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摘  要 

 
    在這篇論文中，在報酬是以涉及一家實體違約為條件並且沒有對手違約情況下，我

們將比較兩種分別由Hull & White及Duan所提出之方法，來評價信用違約交換合約。而

且在評價信用違約交換合約時，我們將考慮到系統風險，然後我們將提供三個當信用評

等被改變時信用違約交換合約價格差異變化的例子。在本文的三個例子中我們會發現由

Duan所提出方法將會比Hull & White的提出之方法來的好。 
 
 
 
 
關鍵詞：信用違約交換、系統風險、違約距離、等級體系模型 
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Abstract 
 

  This paper compares two methodologies, which were developed by Hull & White (2000) 

and Duan (2010) respectively, for valuating credit default swap when the payoff is contingent 

on default by a single reference entity and there is no counter party risk. Furthermore, we take 

the systemic risk into account for valuating credit default swap and then we give three 

examples of variation of credit default swap spread when the credit rating had been changed 

by using this two methodologies. In our examples, the methodology developed by Duan 

(2010) is much better than Hull and White (2000). 
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1 Introduction

Credit default swap (CDS) is a contract that provides insurance against

the risk of a default by particular company. The company is known as the

reference entity and a default by the company is known as credit event. The

CDS buyer needs to make periodic payments to the seller until the maturity

of CDS or until a credit event occurs. Many papers focus on the valuation

of CDS, such as Duffie (1999) or Hull and White (2000).

In 2008, the financial crisis ( often called credit crunch ) had resulted

in the collapse of large financial institutions, such as Lehman Brothers, the

bailout of banks by national governments, such as American International

Group (AIG), and downturns in the stock market around the world. In this

paper, we take the risk of failure in the financial institutions into account be-

cause it affected whether a firm default or not even clustered default. There-

fore, the risk made a certain impact on the valuation of CDS. As similar as

Bartram, et al (2007), we consider the failure in the financial system as the

systemic risk.

In 2008 financial crisis, the credit rating models used by the key rating

agencies had been seriously questioned. This paper presents two different

methodologies to compare the result of before and after credit rating had

been downgraded or upgraded. The first of our methodologies is developed

by Hull and White (2000), which used bonds of the reference entity or the

same risk as the reference entity. The second method is the reduced form
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model, developed by Duan (2010).

2 The valuation

We introduce a reduced form type pricing model developed by Hull and

White (2000). Here we assume that there is no counter party default risk

and default events, Treasury interest rates, and recovery rates are mutually

independent. Consider the valuation of a plain vanilla credit default swap

with a $1 notional principal and maturity T .

For a CDS buyer, if a default occurs at time t (t ≤ T ), the present

value of the payments is w[u(t) + e(t)], where w is total payments per year,

u(t) is present value of payments at the rate of $1 per year on payment dates

between time zero and time t, and e(t) is present value of an accrual payment

at time t equal to t mines the payment date immediately preceding time t.

If there is no default prior to time T , the present value of the payments is

wu(T ). The expected present value of the payments is, therefore:

w

∫ T

0

q(t)[u(t) + e(t)]dt+ wπu(T ) (1)

where q(t) denotes the risk-neutral default probability density at time t and

π is the risk-neutral probability of no credit default event during the life of

the swap.

Following Hull and White (2000), we assume that the claim made in the

event of a default equals the face value of bond plus accrued interest. Usually,

the payoff from a CDS in the event of a default at time t is the face value of
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the reference obligation minus its market value just after time t. Using the

claim amount assumption, the market value of the reference obligation just

after default is the recovery rate times the sum of its face value and accrued

interest. This means that the expected payoff from the CDS is

1− [1 + A(t)]R̂ = 1− R̂− A(t)R̂ (2)

where A(t) denotes accrued interest on the reference obligation at time t as a

percent of face value and R̂ denotes expected recovery rate on the reference

obligation in a risk-neutral world1. Thus, the present value of the expected

payoff from the CDS is∫ T

0

[1− R̂− A(t)R̂]q(t)v(t)dt (3)

where v(t) denotes present value of $1 received at time t.

The value of the credit default swap to the buyer is the present value

of the expected payoff minus the present value of the payment made by the

buyer or∫ T

0

[1− R̂− A(t)R̂]q(t)v(t)dt− w
∫ T

0

q(t)[u(t) + e(t)]dt− wπu(T ) (4)

The CDS spread, s, is the value of w that makes this expression zero:

s =

∫ T
0

[1− R̂− A(t)R̂]q(t)v(t)dt∫ T
0
q(t)[u(t) + e(t)]dt+ πu(T )

(5)

1It is probably reasonable to assume that there is no systemic risk in recovery rates so

that expected recovery rates observed in the real world are also expected recovery rates

in the risk-neutral world. This allows the expected recovery rate to be estimated from

historical data. It is same as Hull and White (2000)

3



The variable s is referred to as the credit default swap spread or CDS

spread. It is the total of the payments per year, as a percent of the notional

principal, for a newly issued credit default swap.

3 Estimating default probability density

Define q(t)∆t as the probability of default between time t and t+∆t as seen at

time zero. The variable q(t) is not the same as the hazard(default intensity)

rate. The hazard rate, λ(t), is defined so that λ(t)∆t is the probability of

default between time t and t + ∆t as seen at time t assuming no default

between time zero and time t. The variables q(t) and λ(t) are related by

q(t) = λ(t)e−
∫ t
0 λ(s)ds (6)

We will present two different methods to estimate default probability density.

The first method is developed by Hull and White (2000), and it is express

results in terns of q(t) rather than λ(t).

3.1 Hull and White (2000)

3.1.1 A general analysis assuming defaults at discrete times

We assume that we have chosen a set of N bonds that are either issued by the

reference entity or issued by another corporation that is considered to have

the same risk of default as the reference entity.2 We assume that defaults can

2By the same risk of default we mean that the probability of default in any future time

interval, as seen today, is the same.
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happen on any of the bond maturity dates. Later we generalize the analysis

to allow defaults to occurs on any date. Suppose that the maturity of the

ith bond is ti with t1 < t2 < · · · < tN . Here we follow Hull and White

(2000) that we assume interest rates are constant, recovery rate are known,

and claim amounts are known.3

Because interest rates are deterministic, the price at time t of the no-

default value of the jth bond is Fj(t), where Fj(t) is the forward price of the

jth bond for a forward contract maturing at time t assuming the bond is

default-free (t < tj). If there is a default at time t , the bondholder makes

a recovery at rate R̂4 on a claim of Cj(t). It follow that the present value of

the lose, αij from a default on the jth bond at time ti is

v(ti)[Fj(ti)− R̂Cj(ti)] (7)

where v(ti) denotes present value of $1 received at time ti with certainty.

There is a risk-neutral probability, pi of default at time ti which incurs the

loss αij. The total present value of the loss on the jth bond is, therefore,

3It can be shown that, for either of these two assumptions, if default event, interest

rates, and recovery rates are mutually independent, the following equations (7) and (8)

are still true for stochastic interest rate, uncertain recovery rate , and uncertain default

probability providing the recovery rate is set equal to its expected value in a risk-neutral

world.
4The recovery rates can in theory vary according to the bond and the default time. We

assume, for ease of exposition, that all the bonds have the same seniority in the event of

default by reference obligation and that the expected recovery rate is independent of time.
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given by

Gj −Bj =

j∑
i=1

piαij (8)

where Bj denotes the price of the jth bond today and Gj denotes the price

of the jth bond if there were no probability of default ( that is, the price of

a treasury bond promising the same flows as the jth bond ). This equation

allows the p’s to be determined inductively

pj =
Gj −Bj −

∑j−1
i=1 piαij

αij
(9)

3.1.2 Extension to situation where defaults can happen at any

time

The analysis used to derive equation (9) assumes that default can take place

only on bond maturity dates. We now extend it to allow defaults at any time.

We assume that q(t) is constant and equal to qi for ti−1 < t < ti. Setting

βij =

∫ ti

ti−1

v(t)[Fj(t)− R̂Cj(t)]dt (10)

a similar analysis to that used in deriving equation (9) gives

qj =
Gj −Bj −

∑j−1
i=1 qiβij

βjj
(11)

The parameters βij can be estimated using standard procedures, such as

Simpson′s rule, for evaluating a definite integral.
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3.2 Duan (2010)

3.2.1 The hierarchical intensity model

For firm (i,j) at time t, which is the jth member of the ith group where

i = 1, . . . , K and j = 1, . . . ni, we assume its default is following a process

dMijt = αijtdNct + βijtdNit + dNijt (12)

where Nct, Nit, and Nijt are Poisson processes with intensities λct, λit, and

λijt, respectively. Moreover, λct, λit, and λijt are independent for all i’s

and j’s. αijt and βijt are Bernoulli random variables taking value of 1 with

probabilities pijt and qijt ( 0 with probabilities 1 − pijt and 1 − qijt ). We

assume αijt and βijt are independent across different firms. The Poisson

process Nct is a common process shared by all firms, By the additively of

independent Poisson processes, the equation (12) can be reduced to

dMijt
d
= α∗ijtdN

∗
ijt (13)

where
d
= stands for distributional equivalence, N∗ijt is a Poisson process with

intensity λct +λit +λijt, and α∗ijt is a Bernoulli random variable taking value

of 1 with a probability p∗ijt ( 0 with a probability 1 − p∗ijt ). It is clear that

Mijt is a Poisson process with intensity p∗ijt(λct + λit + λijt). If we look at a

firm individually, the hierarchical intensity model is equivalent to the Duffie,

et al (2007) model. Note that

p∗ijt =
λct

λct + λit + λijt
pijt +

λit
λct + λit + λijt

qijt +
λijt

λct + λit + λijt
(14)

7



Following Duan (2010), we let the Poisson intensities be the functions

of some common state variables Xt, group-specific state variables Yit and

firm-specific factors Zijt. Thus we have

λct = F (Xt−) (15)

λit = G(Xt− , Yit−) (16)

λijt = H(Xt− , Yit− , Zijt−) (17)

pijt = P (Xt− , Yit− , Zijt−) (18)

qijt = Q(Xt− , Yit− , Zijt−) (19)

where i = 1, . . . , K, j = 1, . . . , ni, and t− denotes the left time. F, G, and

H must be non-negative functions. P and Q must be bounded 0 and 1. In

practice, one can only observe discretely sampled data, and t− means using

the data available at time t−∆t.

3.2.2 Maximum likelihood estimator

We just need to estimate default intensities, so our the log-likelihood function

is a special case of Duan (2010) the log-likelihood function. Following Duan

(2010), we also assume ϕ are the parameters governing F, G, H, P, and Q

functions. Let DT be the data set related to Xt, Yit, and Zijt from time

1 to time T and It be a matrix with rows respecting different groups and

the column dimension equals the maximum number of firms in groups. This

matrix corresponding the status of all firms. Prior to default for a firm, its

corresponding entry in It is assigned to 0 otherwise it switches to 1. In order
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to reflect the time at which different firms enter the sample, we also use V, a

matrix matching the dimension of It, to capture these entry time. Thus our

log-likelihood function is

L(ϕ;Dt, It, V ) =
T∑
t=2

ln(At(ϕ;Dt, It, V )) (20)

where

At(ϕ;Dt, It, V )

=e−λc(t−1)∆t

K∏
i=1

(e−λi(t−1)∆t

ni∏
j=1

C
(1)
ijt + (1− e−λi(t−1)∆t)

ni∏
j=1

C
(2)
ijt )

+ (1− e−λc(t−1)∆t)
K∏
i=1

(e−λi(t−1)∆t

ni∏
j=1

C
(3)
ijt + (1− e−λi(t−1)∆t)

ni∏
j=1

C
(4)
ijt )

C
(1)
ijt =1{V (i,j)>t−1} + 1{V (i,j)≤t−1}[1{It−1(i,j)6=0} + 1{It−1(i,j)=0}1{It(i,j)=0}e

−λij(t−1)∆t

+ 1{It−1(i,j)=0}1{It(i,j)=1}(1− e−λij(t−1)∆t)]

C
(2)
ijt =1{V (i,j)>t−1} + 1{V (i,j)≤t−1}{1{It−1(i,j)6=0}

+ 1{It−1(i,j)=0}1{It(i,j)=0}(1− qij(t−1))e
−λij(t−1)∆t

+ 1{It−1(i,j)=0}1{It(i,j)=1}[qij(t−1) + (1− e−λij(t−1)∆t)

− qij(t−1)(1− e−λij(t−1)∆t)]}

C
(3)
ijt =1{V (i,j)>t−1} + 1{V (i,j)≤t−1}{1{It−1(i,j)6=0}

+ 1{It−1(i,j)=0}1{It(i,j)=0}(1− pij(t−1))e
−λij(t−1)∆t

+ 1{It−1(i,j)=0}1{It(i,j)=1}[pij(t−1) + (1− e−λij(t−1)∆t)

− pij(t−1)(1− e−λij(t−1)∆t)]}
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C
(4)
ijt =1{V (i,j)>t−1} + 1{V (i,j)≤t−1}{1{It−1(i,j)6=0}

+ 1{It−1(i,j)=0}1{It(i,j)=0}(1− qij(t−1))(1− pij(t−1))e
−λij(t−1)∆t

+ 1{It−1(i,j)=0}1{It(i,j)=1}[pij(t−1) + qij(t−1) + (1− e−λij(t−1)∆t)

− pij(t−1)(1− e−λij(t−1)∆t)− qij(t−1)(1− e−λij(t−1)∆t)

+ pij(t−1)qij(t−1)(1− e−λij(t−1)∆t)]}

In order to implement the model, one must specify the intensity functions. In

this paper, we let F (x1, . . . , xn) = ea0+a1x1+···+anxn , since we know that from

Duan (2010) it will make the log-likelihood function great than F (x1, . . . , xn) =

ln(1+ea0+a1x1+···+anxn). Similarly, the functions G and H are in the same form

but allow for different coefficients. The default probability function corre-

sponding to the common shock is the same as Duan (2010), p(x1, . . . , xn) =

1
1+e−b0−b1x1−···−bnxn . The default probability functions corresponding to the

group-specific shock are similarly specified. Needless to say, the coefficients

can be different.

4 Empirical analysis

4.1 Data

We get the quotes for these corporation bonds from the Datastream and

these benchmark government bonds from the Wall Street Journal’s market

data. The recovery rates of corporate bonds are from Moody’s investor’s
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service and are shown in Table 3. In our paper, we set the recovery rate of

all companies, R̂, to 0.492 because we just compare the relative values of the

CDS spread from different methodologies.5 Moreover, the date frequency is

daily with the accounting data from the Compustat quarterly and annual

datebase and the stock market data ( stock prices, shares outstanding, and

market index return ) are from the CRSP daily file.

We follow Duffie, et al (2007) to use four variables for firm-specific inten-

sity functions: trailing one-year S&P 500 index return, three-month treasury

bill rate, firm’s trailing one-year return, and firm’s distance-to-default in ac-

cordance with Merton’s model. Merton’s model is typically implemented

with a KMV assumption on the debt maturity and size. Moreover, we follow

Duan (2010) to use the variable for common shock intensity functions: av-

erage financial distance-to default. The details about the distance-to-default

for financial firms are seen at Appendix A. We select the large one hundred

financial institutions in the United States as the financial system, which is

similar as Bartram, et al (2007). The variable for default probability function

is firm’s distance-to-default.

5For example, from Hamilton, et al (2003), we found that the following relationship

provides a good fit to the data: Recovery rate=59.1-8.356×Default rate; the recovery rate

is the average recovery rate on senior unsecured bonds in a year measured as a percentage

and the default rate is the corporate default rate in the year measured as a percentage
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4.2 Empirical result

First, we consider the valuation of credit default swaps on Ashland Inc. at

the close of trading on July 13, 2000 and on September 18, 2008.6 We assume

that the time to maturity is 5 years, because it is most popular. The common

shock intensities in 2000 and 2008 are shown at Figure 1 and 2.

Table 1: CDS spread for Ashland Inc. at July 13, 2000

Maturity Hull and White Firm-specific Common Shock

(years) & Firm-specific

5 209 69 417

Table 2: CDS spread for Ashland Inc. at Sep 18, 2008

Maturity Hull and White Firm-specific Common Shock

(years) & Firm-specific

5 236 59 411

6We chose the same company as Hull and White (2000) in the different the close of

trading dates. The day, July 13, 2000 is same as Hull and White (2000), and the other

day, September 18, 2008, is the last day of trading day after Lehman Brothers bankruptcy.

The quotes at September 18, 2008 for corporation bonds and government bonds are listed

in Table 4.
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Figure 1: Constellation Energy had been downgraded to Baa2 from Baa1 in Sep 18,

2008 and then had been downgraded to Baa3 from Baa2 in Dec 17, 2008.

Finally, we consider the variation of CDS spreads in the situations of the

credit rating of firms being downgraded or upgraded. From Moody’s in-

vestor’s service, we select three companies. Two of three companies we se-

lected had been downgraded and the other had been upgraded. From Figure

1, we find that the CDS spread of Constellation Energy had increased before

the credit rating had be downgraded no matter what methods we used.

But the following case, which is showed in Figure 2 , we see that the

variation of CDS spreads were different when the credit rating had been

downgraded. Using the method which is developed by Hull and White (2000),

the spread did not increase when the rating had been downgraded in Nov 14,

13



2008.

Next, we choose a company, AmeriGas Partners, L.P., and it had been

upgraded in July 15, 2008. From Figure 3, we find that they did not have

big difference when it’s rating was changed.

Figure 2: Ashland Inc. had been downgraded to Ba2 from Ba1 in Nov 14, 2008.

In this three case, we see that CDS spread was increasing after the collapse

of Lehman Brother and the bailout of AIG in September 2008. If we take the

common factor into account then it is fast to catch the current risky economic

environment because we know that systemic risk can’t be diversified away.
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Figure 3: AmeriGas Partners, L.P. had been upgraded to Ba2 from Ba3 in July 15, 2008

Using the reduced form model, Duffie, et al (2007) or Duan (2010), it is

more fast to reflect the the valuation of CDS spread. One of reasons is that

corporate bonds are relatively illiquid than stocks. Some studies such as

Ericsson and Renault (2000), show that a safe valuation of credit risk requires

to take into account macroeconomic and financial factors as an explanation

of some trend, credit quality factors and liquidity factors.
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5 Conclusion

This paper offers two methodologies to calculate the CDS spread and com-

pares the results. We also provide empirical implementation for three com-

panies and take the systemic risk in account for the valuation of CDS spread.

In 2008 credit risk, the counter party risk is important to the valuation of

the credit derivatives. But in this article, we assume that there is no counter

party risk . Thus our future work is to deal this risk and take it into account.
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Appendix

A. Estimating distance-to-default (DTD)

As descried in Crosbie and Bohn (2002), the KMV assumption sets firm’s

debt maturity T to one year and size at time t, Dt, to the sum of short-term

debt and a half of long-term debt. But we know that the assumption about

debt has problem for financial firms. In order to deal with financial firms,

we follow Duan (2010) to add a fraction, δ, of firm’s other liabilities Lt (

total liabilities minus short-term and long-term debts ). In Merton (1974),

the firm asset value Vt follows a geometric Brownian motion

dVt = µVtdt+ σVtdWt

where µ and σ measure the firm’s mean rate of asset growth and asset

volatility, respectively. Therefore, the equity value at time t ≤ T by the

Black-Scholes option pricing formula becomes

Et = VtN(dt)− e−r(T−t)(Dt + δLt)N(dt −
√
T − t) (21)

where r is the risk-free rate, N(·) is the cumulative distribution function of

standard normal random variable, and

dt =
ln( Vt

Dt+δLt
) + (r + σ2

2
)(T − t)

σ
√

(T − t)
(22)

According to Merton (1974), the distance to default is

DTDt =
ln( Vt

Dt+δLt
) + (µ− σ2

2
)(T − t)

σ
√

(T − t)
(23)
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In order to estimate unknown parameters, the mean rate of asset growth µ,

the asset volatility σ, and the fraction δ, we apply the maximum likelihood

estimation method developed by Duan (1994,2000). For financial firms, we

follow Duan (2011) to divide the model’s implied asset value by book asset

value so that the pure scaling effect will not distort the parameter values in

the time series estimation. Thus the log-likelihood function is

L(µ, σ, δ) =− n− 1

2
ln(2π)− 1

2

n∑
t=2

ln(σ2)−
n∑
t=2

ln(
V̂t(σ, δ)

At
) (24)

−
n∑
t=2

ln(N(d̂t(σ, δ)))−
n∑
t=2

1

2σ2

[
ln(

V̂t(σ, δ)

V̂t−1(σ, δ)

At−1

At
)− (µ− σ2

2
)

]2

(25)

where n is the total number of equity values in the time series sample, V̂t is the

model’s implied asset value solved using equation (21), d̂t is computed using

equation (22) with V̂t, At is the book value. To avoid the ” look-aheadbias ”,

we also follow Duan (2011) to employ a rolling window method to estimate

DTD. More specifically, at the end of each day, we estimate DTD for each

firm using its daily market values of equity capitalization in the preceding

year.
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Table 3: Recovery rates on corporate bonds from Moody’s investor’s

service(1987-2010)

Emergence Year Default Year

Class 1987-2010(%) 1987-2010(%)

Senior Secured 63.5 63.5

Senior Unsecured 49.2 49.2

Senior Subordinated 29.4 29.4

Subordinated 29.3 29.3

Junior Subordinated 18.4 18.4
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Table 4: Quotes for unsecured bonds issued by Ashland Inc. and for bench-

mark government bonds at close of trading on Sep 18, 2008

Unsecured Bonds Issued By Ashland Inc.

Maturity Coupon Quoted Quoted

Date % per annum Price Yield

May 1, 2009 6.86 101.967 3.5395

Nov 15, 2012 8.8 117.0732 4.2599

Apr 1, 2015 8.38 118.1944 5.0682

Benchmark Government Bonds

Maturity Coupon Quoted Quoted

Date % per annum Price Yield

Mar 19, 2009 Bill 0.605 0.615

Jun 04, 2009 Bill 1.228 1.252

Nov 15, 2012 4 106.781 2.2832

Feb 15, 2015 4 107.312 2.7493

May 15, 2015 4.125 108.156 2.7763
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Figure 4: 2000 Common shock intensity

Figure 5: 2008 Common shock intensity
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