&t B8 %

MO

Fele X & I A5
Galois Representations and Modular Forms

P e :%ﬁxﬁ

—_—

h SR Prry K



ol 3 4 B HF| N
Galois Represetations and Modular Forms

Bopo4iEEm Student : Yan-Jhang Huang

R - K Advisor : Professor Yi-Fan Yang

A Thesis
Submitted to Department of Applied*Mathematics
College of Science
National Chiao Tung University
in-Partial Fulfillment-of the Requirements
for the Degree of
Master
in
Applied Mathematics
June 2010

Hsinchu, Taiwan, Republic of China



Pl 1 & L HCE R

g4 03 3m AR R

B2l ~ 8t g (P mMmLis

|4

¥ %

AP EE PN Aol 4 F - B 2 k- B R
i fex'-2 L fEH— B d#kpz 4 f2ch B dic o 54— B iecke L-S#kc - e
B H Mk LT MR AL -

Uit ki o 50 v 1 s A T PR T A T kS 0 -

® weight 5 12 > level 7 256 sivcusp form °



Galois Representations and Modular Forms

Student : Yan-Jhang Huang Advisor : Professor Yi-Fan Yang

Department of Applied Mathematics
National Chiao Tung University

Degree of Master

ABSTRACT

The problem we want to discuss in this thesis’is trying to find a simple description “How
the polynomial splits modulo a®prime p for a special polynomial x*-2.” This is an application
of Hecke L-function, the Galois theorem and the group representation. We will try to connect
them by some well-known knowledge, and use them to.solve the problem in our discussion.

Moreover, we will use'the Galois representation of the splitting filed of the polynomial

x*-2 to construct a cusp form.of weight 1 with-level 256
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Chapter 1

Introduction

In 2003, Jean-Pierre Serre gave a paper, £Ons A Theorem Of Jordan”, which interests us. The
paper has a part which is talking about'the number of roots for a given polynomial f in Z/pZ. Let
N,(f) denotes the number of zeros.of fin Z/pZ. In the paper, Serre gave three special examples,
all of them has form f(x) = 2™~ — 1 for m=+2;3,4. He related the N,(f) to the coefficients of
theta series.

1.1 Examples From Serre’s Paper

In this section, we talk abotut the specialicase of f(x)y= 2™ a1 for n = 2, 3,4, and we relate
the numbers N,(f) to the coefficients-of theta series.

1.1.1 Casen=2: 2> -1~ 1

The discriminant of f = 22 — x — 1 i 5. | The polynomial f has a double root modulo 5, hence

Ns5(f) = 1. For p # 5, we have

(f) = 2, ifp=4+1 mod5
o, ifp==42 mod 5.

If one defines a power series F'(q) = " anq™ by

i i i
1—¢°

- (5

n=1

F = 41—+ +¢—q =+

the above formula can be restated as
Np(f) =ap,+1 for all primes p,
where a,, is the p-th term coefficient in the L-function
1

S -I0-())

1



2 CHAPTER 1. INTRODUCTION
which is analytic continued to the complex plane.

1.1.2 Casen=3: 22—z —1

The discriminant of f = 23 —x — 1 is —23. The polynomial f has a double root and a simple root
mod 23, hence Na3(f) = 2. For p # 23, one has,

(f):{00r3, if (&) =1

1, it (&) =—1.

N,

p

Moreover, in the ambiguous case where (2%) = 1, p can be written either as 22 + zy + 692 or as

222 + xy + 3y* with z,y € Z; in the first case, one has N,(f) = 3; in the second case, one has

N,(f) = 0. (The smallest p of the form z? +zy+6y? is 59 = 52 +5 x 2+6 x 22, hence Nso(f) = 3.)
Let us define a power series F' = > a,¢™ by the formula

g [J1—-d"0 ¢
k=1

F

1 m2+my+6y2 o 2x2+a:y+3y2
B q q
z,yEZL T YEZ

— R P SRR e s 24
This is a modular form of weight 1 on I'g(23) with character (=22). The formula for N,(f) given
above can be reformulated as,

N, (f)=:a, I forall primes p.

Note that the coefficients of F' are multiplicative, one has. dpmm* = amanm: if m and m’ are relatively
prime. And the associated Dirichlet series is

ooan_ a py 1 -t
S =I5 () =)

(This equation comes from [6].)

1.1.3 Casen=4: 2* —x—1
The discriminant of f(z) = 2* — 2 — 1 is —283. The polynomial f has two simple roots and a

double root modulo 283, hence Nog3(f) = 3. If p # 283, one has,

0 or 4, if p can be written as 2% + zy + 71>

Ny(f)=<1, if p can be written as 722 + by + 11y2
Oor2 if (%) =—1.

A complete determination of N,(f) can be obtained via a newform of weight 1 and level 283
as follows

o0
F = Z anq"
n=1

_ q_|_ /_2q2_ /_2q3_q4_ /_2q5+2q6_q7_q9+2q10+q11+'”.
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One has,

Np(f) =1+ af; - (2]%) for all primes p # 283.

1.1.4 A Small Table Of N,(f) for f=2" —x —1
In the end of this section, we give a small table of N,(f) for f(z)=2" —2z—1, n=2,3,4.

plln=2|n=3|n=4
2 0 0 0
3 0 0 0
5 1 1 0
7 0 1 1
11 2 1 1
13 0 0 1
17 0 1 2
19 2 1 0
23 0 2 1
99 z 3 1
83 0 1 4

1.2 Abstract

The problem we want to discuss in this thesis is trying torfind a simple description “How the
polynomial splits modulo a primé p forsa special pelynomial z* — 2.7 This is an application of
Hecke L-function, the Galois theorem and the group representation. We will try to connect them
by some well-known knowledge,and use them to solve the problem in our discussion.

In the further chapters, we will introduce some background, and explain the detail of the
example for f(z) = 23 — 2 — 1, and in the last chapter, we will pick a special polynomial to be
our main subject “f(z) = z*—2". Whose spliting field is L = Q(+/2,14), and the Galois group
Gal(L/Q) is isomorphic to Dy. And for this case, we try to construct a weight 1 cusp form, says
that if the cusp form be written as a Fourier expansion, then the coefficients of prime terms are just
the same as the prime terms of an Artin L-function associated with the Galois group Gal(L/Q).



CHAPTER 1. INTRODUCTION




Chapter 2

Basic Knowledge

2.1 Number Fields

Let K be a number field, and L be-a Galois extension of K.-Iiet O, Ok denote the ring of integers
in L, K respectively. Let p bea prime of O, B be a prime of:Oy, lying over p.

Definition 2.1.1. The decomposition-group of PBis
D(B|p)=Ho € GAL(L/K) : a(¥) =%},
and the inertia group of B is
E(Blp) = {6 € GAL(L/K) : 0(a) = e’ mod P} Va € Oy.

Theorem 2.1.2 ([7]). Let L be a Galois extension of K, a prime p is ramified in L if and only if
p divides the discriminant of L.

And for the prime is unramified in L, there is a special proposition for them.

Proposition 2.1.3 ([7]). Let L be a Galois extension of K, p be an unramified prime lies under
B in L. Then there exists a unique automorphism o € Gal(L/K) such that

o(a) =a™®  mod P
for alla € Op.
We give a definition and a notation for this special automorphism.

Definition 2.1.4. The special element o is called to be the Frobenius automorphism of 8 over p.
Obviously, we have Frob(B|p) € D(P|p). We denote it by Frob(|p).

Proposition 2.1.5 ([7]). Assume that L is a Galois extension of K and p is unramified in L, Let
By and Py be two primes of O lying over p. Suppose that o € Gal(L/K) maps Py to Pa. Then
we have

Frob(B:|p) = oFrob(Palp)o .
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From the above proposition, if Gal(L/K) is abelian, then the Frobenius automorphism depends
only on p. In this case, the Frobenius automorphism o will satisfy

o(a) =a”®  mod pOy
for all @ € Op. Thus, the proposition lead to the following definition.

Definition 2.1.6. Assume that Gal(L/K) is abelian. For a prime p in K unramified in L, define
the Artin symbol by
L/K
(FL5) = rrobisui)

where B is any prime in L lying over p. Let T,k denote he multiplicative group of fractional ideals
generated by primes of K unramified in L. Then the Artin map Froby x : ¥/ — Gal(L/K) is
the group homomorphism defind by

k e;
1 3 L/K\™
FrObL/K(pll"'pkk):H( / >

g P
where p; are primes of K unramified.in Land e; are integers.

Proposition 2.1.7 ([7]). Each automorphism o of.L in-D(Blp) induces an automorphism & :
OL/PB — OL/B of the field=OL /B that fizes Z/pZ pointwise and if we let v : Op — O /P be
the canonical homomorphistn 4(«) = a + B, then o~ = v o g, Since o € D(B|p), the property
o(PB) =P implies 7 is defined by (a4 R)=o(a)+P Va € Ops

More precisely, in the Propesition:2.1.7 we say-that ¢ fixes:Z /pZ pointwise means there exists
an embedding i : Z/pZ — Or, /B, defined by i(a + pZ) =.d +*B, such that o + P contained in the
image of .

2.2 Representations, Characters And Artin L-functions

In our discussion, L-function plays an important role. Before we discuss L-functions, we need to
introduce representations and characters.

Definition 2.2.1. Let V be a vector space over a field F and GL(V') be the group of isomorphisms
of V onto itself. A representation of a group G in V is a group homomorphism p from G to GL(V).
The dimension of V' is called the degree of p.

Now, Let F be a field and G be a finite group. Consider the set

FG = chg:cgeﬂ?

geG

of all formal linear combinations ) ¢,g with all but finitely many ¢, equal to 0. With the obvious
addition and scalar multiplication, it becomes a vector space over F. Then the algebraic structure
FG given above is the group algebra of G over F.

From the above definition, we can define the module as follows.
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Definition 2.2.2. Let G be a group and V' be a vector space over a field F. Then V is a module
over the group algebra FG or simply an FG-module if there is a group action of G on V such that
the group action respects the linearity of the vector spaces.

And we say a vector subspace W of V is an FG-submodule if gw € W for all ¢ € G and all
weW.

Next, we will introduce restrictions and induced representation.

If H is a subgroup of a finite group G, then the restriction of an representation of G to H is
automatically a representation of H. Conversely, given a representation of H, there are many ways
to construct representations of G.

Definition 2.2.3. Let H be a subgroup of a finite group G, and V be an FG-module. The FH-
module V, obtained by restricting the action on V' of G to H, is the restriction of V' to H, and
is denoted by ResgV or simply ResV if it is clear which groups are involved. Equivalently, if
p: G — GL(V) is a representation of G, then py : H — GL(V') defined by pu(h) = p(h), Vh € H
is the restriction of p to H.

Next, let U be an FH-submodule of FH Thesagtion of G on U can be taken just as the ordinary
multiplication. Then the FG-modulen(FG)U ={ru :'r€,FG,u € U} is the induced module of U,
and we denote it by IndflU or simply IndU. The representation associated to IndU is the induced
representation.

Definition 2.2.4. Let G be afinite group, arid V. 'be a vector space over C. Given a representation
p: G — GL(V), the functien x_: G — C defined by x(g).= trace(p) is called the character of
the representation p. Similarly we have the definition of restriction, denote by Resy, and induced
character, denoted by Indy.

Now, we can define the Astin L-function.associated to a representation.

Definition 2.2.5. Let G be the Galeis group of the Galois extension L/K, and p be a represen-
tation of G over Q. Then we défine Artin L-function as follows.

1 an
1;[ det(I'=p(Frob(p))p~") ~ = n°®

n=1

L(s,x) =

where x is the character of the representation p.

Proposition 2.2.6 ([1]). Let L/K be a Galois extension of number field. then the following
equalities were only up to a finite number of Euler factor.

1. If x1 and x2 are characters of Gal(L/K), then
L(Sa X1+ X2, L/K) = L(sth L/K) X L(87 X2, L/K)
2. Let M be an intermediate subfield and H = Gal(L/M) < Gal(L/K). If x is a character of

H, then
L(s,Indx, L/K) = L(s, x, L/M)

Theorem 2.2.7 ([3]). Let G be a finite group. Then for each character x of G, there exist integers
n; and subgroups H; of G that are either abelian groups or p-groups such that

X = nindg;,
where ; are characters of H;.

Next, we want to talk about Hecke L-function, before that, we need more background as follows.
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2.3 Adeles And Ideles

Definition 2.3.1. A field K is a global field if K is a number field or a function field of one
variable over a finite field. And a local field is a locally compact topological field with respect to a
non-discrete topology.

It is easy to see, that a local field arises naturally as completions of a global field.

Definition 2.3.2. Let K be a global field and consider the set of all embeddings of K into local
fields L such that the image of K is dense in L. Two such embeddings i : K — L and i’ : K — L'
are said to be equivalent if there exists a continuous isomorphism f : L — L’ such that i = f o.
An equivalence class is called a place of K.

A place is denoted by v, and the corresponding embedding and local field are denoted by i,
and K, respectively.

If K is a number field, we say a place of K is infinite if it is either a real embedding or a pair
of complex-conjugate embeddings. And.aiplace 6f'FGis called to be finite if it is non-Archimedean
place.

Definition 2.3.3. Let K be aiglobal field” For éach finite place v, consider a locally compact
space K, and its valuation ring R,. Then! the restricted product

Ag = {(xv) € H Ky: &y € Ry for-all but finitelys many finite places}
vEV

is the adele ring of K, and the elements of A are-called adéles:
Let K be a global field. For each finite place v, consider:a locally compact space K and its
unit group R;. Then the restricted product

I = {(wv) € H K> : z, € R}, for all but finitely many finite places}
veV
is the idele group of K, and the elements of [ are called ideles.
Now, we consider the subgroup IL of I ,where
I} = {z €l : |z] =1}

contains all the elements of modulus 1. In different situation modulus have several definitions.
Here we define modulus || - || as

o, i K=R
l|z|| = 22 + 23, if K=Candx =z +iry
q ", if K is non-Archimedean and x € 7" R*

where the non-Archimedean might be Q,, p is a prime, or F,[[T]] of formoal Laurent series, ¢ = p*

is a prime power. And, we called the factor group Ix/K* the idele class group. For example, if
K = Q, we have Ip/Q* =Rt x I5,/Q*
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2.4 Hecke Characters

Definition 2.4.1. Let K be a number field. A Hecke character or a Grossencharakter is a character
of the idele class group I /K*.

Definition 2.4.2. Let x be a Hecke character on I /K*. Define a formal product
meo = [T o

1. n, =1, if v is a real place and y,(—1) = —1.
n, = 0, if v is a complex place or if v is a real place and x,(—1) = 1.

n, =0, if x,(z,) =1 for all z, € R}.

= N

N, = ey, €lse, where e, is the smallest positive integer such that 1 + 7{v R, is contained in
the kernel of x, and m, € Ix/K*.

The formal product m(x) is called the modujus of the Hecke character.

Definition 2.4.3. Let K be a number filed and y be a Hecke character. Then we define the
associated Hecke L-function by

1
& = Sk o

v is finite:x, (R*)

A Hecke character is alsera generalisation of ‘a-Dirichlet character, introduced by FErich Hecke
to construct a class of L-functions larger than Dirichlet L-functions, and a natural setting for the
Dedekind zeta-functions andgeertain bthers which have functional equations analogous to that of
the Riemann zeta-function.

For each Hecke L-function, sve can give the following functional equation.

Theorem 2.4.4 ([8]). Let x be a"Hecke-character onlg /IK* and L(s, x) be its Hecke L-function.
Let rf‘ be the number of real places v with Xy (—1) =1"and r; be the number of real places v with
Xv(—1) = —1. Let ro be the number of complex places. Set

Zi (s) = m*T(s/2), Zgz (s) =7~ CFVP0((s +1)/2), Ze(s) = (2m)'°T(s),
and . -
Zx(s,X) = (dredy)*"* Zf ()% Zg ()™ ZgL(s,x)
where dg 1s the absolute value of the discriminant of K. Then Z (s) has an analytic continuation

to the whole complex plane, except for two simple poles at s =0 and s =1 in the case x is trivial
on I /K*. Moreover it satisfies the functional equation

Zicls,x) = (—)" ;S’fﬁ Zic(1 - 5,x7)

K

where T(x) is the Gaussian sum associated to x.

At last, we come back to the Artin L-function. From the definition of an Artin L-function,
it is not clear whether it has an analytic continuation to the whole complex plane. But after we
introduce the Hecke L-function, and by Proposition 2.2.6, Theorem 2.6.4. We see that every Artin
L-function can be written as a product of finitely many Hecke L-functions. And the products is
taken over all places including the archimedean ones. So Artin L-function can be meromorphic
continued to the whole plane.
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2.5 Modular Forms

Definition 2.5.1. We called SL(2,7Z) or its subgroup of finite index a modular group.

Now, we give SL(2,7Z) a group action on upper half-plane H = {r = 2z + iy : « € R,y > 0} by
the linear fractional transformation

at +b a b
")/T—m y fOI'TEH, Y= <C d) ESL(2,Z)

The linear fractional transformations are rigid motions of the hyperplane, and they move points
in distinct ways. And an element v € SL(2,Z) has fixed points, then we give definitions of those
~ and fixed points as follows.

Definition 2.5.2. An element v € SL(2,Z) is parabolic if it has one fixed point, hyperbolic if it
has two distinct fixed points on P!(R), elliptic if it has a pair of conjugate complex numbers as
fixed points. A point in P1(Q) fixed by a parabolic element is called a cusp, and a point in the
upper half-plane fixed by an elliptic elemiént'is called an elliptic point.

Now, we change our objectivete those subgroups of SL(2,Z) with finite index.
Definition 2.5.3. Let I be afdiscrete-subgroup of SL(2,7Z).If T' contains the subgroup

T(N)= {7 ot et (é ?) nod N}
for some positive integer N, then I' is a congruence subgroup. Lhe smallest such positive integer
N is the level of T'. The group I'(N)/isscalledsthesprincipal congruence subgroup of level N.

The following congruence subgroup

Ty(N) = {(CCL Z) eSL(2;Z):'c=0 mod N}
is also called the Hecke congruence subgroups.
Since they are subgroups of SL(2,7Z), we want to ask what indices of them in SL(2,Z) are.

F'heorem 2.5.4 ([8]).
. — N3 1
[SL(2,Z) :T(N)]=N | I (1 p2> ,

pIN
[To(N) : T(N)] = N x 6(N)
where ¢ is the Fuler function.
Now, we try to discuss how many inequivalent elliptic points and cusps are there in T'g(V),
Theorem 2.5.5 ([8]). For N > 2, we have,
1. The number of inequivalent elliptic points of To(N) of order 2

0, if 4|N
v2(To(N)) = 9 1 (1 + (—71)), if 41 N.

p|N
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2. The number of inequivalent elliptic points of To(N) of order 3

0, if 9N
va(To(N) = 4 111 + (—73)), if91N.
pIN

3. The number of inequivalent cusps of To(N)

v = 3 ((d.N/d))

0<d|N

where (5) 1s the Legendre symbol and ¢ is the Fuler function.

And for each modular group I' we give a theorem to calculate the genus g as follows.

Theorem 2.5.6 ([8]). Let T is a modular group, and the index [SL(2,Z) : T] = m. Let va,v3, Voo
be the number of inequivalent elliptic point of order 2, order 3, and cusps, respectively. Then the
genus g of ' is given by the formula:

12 4 _3TNE®
Definition 2.5.7. A function'f is said t6-be a modular form of weight k on T if it satisfies the
following conditions,

1. f is holomorphic in the upper half-place H.

2. f(g;—j_'g) = (e7 + d)Ff(7) for every.4.= (Z Z) in the;modular group I

3. f is holomorphic at every cusps.

Moreover, if f vanishes at every gusp;.then the function fris a cusp form of weight k. And for
convenience, let My (T") denotes the space which-contains all modular forms of wright k£ on I, and
Si(T") denote the space which contains all ‘cusp forms of weight k& with respect to I

If a modular form f be written as a Fourier expansion and a,, be the Fourier coefficients, then
we put

L(s, f) = iann_s.
n=1

L(s, f) converges absolutely and uniformly for ®(s) > 1+%/2, then we called L(s, f) the L-function
associated with f.

For each L-function associated with a modular form f we also have a functional equation as
follow.

Theorem 2.5.8 ([8]). For N > 0 be the level of the modular form f, we let
2
VN
then the following functional equation will hold
AN(S7f) = AN(k - Sag)
where k is the weight of f, and g(z) = (—iv/Nz) ¥ f(=1/Nz).

axton) = (Z2) L)
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Now, we are going to define the divisor of a holomorphic in H.

Definition 2.5.9. For a nonzero holomorphic function f, we define the divisor of f by
div(f) =) va(f)a
a

where a runs over all elliptic points and cusps, and v, (f) denotes the order of f at a.
Then for the divisor of holomorphic in H, we define the degree of the divisor as follows theorem.

Theorem 2.5.10 ([8]). Let k be an odd integer. Assume -1 is not contained in a modular group
T'. For a nonzero element f, f is an meromorphic form of weight k with respect to T', then we

have,
deg(div(f)) =K(g 1)+ 5 3 (1~ +)

(&
2 a

where a € T\H*, e, is the ramification indez of a, g is genus of f.

2.6 Hecke Operators

Now, we try to introduce Hecke operatoriLet (G be a group;/and I' and I'” are two subgroups of
G. We say that I" and IV arescommensurablesif

[:TNI'] < o0 and [I": IAT'] <.
Definition 2.6.1. For N € N, if o € GL*(2,%), and 'o(N) and o~ 'To(N)a are commensurable.
The double coset I'g(N)aIl'o(V) is a finite union-of-right coset,

A
T6(N)alo(N) = ) Da(WN e,
i=1
where ; € GLT(2,Z), h = [[o(N): Io(N)Va 'To(N)a] Then we define a linear operator
[Co(N)aly(N)] on all f € My(To(N)) by

fITo(N)alo(N)], = D fla.
Then we call the linear operator [['g(N)al'o(N)] as a Hecke operator.
Definition 2.6.2. For each divisor d of N, let iy be the map
ia : (Sp(To(Nd™)) x (Sk(To(Nd™1))) = Sk(To(N))

given by
(f,9) = [+ glaa]k-
The subspace of oldforms at level N is
Se(Mo(N)™ = Y ip(Sk(To(Np™)) x Se(To(Np™1)))
p|N p is prime

and the subspace of newforms at level N is the orthogonal complement with respect to the Petersson
inner product,

Su(To(N))™™ = (Sk(To(N))* )+
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Definition 2.6.3. We say a nonzero f € My(To(N)) is an Hecke eigenform if it is an eigenform
for Hecke operators. And we say the eigenform f = 21010:0 anq™ is normalized if a; = 1. Moreover
a newform is a normalized eigenform in Sy (T'o(N))%.

Then, for a normalized eigenform f, there is a theorem such that L(s, f) has an Euler product
expansion.

Theorem 2.6.4 ([6]). Let f =Y " anq™, ¢ = €*™7 be a modular form with a character x. The
following are equivalent.

1. f is a normalized eigenform.

2. L(s, f) has an Euler product expansion

L(s, f) = [ [ = app™ + x(p)p" 1 72) 71,

where the product is taken over_a

e weight of f.



14

CHAPTER 2. BASIC KNOWLEDGE




Chapter 3

The Detail Of Serre’s Examples

In this chapter, we will use some basic knowledge that we introduced in Chapter 2 to explain
Serre’s example f(z) =23 —x — 1.

First, we give some precise result corresponding-te the table we gave in Chapter 1. Using
Maple, we can easily check that

@t w5 1 shod 2

(@2 +224.3)(z = 2) -mod 5
flz) =B~z 1= (@ =10)* @z~ 3) mod 23

(z=4)(x —=13)(x = 42) mod 59

For convenience, follows prines appear in this chapter do not equal to 23.

3.1 Use Cyclic Group To Determine N,(f)

In this section, we try to determine N,(f) in algebraic number theory. We give the following
theorem to help us determine N,(f) from the order of Frob(3|p).

Theorem 3.1.1. Let L be the splitting field of f(x) = 2> — x — 1 over Q, and the Galois group
Gal(L/Q) is identified with Ss. If

1. Frob(B|p) = e, then N,(f) = 3.
2. Frob(Plp) € {(12)}, then Np(f) =1.

3. Frob(Plp) € {(123)}, then N,(f) = 0.

where the permutation (123) means that the Frob(P|p) acts three roots in L transitively. Similarly,
if Frob(B|p) € {(12)}, then we say Frob(P|p) has order 2 and fixes a root in L.

Proof. Assume that f has three distinct roots, names a1, as, ag in L.
Note that Frob(B|p) € D(B|p), then by Proposition 2.1.7, then for all a« € Op we have an
automorphism

Frob(B|p) : O /B — O/ is defined by Frob(B|p)(a + B) = Frob(P|p)(a) + L.

15
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And a canonical homomorphism
~v:O0p — O /P is defined by v(a) = a +*B.

Such that Frob(B|p) o v = 7 o Frob(B|p), and Frob(P|p) fixes Z/pZ pointwise.
If Frob(*B|p) = e, that says Frob(P|p) fixes aq, az, az. We have Frob(B|p)(a;) = a; for
i=1,2,3. Then

Frob(P[p) (v(ei)) = Frob(P|p) (i + P) = Frob(Plp) (i) + P = a; + P,

so we have Frob(|p) fixes a;+3, that means there is an embedding ¢ : Z/pZ — Op, /B is defined by i(a+

pZ) = a+P for all @ € Z. And a; +B is contained in the image of i. Thus, there exist an element
a; € Z such that i(a; + pZ) = a; +B.

Now, we will claim that a; + 3 are roots of f in Z/pZ. Consider the norm of f(a; +B), easy
to check that will be divided by p for i = 1,2, 3. Thus, if Frob(B|p) = e, then N,(f) = 3.

We can show the other two cases by the same argument. O

3.2 Relation Between N,(f) And Legendre Symbols

From above section, we know the relation between N, ( f).and the order of Frobenius automorphism.
Now we can use that to describe the Serre’s example precisely.

For p # 23, one has,
0 o3 1f(£) =1
N,(f)= 23
o) {1 if (L) =~k

Assume (%) = —1. Consider that.Q(v/23)-C L, and (&) = —1 says that p is inert in

Q(v/—23), so Frob(B|p) has order 2. Thus, N,(f) = 1.

For (&) = 1, in Serre’s article, we have that p ean be written either as 2 4+ zy + 6y* or
222 + zy + 3y* with z,y € Z, in the first caseyone has N, (f) = 3, another case, N,(f) = 0. Now,
we give a Theorem to describe this statement ‘completely.

Theorem 3.2.1 ([5]). Let m be an integer, m = 1 mod 4. Then there is a monic irreducible
polynomial fn,(x) € Z[x] of degree h(m) (Where h(m) denotes the ideal class number of K =
Q(y/m).) such that if an odd prime p divides neither n nor the discriminant of fn,(x), then

& (%) =1 and f,(x) =0 mod p has a integer solution.
Where, dg is the discriminant of Q(v/m). Furthermore, fm(x) may be taken to be the minimal
polynomial of a real algebraic integer « for which L = K(«) is the Hilbert class field. And f,,(x)
18 said to be the Hilber class polynomial.

In Theorem 3.2.1, fortuitously, the Hilbert class polynomial is same as f(x) = 2® — 2z — 1. Since
the field L is a cubic cyclic extension of the quadratic field K = Q(1/—23), it is unramified, and
since h(—23) = 3. So L is the Hilbert class field of K.

That is why if p can be written as 2? + zy + 6y? then N,(f) = 3. The other case, if p =
222 + zy + 3y? for some x,y € Z, since the prime is not inert in Q(y/—23), and it will not satisfy
Theorem 3.2.1, so in this case N,(f) = 0.



Chapter 4

Main Results

Theorem 4.0.2. Let N,(f) denotes the_number of roots for a given polynomial f(z) = z* — 2 in
ZJ/pZ. Then we have Ny(f) = a, +1 '+ <f—j), where ap-isithe Fourier coefficient of prime terms in
a cusp form of weight 1 on T'y(256).. The cusp, form we find is

F(T) =% Z q'rr1,2-|-64n2 13 Z q4m2+4mn+17n2

m,ne’ m,neZ

E gt ¢° — 2gdlg® _9g1 9% T3

4.1 Galois Group Of [ Is Isomorphic' To D,

Now, we claim that the Galois group Gal(L/@)rof the polynomial f(z) = 2* — 2 is isomorphic to
Dy. The simplest way to describe the Galois ‘group of f is write down all the automorphisms of

Q(V2,4).

1 V2 V2 V2 V2
1a : T
11 L= —1
{{*@H\‘Vﬁi {\4/5»—>\‘7§i
o: T oT g . )
11 14— —1
) {WH\% ) {\%Hw
o° < . o T 3. .
11 14— —1
5 | V2= —V/2i 3 V2= — 2
g . g'T.
L1 1= —1.

It is easy to check that our statement is true. For the Dihedral group of order 8, we give the
following character table.

17
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H e 0'2 {T70'2T} {0'70'3} {O'T,CTST}
il 1 1 1 1
2|1 1 1 1 ~1
vs |1 1 1 -1 -1
yall 1 ~1 -1 1
vs |2 -2 0 0 0

4.2 N,(f) Is A Class Function Of Frobenius

Similarly, the discriminant of f(z) = 2* — 2 is —2048, thus the only prime p of Z ramified in
Q(v/2,14) is 2. We consider the case p = 2 specially. An easy compution gives z* — 2 = 2* mod 2.
Thus, No(f) =

After that, we will start to compute another N,(f) for p # 2. There is a Theorem just like
Theorem 3.1.1.

The following theorem gives the notation'in Dy as permutations, but we use the notations o, 7
to denote the mapping in D4. There is'a question. “How to connect two kinds symbol? Since o

acts on v/2, v/2i, —v/2, —+v/2i transitively, then we note that, v/2, v/2i, —v/2, —v/2i as 1, 2, 3, 4,

respectively. So o correspondsito (1234), and the others have following relations.

{o7,9°r} corresponds to {(12)(34)},
{r,0%r} | corésponds to {(12)},
{0, o*} s correspondsrtoy {(1234)}
o {corresponds to  (13)(24),

e corresponds.to’ e:

So we can give a theorem as follows.

Theorem 4.2.1. Let L be the splitting field of f(z) = 2* — 2, and the Galois group Gal(L/Q) is
isomorphic to Dy. If

1. Frob(B|p) = e, then N,(f) =4

2. Frob(F[p) = (13)(24), then N,(f) = 0

3. Frob(Plp) € {(1234)}, then No(f) =0

4. Frob(Plp) € {(12)}, then N, (f) = 2

5. Frob(PBlp) € {(12)(34)}, then N,(f) =0

Proof. Use same argument as Theorem 3.1.1. O

Now we try to connect N,(f) and Frob(P|p). Before that, we need to determine that what
conjugacy classes are those Frob(3|p) contained in Dj.

Lemma 4.2.2. For the prime
1. p=3 mod 8, Frob(B|p) € {o7,0°7}.
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2. p=5 mod 8, Frob(Bp) € {7,0%}.
8. p=7 mod 8, Frob(Bp) € {7,027} .
Before we prove this Lemma, we need two lemmas.

Lemma 4.2.3 ([7]).

(a) =a®P D2 mod p.
p

Lemma 4.2.4 ([7]).

)

Now, we can start our proof.

1 ifp=4+1 mod 8
-1 ifp=43 mod 8.

Proof of Lemma 4.2.2. For p = 3 mod:8} asstinethat p splits as Py, - -, Pr in Q(v/2,7). Then
the Frobenius automorphism of .6ver p, Frob(B|p) will satisfy following equation.

Erob(Blp)(v2) = (V2)V? mod R,
Frob(B|p)(i) =2~ @ mod P:
First, we consider how Frob(B|p) aets on i, from the above equation, we have
Frob(B|p) (i)="E2 _moed-,, for sonie k € Z,

It is easy to check that Frob(Pp) sends's to —i.

Next, we observe that how Freb(B|p) acts on v/2..Simiilarly, since Frob(|p) € Gal(L/Q), so
it sends V2 to its conjugate element {4/5, \4/51', - \4/5, — \‘ﬁi, so we let € be the fourth root of
unity such that Frob(%|p)(v/2) = ev/2. Then, we can rewrite the equation as follows,

€-vV2=(v2)? mod P, where e € {£1, +i}.
thus, e=2P"D/* mod XL,

Since p =3 mod 8, by Lemma 4.2.3 and Lemma 4.2.4, we have,

—-1= (2> =2=1/2 mod p.
p

Thus, we know that p|(2P~1/2) + 1) so PB|(2P~1/2 +1). Then we have,

2(P=1/2 = 1 mod %,
thus, 2P~V/% = +i mod .

Finially, we conclude that ¢ = i mod . That says Frob(B|p)(+v/2) = £+v/2i. Thus,we have that
for p =3 mod 8,Frob(B|p) € {JT, 037'}.

Next, for p =5 mod 8 and p =7 mod 8, we can give the proof by same argument as the case
p =3 mod 8. O
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So, for the prime p not congruence to 1 modulo 8, we have known that N,(f) precisely. How
about the prime p congruence to 1 modulo 87 Unfortunately, we can not decide what conjugacy
classes will contain the Frob(|p) precisely by Lemma 4.2.2. But, we have another way to determine
the Frob(B|p) case by case.

Now, we compute an example p = 3 with another algorithm, we using the norm of p to determine
the Frob(|p).

Example 4.2.5. We consider the prime p = 3 in Z. Although, we do not know how the prime ideal
(3) splits in Q(~+/2,). But, without lost of generality, we can assume that (3) splits as B;Bs...L»
in Q(v/2,4). And that no matter which 8 we pick, the Frob(3|3) will satisfy

Frob([3)(V3) = (V) mod P
and Frob(B(3)(i) = (i)> mod P.

Since Frob(|3) € Gal(L/Q), then there also exist a fourth root of unity e such that Frob(3|3)(v/2) =
€(v/2). Then, we just need to determine that €= #1 or + i precisely.

From above two equations we hayvéyev/2 = (v/2)2 miod P (ie. ¢ = /2 mod ). and we know
that P[(3), so N5 (v2 — €) mustydividing by 3. So ¢ has tosbe +i. Thus we can make sure that
Frob(B|3) sends v/2 to ++v/2i.

Next, we want to know that, how Frob{3|3) acts en 4. "By the same argument, we have
Frob(%3)(i) = i® mod ‘P.sAgain, from above equation, and we have Frob(B|3)(i) = +i since it
contained in the Galois group. Obviously, it hastobe —i.

Thus, we have

4 4 .
Frob(Bi3): {.ﬁ ==3
Tt =T,
Then
Frob(B(3) € {o7, 07} .

Now we have another algorithm, and we know that really works. So we can try to determine
the Frobenius automorphism of % over p =1 mod 8.

Example 4.2.6. For p = 17, we also assume that (17) splits as 1P5... 8 in Q(v/2,4). Then the
Frob(*B|17) will satisfy that
Frob(P|17)(i) = i'" mod P.

Easy to check that Frob(B|p)(i) = i. We also have
Frob(R[17)(V2) = (V2)'"  mod %,

as above, there exist a fourth root of unity e such that Frob(|17)(+v/2) = ev/2. Then we rewrite
the equation as

evV2=(v2)'" mod P.
Obviously, € = —1, that says Frob(B|p)(v/2) = —+/2. Thus, Frob(B|p) = o2.

Using the above algorithm we can determine that, for p = 17, 41, 73, the Frob(B|p) are
o2, 02, e respectively. Although, this way looks like very inefficient, but it can determine all kinds

of prime.
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Now, we want to find the relation between N,(f) and a,. Note a, = x5(Frob(B|p)), then we

have
2, if Frob(Blp) =€

a, =< —2, if Frob(Blp) = o?
0, else.

From Frob(Blp) = e, we have N,(f) = a, + 2. And Frob(B|p) = o2 tells us N,(f) = a, + 2.
Similarly Frob(B|p) € {7, 0?7} gives N,(f) = a, + 2. Then we have

N =a 1+ (2)

= x5 (Frob(B[p)) + x1(Frob(B(p)) + x3(Frob(B|p)).

That is our first result.

4.3 Construct A Cusp 'Form

We start from the Artin L-function,

1 i 1
R ¥ S € S o S | B

Frob(p)=e ( & Frob(p)e{r,702} ( -p

Frob(p)=02
1 1 o an,
— TRl - ., % = -
I e e | SR D
rob(p)e{o,03} Frob(p)e{ro;7o3} p is ramified n=1

Those ramified primes are not particularly important in our'consideration. Thus, by the Propo-
sition 2.2.6 and Theorem 2.6.4." We have

L(Sax5) = L(S,Indd),L/Q) = L(Sﬂth/K)

where K is Q(i), x5 = Indv, and ¢ should be a Hecke character corresponding to Q(7). The Hecke
character v gives values as following table.

Frob(p) [e o o% oF

op) |1 @ -1 i
Now, we try to find a modular form F' such that L(s, F') = L(s,1). So F should be written as
> ang", where ¢ = e2™7 that says F is a cusp form. Next, we try to explain that why the
cusp form F with weight 1 of level 256.
From Theorem 2.5.8, the Dirichlet series associated with F, L(s, F') will satisfy the functional
equation

(4.1) (j%) ) L(s, F) = <j%> e T(k — s)L(k — 5, G)

where k and N are the weight and level of F. And from Theorem 2.4.4, the Hecke L-function
L(s, ) will satisfy the functional equation

—5 —(1-s)
2 2 1
(4.2) (\/m> [(s)L(s,¥) =¢ <m> L(1—s)L(1—s,07 7).
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where € is a root of unity and dx is the discriminant of K takes absolute value, dy, is the norm of
modulus of 1. Remember that, our goal is finding a modular form F such that L(s, F') = L(s, ).
Compare (4.1) and (4.2) we have weight k£ = 1 and level N = dg X dy.

In the Hecke L-function L(s,,L/K), 1 is a Hecke character of modulus (1 + i)¥, since the
only prime ramifies in Op, is 2. And v takes values +i, so we have a property, that (Z[i]/m)* has
a non-unit element of order 4. Apply the definition of modulus, in this case m = (1 +i)* for some
keN.

Note that, if k=1, then |[(Z[i]/m)*| = 1.

If k=2, then |(Z[i]/m)*| = 2. ie. (Z[i]/m)* = Z,
If k=3, then |(Z[i]/m)*| = 4. ie. (Z[i]/m)* = Z4

If k=4, then |(Z[i]/m)*| = 8. ie. (Z[i]/ m)* = Zy x Zo

If k=5, then |(Z[i]/m)*| = 16. ie. (Z[i]/m)* = Zy X Zo X Zs
If k=6, then |(Z[i]/m)*| = 32. ie. (Z[i]/m)* = Zy x Zy x Zs

so the modulus m is (1 + i)G

Thus, we can conclude that the level of cusp form here is 256.

Now, we know the level of cusp form is 2565 then.we can use the algorithm in [5], there are four
primitive quadratic forms

m? + 642, 5m? + 2mm +13u?, 4m>+ dmn + 170>

might be a part of the exponent of cusp-forms
Consider the series

2 2 2 2
a Z qm +64n +h Z q5m +2mn+13n

m,ne7z m,ne”Z
Te E q5m2—2mn+13n2+d § q4m2+4mn+17n2
m,n&zZ m,nc%

for some a,b, c,d € Q, where ¢ = 2’7 And. the expansion of each series are

Z T =1 42+ 24 +2¢° + - -
m,ne”Z

Z q5m2+2mn+13n2 = 142¢° +2¢"3 +2¢ + 4¢2° + 2¢%° +2¢57 + - -
m,neZ

Z q4m2+4mn+17n2 =14 2q4 +2q16 +4q17 +4q25 +2q36 +4q41 ..
m,neZ

Now, we consider a modular form,

1 mz—l-GALn2 4m2—i-41nn+1’7n2
) q - q

m,nez m,n€”Z

:q+q972q177q2572q41+q49+2q73+"'

F(r)

Fortunately, for the first 73 terms, the coefficients of prime terms are just equal to a, for each
prime p.

But, how can we make sure that every terms after 73 are also equal? In fact, we only need to
check the degree of divisor terms. Since the degree of divisor means the summation of orders of
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cusps, elliptic points (here, we only have cusps), so the order of ico is equal or less then the degree
of divisor.

In our discussion, the notation a in the Theorem 2.5.10 are just cusps, thus, 1/a are all zeros,
then the summation in the degree of divisor is just the number of inequivalent cusps. Using
Theorem 2.5.5, we know that there has 24 inequivalent cusps. And we use Theorem 2.5.6 to
compute the genus of F'. Before that, we need Theorem 2.5.4 to evaluate the index m = 384, and
by Theorem 2.5.5 we have vy = 0,v3 = 0, v, = 24. Thus the genus g equals 21.

Now, from Theorem 2.5.10 we can compute the degree of divisor of F' is 32. So we only need
to compare first 32 terms. We compare first 73 terms already, then we can make sure the cusp
form’s Fourier coefficients are equal to a,, for every prime terms.

Moreover, since a,, are Hecke eigenvalues and from the functional equation we have F' has level
256. Thus, F is a newform. Then the Theorem 2.6.4 can help us to write L(s, F) as an Euler
product.

L(s,F)=]] (1 —app* + (j) p25)1 .

P
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