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摘 要       

 

令G是一個簡單的連通圖，G的點集為{1, 2, … , n}。若將每一個頂

點皆給定黑或是白其中一個顏色，便成G的一個配置。在每一個遊戲中

的一個走法是將一個配置換成另一個配置。在此篇論文中給兩個特別

的遊戲走法。第一個遊戲便是限亮點西格瑪遊戲，此遊戲包含了對應n
個定點的n個走法，規則為：在配置u中點i若是黑色，則走法Li將點i的
鄰居的顏色黑白互換，而且不改變其他點(包括i)的顏色。第二個遊戲

則是第一個遊戲的對偶遊戲，也包含了對應n個定點的n個走法，規則

為：在配置u中點i的鄰居中若是有奇數個黑色點，則Li
*便可以將點i的

顏色黑白互換，而且不改變其他點的顏色。這兩種遊戲的關係在這篇

論文中也會說明，另外，在這兩種遊戲之下的任何一個規則，我們可

以利用它們對應的走法將配置的集合做出分割，並求出這些軌跡。我

們稱一個包含超過一個元素的軌跡為“非簡單＂的軌跡。若給定一些
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前提，我們可以猜測在限亮點西格瑪遊戲的對偶遊戲之中將有兩個非

簡單的軌跡。此外，我們知道若G是一個擁有完美配對的樹圖，則在限

亮點西格瑪遊戲之中將有三種軌跡存在，最後也給出一個演算法以及

利用其對偶遊戲的結果來描述這三種軌跡。 
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ABSTRACT 

Let G be a simple connected graph with n vertices {1, 2, … , n}. A 
configuration of G is an assignment of one of two colors, black or white, 
to each vertex of G. A move on the set of configurations of G is a 
function from the set to itself. Two different games with their own sets 
of moves are investigated in this thesis. The first one which is called the 
lit-only σ-game, contains n moves Li corresponding to the vertices i. 

When the move Li is applied to a configuration u, the color of a vertex j 
in u is changed if and only if i is a black vertex and j is a neighbor of i. 
The second one which is called the lit-only dual σ-game, has n moves 

Li
* corresponding to the vertices i. When the move Li

* is applied to a 
configuration u, the color of a vertex j in u is changed if and only if i has 
odd number of black neighbors and j=i. The dual relation between these 
two games will be clarified. In each of the two games, the set of 
configurations is partitioned into orbits by the action of its moves. An 
orbit with more than one configuration is called a nontrivial orbit. When 
G is a tree with some minor assumptions, we conjecture that there are 
two nontrivial lit-only dual σ-game orbits. We prove the conjecture 
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under certain assumptions. It is known that the lit-only σ-game on a 

tree with perfect matchings has three orbits. We give an algorithm to 
describe these three orbits by applying the results in its dual game.  
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1 Introduction

Let G be a simple connected graph with vertex set V (G) = {1, 2 . . . , n}
and edge set E(G). A configuration of G is an assignment of one of two colors,
black or white, to each vertex of G. And we call a configuration u trivial if all
the vertices are white. In each game on G we have a rule on configurations
to apply with and we call those steps moves. For convenience, we use the set
F n

2 of column vectors over F2 := {0, 1} to denote the set of configurations.
The i-th entry ui of a configuration u is 1 if and only if the vertex i is black
on this configuration. An orbit O in a game is a subset of configurations such
that for any two configurations u, v ∈ O, there exists a sequence of moves
that u can reach v by applying these moves in order. And we call a orbit
trivial if and only if it has only one element. Our goal is to decrease the
number of black vertices by applying several moves.

Here we consider in two different games, lit-only σ-game and it’s dual
game which is called Reeder’s game. The lit-only σ-game is a variation of σ-
game which was investigated from 1989 [4]. The Reeder’s game was appeared
in the 2005 paper [3] of M. Reeder. Although the two games seem different
ostensibly, there are many connections between them.
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2 Lit-only σ-game

A move Li in the lit-only σ-game is defined as follows: If a vertex i is in
black color in the configuration u, then when Li applies to u, the colors of all
neighbors of i will be changed but keep the colors of other vertices including
i unchanged. On the other hand, if i is in white color in u then Li does
nothing about the configuration. And it is the reason we called the game
lit-only σ-game. Let the n×n matrix A be the adjacency matrix of the given
graph G. Note that eT

i u is the parity of ui. where {ei} is the standard basis
of F n

2 , that is, for 1 ≤ i ≤ n, the i-th entry of ei is 1 and the other entries
are 0. We have that

Li(u) = u + (eT
i u)Aei = u + Aeie

T
i u = (In + Aeie

T
i )u, (2.1)

where In is the n × n identity matrix. Note that for any vertex i and any
configuration u, Li(Li(u)) = u. Here we have an example.
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Figure 1: A configuration u and a move L7 in the lit-only σ-game.

Now we consider in the Reeder’s game. A move L∗
i is defined as follows:

If the vertex i in the configuration u′ has odd number of black neighbors then
the move L∗

i changes the color of i and keeps other vertices unchanged. And
if vertex i has even number of neighbors in black color, the move L∗

i does
nothing. Note that eT

i Au′ is the parity of the number of black neighbors of
i in u′. Like in lit-only σ game, we also use matrices to represent the moves
and then

L∗
i (u

′) = u′ +
(

eT
i Au′

)

ei = u′ + eie
T
i Au′

= (In + eie
T
i A)u′ = (In + Aeie

T
i )T u′

= LT
i (u′), (2.2)
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and L∗
i (L

∗
i (u

′)) = u′. Here is an example.
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Figure 2: A configuration u′ and a move L∗
7 in the lit-only dual σ-game.

By (2.1) and (2.2) we notice that each of the two matrices representations
of the moves in different games, respectively, is the transport of the other
one.

We have one more relation between the two moves on G.

Proposition 2.1. For a given graph G, let A be the adjacency matrix of G.

Then LiA = AL∗
i , i.e. the following diagram commutes:

u′ L∗

i−→ L∗
i (u

′)

A ↓ � ↓ A

u = Au′ Li−→ Li(u)

.

Proof. Note that

AL∗
i

= A(In + eie
T
i A)

= (In + Aeie
T
i )A

= LiA

and the proposition follows.
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3 Lit-only dual σ-game on a tree

Throughout this section let G be a tree with the vertex set {1, 2, . . . , n}.
We study the lit-only dual σ-game on G in this section. Let u ∈ F n

2 be a
configuration. Then u is moveable if there exists a vertex with odd black
neighbors, i.e. Au 6= 0. Let Bu denote the subset of vertices consisting of
black vertices in u, i.e. Bu := {i | ui = 1}, and let c(Bu) denote the number
of components in the subgraph induced by Bu. Recall that an independent
set of G is a subset of vertices in which each pair of vertices are not adjacent.
For a subset S of vertices we denote N [S] as the set of closed neighbors of
S, i.e. N [S] := S ∪ {a | {a, s} ∈ E(G), for some s ∈ S}.

Lemma 3.1. For any configuration u, each component of Bu can be reduced
to a black vertex by a sequence of lit-only dual σ-game moves on G. Formally,
for any u ∈ F n

2 there exists v ∈ F n
2 such that u, v are in the same orbit, Bv

is an independent set and c(Bv) = c(Bu).

Proof. Since G is a tree, we know that each connected component of Bu is
also a tree. Start from a component which has vertices more than 2 and
select a leaf i of the component. Since i has only one neighbor in black
color, we can use the move L∗

i to get a new configuration w = u + ei. We
change the color of the vertex i by L∗

i without change the number c(Bu) then
we know that u, w are in the same orbit and c(Bu) = c(Bw). Repeat this
process we finally have a configuration v which is in the same orbit with u

and c(Bu) = c(Bv) and each connected component of Bv has only one black
vertex, i.e. Bv is an independent set.

Lemma 3.2. Let u, v be two nontrivial configurations such that c(Bu) and
c(Bv) have different parities. Then u and v are in different lit-only dual
σ-game orbits.

Proof. Suppose there are two moveable configurations u, v such that u, v are
in the same orbit. That is, u can reach v by applying several moves. If there is
a move L∗

i changes c(Bu), i.e. c(Bu) 6= c(BL∗

i (u)), we know that L∗
i separates

a connected component of Bu or combines several connected components
into one. By the definition of moves of Reeder’s game, we know i has odd
number of black neighbors. Then the move L∗

i separates one component
into odd number of components or combines odd number of components into
one. So each one of these moves can not change the parity of c(Bu) for any

4



configuration u to another one. In other words, if two configurations u, v in
the same orbit, then c(Bu), c(Bv) have the same parity.

The special case when G is a path is easy to settle.

Proposition 3.3. Let G be a path and let u and v be two moveable configu-
rations. Then u and v are in the same lit-only dual σ-game orbit if and only
if c(Bu) = c(Bv).

Proof. Each vertex in G has at most two neighbors since G is a path. For a
configuration w, we know that any move L∗

i can not change the Bw by the
definition of moves of Reeder’s game. If two moveable configurations u, v are
in the same orbit then c(Bu), c(Bv) must be equal since c(Bu) will hold by
any move L∗

i .

On the opposite side, we assume G = {1, 2, . . . , n} and two moveable
configurations u, v with c(Bu) = c(Bv) = k. By Lemma 3.1 there exists two
configurations u′, v′ such that u′, v′ are in the same orbit with u, v, respec-
tively. And Bu′, Bv′ are independent sets with Bu′ = {i1, i2, . . . , ik}, Bv′ =
{j1, j2, . . . , jk}.

We use these moves L∗
i1−1, L

∗
i1−2, . . . , L

∗
1, L

∗
i1
, L∗

i1−1, . . . , L
∗
2 in turn to shift

the black vertex i1 of u to the vertex 1. And we shift those black vertices
i2, i3, . . . , ik to the vertices 3, 5, . . . , 2k−1 similarly. Then we get a new config-
uration w such that u′, w are in the same orbit and Bw = {1, 3, 5, . . . , 2k−1}.

If we use the same method to shift these black vertices of v′ then we can
get the same configuration w. So that we know that v′, w are in the same
orbit and u′, v′ are in the same orbit, that is, u, v are in the same orbit. Then
the proposition follows.

Definition 3.4. We call a graph G a binary star, and defined by D(n; r, s),
if all the leaves of G are adjacent to one of the endpoints of path Pn.
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Figure 3: D(6; 3, 4).
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Conjecture 3.5. Assume G is a tree but not a binary star. Let u and v be
two moveable configurations with c(Bu) = c(Bv). Then u and v are in the
same lit-only dual σ-game orbit.

The following example, D(5; 2, 0), is first found not have the conclusion
of Conjecture 3.5 by Hau-wen Huang.

s

s
c s c c c

"
""

b
b

6

7

5 4 3 2 1 c

s
c s c s c

"
""

b
b

6

7

5 4 3 2 1

Figure 4: Two configurations which are not in the same lit-only
dual σ-game orbit.

Lemma 3.6. For any vertices i, j, the configurations ei and ej are in the
same lit-only dual σ-game orbit. Moreover if S consists of the vertices in the
path from i to j and u is a configuration with N [Bu]∩S = ∅ then u + ei and
u + ej are in the same lit-only dual σ-game orbit.

Proof. Let the unique path from i to j be i0i1i2 · · · ik where i0 = i, ik = j

and S = {i0, i1, i2, . . . , ik}. Since N [Bu]∩S = ∅ these moves L∗
i1
, L∗

i2
, . . . , L∗

ik
,

L∗
i0
, L∗

i1
, . . . , L∗

ik−1
are doing nothing about u. And if we apply these moves in

turn then we have

u + ej = L∗
ik−1

L∗
ik−2

· · ·L∗
i0
L∗

ik
L∗

ik−1
· · ·L∗

i2
L∗

i1
(u + ei),

that is, u+ei, u+ej are in the same orbit. Let u be the configuration with no
black vertices and for any i, j, ei and ej are in the same lit-only dual σ-game
orbit.

Conjecture 3.7. Let G be a tree but not a binary star. Then the set F n
2 of

configurations is partitioned into the following lit-only dual σ-game orbits:

(i) the orbit {u} of a single non-moveable configuration;

(ii) {u ∈ F n
2 |c(Bu) 6= 0 is even.};

(iii) {u ∈ F n
2 | c(Bu) is odd.}.

6



The following proves Conjecture 3.7 under the assumption that Conjec-
ture 3.5 holds.

Proof. For any non-moveable configuration u we know that each move L∗
i

does nothing on u. Then there are orbits of a single non-moveable configura-
tion u.

There is a vertex i with at least three neighbors i1, i2, i3 since G is not
a path. We apply these moves L∗

i , L
∗
i3
, L∗

i2
, L∗

i1
on ei and get a moveable

configuration v = L∗
i L

∗
i3
L∗

i2
L∗

i1
(ei) which c(v) = 3. Then we know that v, ei

are in the same orbit. By this method, in each process we have a moveable
configuration u and find a vertex j with degree greater or equal to 3. First we
shift black vertices out of N [N [{j}]] and then shift one black vertex to j and
then apply these moves L∗

j1
, L∗

j2
, L∗

j3
, L∗

j and get a new moveable configuration
v with c(Bv) = c(Bu) + 2.

By Conjecture 3.5 and the previously method we know that for two move-
able configurations u, v if c(Bu), c(Bv) have the same parity then u, v are in
the same orbit. And by lemma 3.2 we know that the set F n

2 of configurations
is partitioned into the following lit-only dual σ-game orbits:

(i) Trivial orbits {u} which u is a non-moveable configuration;

(ii) {u ∈ F n
2 |c(Bu) 6= 0 is even.};

(iii) {u ∈ F n
2 | c(Bu) is odd.}.

7



4 Tree with perfect matching

Lemma 4.1. Let G be a tree with perfect matching. Then the perfect match-
ing is unique.

Proof. Since G is a tree with perfect matching, we know that G has even
vertices. So that we prove this lemma by induction on |V (G)| = 2k. For k =
1, we have that the perfect matching is unique. We assume the lemma holds
for 1 ≤ k ≤ d − 1. Let G be a tree with perfect matching with |V (G)| = 2d.

Since G is a tree, we can find a leaf i with neighbor j. If G has a perfect
matching π then we know that {i, j} belongs to π. Then we consider the
graph G′ = G − {i, j} which is an union of connected components. Since G

is a tree with perfect matching π then each component of G′ is also a tree
with even vertices. Moreover, we know that G has perfect matching π then
each component of G′ must have a perfect matching π′ such that π′ ⊂ π.

Since the number of vertices of each component is less or equal to 2(d − 1)
we have that the perfect matching π′ is unique by the assumption. Then G

has an unique perfect matching π and the lemma follows.

8



5 Lit-only dual σ-game on a tree with perfect

matching

In this section we collect a known result to support Conjecture 3.7 and
then Conjecture 3.5. M. Reeder uses the property of quadratic form to prove
the following theorem [3, page 33].

Theorem 5.1. Let G be a tree with perfect matching but not a path. Then
there are three lit-only dual σ-game orbits.

Hau-wen Huang quotes the above theorem to describe the three orbits
combinatorially [2].

Proposition 5.2. Assume Conjecture 3.5 hold. Then the set F n
2 of con-

figurations is partitioned into the following three orbits: {0}, {u |c(Bu) 6=
0 is even.}, {u | c(Bu) is odd.}.

Proof. G is a tree with perfect matching so that the adjacency matrix of G is
invertible then there is only one non-moveable configuration {0}. And since
a non-moveable configuration is an orbit, we have an orbit {0}. By Lemma
3.2 we know if two configurations u, v such that c(Bu), c(Bv) have different
parities then u, v are not in the same orbit. And by Theorem 5.1 we know
that there are only three lit-only dual σ-game orbits. So that if two moveable
configurations u, v such that c(Bu), c(Bv) have the same parity then u, v must
be in the same orbit otherwise the number of orbits is greater than 3. Then
we have the three orbits: {0}, {u |c(Bu) 6= 0 is even.}, {u | c(Bu) is odd.}.

9



6 Combinatorial interpretation of A−1

For the completeness, we shall provide a combinatorial proof of the following
well-known theorem, See for example [1, page 21].

Theorem 6.1. If G is a tree with perfect matching, then the adjacency matrix
A of G is invertible.

Proof. A graph with perfect matching must has even number of vertices,
then we prove this by induction on the number of vertex set |V (G)| = 2k.

1. For k = 1, the adjacency matrix of G is A(G) =

(

0 1
1 0

)

then we have

det(A(G)) = −1. Since the determinant of A(G) is not 0, we know that
A(G) is invertible.

2. Suppose for k = n − 1, it is true.

3. Let G is a tree with matching and |V (G)| = 2(n − 1). And another
graph G with V (G′) = V (G) ∪ {2n − 1, 2n}, and E(G′) = E(G) ∪
{{i, 2n − 1}, {2n − 1, 2n}}, for some 1 ≤ i ≤ 2n − 2. G′ is also a tree
with perfect matching. Then the (2n) × (2n) adjacency matrix A(G′)
of G′ is





























0 0
...
0 0

A(G) 1
...

0 0
... 0

0 · · · 0 1 0 · · · 0 1
0 · · · 0 1 0





























And we get det(A(G′)) = − det(A(G)) 6= 0

That is, a tree with perfect matching has an invertible adjacency matrix.

Definition 6.2. Let G be a tree with perfect matching π. A path i0i1 . . . it
of length t is alternating if t is odd and for 0 ≤ j ≤ t − 1,

ijij+1

{

∈ π, if j is even;
6∈ π, if j is odd.
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The following proposition gives a combinatorial interpretation of A−1.

Proposition 6.3. (A−1)ij =

{

1, if the path from i to j is alternating;
0, else.

Proof. The n×n matrix B is defined as : If the path from i to j is alternating
then Bij = 1, otherwise, Bij = 0. And we want to show that AB = In. We
have that

(AB)ij =
n

∑

k=i

AikBkj =
∑

k∈N [{i}]−{i}

Bkj.

In other words, (AB)ij stands for the number of neighbors k of i such that
the paths from these neighbors k to j are alternating with odd length.

If i = j: Since G is a tree with perfect matching, for each vertex i there is
only one neighbor k of i such that the path ik is an alternating path,
and then (AB)ii = 1.

If i 6= j: We assume ik ∈ π. If k is in the unique path from i to j, then
there is not an alternating path from the neighbor of i to j and we
have (AB)ij = 0. If k is not in the unique path from i to j, and there
is at most one neighbor l 6= k of i such that the path from l to j is an
alternating path, then the path from k to j is also an alternating path
and we have (AB)ij = Bkj +Blj = 0 in F2. If no such l exists, we know
that (AB)ij = 0.

Finally we have AB = In and then A−1 = B.

11



7 Lit-only σ-game on a tree with perfect match-

ing

Here we have a relation between lit-only σ-game orbits and lit-only dual
σ-game orbits on tree with perfect matching.

Proposition 7.1. Let G be a tree with perfect matching, and O are O′ are
the sets of orbits in lit-only σ-game and lit-only dual σ-game respectively.
Then O = {AO′ | O′ ∈ O′} and O′ = {A−1O | O ∈ O}.

Proof. Let u′, v′ be in the same orbit O′ and O′ ∈ O′. If v′ = L∗
i1
(L∗

i2
· · ·L∗

ik
(u′)),

by proposition 2.1 we have

Av′ = A(L∗
i1
(L∗

i2
· · ·L∗

ik
(u′)))

= Li1(A(L∗
i2
· · ·L∗

ik
(u′)))

=
...

= Li1(Li2 · · ·Lik(Au′)).

So that Au′, Av′ are in the same orbit of lit-only σ game. And we know that
if O′ is an orbit in lit-only dual σ-game then AO′ is an orbit in lit-only σ-
game. We have that O = {AO′ | O′ ∈ O′}. Moreover, since G is a tree with
perfect matching then A−1 exists so that we prove O′ = {A−1O | O ∈ O}
similarly.

By using Proposition 7.1, for any configuration u we can know u is in
which lit-only σ-game orbit by checking the lit-only dual σ-game orbit of
A−1u. And the following propositions are Hau-wen Huang’s result [2].

Proposition 7.2. Let G be a tree with perfect matching but not a path.
Then there are three lit-only σ-game orbits. Moreover, the three orbits are
{0}, {Au |c(Bu) 6= 0 is even.}, {Au | c(Bu) is odd.}.

Proposition 7.3. There exist distinct vertices i, j such that ei and ej are in
different lit-only σ-game orbits.

Then we know that in each orbit of lit-only σ-game there is a configuration
with at most one black vertex.
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8 Algorithm

Let G be a tree with perfect matching but not a path. By the above result
5.2, 7.1 we know that two configurations ei and ej are in the same lit-only
σ-game orbit if and only if c(BA−1ei

) and c(BA−1ej
) have the same parity.

We shall give the algorithm to determine which orbit the configuration ei is
belonging to.

Algorithm. For a configuration ei is given, we want to find the corre-
sponding configuration u′ such that ei = Au′.

Input Set u′ = 0

Step 1 Start from the subset X = {i} of V (G).

Step 2 If the vertex j is in the same matching with i, set u′ := u′ + ej , and
X := N [X].

Step 3 If vertex k ∈ N [X] − X is adjacent to a black vertex in u′, and the
vertex l is in the same matching with k, then set u′ := u′ + el.

Step 4 Set X := X ∪ N [X].

Step 5 Repeat Step 3 and Step 4 until X = V (G).

Output We get a configuration u′.

Here is an example.

Example 8.1. G is shown and u1 = e12. And these thick edges are the
matching of G.

j
11

j
10

j
9
j
8

j
7

z
12

j
1

j
2

j
3

j
4

j
5

j
6

j
13

j
14

j
15

j
16

j
17

j
18
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Start form G with all vertices in white. First we change {11} to black,
then {9}, and then {1, 7, 4}, and finally {6, 16}. We have e′12 shown as

z
11

j
10

z
9
j
8

z
7

j
12

z
1

j
2

j
3

z
4

j
5

z
6

j
13

j
14

j
15

z
16

j
17

j
18

u2 = e3,

j
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j
9
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j
7

j
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j
1

j
2

z
3

j
4

j
5
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j
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j
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j
16

j
17

j
18

then we have e′3

j
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j
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j
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j
7

j
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3
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5
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j
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z
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j
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j
18

u3 = e16,
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e′16 is shown

j
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j
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j
7

z
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j
6

j
13

z
14

z
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j
16

j
17

z
18

Since c(e12) = 7, c(e3) = 3, c(e16) = 6, we know that e12, e3 are in the
same orbit and e16 is not.
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9 Conclusion

Let G be a tree with perfect matching but not a path. For any moveable
configurations u, v ∈ F n

2 , there are two configurations u′, v′ ∈ F n
2 such that

u′ = A−1u, v′ = A−1v, and we know that u, v are in the same orbit in lit-only
σ-game if and only if u′, v′ are in the same orbit in lit-only dual σ-game if
and only if c(Bu′), c(Bv′) have the same parity. So we can know that whether
two configurations u, v are in the same orbit or not by checking the parities
of c(BA−1u), c(BA−1v).

Moreover, for a moveable configuration u in lit-only σ-game there is a
moveable configuration u′ = A−1u in lit-only dual σ-game and by Proposition
7.3 we know that: Whether Bu′ is odd or even, there is a configuration ei

which has only one vertex in black color in the same orbit with u. And by
applying the algorithm, we can find these ei’s which are in the same orbit
with u.

That is: Given a tree G with perfect matching but not a path, and any
initial configuration u with at least one vertex in black color, then we can
reach a configuration ei with a single vertex i in black color by applying
several moves in lit-only σ-game. Moreover, we know the single black vertex
appearing at which vertex of G.
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