For convenience, we let 
W1 = Snew

r+2s−1(Γ0(2),
(

2
r

)
),

W2 = Snew
r+2s−1(Γ0(6),

(
2
r

)
,
(

3
r

)
),

W3 = Snew
r+2s−1(Γ0(6),

(
2
r

)
,−
(

3
r

)
).

And moreover, we also have a conjecture for Sr,s(Γ0(2)). Let r ∈ {1, 5, 7}

Sr,s(Γ0(2)) ∼= Snew
r+2s−1(Γ0(6),−

(
2

r

)
,−
(

3

r

)
)⊗ χ12

⊕
Snew
r+2s−1(Γ0(12), ε3,−

(
3

r

)
)⊗ χ12, (3.11)

where ε3 is the eigenvalue of Atkin-Lehner involution w4 on Γ0(12) and is always negative with respect to Snew
t (Γ0(12)).
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Chapter 4

Result

4.1 Sr,s(Γ0(3))

Example 4.1.1. Consider S1,2(Γ0(3)) = {η(24τ)f(24τ) : f(τ) ∈ M2(Γ0(3))} in S2+1/2(Γ0(576), χ12). Let G2(τ)

be the Eisentein series, then f =
3G2(3τ)−G2(τ)

2
is a modular form on Γ0(3) of weight 2. And by the dimension

formula for the modular forms, we know that dimM2(Γ0(3)) = 1, so {f} is a basis. Thus {η(24τ)f(24τ)} is a basis for
S1,2(Γ0(3)), now we apply Hecke operators Tp2 on this basis.

For example, let p = 5, then the q-expansion of η(24τ)f(24τ)|T52 is

6q + 66q25 + 138q49 − 216q73 + 216q97 − 138q121 − 648q145 + 150q169 + 432q193 − 864q217 . . . .

and 6η(24τ)f(24τ) − η(24τ)f(24τ)|T52 = O(q241) means that the initial segment of q-expansions of 6η(24τ)f(24τ)

and η(24τ)f(24τ)|T52 agree more than
5

2
[SL2(Z) : Γ0(576)]/12 terms, thus η(24τ)f(24τ)|T52 = 6η(24τ)f(24τ). It is

similar for other prime numbers, and we have the following table.

5 7 11 13 17 19
S1,2(Γ0(3)) 6 16 -12 38 -126 -20

On the other hand, since
(

2
r

)
= 1 and

(
3
r

)
= 1, by Proposition 3.1.1 and Proposition 3.2.1 we know that

dimV = dimS4(Γ0(6),−,−) = 0

dimW1 = dimS4(Γ0(2),+) = 0

dimW2 = dimS4(Γ0(6),+,+) = 1

dimW3 = dimS4(Γ0(6),+,−) = 0.

So V ⊕W is Snew
4 (Γ0(6),+,+)⊗χ−4. We compute the basis of space of newforms by Sage, and the q-expansion of the

basis of Snew
4 (Γ0(6),+,+)⊗ χ−4 is

q + 3q3 + 6q5 + 16q7 + 9q9 − 12q11 + 38q13 + 32q14 + 18q15 − 126q17 − 20q19 +O(q20).

And next case are concerned with r = 5, 7 and s = 2.

Example 4.1.2. Sr,2(Γ0(3)) For r = 5, 7.

25
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a. For S5,2(Γ0(3)).
Note that, 

dimV = dimSnew
5+4−1(Γ0(6),+,+) = 0,

dimW1 = dimSnew
5+4−1(Γ0(2),−) = 0,

dimW2 = dimSnew
5+4−1(Γ0(6),−,−) = 1,

dimW3 = dimSnew
5+4−1(Γ0(6),−,+) = 0.

So from our conjecture
S5,2(Γ0(3)) ∼= Snew

5+4−1(Γ0(6),−,−)⊗ χ−4

And we compute eigenvalues for T 2
p , p = 5, 7, 11, 13, 17, 19 on S5,2(by Maple)

5 7 11 13 17 19
S5,2(Γ0(3)) -144 1576 -7332 -3802 -6606 -24860

(By Sage.)The normalized newform in Snew
5+4−1(Γ0(6),−,−) is

q + 8q2 + 27q3 + 64q4 − 114q5 + 216q6 − 1576q7 + 512q8 + . . . ,

then we twist this newform by χ−4:

q − 27q3 − 114q5 + 1576q7 + 729q9 − 7332q11 − 3802q13 + 3078q15 − 6606q17 − 24860q19 +O(q20).

We can find this normalized newform in S8(Γ0(48)), and its Atkin-Lehner eigenvalues for w2 and w3 are -1 and
1(the eigenvalue of w3 change to -1 since we twist by χ−4), respectively.

b. For S5,2(Γ0(3)).
Next we deal with the case r = 7.
Note that, 

dimV = dimSnew
7+4−1(Γ0(6),+,+) = 0,

dimW1 = dimSnew
7+4−1(Γ0(2),+) = 0,

dimW2 = dimSnew
7+4−1(Γ0(6),+,−) = 1,

dimW3 = dimSnew
7+4−1(Γ0(6),−,+) = 0.

From our conjecture
S7,2(Γ0(3)) ∼= Snew

7+4−1(Γ0(6),+,−)⊗ χ−4

And we compute eigenvalues for T 2
p , p = 5, 7, 11, 13, 17, 19 on S7,2(Γ0(3))

5 7 11 13 17 19
S7,2(Γ0(3)) 2694 3544 -29580 -44818 -101934 895084

(By Sage.)The normalized newform in Snew
7+4−1(Γ0(6),+,−) is

q − 16q2 + 81q3 + 256q4 + 2694q5 − 1296q6 − 3544q7 − 4096q8 + . . . ,

then we twist this newform by χ−4:

q− 81q3 + 2694q5 + 3544q7 + 6561q9− 29580q11− 44818q13 + 218214q15− 101934q17 + 895084q19 +O(q20).

We can find this normalized newform in S10(Γ0(48)), and its Atkin-Lehner eigenvalues for w2 and w3 are -1 and
1( the eigenvalue of w3 change to 1 since we twist by χ−4), respectively.



4.1. SR,S(Γ0(3)) 27

For the cases r = 11, 13, 17, 19, 23. Our conjecture never holds by checking the dimensions of Sr,2(Γ0(3)) and V ⊕W .
By Proposition 3.1.1 and Proposition 3.2.1, we have

dimV ⊕W =



3 if r = 11,

2 if r = 13,

2 if r = 17,

3 if r = 19,

3 if r = 23.

Example 4.1.3. For r = 1, 5, 7 and s = 4. Note that

dimSr,4(Γ0(3)) = 2.

a. For S1,4(Γ0(3)).
Note that, 

dimV = dimSnew
1+8−1(Γ0(6),−,−) = 1,

dimW1 = dimSnew
1+8−1(Γ0(2),+) = 1,

dimW2 = dimSnew
1+8−1(Γ0(6),+,+) = 0,

dimW3 = dimSnew
1+8−1(Γ0(6),+,−) = 0.

So from our conjecture

S5,2(Γ0(3)) ∼= Snew
1+8−1(Γ0(6),−,−)⊗ χ12

⊕
Snew

8 (Γ0(2),+)⊗ χ−4

And we compute eigenvalues for T 2
p , p = 5, 7, 11, 13, 17, 19 on S5,2(by Maple)

5 7 11 13 17 19
S1,4 144 1576 7332 -3802 6606 -24860

-210 -1016 -1092 1382 14706 39904

(By Sage.)The normalized newform in Snew
1+8−1(Γ0(6),−,−) is

q + 8q2 + 27q3 + 64q4 − 144q5 + 216q6 − 1576q7 + 512q8 + . . . ,

then we twist this newform by χ12:

q + 114q5 + 1576q7 + 7332q11 − 3802q13 + 6606q17 − 24860q19 +O(q20)

We can find this normalized newform in S8(Γ0(144)), and its Atkin-Lehner eigenvalues for w2 and w3 are -1 and
-1, respectively.

(By Sage.)The normalized newform in Snew
1+8−1(Γ0(2),+) is

q − 8q2 + 12q3 + 64q4 − 210q5 − 96q6 + 1016q7 − 512q8 + . . . .

then we twist this newform by χ−4:

q + 12q3 − 210q5 − 1016q7 − 2043q9 − 1092q11 + 1382q13 + 2520q15 + 14706q17 + 39940q19 +O(q20).

We can find this normalized newform in S8(Γ0(16)), and its Atkin-Lehner eigenvalues for w2 is -1
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b. For S5,4(Γ0(3)).
Note that, 

dimV = dimSnew
5+8−1(Γ0(6),+,+) = 1,

dimW1 = dimSnew
5+8−1(Γ0(2),−) = 0,

dimW2 = dimSnew
5+8−1(Γ0(6),−,−) = 1,

dimW3 = dimSnew
5+8−1(Γ0(6),−,+) = 0.

From our conjecture

S5,4(Γ0(3)) ∼= Snew
5+8−1(Γ0(6),+,+)⊗ χ12

⊕
Snew

5+8−1(Γ0(6),+,−)⊗ χ−4

And we compute eigenvalues for T 2
p , p = 5, 7, 11, 13, 17, 19 on S5,4(Γ0(3))

5 7 11 13 17 19
S5,4 -5766 -72464 -408948 -2482858 -5422914 -15166100

3630 -32936 758748 1367558 8290386 10867300

(By Sage.)The normalized newform in Snew
5+8−1(Γ0(6),+,+) is

q − 32q2 − 243q3 + 1024q4 + 5766q5 + 7776q6 + 72464q7 − 32768q8 + . . . .

then we twist this newform by χ12:

q − 5766q5 − 72464q7 − 408948q11 + 1367558q13 − 5422914q17 − 15166100q19 +O(q20)

We can find this normalized newform in S12(Γ0(144)).

(By Sage.)The normalized newform in Snew
5+8−1(Γ0(6),−,−) is

q + 32q2 + 243q3 + 1024q4 + 3630q5 + 7776q6 + 32936q7 + 32768q8 + . . . ,

then we twist this newform by χ−4:

q − 243q3 + 3630q5 − 32936q7 + 59049q9 + 758748q11 − 2482858q13 + 8290386q17 + 10867300q19 +O(q20)

We can find this normalized newform in S12(Γ0(144)).

c. For S7,4(Γ0(3)).
Note that, 

dimV = dimSnew
7+8−1(Γ0(6),−,+) = 1,

dimW1 = dimSnew
7+8−1(Γ0(2),+) = 1,

dimW2 = dimSnew
7+8−1(Γ0(6),+,−) = 0,

dimW3 = dimSnew
7+8−1(Γ0(6),+,+) = 0.

From our conjecture

S7,4(Γ0(3)) ∼= Snew
7+8−1(Γ0(6),−,+)⊗ χ12

⊕
Snew

7+8−1(Γ0(2),+)⊗ χ−4

And we compute eigenvalues for T 2
p , p = 5, 7, 11, 13, 17, 19 on S7,4(Γ0(3))

5 7 11 13 17 19
S7,4 -54654 -176336 -1619772 -24028978 60569298 -190034876

3990 433432 6612420 -10878466 154665054 243131740
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(By Sage.)The normalized newform in Snew
7+8−1(Γ0(6),−,+) is

q + 64q2 − 729q3 + 4096q4 + 54654q5 − 46656q6 + 176336q7 + 262144q8 + . . . .

then we twist this newform by χ12:

q − 54654q5 − 176336q7 + 6612420q11 − 24028978q13 + 154665054q17 − 190034876q19 +O(q20)

We can find this normalized newform in S12(Γ0(144)).

(By Sage.)The normalized newform in Snew
7+8−1(Γ0(2),+) is

q − 64q2 − 1836q3 + 4096q4 + 3990q5 + 117504q6 − 433432q7 − 262144q8 + . . . ,

then we twist this newform by χ−4:

q+1836q3+3990q5+433432q7+1776573q9−1619772q11−10878466q13+60569298q17+243131740q19+O(q20),

We can find this normalized newform in S12(Γ0(16)).

Example 4.1.4. For r = 1, 5, 7 and s = 8. dimSr,6(Γ0(3)) = 3.

a. For S1,8.
Note that, 

dimV = dimSnew
1+12−1(Γ0(6),−,−) = 1,

dimW1 = dimSnew
1+12−1(Γ0(2),+) = 0,

dimW2 = dimSnew
1+12−1(Γ0(6),+,+) = 1,

dimW3 = dimSnew
1+12−1(Γ0(6),+,−) = 1.

From our conjecture

S1,6(Γ0(3)) ∼= Snew
1+12−1(Γ0(6),−,+)⊗ χ12

⊕
{Snew

1+12−1(Γ0(6),+,+)⊕ Snew
1+12−1(Γ0(6),+,−)} ⊗ χ−4

And we compute eigenvalues for T 2
p , p = 5, 7, 11, 13, 17, 19 on S1,6(Γ0(3))

5 7 11 13 17 19
S1,6(Γ0(3)) -3630 -72464 531420 1332566 5422914 -2901404

5766 50008 -758748 -2482858 -8290386 10867300
-11730 -32936 408948 1367558 -5109678 -15166100

(By Sage.)The normalized newform in Snew
1+12−1(Γ0(6),−,−) is

q + 32q2 + 243q3 + 1024q4 + 3630q5 + 7776q6 + 32936q7 + 32768q8 + . . . .

then we twist this newform by χ12:

q − 3630q5 − 32936q7 − 758748q11 − 2482858q13 − 8290386q17 + 10867300q19 +O(q20)

We can find this normalized newform in S12(Γ0(144)).

(By Sage.)The normalized newform inSnew
1+12−1(Γ0(6),+,+) is

q − 32q2 − 243q3 + 1024q4 + 5766q5 + 7776q6 + 72464q7 − 32768q8 + . . . ,
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then we twist this newform by χ−4:

q+243q3+5766q5−72464q7+59049q9+408948q11+1367558q13+1401138q15+5422914q17−15166100q19+O(q20)

We can find this normalized newform in S12(Γ0(48)).

(By Sage.)The normalized newform in Snew
1+12−1(Γ0(6),+,−) is

q − 32q2 + 243q3 + 1024q4 − 11730q5 − 7776q6 − 50008q7 − 32768q8 + . . . ,

then we twist this newform by χ−4:

q−11730q5 +50008q7 +59049q9 +531420q11 +1332566q13 +2850390q15−5109678q17−2901404q19 +O(q20)

We can find this normalized newform in S12(Γ0(48)).

b. For S5,6.
Note that, 

dimV = dimSnew
5+12−1(Γ0(6),+,+) = 1,

dimW1 = dimSnew
5+12−1(Γ0(2),−) = 0,

dimW2 = dimSnew
5+12−1(Γ0(6),−,−) = 1,

dimW3 = dimSnew
5+12−1(Γ0(6),−,+) = 1.

From our conjecture

S5,6(Γ0(3)) ∼= Snew
5+12−1(Γ0(6),+,+)⊗ χ12

⊕
{Snew

5+12−1(Γ0(6),−,−)⊕ Snew
5+12−1(Γ0(6),−,+)} ⊗ χ−4

And we compute eigenvalues for T 2
p , p = 5, 7, 11, 13, 17, 19 on S5,6(Γ0(3))

5 7 11 13 17 19
S5,6(Γ0(3)) -114810 -762104 103451700 -104365834 -3173671566 5895116260

77646 3034528 110255052 56047862 997689762 -2163188180
314490 -2025056 -48011172 285130118 1930104414 -4934015444

(By Sage.)The normalized newform inSnew
5+12−1(Γ0(6),+,+) is

q − 128q2 − 2187q3 + 16384q4 − 314490q5 + 279936q6 + 2025056q7 − 2097152q8 + . . . ,

then we twist this newform by χ12:

q + 314490q5 − 2025056q7 + 110255052q11 + 56047862q13 + 1930104414q17 − 2163188180q19 +O(q20)

We can find this normalized newform in S16(Γ0(144)).

(By Sage.)The normalized newform inSnew
5+12−1(Γ0(6),−,−) is

q + 128q2 + 2187q3 + 16384q4 + 77646q5 + 279936q6 + 762104q7 + 2097152q8 + . . .

then we twist this newform by χ−4:

q − 2187q3 + 77646q5 − 762104q7 + 4782969q9 − 48011172q11 + 285130118q13 − 169811802q15

− 3173671566q17 + 5895116260q19 +O(q20)
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We can find this normalized newform in S16(Γ0(48)).

(By Sage.)The normalized newform inSnew
5+12−1(Γ0(6),+,−) is

q + 128q2 − 2187q3 + 16384q4 − 114810q5 − 279936q6 − 3034528q7 + 2097152q8 + . . . ,

then we twist this newform by χ−4:

q + 2187q3 − 114810q5 + 3034528q7 + 4782969q9 + 103451700q11 − 104365834q13 − 251089470q15

+ 997689762q17 − 4934015444q19 +O(q20).

We can find this normalized newform in S16(Γ0(48)).

c. For S7,6.
Note that, 

dimV = dimSnew
7+12−1(Γ0(6),−,+) = 1,

dimW1 = dimSnew
7+12−1(Γ0(2),+) = 0,

dimW2 = dimSnew
7+12−1(Γ0(6),+,−) = 1,

dimW3 = dimSnew
7+12−1(Γ0(6),+,+) = 1.

From our conjecture

S5,6(Γ0(3)) ∼= Snew
7+12−1(Γ0(6),−,+)⊗ χ12

⊕
{Snew

7+12−1(Γ0(6),+,−)⊕ Snew
7+12−1(Γ0(6),+,+)} ⊗ χ−4

And we compute eigenvalues for T 2
p , p = 5, 7, 11, 13, 17, 19 on S7,6(Γ0(3))

5 7 11 13 17 19
S7,6(Γ0(3)) 645150 -24959264 -1159304460 -5425661314 -35551782594 -5778498836

199650 -3974432 500068668 2801062862 -5466992958 64354589764
-72186 8640184 125556420 4227195518 32979662226 53889877060

(By Sage.)The normalized newform inSnew
7+12−1(Γ0(6),−,+) is

q + 256q2 − 6561q3 + 65536q4 − 199650q5 − 1679616q6 + 24959264q7 + 16777216q8 + . . . ,

then we twist this newform by χ12:

q+ 199650q5−24959264q7 + 125556420q11 + 4227195518q13−35551782594q17 + 64354589764q19 +O(q20).

We can find this normalized newform in S18(Γ0(144)).

(By Sage.)The normalized newform inSnew
7+12−1(Γ0(6),+,−) is

q − 256q2 + 6561q3 + 65536q4 − 72186q5 − 1679616q6 − 8640184q7 − 16777216q8 + . . .

then we twist this newform by χ−4:

q − 6561q3 − 72186q5 + 8640184q7 + 43046721q9 − 1159304460q11 + 2801062862q13 + 473612346q15

+ 32979662226q17 − 5778498836q19 +O(q20).

We can find this normalized newform in S18(Γ0(48)).
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(By Sage.)The normalized newform inSnew
7+12−1(Γ0(6),+,+) is

q − 256q2 − 6561q3 + 65536q4 + 645150q5 + 1679616q6 + 3974432q7 − 16777216q8 + . . . ,

then we twist this newform by χ−4:

q + 6561q3 + 645150q5 − 3974432q7 + 43046721q9 + 500068668q11 − 5425661314q13 + 4232829150q15

− 5466992958q17 + 53889877060q19 +O(q20),

We can find this normalized newform in S18(Γ0(48)).

For the cases r = 11, 13, 17, 19, 23. Our conjecture never holds by checking the dimensions of Sr,2(Γ0(3)) and V ⊕W .
By Proposition 3.1.1 and Proposition 3.2.1, we have

dimV ⊕W =



3 if r = 11,

2 if r = 13,

2 if r = 17,

3 if r = 19,

3 if r = 23.

Example 4.1.5. For r = 1, 5, 7 and s = 8. dimSr,8(Γ0(3)) = 3.

a. For S1,8.
Note that, 

dimV = dimSnew
1+16−1(Γ0(6),−,−) = 1,

dimW1 = dimSnew
1+16−1(Γ0(2),+) = 1,

dimW2 = dimSnew
1+16−1(Γ0(6),+,+) = 1,

dimW3 = dimSnew
1+16−1(Γ0(6),+,−) = 0.

From our conjecture

S1,8(Γ0(3)) ∼= Snew
1+16−1(Γ0(6),−,−)⊗ χ12

⊕
{Snew

1+12−1(Γ0(2),+)⊕ Snew
1+12−1(Γ0(6),+,+)} ⊗ χ−4

And we compute eigenvalues for T 2
p , p = 5, 7, 11, 13, 17, 19 on S1,6(Γ0(3))

5 7 11 13 17 19
S1,6(Γ0(3)) -314490 -2025056 95889948 56047862 -1355814414 5895116260

90510 -762104 48011172 -59782138 -1930104414 -2163188180
-77646 -56 -110255052 285130118 3173671566 -3783593180

(By Sage.)The normalized newform inSnew
1+12−1(Γ0(6),−,−) is

q + 32q2 + 243q3 + 1024q4 + 3630q5 + 7776q6 + 32936q7 + 32768q8 + . . . .

then we twist this newform by χ12:

q − 3630q5 − 32936q7 − 758748q11 − 2482858q13 − 8290386q17 + 10867300q19 +O(q20)

We can find this normalized newform in S12(Γ0(144)).
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(By Sage.)The normalized newform inSnew
1+12−1(Γ0(6),+,+) is

q − 32q2 − 243q3 + 1024q4 + 5766q5 + 7776q6 + 72464q7 − 32768q8 + . . . ,

then we twist this newform by χ−4:

q+243q3+5766q5−72464q7+59049q9+408948q11+1367558q13+1401138q15+5422914q17−15166100q19+O(q20)

We can find this normalized newform in S12(Γ0(48)).

(By Sage.)The normalized newform inSnew
1+12−1(Γ0(6),+,−) is

q − 32q2 + 243q3 + 1024q4 − 11730q5 − 7776q6 − 50008q7 − 32768q8 + . . . ,

then we twist this newform by χ−4:

q−11730q5 +50008q7 +59049q9 +531420q11 +1332566q13 +2850390q15−5109678q17−2901404q19 +O(q20)

We can find this normalized newform in S12(Γ0(48)).

b. For S5,8.
Note that, 

dimV = dimSnew
5+16−1(Γ0(6),+,+) = 1,

dimW1 = dimSnew
5+16−1(Γ0(2),−) = 0,

dimW2 = dimSnew
5+16−1(Γ0(6),−,−) = 1,

dimW3 = dimSnew
5+16−1(Γ0(6),−,+) = 1.

From our conjecture

S5,8(Γ0(3)) ∼= Snew
5+16−1(Γ0(6),+,+)⊗ χ12

⊕
{Snew

5+16−1(Γ0(6),−,−)⊕ Snew
5+16−1(Γ0(6),−,+)} ⊗ χ−4

And we compute eigenvalues for T 2
p , p = 5, 7, 11, 13, 17, 19 on S5,6(Γ0(3))

5 7 11 13 17 19
S5,8(Γ0(3)) -114810 -762104 103451700 -104365834 -3173671566 5895116260

77646 3034528 110255052 56047862 997689762 -2163188180
314490 -2025056 -48011172 285130118 1930104414 -4934015444

(By Sage.)The normalized newform inSnew
5+16−1(Γ0(6),+,+) is

q − 128q2 − 2187q3 + 16384q4 − 314490q5 + 279936q6 + 2025056q7 − 2097152q8 + . . . ,

then we twist this newform by χ12:

q + 314490q5 − 2025056q7 + 110255052q11 + 56047862q13 + 1930104414q17 − 2163188180q19 +O(q20)

We can find this normalized newform in S20(Γ0(144)).

(By Sage.)The normalized newform inSnew
5+16−1(Γ0(6),−,−) is

q + 128q2 + 2187q3 + 16384q4 + 77646q5 + 279936q6 + 762104q7 + 2097152q8 + . . .

then we twist this newform by χ−4:
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q − 2187q3 + 77646q5 − 762104q7 + 4782969q9 − 48011172q11 + 285130118q13 − 169811802q15

− 3173671566q17 + 5895116260q19 +O(q20)

We can find this normalized newform in S20(Γ0(48)).

(By Sage.)The normalized newform inSnew
5+16−1(Γ0(6),+,−) is

q + 128q2 − 2187q3 + 16384q4 − 114810q5 − 279936q6 − 3034528q7 + 2097152q8 + . . . ,

then we twist this newform by χ−4:

q + 2187q3 − 114810q5 + 3034528q7 + 4782969q9 + 103451700q11 − 104365834q13 − 251089470q15

+ 997689762q17 − 4934015444q19 +O(q20).

We can find this normalized newform in S20(Γ0(48)).

c. For S7,8.
Note that, 

dimV = dimSnew
7+16−1(Γ0(6),−,+) = 1,

dimW1 = dimSnew
7+16−1(Γ0(2),+) = 0,

dimW2 = dimSnew
7+16−1(Γ0(6),+,−) = 1,

dimW3 = dimSnew
7+16−1(Γ0(6),+,+) = 1.

From our conjecture

S7,8(Γ0(3)) ∼= Snew
7+16−1(Γ0(6),−,+)⊗ χ12

⊕
{Snew

7+16−1(Γ0(6),+,−)⊕ Snew
7+16−1(Γ0(6),+,+)} ⊗ χ−4

And we compute eigenvalues for T 2
p , p = 5, 7, 11, 13, 17, 19 on S7,8(Γ0(3))

5 7 11 13 17 19
S7,8(Γ0(3)) 645150 -24959264 -1159304460 -5425661314 -35551782594 -5778498836

199650 -3974432 500068668 2801062862 -5466992958 64354589764
-72186 8640184 125556420 4227195518 32979662226 53889877060

(By Sage.)The normalized newform inSnew
7+16−1(Γ0(6),−,+) is

q + 256q2 − 6561q3 + 65536q4 − 199650q5 − 1679616q6 + 24959264q7 + 16777216q8 + . . . ,

then we twist this newform by χ12:

q+ 199650q5−24959264q7 + 125556420q11 + 4227195518q13−35551782594q17 + 64354589764q19 +O(q20).

We can find this normalized newform in S22(Γ0(144)).

(By Sage.)The normalized newform inSnew
7+16−1(Γ0(6),+,−) is

q − 256q2 + 6561q3 + 65536q4 − 72186q5 − 1679616q6 − 8640184q7 − 16777216q8 + . . .
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then we twist this newform by χ−4:

q − 6561q3 − 72186q5 + 8640184q7 + 43046721q9 − 1159304460q11 + 2801062862q13 + 473612346q15

+ 32979662226q17 − 5778498836q19 +O(q20).

We can find this normalized newform in S22(Γ0(48)).

(By Sage.)The normalized newform inSnew
7+16−1(Γ0(6),+,+) is

q − 256q2 − 6561q3 + 65536q4 + 645150q5 + 1679616q6 + 3974432q7 − 16777216q8 + . . . ,

then we twist this newform by χ−4:

q + 6561q3 + 645150q5 − 3974432q7 + 43046721q9 + 500068668q11 − 5425661314q13 + 4232829150q15

− 5466992958q17 + 53889877060q19 +O(q20),

We can find this normalized newform in S22(Γ0(48)).

For the cases r = 11, 13, 17, 19, 23. Our conjecture never holds by checking the dimensions of Sr,2(Γ0(3)) and V ⊕W .
By Proposition 3.1.1 and Proposition 3.2.1, we have

dimV ⊕W =



3 if r = 11,

2 if r = 13,

2 if r = 17,

3 if r = 19,

3 if r = 23.

4.2 Sr,s(Γ0(2))

We take {
V = Snew

t (Γ0(6),−
(

2
r

)
,−
(

3
r

)
)⊗ χ12,

U = Snew
t (Γ0(6), ε3,−

(
3
r

)
)⊗ χ12,

for convenience.

Example 4.2.1. For r = 1, 5, 7 and s = 2.

a. For S1,2(Γ0(2)).
Note that, {

dimV = dimSnew
4 (Γ0(6),−,−) = 0,

dimU = dimSnew
4 (Γ0(12),−,−) = 1.

So from our conjecture
S1,2(Γ0(2)) ∼= Snew

1+2−1(Γ0(12),−,−)⊗ χ12

And we compute eigenvalues for T 2
p , p = 5, 7, 11, 13, 17, 19 on S5,2(by Maple)

5 7 11 13 17 19
S1,2(Γ0(2)) 18 -8 36 -10 -18 100
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(By Sage.)The normalized newform in Snew
1+4−1(Γ0(12),−,−) is

q + 3q3 − 18q5 + 8q7 + 9q9 + 36q11 − 10q13 + . . .

then we twist this newform by χ12:

q + 18q5 − 8q7 + 36q11 − 10q13 − 18q17 + 100q19 +O(q20)

We can find this normalized newform in S4(Γ0(144)), and its Atkin-Lehner eigenvalues for w4 and w3 are -1 and
-1, respectively.

b. For S5,2(Γ0(2)).
Note that, {

dimU1 = dimSnew
6 (Γ0(6),+,+) = 0,

dimU2 = dimSnew
6 (Γ0(12),−,+) = 1.

So from our conjecture
S5,2(Γ0(2)) ∼= Snew

5+2−1(Γ0(12),−,−)⊗ χ12

And we compute eigenvalues for T 2
p , p = 5, 7, 11, 13, 17, 19 on S5,2(by Maple)

5 7 11 13 17 19
S5,2(Γ0(2)) 378 832 -2484 14870 22302 16300

(By Sage.)The normalized newform in Snew
1+4−1(Γ0(12),−,−) is

q − 27q3 − 378q5 − 832q7 + 729q9 − 2484q11 + 14870q13 + . . .

then we twist this newform by χ12:

q + 18q5 − 8q7 + 36q11 − 10q13 − 18q17 + 100q19 +O(q20)

We can find this normalized newform in S4(Γ0(144)), and its Atkin-Lehner eigenvalues for w4 and w3 are -1 and
-1, respectively.

c. For S7,2(Γ0(2)).
Note that, {

dimU1 = dimSnew
8 (Γ0(6),−,+) = 0,

dimU2 = dimSnew
8 (Γ0(12),−,+) = 1.

So from our conjecture
S7,2(Γ0(2)) ∼= Snew

7+2−1(Γ0(12),−,−)⊗ χ12

And we compute eigenvalues for T 2
p , p = 5, 7, 11, 13, 17, 19 on S7,2(by Maple)

5 7 11 13 17 19
S7,2(Γ0(2)) -990 -8576 70596 -2530 200574 695620

(By Sage.)The normalized newform in Snew
7+4−1(Γ0(12),−,−) is

q − 81q3 + 990q5 + 8576q7 + 6561q9 + 70596q11 − 2530q13 + . . .

then we twist this newform by χ12:

q + 18q5 − 8q7 + 36q11 − 10q13 − 18q17 + 100q19 +O(q20)

We can find this normalized newform in S10(Γ0(144)), and its Atkin-Lehner eigenvalues for w4 and w3 are -1 and
-1, respectively.
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For the cases r = 11, 13, 17, 19, 23. Our conjecture never holds by checking the dimensions of Sr,2(Γ0(2)) and U1⊕U2.
By Proposition 3.2.1 and Proposition 3.2.5, we have

dimU1 ⊕ U2 =



3 if r = 11,

2 if r = 13,

2 if r = 17,

3 if r = 19,

3 if r = 23.

Example 4.2.2. For r = 1, 5, 7, s = 6

a. For S1,6(Γ0(2)).
Note that, {

dimU1 = dimSnew
12 (Γ0(6),−,−) = 1,

dimU2 = dimSnew
12 (Γ0(12),−,−) = 1.

So from our conjecture

S1,12(Γ0(2)) ∼= Snew
t (Γ0(6),−,−)⊗ χ12

⊕
Snew

1+12−1(Γ0(12),−,−)⊗ χ12

And we compute eigenvalues for T 2
p , p = 5, 7, 11, 13, 17, 19 on S1,6(Γ0(2))(by Maple)

5 7 11 13 17 19
S1,6(Γ0(2)) -3630 -9128 668196 2052950 -1604178 10867300

-2862 -32936 -758748 -2482858 -8290386

(By Sage.)The normalized newform in Snew
1+12−1(Γ0(6),−,−) is

q + 32q2 + 243q3 + 1024q4 + 3630q5 + 7776q6 + 32936q7 + 32768q8 + . . .

then we twist this newform by χ12:

q − 3630q5 − 32936q7 − 758748q11 − 2482858q13 − 8290386q17 + 10867300q19 +O(q20)

We can find this normalized newform in S12(Γ0(144)).

(By Sage.)The normalized newform in Snew
1+12−1(Γ0(12),−,−) is

q + 3q3 − 18q5 + 8q7 + 9q9 + 36q11 − 10q13 + . . .

then we twist this newform by χ12:

q + 18q5 − 8q7 + 36q11 − 10q13 − 18q17 + 100q19 +O(q20)

We can find this normalized newform in S6(Γ0(144)), and its Atkin-Lehner eigenvalues for w4 and w3 are -1 and
-1, respectively.

b. For S5,2(Γ0(2)).
Note that, {

dimU1 = dimSnew
t (Γ0(6),+,+) = 0,

dimU2 = dimSnew
t (Γ0(12),−,+) = 1.
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So from our conjecture
S5,2(Γ0(2)) ∼= Snew

5+2−1(Γ0(6),−,−)⊗ χ12

And we compute eigenvalues for T 2
p , p = 5, 7, 11, 13, 17, 19 on S5,2(by Maple)

5 7 11 13 17 19
S5,2(Γ0(2)) 378 832 -2484 14870 22302 16300

(By Sage.)The normalized newform in Snew
1+4−1(Γ0(12),−,−) is

q − 27q3 − 378q5 − 832q7 + 729q9 − 2484q11 + 14870q13 + . . .

then we twist this newform by χ12:

q + 18q5 − 8q7 + 36q11 − 10q13 − 18q17 + 100q19 +O(q20)

We can find this normalized newform in S4(Γ0(144)), and its Atkin-Lehner eigenvalues for w4 and w3 are -1 and
-1, respectively.

c. For S7,2(Γ0(2)).
Note that, {

dimU1 = dimSnew
t (Γ0(6),−,+) = 0,

dimU2 = dimSnew
t (Γ0(12),−,+) = 1.

So from our conjecture
S7,2(Γ0(2)) ∼= Snew

7+2−1(Γ0(6),−,−)⊗ χ12

And we compute eigenvalues for T 2
p , p = 5, 7, 11, 13, 17, 19 on S7,2(by Maple)

5 7 11 13 17 19
S7,2(Γ0(2)) -990 -8576 70596 -2530 200574 695620

(By Sage.)The normalized newform in Snew
7+4−1(Γ0(12),−,−) is

q − 81q3 + 990q5 + 8576q7 + 6561q9 + 70596q11 − 2530q13 + . . .

then we twist this newform by χ12:

q + 18q5 − 8q7 + 36q11 − 10q13 − 18q17 + 100q19 +O(q20)

We can find this normalized newform in S10(Γ0(144)), and its Atkin-Lehner eigenvalues for w4 and w3 are -1 and
-1, respectively.

For the cases r = 11, 13, 17, 19, 23. Our conjecture never holds by checking the dimensions of Sr,2(Γ0(2)) and U1⊕U2.
By Proposition 3.2.1 and Proposition 3.2.5, we have

dimU1 ⊕ U2 =



3 if r = 11,

2 if r = 13,

2 if r = 17,

3 if r = 19,

3 if r = 23.
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