Lit-only c-games =1 dc s 1

The Algebra Behind Lit-only c-games

Fop oA ElA%

BEEE D SAY Fo



Lit-only c-games % #ic % f#

The Algebra Behind Lit-only c-games

T A S Student : Lun-Xin Liu
ERE TR Advisor : Chih-Wen Weng
B > 2 i + F
e * BF

A Thesis
Submitted to Department of Applied Mathematics
College of Science,
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master

In

Applied Mathematics
June 2011
Hsinchu, Taiwan, Republic of China



Lit-only c-games =1 dic ks 1

g4 54 % REEE O AA K

Rzl ~ Ft 88 (P Pmir

# %

£ S={s,,S,,..5,} &~ B F "Lehk £ o ok L2 BIHEM:SxS >NU{o} 2k
2 m(s,8)=1; @ ¥7 Fees,s' i Am(s,s)=m(s',s)e{2,3} o 7RAE L B & ST AT
T BRI FEBTSET) BB ELLBELES  HELE L] m(ss‘):3}o -
i# simply-laced Coxeter group Wy £~ BFI(S,m) 7 M e o« &) HHm<2 P #P 7§ BS
- B3 n B8 ROR S (path) s W & g(isomorphic) s — B L3 S, d73F o 2L

Tk - Bixp ek i3 Bk (homomorphsim) oW, — GL(R") #-W, %f p& 7| & |+ 3
GL(R") ¥ » # Fo(Ws) &~ B7F 0 iv* AR "Z A hMPF(EEL TS chFE) o § 2

g o(Wg) ¥ eEl 3 ¥ 15> 7 8 Dlig it g B 4 i) & i o (W) © 5 43 o * (W)

e & R" ¥ M o* (W) ¢ e H(isomorphic)™t — B $+H4E# S, F1 5 Ho* (W) ¢
St SRR R o FORRE R R L h kgl Ak(modulo) 20 R ER T - A AT
B A - BRI AP BH Y o APRIEBATOE NG 2 REFE 0 T BB

#HIT* 4- B ~H(binary field) F, 2,2 chnaz B F) » ¥ G- B 4 F, + o 2
PR BATOEIEY AF FE - Biv* AHS nlitonly o-gameo A it 4 B S 4.3 @
FEkaacycle o WP en3 EHG 24 2 i+ 2 G Eo*(G)={1} (mod2) -



The Algebra Behind Lit-only c-games

Student: Lun-Xin Liu Advisor: Chih-Wen Weng

The Algebra Behind Lit-only o-games

Abstract

Let S ={s,,s,,....5,} be a finite .set and..m-be a function with m:SxS —NU{wo}
satisfying m(s,s)=1 and m(s,s")=m(s',s) €{2,3} for distinct s,s'’eS. The set S is
associated with the graph, also denoted by S, with the vertex set S and the edge
set{ss'| m(s,s") =3}. A simply-laced Coxeter group W associated with (S,m) is the group
generated by S subject to the relations

(Ssu)m(s,s')

for s,s'eS. We consider a homomorphism o :W, — GL(R"), which is referred as canonical
representation of W,, where GL(R") is the group of invertible linear transformations of

R" into itself. We consider the canonical representation o of W, into R" and use its

dual representation o* to show that W, is isomorphic to the symmetric group S, ., if the

n+1
graph S is an n-vertex path. The matrices o* (W) have integral coefficients. The left
multiplication of these matrices modulo 2 on the n-dimensional space F,’ over a binary
field is usually called the lit only o-game on the graph S in literatures. In the special case
when S is a 3 -vertex cycle, we determine the subgroup G of W, with

o*(G)={1} (mod2).
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1 Introduction

Assume that S is a finite set, and m : S x S — N U {oo} is a function
satisfying m(s,s) = 1 and m(s,s’) = m(s',s) > 2 for distinct s,s" € S. Let
F(S) be the free group on the set .S and N be the normal subgroup of F'(S)

generated by all elements

(Ssl)m(s,s’)7

where s, s’ € S. The group W := F(S)/N is called the Cozeter group associ-
ated with (S, m), and the pair (W, S) is called a Cozeter system. A Coxeter
group W can be represented by a Cozxeter graph T' = (V, E) whose vertex
set V = S and edge set E = {55 | m(s,;§) > 3,5 # s’ € S}. The edges
with m(s,s’) > 3 are labeled by the number but the label 3 be omitted. The
Coxeter group is simply-laced fm(s,s"y€/41,2,3} for s,s'" € S. The Cox-
eter graph of simply-laced Coxeter groups exactly coincide with simply-laced
Dynkin diagrams[6]. For example a Coxeter group of type A, has its Coxeter

graph a path of order n. Figure 1 lists the simply-laced Dynkin diagrams.
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Figure 1: simply-laced Dynkin diagrams.

Throughout this paper, we assume Wy is a simply-laced Coxeter group
associated with (S, m) and the set S is associated with the graph, also de-
noted by S, with the vertex set S and the edge set {ss’ | m(s,s’) = 3}. Note
that, in section 3, the graph S of the Coxeter group Wy of type A, is the

Coxeter graph of Wg.

It is well known that Wy is finite if and only if S is simply-laced Dynkin
diagrams [6]. The following is a well-known property, called the universal

property of free groups. See [1, page 219] for details.



Theorem 1.1 (The universal property of free groups). If G is a group with
identity 1, and ¢ is a map from S into G, then there is a unique homomor-

phism ¢’ : F(S) — G such that ¢'(s) = ¢(s) for s € S.
The next theorem is a direct result of Theorem 1.1

Theorem 1.2. If G is a group with identity 1, and ¢ is a map from S
into G such that (¢(s)o(s"))™>%) = 1 for s,s' € S, then there is a unique
homomorphism ¢' : Wg — G such that ¢'(s) = ¢(s) for s € S.

Proof. By Theorem 1.1, there is a unique homomorphism ¢’ : F(S) — G
such that

& ((58')™5) = (¢ (5) N ™= ((5)(s")) ™) = 1,

ie. N C Ker(¢'). Hence ¢' indueces a unique homomorphism form Wg =

F(S)/N into G, which is still denoted by ¢/, ¢’ : Wg — G. O

We will use the same notation ¢ for ¢’ in the above theorem and say that

the domain S of the map ¢ lifts to the domain Wg.

Let Vg denote the vector space over R with a given basis {a; | s € S}
and Vg :={f | f: Vs — Ris linear} be the dual space of Vs with the dual

basis { of | s € S}, where o : Vg — R is the map satisfying

e
oo — 1, ifs'=s;
s8 0, else,

for any s,s € S. The linear representation of Wy is a homomorphism
o : Ws — GL(Vs), where GL(Vs) is the group of invertible linear transforma-

tions form Vg into Vg, with the composition. Since Vg, V¢ are |S|-dimensional
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vector spaces, we may regard Vs, V& as R, In section 2, we introduce the
linear representation o of the Coxeter group Wy as described in [6, page 110]
and replace GL(Vs) with GL(R"). In order to find the transpositions act
on R™, we consider its dual representation ¢*. In Section 3, we use the dual
representation ¢* of the Coxeter group Wy of type A, into R" to show that
Wy is isomorphic to the symmetric group S,,41. The matrices o*(Wg) have
integral coefficients as shown in Proposition 2.3. Let {es | s € S} denote the
standard basis of R®. Then
€y, if s £ ¢,
o*(s)ey = { —eg+ >, ey, ifs=¢.
m(s,s")=3

The left multiplication of the matrices a%(s) modulo 2 on the set F}' is called
the lit only o-game on S, which was first studied in [2], and independently
in [3,4,5,7,8].

Let G be a group with a generating set S such that e ¢ S. The Cayley
graph Cay(G, S) of G with respect to S has the vertex set G and the edge
set {g(gs) | g € G,s € S}. The thesis focus on the special case when S
is a 3-vertex cycle, and determines the subgroup G of Wg with ¢*(G) =
{I} (mod 2) in Theorem 4.9. The Cayley graph Cay(Ws/G, {s1, s2,s3}) is

described in the end.



2 Representation of Wy

Let S = {s1,89,+-,s,} be a finite set and let Vs denote the vector space
over R with a given basis {a; | s € S}. For s, € S, we define a symmetric

bilinear form B on Vg by
B(as, ay) := —cos TYERDL
and define a reflection o, : Vg — Vg by the rule:

gsA ==\ — 2B(as, A)as,

where A € V. We have

— gt if m(s,s’) =1,
os(ag) = g+ as, - ifan(s, ') = 3; (1)
Qr, if m(s,s’) =2,

where ay a basis vector of Vs Note that o2 = I and hence o, € GL(Vs) for
s€S.

Theorem 2.1. The domain of map o : S — GL(Vs), defined by s — o4 for
s €S, lifts to Ws.

Proof. By Theorem 1.2, we need to check that (o(s)o(s'))™®*) = 1. Assume
m(s,s’) = 1(i.e. 8 = s). The result is hold, since o(s) = o4 has order 2 in
GL(Vs). For any A belongs to Vg, assume m(s, s’) = 2. We have:

(0505)™ 5N = (,04)2\

= (050¢)[0sA — 2B(ag, \)osay]
= (050¢)[0sA — 2B(ag, A)ay]

= (0505)[A = 2(B(as, \)as + Blag, )y )]
=\



Finally, assume m(s, ') = 3. We may compute that :

(0509)™ I\ = (0,04)°\

(0504)*[0s\ — 2B(ay, N)osay]

= (0509)[A — 2B(a, A) (s + ) — 2B(ag, N ay]

A

Thus the domain S of ¢ lifts to W.

Indeed J.Humphreys proves the map o is injective [6, Page 113].

Theorem 2.2. 0 : Wy — GL(Vs) is injective.

We refer to the monomorphism o as the.linear representation of W.

As we fixed the Coxeter group Wg of type A, (see in Section 3) and given

an ordered basis {ay,, as,, ..., as tof Ve By the equation (1), o, has the

matrix form:

i

Therefore, we consider the transpose of the above matrix. Back to the vector

space Vg, if we let L : Vg — Vg be a linear transformation. Then the dual

map L' : Vi — V& of L is defined by the following rule:

(L'f)v = f(Lv)



for any f € V¢ and v € V. Note that if two maps Ly, Ly : Vg — Vs are linear

then it is easy to check (LiLy)" = LYLE.

Proposition 2.3. For each s € S, let 0! : V& — V& be the dual map of the
reflection os : Vo — Vg. Then for any s,s’ € S,
o, if s#£8';

* . o
of, ifs=5s,
k:m(s’,k)=3

for k € S. In particular, (¢2)> = I and hence o' € GL(VZ) for s € S.

S

Proof. Let A= Y cgragn € Vg. First we may assume s’ = s. Since o?, is the
s'"esS
dual map of o5 and o (o) = 1, then we have

(o (a)](A) (0:A)
(A) — 2B(as, Nag(as)
ag(A) = 2B(asA)
()

OZ s

Oé s/

Oé/ )\ _2 E CSIIB CKS?O[S//

s'"eS
:Oz:/()\) -2 E 65-0—205- 1—-2 E CSI/B(CYS,OéS//)
ses s'es
m(s,s'’)=2 m(s,s’’)=3
— OZ:/()\) — 265 — 2 E CSNB(O[S’ Q{S//),
s'es
m(s,s'’)=3

(4)
Since af(\) = ¢s and B(ag, agr) = —1/2, for m(s,s”) =3 and s € S. Then

—2 Z CS//B(Oés, CYS//) = Z Cglt * 1= Z Oé://()\)

s''es s''es s''es
m(s,s'’)=3 m(s,s’")=3 m(s,s'’)=3

and the equation (4) equal to (—af + >  af/)(A)
s'’es
m(s,s'’)=3



In the other case s’ # s. Then o (o) = 0. Thus,
[0 (@)](N) = a3 (N) — 2B(as, Ny (as) = ay ().
[

We shall call ¢! : V& — V& a dual reflection of oy and refer the basis

{ a} | s € S} the standard basis of V.

Definition 2.4. The dual representation o* : Wg — GL(V{) of o is defined
by

o*(w) := o(w™ )", for w € Ws.

Proposition 2.5. Then o* is-a monomorphism.

Proof. For any wy,wy € Wy,

o*(wiwy) = o((wywy)™ ')
= (o(wyHo(w "))
= o(w)'o(wy)

= o (wy)o"(wy).

Hence the map o* : Wg — GL(VY) is a homomorphism. Next we need to
prove o* is injective.
Let o*(w) € GL(VY) be the identity linear transformation for some w €

Ws. Let f € V§ and for any v € Vg,

(" (w) v = (o(w™) flo
= flo(w™)).



Since o*(w) € GL(VY) is a identity map, (o*(w)f)v = fv. This implies

o(w™)v =wv for any v € Vg. Then o(w™) = e € GL(Vs).
And by Theorem 2.2, 0 : Ws — GL(Vs) is a monomorphism, we must
have w = e € Ws. This shows that the map o* : Wg — GL(V{) is injective.
[

The following lemma describes the mapping of o*.
Lemma 2.6. For each s € S,0*(s) = ot, where o* : Wg — GL(VZ).

Proof. For each s € S, s has order 2 in W, then o*(s) := o(s7!)! = o(s)".
Since o(s) = o, we have o(s)" = of. Thus, o* : Ws — GL(VY) by sending s
to ot O

From Proposition 2.5 and-Lemma 2:6, we had known that o*(s;s;) =

aziazj, where s;,s; € S. In the next section, we shall introduce the simply-

laced Coxeter group Wy of type A, and'give a proof of Wy is the symmetric

group on a set S*.

3 Coxeter group Wy of type A,

In this section, we consider the Coxeter group Wy of type A,,. We shall prove
W is isomorphic to the symmetric group 5,1 on n+1 elements. Throughout
this section, set S = {s1, 89, ..., 8, }, and m : S x § — {1,2,3} is the function
satisfying m(s;, s;) = m(s;, s;) and

1, ifj=¢andie {1,2,...,n};
m(si,sj): 27 1fj¢{l—1,l+1}72,j6{1,2,77L},
3, ifjeli—1,i+1},ie{23,...,n—1).

9



The (Ws, S) denotes the Coxeter system of type A,, and the set S is associ-
ated with the graph with the vertex set S and the edge set {ss’ | m(s, s’) = 3},
which exactly coincide with the Coxeter graph of type A, as shown in Figure
1. Recall from Proposition 2.5, Lemma 2.6 and (3), there exists a monomor-
phism o* : Wg — GL(VY) with 0*(s;) = ol satisfying

o, if j # 1
*):{—oz;+ S ar ifj =4 (5)

Sk
k:m(s;,s)=3

In the ordered basis {of ,af,,..., o} } of Vg, ol has a matrix form:
1 0
'z
o~ | (6)
Il
0 1

We call S* = {e,¢€2,...,€,41} a simple set of Vi. We will show later that

any n elements of S* form a basis of V{.

Theorem 3.1. If V§ is a dual space of vector space Vs, {aZ | s € S} is a

standard basis of V&, and S* = {e1, €2, ..., €n41} is a subset of V& satisfying

10



the following relations:

€l =
€6 =—a,  +ag , for2<i<n,
€nt+1 — — &

Sn?

then any n elements of S* is also a basis of V3.

Proof. Let the subset S7 = {€1,€,...,€,} of S. First we prove that ST is a

linear independent set. Assume

n
0= E a;€;
=1

= ayo, + ag(—ay, P )+ Fan(—a; | +aj )

Sn—1

= (a1 — ag)oy, +(ag — agyos, + - + a0 .

Since {af | s € S} is a basis of V&, we have

;

0 = ay; — ag,
0 =ap_1— Ap—2,
0 =a,.

\
Thus, a1 =ay=... =a, = 0.

By definition, ¢; can be written as a linear combinations of {a, | s; € S}
for 1 <4 <n, and S} is a linear independent set. Thus, S} is also a basis of
V.

Next, by the definition of ¢; for 1 < i < n + 1, we had known that
€1+ €+ +€,41 = 0. Hence any n elements of S* = {e, €2, , 6,41} form

a basis of V§. O

11



Theorem 3.2. Let (Ws,S) denote the Coxeter system of type A,,. Then Wg

s the symmetric group on S*.

Proof. By proposition 2.5, we had known that o*(Wy) is isomorphic to Wg.
Thus, we just prove that ¢*(Wg) is the symmetric group on S*. For each

o*(si) = 05, € GL(VE),1 <i < n.

€iv1, ifJ=7;
t e ‘
04,6 = €, if j =414 1;

€j,  others.

for 1 < j < n+1. Thus, a;_ is a transposition (;,€;,41) for 1 < i < n.
Since { o}, | 1 <i < n} is a generating'set of 0*(Ws). Hence o*(Wg) is the

symmetric group on S*. O]

Then Wy is isomorphic to the symmetric group 5,11, since |S*| =n + 1.

4 The Coxeter group associated with /3

In this section, we consider the Coxeter group W with its associated graph K3
of three vertices and three edges. That is W = Wy, where S = {sy, s2, s3} and
m(s;, s;) = 1, m(s;, s;) = m(s;,s;) = 3 for distinct ¢, j € {1,2,3}. Recall from
Proposition 2.5 and (3), there exists a monomorphism o* : Wy — GL(VY)

with the matrices of 0*(s1), 0*(s2), 0*(s3) as

~1.0 0 1 1 0 10 1
1 10/, {0 -10],l01 1 (7)
1 01 0 1 1 00 —1

12



with respect to the standard ordered basis {a} , o},

ag,} of V. Note that
the above three matrices generate an infinite group over R. Let F, be the
field of two elements 0, 1. We define an action of W on F3 by w-u = o*(w)u
(mod 2) for w € W and u € F3. Let {e1, e, €3} be the standard ordered basis
of Fj. We shall determine the stabilizer W, of e¢; under the above action,

and then determine We, N We, N We,. Note that

L e1 + eg + es, ifi:j;
T { €, otherwise, (8)

for 1 < 4,7 < 3. Hence with respect to the ordered basis {ej, e, €3}, the

action of sy, $o, s3 has the following matrix form

1
1
1

O = O

0 L 1m0 1
0 |5f0 10} o
1 01 1 0

o = O

1
| (9)
1

respectively. The action of a Coxeter-group W on Fy is also called lit-only
o-game on I', where I' is the Coxeter graph associated with (S, m).

From (8), we have the following two Lemmas.
Lemma 4.1. Let S = {s1, s2,s3}. Then for distinct two elements s;,s; € S,

€j, th:Z,
sisjsi(er) = ey, ift =j;

ey, otherwise.

In particular, s;s;s; = s;8;5; in the Coxeter group W. Thus, s;s;s; and s;5;s;
act on the subset {e1,eq,e3} of Fy as the same transpositions (e;,e;) of the

symmetric group on {ey, es, e3} for distincti,j € {1,2,3}.

13



Lemma 4.2. Let S = {s1, 53, 53}. Then for distinct three elements s;, s, s; €

S,
ej, ifk=1;
s;si558i(ex) = 8 ey, ifk=7;
e, ifk==t.

Hence, s;5¢5;8; and s;5;5:8; are permutations (e;, e;, e;) and (e;, e, e;) respec-

tively for distinct three numbers i, j, t € {1,2,3}. O

Definition 4.3. We use the following notations.

H51 = {82,3373182833281}7
H,, = {33,51,3283818382},
H,, = {s1;52,5351825153}.

From the above, we may discover that H,, can be obtained from Hj,
by replacing 1 with 2, 2 with 3 and'3 with 1. In the same way, H,, can be

obtained from Hj, by replacing 1 with 3, 2 with 1 and 3 with 2.
Proposition 4.4. For1 <: <3, H,, CW,,

Proof. Without loss of generality, we may assume ¢ = 1, then by the action
of W on F3. We may check that sy, s3 fix the vector ;. Next we check that
5152838281 € We,. By the equation (8), sas1-e; = sy(e1 +ea+e3) = es. Then,

we have that s1s953 - €9 = 5159 - €9 = e1. Thus H;, C W,,. O

We shall prove that H;, is a generating set of W, for 1 <1 < 3. Before

this, we introduce the length function and the reduced form of an element in

Ww.

14



Definition 4.5. Let S = {s1, s2, s3} and W be the Coxeter group associated
with (S, m). For each w € W, let r be the smallest integer such that

7 /
"LU—SlSQ"'Sr

for some s, € S. r is called the length of w, denoted by ¢(w), and call any
expression of w as a product of r elements of S a reduced form. By convention,
¢(1) =0, and ¢(s) =1 for s # 1 and s € S. Note that for any reduced form

sish---sh, siF#si g forie {1,2,...,r —1}.
Proposition 4.6. For 1 <¢ <3, H,, generates Wk,

Proof. We provide the case ¢ = 1, and the remaining can be done by sym-
metry. By Proposition 4.4, H,, W, .
To prove W., C (Hy,), we pick u & We;. We show u € (H,,). Proved by
the length ¢(u) of w. This is clear when £(u) = 0 since u = 1 in this case.
By induction, assume that u'& (Hsyif ¢(u) < k — 1. Suppose {(u) = k
and u = 84,84, -+ 85, € We, in a reduced form, for some s;; € S. We divide

the argument into two cases: i, = 2 or 3 and the other case 7, = 1.

Casel Suppose s;, = sz(or sa,). We choose o = s3 € H,, (resp. sy € Hy,.)
Thus, ¢(ua) < ¢(u), and we have ua € (H,). Hence uaa™' € (Hy,)
ie. ue (Hy).

Case2 Suppose s;, = s1. Clearly i), # 1 since s; ¢ W,,. Now we discuss two

cases s;, , = sp and s;,_, = S3.

1. Suppose s;,_, = s2. Note that sqosy ¢ We,, since the first column
of the matrix 0*(s9s1) is not e;. Hence & > 3. Then s;, , = s1 or

S3.

15



(a) Suppose s;,_, = s1. We choose av = s5 € Hy,. Then

uor = (84 +* -+ Siy_5515251) 8152515251
= i, " Si,_, 5251
Since sa = 5152518281 in the Coxeter group W. Thus £(ua) <
l(u),uc € (Hy,). Hence u € (Hy, ), since a~! € (Hy,).

(b) Suppose s;,_, = s3. We choose o = 5152835251, € Hs,. Then

ue = (i, -+ Siy_,535251)5152535251
= Sj, " Si,_45251.
Thus ((ua) < l(u),ua € (Hy,) = u € (Hy,).
2. Suppose s;, , = s3. Thisiean'be done similarly by replacing s, by
s3 in the above proof, and notice that s;$9535981 = 51583528351 in

the Coxeter group Ws.

Definition 4.7. For a subgroup G C W, let G be the set of elements of
length ¢ in G. In particular, we list the elements of Weij for 0 <1 <4,1<

j < 3 as following table.

Table:
7: Well WGZQ Welg

0| {e} {e} {e}

1| {s2,s3} {s3,51} {51,892}

2 | {s983,5382} | {s351,5183} | {s152, 251}
3| {s28352} {s35153} {51521}
410 0 0

16



From the above, VVei2 can be obtained from VVei1 by replacing 1 with 2,
2 with 3 and 3 with 1. In the same way, W/, can be obtained from W¢ by
replacing 1 with 3, 2 with 1 and 3 with 2. We may use W! NW; NW, to find
the set of element of length ¢ in W to fix {eq, 5, e3}. In addition, we may prove
that Wé = (), for j = 1,2,3. Assume that e¢; = ¢; and I/Vf1 # (). Then there
is a s;5;555; satisfying (s;s;5x5¢)er = e; and any adjacent s;, s; are distinct.
Then (s;skst)er = e1 + e +e3 and s; = s1. That is, (sgst)er = ey, e # e; for
sy = s1; otherwise (s;ss:)e1 # e1 + e2 + e3. Thus (s;sps;)er = e1 + e2 + e,

for s; = s;, contradiction.

Definition 4.8.
H = {(s;5;8:5;)% | for distinet 1,7, t € {1,2,3}}.

In particular, |H| = 3 since s;sjs; = $78;5; in the Coxeter group W for

distinct 4, j € {1, 2, 3}.

Theorem 4.9. G = W, NW,, "NW,, is the normal subgroup of W generated
by the set H.

Proof. First we prove that GG is generated by the set H. By the group action
of W on F3, then we can easy to check that H is contained in W, NW,, NW,,.
Thus, H C G.

To prove G C (H), we pick w € G. We show w € (H). Proved by the
length ¢(w) of w. This is clear when ¢(w) = 0 since w = 1 in this case. For
any element w of length, {(w) € {1,2,3,4} one can check that w ¢ G by

above Table. So we have known the assertion holds for ¢(w) < 4.
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By induction, assume that w € (H) if /(w) < k—1. Suppose f(w) =k > 5
and w = s;,8;, -5, € G in a reduced form, for some s;; € S. For any
i€{1,2,3}, welet s;, =s; thens;, |, =s;ors;, wherej #t e {1,2,3}—{i}.
By symmetry, we may assume s;,_, = s;. Then we divide s;,_, - - - 55, _, s, into
the following 8 cases: (1)s;5;5:5;Si, (2)515;5:i5;i, (3)8i5¢5:5;Si, (4)575¢5:i5;Si,
(5)s;8i518;Si, (6)s15i518;8i, (7)sis;518;8i, (8)si8;8¢8;8;, for distinct 4, j,¢ €

{1,2,3}.
(1) Suppose s;,_, -+ Si,_,8i, = 5i5;58:;5;5;. We choose a = e € (H). Then

wa = we
_ 3
= 51'1 * el Sik_58i8j8i8j5i(5i8j)
=584 == Sik_55j3i8j-
Since (s;5;)* = e in the Coxeter group W: Then, ((w) = £(s;, - - - 8i,_.$j8i8;) <
{(w), contradiction. Thus, S;;:y=8i, # 5,5j5:5;S;.
For the case (2), we may use the same way to prove that s;,_,---s; #

515585555

_ _ 2
(3) Suppose si,_, - Si,_,Si, = SiSt5:8;S;. We replace a = (s;5;5;5;)° €
(H). Then
_ 2
wo = Si1 s Sik_53i3t3i3j3i(Sisjsist)
= S " Sik,55j5i5t'

Thus, l(wa) = U(s;, -+ Si,_.5;8i5:) < {(w). Then wa € (H). Hence

w € (H), since ™t € (H).

(4) Suppose s, _, - Si,_,Si, = S;jSt5:5;8i. We replace o = (s;5;5;8,)% €
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(H). Then

2
WO = Sy ++ Siy_55j515i5;8i(575:5;5¢)
_ 3 2
= Siy -+ Si,_58;515:575:(5i5;)7(5;5:5j5¢)

= Sil e Sik_53i5j3t'

Since (s;8:5;81)% = (8i87)%(s;si8;8:)% in the Coxeter group W. Thus,
l(wa) = U(si, - - si,_.5i5j5¢) < {(w). Hence w € (H).
(5) Suppose si,_, - Si_ S, = $jSi15;8;. We replace a = (s;8;8:8;)? €
(H). Then
wa = 8+ - sik%sjsistsjsi(sisjstsj)z

= iy 280, 28751545 5i(5i8;515;515j5155)

= it 1Si e85, 9i(8i57515:518i5t5;)

= Siy, * - SigisSiSESi-
Since (s;s58:5;)% = ((sj5858:)?)™F € (H) and s;s;s; = s;5;8; in the
Coxeter group W. Thus, {(wa) = (s, -+ Si,_;5i55;) < £(w). Hence

w e (H).

_ _ 2
(6) Suppose si,_, - Si_,Si, = St5i5t5;8;. We replace a = (s;8;8;8)° €
(H). Then
_ 2
WO = Sy + Sy St5i5¢575:(5i8Si5¢)
= Siy + Sip_sSt5iS15;Si(5iSjSiS15iSjSiSt)
“ S, 515i5¢575i(515;515:515S:5¢)

=S8 Sik,sSjSist-
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Since s;5;5; = s;5;5; in the Coxeter group W. Thus, {(wa) = €(s;, - - S, _.8;8:i5t) <

{(w). Hence w € (H).

_ _ 2
(7) Suppose si,_, - Si,_,Si, = SiS;5t5;;. We replace o = (s;5;5.5;)° €
(H). Then
_ 2
WO = Sy -+ Sy 55i8;515;5i(8i5;5155)
= 51'1 e Sik_53j3t5j-
Since (s;8;5:8;)% = ((8;8¢8;8:)?) " € (H) in the Coxeter group W. Thus,

l(wa) = L(si, -+ si,_.Sj5t55) < L(w). Hence w € (H).
(8) Suppose s;,_, - Sip_,Si, = St5j515j5;. We replace a = e € (H). Then

wo = we

= Sil A\ 1 Sik_55j3t3i-
Since e = s;(s;5¢)%s; in the Coxeter group W. Then, (w) = €(s;, -+~ 84, _.Sj58;) <

{(w), contradiction. Thus, s;,_, - - i, F 5:5;5:5;5i.

Next we need to prove that G is normal in W. Recall o* : W — GL(VY) is
a monomorphism and W acts on F3 by w-u = o*(w)u (mod 2) for w € W

and u € F3. Let x € G,w € W. Then for any i € {1,2,3}

wlrw - e; = o*(wlzw)e;  (mod 2)

o*(w Ho*(x)o*(w)e;  (mod 2)

o*(w Ho*(w)e;  (mod 2)

€;.
Since z € G = W, N W, N W,, = o*(x) fixes any vectors in F3. Thus,

wlzw € G. O
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Remark 4.10. By Theorem 4.9, we may discover some relations in the group

W/G as follows. For distinct i,j,t € {1,2,3}.
(1) i5;jSiSt = SjSiSjSt = $15i5;S;.
(11) 8i5;515; = SjSt5;Sj = 515;5S¢.

Then we have the following Cayley graph Cay(W/G,{s1, s2,53}) of group
W/G with respect to S has vertex set W/G and edge set {g(gs) | g € G,s €
St.

S$1828183
S$382S81 435150

§25183

§1835152

51528382

S$18382

5183

528382

381

S3

Figure 3. The Cayley graph Cay(W/G, {s1, s2, s3}).
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