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Hadamard Operations on Totally
Nonnegative Matrices

Student : Chih-Chia Lin Advisors : Dr. Chih-Wen Weng

Department ( Instituteé ) of Applied Mathematics
National Chiao Tung University

ABSTRACT

In this thesis we are concerned with the properties of totally nonnegative
( resp. positive ) matrices. An m-by-n-entry-wise nonnegative matrix is totally
nonnegative (resp. positive) if the determinant of any square submatrix is
nonnegative (resp. positive). A totally nonnegative matrix plays an important
role in various mathematical branches. The primary propose here is to introduce
the basic properties of nonnegative (resp. positive) matrix and to collect the
known results in matrix theory with the totally nonnegative (resp. positive)
property involved. We will recall the relation between Hadamard product and
the positive semidefinite property, and study the relation between Hadamard
product and the totally nonnegative (resp. totally positive) property. Furthermore,
we also discuss the eventually totally positive property.
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1 Introduction

A matrix is totally nonnegative (resp. positive) if the determinant of any
square submatrix is nonnegative (resp. positive). For example, a Vander-
monde matrix whose rows are positive and increasing is a totally positive
matrix. Hence it is safe to say that everywhere a Vandermonde matrix is
applied, so is a totally positive matrix.

In the 1930s, F.R. Gantmacher and M.G. Krein developed the theory of
totally nonnegative matrices connecting with vibrations of mechanical sys-
tems. Then, important instances of totally nonnegative matrices are provided
by green functions of certain differential operators. Besides, the theory of
total nonnegativity connecting with-the variation diminishing properties of
matrices was developed by I.J..Schoenberg, which-leads to spline theory.

Then, the following researcher was S. Karlin-who started to demonstrate
in multitudinous publications in the late 1950s on the subject the breath of
application and depth of mathematical importance of total nonnegativity.
Affected by Karlin, many authors get-the motivation to explore the appli-
cation of total nonnegativity to approximation theory, analysis, statistics,
biology, and geometric modeling [9].

In this paper, we organize the basic properties of totally nonnegative
and totally positive matrices. The fundamental material is mainly obtained
from [3, 10, 6, 1]. This paper is divided into eight sections. Section 1 is

introductory. Section 2 contains the definitions and notations used in this



paper. In the section 3, we investigate the properties of the matrices whose
principal minors are nonnegative and prove the Schur Product Theorem.
In the section 4, we give some notations and examples for the Hadamard
product of two totally nonnegative matrices. In the section 5, we describe
some property of Hadamard core and find which matrices is in Hadamard
core. In the section 6, we describe the core for bidiagonal and tridiagonal
matrices. In the section 7, we present relations between Hadamard power and
determinant for a nonnegative matrix. In the last section, we set up and prove
some theorems about eventually totally nonnegative property and eventually
totally positive property. Furthermore, we characterize the relation between
totally nonnegative property and eventually totally positive property. Most

of the results in this paper eanbe found in [4,5}.

2 Preliminaries

A nonnegative matrix is amatrix with all its entries nonnegative. For some
reference of nonnegative matrices; please see [2, 7|. The Hadamard product
of two m-by-n matrices A = [a;j] and B = [b;;] is denoted and defined by

Ao B = [a;;b;], i.e., an entry-wise product.



Suppose A,B,C are matrices of the same size and ) is a scalar. Then

AoB = BoA,
Ao(Bo(C) = (AoB)oC(,
Ao(B+C) = AoB+ AoC(,

AMAoB) = (M)oB=Ao(\B).

The ¢-th Hadamard power of A = [a;;] for any ¢ > 0 and A > 0 (entry-wise
nonnegative) is defined by A® = [al].

The Hadamard product and Hadamard power play a central role within
matrix analysis and its applications. Here we assume that all matrices are
entry-wise nonnegative.

For an m-by-n matrix ‘A,’a C {1,2;:¢.,m};and 8 C {1,2,...,n}, the
submatrix of A lying in rows with indices in a and the columns with indices
in 4 (in the arithmetic order). Let Afa’| f] be the submatrix of A. Further-
more, let A(a | 5) be the-submatrix obtained from A by deleting the rows
indexed by « and columns indexed-by.3-The principal submatrix A« | o]
is abbreviated to A[a], and the complementary principal submatrix A(« | «)
is abbreviated to A(a). Moreover, we denote Ala | -] as Ala | {1,2,...,n}]
and A[- | 5] as A[{1,2,...,m} | f].

A minorof a matrix A is the determinant of the submatrix Ala | (], where
Ala | 4] is a square matrix. The determinant of Al | ] is called a principal

minor. If the indices of a and [ are contiguous, then the determinant of

Ala | 5] is called a contiguous minor.



An m-by-n matrix A is called totally nonnegative (resp. totally positive),
if all minors of A are nonnegative(resp. positive). We use T'N (resp. T'P) to
denote the set of all totally nonnegative (resp. totally positive) matrices. And
we use TNy, (resp. T P;) to denote the set of matrices whose j-by-j minors
are all nonegative (resp. positive) for 1 < j < k. In particular, T'N; is the
set of matrices with nonnegative entry. We use T'N," to denote the set of all
square T'N, matrices whose 2-by-2 principal minors based upon consecutive

indices are positive. Hence TP C TP, C TN, .

3 Schur Product Theorem

Here we want to recall the Schur Product Theorem (see[8]) and its proof.
The theorem relates positive semidefinite matrices to the Hadamard product,
which plays a central role in the analysis of the determinants of matrices.

Here we assume that all'matrices have real nonnegative entries.

Now we introduce some notations. The transpose of a matrix A is denoted
by AT. A square matrix is called symmetric if it is equal to its transpose.

That is, A = A”.

Definition 3.1. If A is an n-by-n symmetric matrix and Q(z) = 27 Az > 0
for any non-zero vector x € R", then A is a positive semidefinite matriz.
Note that all eigenvalues of a positive semidefinite matrix A are nonnegative

and all principal minors of A are nonnegative.



Here we collect some properties about positive semidefinite matrices to

prove the Schur Product Theorem.

Lemma 3.2. Any n-by-n rank one positive semidefinite matriz A can be

written as the form A = xx® where x is a column n-vector.

Proof. Let A be an n-by-n rank one positive semidefinite matrix. Since A
is positive semidefinite, there exists an orthogonal matrix U made up of

orthonormalized eigenvectors of A such that

A 0
0
A = U ur
0 0
- )\1U1U{,

where w; is the first column of U. We choose & = y/\;u;,and then A = z27.
O

Lemma 3.3. If B is an n-by-n.positive semidefinite matrix with rank r, then
there exists r positive semidefinite rank one matrices By, Bo, . . ., B, such that

B:Bl—i-BQ—i——f—Br

Proof. Let B be an n-by-n rank r positive semidefinite matrix. Since B

is positive semidefinite, there exists an orthogonal matrix U made up of



orthonormalized eigenvectors of B such that

A 0

0 0

= /\lulur{ SR W R 5

T

where u; is the i-th column of U and A\, > 0 for 1 < k < r. We choose
B; = \iu;ul then B = By + By + -+ - + B,. Note that ); is the only positive
eigenvalue of B;.

Let Dy, be the diagonal matrix whose only nonzero entry is [Dy|px = A,
B, = UD,U”. Since A\, >0 forall 1 <k <, then D, is positive semidefi-

nite for all 1 < k < r. Now consider z” B;z for any.« € R", then

I Bran= 2zTUDU %
= (U Dy (U )

> 0.

This is true for all 1 < k <7 and so By, is positive semidefinite for all k. O

Note that the converse of Lemma 3.3 also holds.



Lemma 3.4. If B is an n-by-n rank r matriz and suppose B = By + By +
---+ B,., where B;’s are rank one positive semidefinite n-by-n matrices. Then

B itself is positive semidefinite.
Proof. By the Definition 3.1 and note that for all x € R,

2'Br = 2" (By+By+---+ B))x
= 'Bizx+2"Byx+---+2"'B,x

> 0.
0

Theorem 3.5. (Schur Product Theorem) Suppose A and B are two n-by-n
positive semidefinite matrices. Then the Hadamard product of A and B is

also positive semidefinte.

Proof. Let A and B be two n-hy=npositive semidefinite matrices. There are
three cases to consider. First;suppose rank(B)=0. This implies that B = O,
and therefore A o B =70, which is clearly positive semidefinite. Second,
suppose rank(B)=1. Then B can be written as/the form B = zz” for some
vector z € R™. Then [A o Bl=[4];;[Blii=[Al;;[x]:[z"];=[D+AD,];;, where
D, is the diagonal matrix with x in the diagonal. Now we prove that D, AD,

is positive semidefinite. Note that, for any v € R"
vI'D,AD,v = vTDfAva
= (D))" A(Dyv)
> 0,

since A is positive semidefinite. This proves that D, AD, is positive semidef-

inite. Finally, suppose that rank(B)=r for some 1 < r < n. Then B =

7



By + By + -+ + B,, where the rank of B; is one for 1 < ¢ < r. Then

AoB=Ao(By1+By+- -+ B.)=Ao B+ Ao By+---+AoB,. Since each Ao B;

is positive semidefinite, then A o B is positive semidefinite by Lemma 3.4.
Therefore, if A and B are two n-by-n positive semidefinite matrices, then

the Hadamard product of A and B is also positive semidefinte. O

4 The Closeness of Hadamard Product and

Hadamard Power

In this section, we prove the closeness of T'Ny(resp. T'P,) under Hadamard
product and Hadamard power. Furthermore, we also give some counterexam-
ples to show T'Ny, and T P, arenot-generally ¢losed under Hadamard product

and Hadamard power for. k > 3.

Theorem 4.1. If A, B« TNy (resp. TPs), then Ao B € TNy (resp. TP;)
and AY € TNy (resp. TRy) for-allt >.0.

Proof. Let i i
a b
Al =
c d
and _ -
e
B, = /
g h

be arbitrary 2-by-2 submatrices in the same site of A and B respectivity.

Here a,b,c,d,e, f,g,h > 0 and det(A;) > 0 (i.e. ad > be), detB; > 0(i.e.



eh > fg). We consider the matrices

ae bf
AloBlz
cg dh
and
topt
W | @ b
A= toogt
¢ d
Then
det(A; 0 By) = aedh—bfcg
= (ad)(eh) — (be)(fg)
> 0
and

det(AV) ="atdt = v'ct
= (ad)’ —(be)"

>0

Since Ay, By are arbitrary, so we have Ao B € TNy and A® e TN, for all
t > 0. Similarly the T'P, case also holds. O

Note that, from the proof above, we know that if A,B € TN,, then
Ao B € TN,. But Ao B in T'Ny does not imply that A and B are both in
TN>.



Example 4.2. Let

2 3
A—
11
and
5 3
B—
2 2
Then A ¢ TN and B € TN, but
10 9
AoB =
2 2

isin T'N.

We know from Lemma 4.1, if A, B € TN, (resp. TFP,), then Ao B € TN,

(resp. T'P;). However T'N}, and T'By-are not generally closed under Hadamard

product when k& > 3.

Example 4.3. Let

and

be in TN. Note that

4 2 0
AoB= 12 4 9

09 25

10



is not in T'N, since det(A o B)= —24 < 0. Similiarly (see [5]), let

1 11 22 20
6 67 139 140
16 182 395 445
I 12 138 309 376 |

Then A can be checked to be in TP. But det(A®) = —114904113, so A®
is not in T'P.

5 Hadamard Core

In previous section, we see that the set T'N is:not closed under Hadamard
product. Our interest here is to characterize a subset of TN which is closed

under Hadamard produet.

Definition 5.1. For T'N.and T'Nj, the corresponding Hadamard cores are

defined as follows:
CTN:={Ae€TN : BETN=AoBeTN}

and

CTNy = {AGTNk : BGTN]C:>AOB€TN]€}

Let a > 0 and J,,,x, be the m-by-n matrix with all entries 1. Then al,
and a.J,,x, are clearly in C'T'N. We discuss the properties of the Hadamard

core further.

11



Lemma 5.2. TNy = CTN;s.

Proof. Suppose A € T'N,. Since the T'Ns is closed under Hadamard product,
by Lemma 4.1 we have Ao B € TN, for all B € T'N,. It follows that A is in
CTN,. For the converse, if A € C'T'Ny then from the Definition 5.1 we know
A € TN,. O

Lemma 5.3. [}/ If A CTN and B € CTN, then Ao Be€ CTN.

Proof. Let C' be any m-by-n T'N matrix. Then BoC' € T'N since B € C'T'N.
Hence Ao (Bo(C) € TN. Since Ao (BoC) = (Ao B)o(C, We have that
AoB e CTN. O

Lemma 5.4. If A€ CTN, then AY € CTN for allt € N.

Proof. f A € CTN, then Ao B € T'N for any B € T'N. We prove this by
mathematical induction. “If # =1, this is trivial true. Suppose ¢ = k holds.
Consider the case t = k4 1. A*+t o B=(A® o A)o B =A% o (Ao B). Since
A € CTN and by the induction hypothesis; A*#6 B ¢ TN. We conclude
that A® € CTN for all t' € N. O

In the following Lemma, we show that the property of being in the con-
cerned sets or not is not influenced by multiplicating a positive diagonal

matrix.

Lemma 5.5. Multiplicating by positive diagonal matrices at the left or right
side does not affect the property of a matrix A being in TN, TP, or CTN.

Proof. Let D, E be two positive diagonal matrices. Consider the matrix

DAE[« | f] where o = {ay, -+ ,ar}, 8 = {b1, - ,bx}. If A € TN, then

12



det(DAFE[« | B])=(TTF_; Dg,a, Epp;) -detAla | 8] > 0. Since DAE[a | 3]
is arbitrary, DAE is in TN. If A ¢ TN, there exists a minor Afa |
B#] < 0 where o' = {a},---,a,}, 8 = {by,---,b.}. Thus det(DAE[a |
ﬁ/]):(HleDa;a;Eb;b;) -detA[a’ | 3] < 0. Similarly, the T'P case also holds.
If A € CTN, we know the Hadamard product of A and B is in TN
for B € TN. Consider the matrix (DA)o B, (DA)o B = Ao (DB) where
DB € TN. It is followed by that Ao(DB) € TN and DA € CT'N. Similarly,
multiplicating by positive diagonal matrices on the right side does not affect
the property of being in C'T'N.
U

For z = [z;] € R", let diag(z) denote the n-by-n diagonal matrix such
that [diag(z)]i; = x; and [diag(x)};; = 0 ford #j. Next, we discuss the rank

one totally nonnegative matrices.

Theorem 5.6. Let A be-an n-by-n rank one matriz. Then the following are

equivalent.
(1) A€ TN;
(ii) A= zyT for some nonnegative column vectors;
(iii) A€ CTN;
(iv) A€ TNy.

Proof. Let A; denote the i-th row of A. Since rank(A)=1, there exists a
ke {1,2,---,n} such that A; = ¢; Ay where ¢;’s are constants. In particular,

¢ = 1. Let yI = A, and x be the column vector such that z; = ¢;. Then

A =zy”.

13



(1) = (i) Since A € TN, then all entries of A are nonnegative. We can

further assume that all entries of z and y are nonnegative.

(17) = (i17) Let D=diag(x), E=diag(y) and J the all 1’s n-by-n matrix. Note
that A = DJE. Hence the (iii) follows since J € CT'N and by Lemma 5.5.

(1ii) = () If A€ CTN, it is clearly A € T'Nj.

(iv) = (i) Since rank(A)=1, then detA[a | 5] = 0 when |a| = |B| > 2. It is
clearly that A € TN.
0

Theorem 5.7. Let A be an n-by-n rank two matriz. Then the following are

equivalent.
(1) A€ TN;
(1) A € TNy;
(i1i)) A € CTNs.

Proof. (i) = (ii) It trivially holds by the definition of T'N.

(17) = (i) Since A € TNy, A is nonnegative and all 2-by-2 minors of A
are nonnegative. To show that A € T'N, it suffices to check all the k-by-k
minors of A for 3 < k < n. Consider Al | f] for o, 5 C {1,2,--- ;n} and
la] = |G| = k > 3. Since rank(A) = 2, rank(Afa | 5]) < 2. It follows that
det(Afa | 8]) = 0. Thus we can conclude that A € T'N.

(17) <= (7i7) This equivalence holds by Lemma 5.2. O

14



6 The Hadamard Core for Bidiagonal and Tridi-

agonal Matrices

In this section, we describe the closeness of bidiagonal and tridiagonal ma-
trices under Hadamard product. Furthermore, we show that the positive

semidefinite tridiagonal matrices are in T'N.

Definition 6.1. Let U be an n-by-n matrix with non-zero entries along the
main diagonal and the super-diagonal. This kind of matrices are called upper

bidiagonal. That is, U is a matrix of the form

aq b1 0
a9 bg
U— as _bs
Up—1 bn—l
0 Qn,
L d nxn

Let L be an n-by-n matrix with.non-zero entries along the main diagonal and
the sub-diagonal. This kind of matrices are called lower bidiagonal. That is,

L is a matrix of the form

ay 0
bi ay
I — bg as
bn—2 Qp—1
0 bnfl Qp,
L d nxn

15



If an n-by-n matrix A is upper bidiagonal or lower bidiagonal matrix, then A

is bidiagonal matriz.

Definition 6.2. A square matrix 7" = [t;;] is called tridiagonal if ¢;; = 0

whenever |i — j| > 1. Thus a tridiagonal matriz has the form

b1 C1 0
aq bg Co

as bs C3

Ap—2 bnfl Cn—1

0 an—1 bn

- nXxXn

The following theorem describes_the relation of tridiagonal matrix and

totally nonnegative property:

Theorem 6.3. [}/ Let T-be an n=by-n nonnegativetridiagonal matriz. Then

T is totally nonnegativeraf and only if T -has nonnegative principal minors.

Proof. 1t T is totally nonnegative, then by the definition of totally nonnega-
tive property, 1" is an entry-wise-nonnegative matrix with nonnegative prin-
cipal minors. For the converse, suppose T is an n-by-n tridiagonal matrix
with nonnegative principal minors. We want to show that all non-principal
minors of T" are also nonnegative. We prove this by mathematical induction.
Let T" = [t;;] and T" = Tlov | 8] with o # . If n = 1, this is trivially true.
Suppose n < k holds. Consider the case n = k. Let o = {ay, as, -+ ,a;} and
B = {by,ba, -+, b} be the indices of rows and columns in 7. There are three
cases to consider. If a; < by, then t;; = 0 for all 2 <4 < k. Thus det(T")
= t}, - det(T'(1)) > 0 by the induction hypothesis. If a; > by, then t;, = 0

16



for all 2 <4 < k. Thus det(T") = ¢}, - det(T'(1)) > 0 by the induction hy-
pothesis. If a; = b; for 1 < <[ and a;41 # byyq for some 1 <[ < k—1, then
either T[{ab”' a&l} ’ {lerla"' 7bk}] or T[{alJrla"' a&k} ’ {bb”' 7bl+1}] 18

zero matrix. The matrix is a block triangular matrix and by the induction
hypothesis, det[T"] > 0. We complete this proof.
O

Corollary 6.4. If T is an n-by-n entry-wise nonnegative bidiagonal matrix,

then T' € T'N.

Proof. If T is an n-by-n entry-wise nonnegative bidiagonal matrix, then it is
also a tridiagonal matrix with nonnegative principal minors. By Theorem 6.3,

T eTN. O

Theorem 6.5. Let T be an n-by-n-bidiagonal matrixz. Then the following

are equivalent.
(i) T € TNy;
(i1)) T € CTN;

(i) T € TN.

Proof. (i) = (ii) Let T be an n-by-n bidiagonal matrix and 7' € T'N;. For
any n-by-n matrix B € T'N, T o B is still an n-by-n bidiagonal matrix and
T o B € TN;. By Corollary 6.4, we can conclude that T' € CTN.

(17) = (1) It follows trivially from the definition of Hadamard core.

(i#i) = (i) Since TN € TNy, T € TNj.

17



We relate the totally nonnegative property in tridiagonal matrix via its

eigenvalues.

Corollary 6.6. Let T be a nonnegative symmetric tridiagonal matriz. If the

eigenvalues of T are nonnegative, then T € T'N.

Proof. Let T be a nonnegative symmetric tridiagonal matrix and A\, Ao, - -+, A,
be the eigenvalues of T'. If \; > 0 for 1 < ¢ < n, then T is a positive semidefi-
nite matrix. That is, T"is a nonnegative tridiagonal matrix with nonnegative

principal minors. By Theorem 6.3, T" is totally nonnegative. U

Here we give a counterexample to show that a nonnegative semidefinite

matrix is not generally totally nonnegative.

Example 6.7. Let
bl 3 %

A=12 21
2 1 2
Note that A is a nonnegative semidefinite matrix, but A ¢ TN since det(A[{1, 2} |

{2,3}]) = —2.

7 The Matrices Eventually of Positive Deter-

minant

Here we consider the matrices whose sufficiently large Hadamard power have

positive determinant. We list some sufficient conditions for these matrices.

18



Definition 7.1. An entry-wise nonnegative matirx A is called eventaully of
positive determinant if there exists a number 7' > 0 such that detA® > 0 for
allt > T.

Definition 7.2. We call a nonnegative square matrix A = [a;;] normalized

dominantif a; = 1, for i =1,2,--- ;nand 0 <a,;; <1, for i # j.

Definition 7.3. Two nonnegative matrices A and B are diagonally equiva-

lent if there exist positive diagonal matrices D, E/ such that B = DAEFE.

We want to show that a square matrix in TN, is eventually of positive
determinant. This is obtained by Fallat and Johnson in [5]. We follow
their idea but complete the details to rewrite the proof. We begin from the

following Lemmas.

Lemma 7.4. [5] If A is an-n-by-n-matriz and A€ TN, , then A is diagonally

equivalent to a normalized dominant matrix.

Proof. Suppose the diagenal, the super- and sub- diagonal entries of A are all
positive. Hence there exists a positive diagonal matrix D such that B = DA
and B has ones on its main diagonal..Let £ = [f;] be a positive diagonal

matrix defined by choosing any positive number f;; and recursively applying

by,
2 2 J(k+1)
Fkt1), (k1) fk,kib(lwrl)’k

Let C' = [¢;] = FBF~!. Then C has symmetric tridiagonal part and ¢; = 1
for all i. Since C' € TN, it follows that 0 < ¢;;41 < 1, for each i =
1,2, ,n—1.

Claim: ¢4, <1lfork=2,3,--- ,n—1

We prove this by induction on k.

19



(1) Fork =2, det(C[{e, i+ 1} | {id1, i42}])=Ci (1) C(0+1),(14+2) —Ci,(14+2) Cli+1),(i+1)
0 since C' € T'N,
We know that cgi1),+1) = 1 and 0 < ¢; (541, C41),6i+2) < 1, hence we

have 0 < Ci(i+2) < 1.
(2) Suppose 0 < ¢; i) < 1 for 2 <k <p.

(3) For k& = p. Consider det(C[{i,i +p — 1} | {i +p — 1,i + p}|)=
Ci (i+p=1)C(ip—1),(i+p) ~ Ciy(i4p) Clitp-1),(i+p—1) = 0 Since 0 < €iiyp-1) <1
by the induction hypothesis, and we know that 0 < c(ijp—1),(i+p) < 1
and ¢(j1p—1),(i4+p—1) = 1, we have 0 < ¢; (4 < 1.
In a word, all of the entries above the main diagonal are strictly less

than one.

Similarly, consider the entries below the main diagonal of C'. We can conclude

that C is a normalized dominant -matrix.

Suppose A has at least one zero in the super- or sub- diagonal entries of A.

We verify this case by induction on n.

(1) For n = 1, it is trivial.« For-m-=-2; suppose A is lower-triangular.

a 0 1 1 0
Then A = . Let D = | a and F = 1 for
b ¢ 0 € 0 —
ce
0
some sufficiently small € > 0. Then DAE = is a normalized
eb 1

dominant matrix. Similarly, the lower-triangular case also holds.

(2) Suppose that the statement holds when n < m.
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(3) Consider the case of n = m. Since A € TN, is an m-by-m matrix with
at least one zero in the super- or sub- diagonal. Suppose the zero entry
occurs in the super-diagonal of A, that is a;;1; = 0 for some 7 with
1 <i<m-—1. Since A € TN, all of the main diagonal entries of A
are positive. For any i4+2 < j < m, consider the submatrix A[{7,i+1} |
{i+1,7}]. Then det(A[{,i+1} | {i+1,7}]) = @iiv10ir1j— i jQiv1,i41 >
0. Since a;;41 = 0 and a;41,41 > 0, we can conclude that a;; = 0.
Furthermore, for any 1 < k <1, 74+ 1 <[ < m, consider the submatrix
A[{k,i} | {i,1}]. Then det(A[{k,i} | {i,1}]) = agay — ara; > 0, since
a; = 0 and ay; > 0, we can conclude that a,; = 0.

A 0

In a word, A must be in the form A = , where Ay is i-by-1
Ay As

and Az is (m — 1)-by-(m—1), and both‘A4; and Az are in TN, .

By induction, both Ay and A3 are diagonally equivalent to a normalized
dominant matrix. .Let: By = DA Fy, By = D3A3F5 be two normal-
ized dominant matrices where Dy, E4, D3, F)5 are all diagonal matrices.

Then
Dl 0 A1 0 E1 O Bl O
0 D3 A2 A3 0 E3 D3 AQ E1 Bg

For proper small ¢ > 0,

I 0 B 0 I 0 By 0
0 el D3A2E1 Bg 0 E_II €D3A2E1 Bg

Since € > 0 and small, so the entries of eD3A,F, are positive and less

. Dl 0 E1 0
than one. By choosing D = , B = , DAE
0 €Dy 0 671E3
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is normalized dominant. Similarly, the case that the zero entry occurs

in the sub-diagonal also holds.
O

Lemma 7.5. [5] If A is an n-by-n normalized dominant matriz, then A is

eventually of positive determinant.

Proof. Since A is an n-by-n normalized dominant matrix, the off-diagonal
entries of A% tend to 0 as t increases, and so det(A®) tend to 1 as ¢ increases.

Hence there exists a T > 0 such that det(A®) > 0 for all t > T O

Diagonally equivalence ensures the invariance of being eventually of pos-

itive determinant.

Lemma 7.6. If A is an n-by-n matriz that is diagonally equivalent to a
eventually of positive determinant matriz, then A is eventually of positive

determinant.

Proof. There exists positive diagonal matrices' D, E,and T" > 0 such that
B = DAE, and there exists a T > 0 such that det(B®) > 0 for all t > T.
Note that

det(BYW) = det((DAE)Y)
= det(DWAYEW)
= det(DW)det(AD)det(EY),

and we have

det(B®)

= det(AD).
det(D®)det(ED) et(A")
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Since det(B®), det(D®) and det(E®) are all positive, then det(A®) is

positive. So we conclude that A is eventually of positive determinant. O
Theorem 7.7.

Proof. By Lemma 7.4, A is diagonally equivalent to a normalized dominant
matrix B. Additionally, by Lemma 7.5 and Lemma 7.6, A is eventually of

positive determinant. O

8 Eventually Totally Nonnegative Matrices
and Eventually Totally Positive Matrices

The purpose of this section is to.set-up and characterize the eventually totally
positive property. We show that totally positive property is closely related

to eventually totally positive property.

Definition 8.1. An entry-wise nonnegative matirx A is called eventually

totally nonnegative (resp. eventually totally positive), if there exists a number

T > 0 such that A® € TN(résp. TP)forallt > T.

To check whether a matrix is in T'P, or not, it suffices to check the 2-by-2
contiguous minors. This is also brought up by Fallat and Johnson in [5]. We

rewrite the proof.

Lemma 8.2. Let A be an 2-by-n or n-by-2 entry-wise positive matriz such

that all the 2-by-2 contiguous minors are positive. Then A € T Ps.
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Proof. Consider the 2-by-n matrix A. There exists a positive diagonal matrix

D such that AD = B is in the form

1 1 --- 1
B =
xl x2 . e xn
Since multiplied by a positive diagonal matrix does not affect the positive 2-
by-2 contiguous minors property, we have that x;,; > x;, fori =1,2,... ,n—

1. Hence it follows that B is in T'P,, and by Lemma 5.5, A is in TP.

Similarly, the n-by-2 case also holds. O

Applying this Lemma, the following Theorem can be obtained.

Theorem 8.3. [5] Let A be an m-by-n entry-wise positive matriz such that

all the 2-by-2 contiguous minors.of A are positive. Then A € T'P;.

Proof. Consider the 2-by-2-matrix A[{aiyas} | {b1,b2}]. We want to show
that the corresponding minor is-positive. Consider the two consecutive rows
Al{i,i + 1} | ] in A. Then it is in 7P, by Lemma 8.2. In particular,
det(A[{i,i+1} | {b1,b2}])>.0. Thus A[--| {3, b2}] is an n-by-2 matrix whose
consecutive minors are positive:. By applyingl.emma 8.2 again, we have that
Al | {b1,b2}] is also in TP,. In ‘particular, det(A[{ay,as} | {b1,02}]) > 0.
Since the choice of {ay,as}, {b1, by} is arbitrary, then we conclude that A €
TPh,.

The following is a counterexample about 7T'N, case.

Example 8.4. Let
4 2 0 5

A=121 01
1 207
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Then all the 2-by-2 contiguous minors of A are nonnegative. Since det(A[{1,2} |
{2,4}])= -3 <0, A¢TN,.

O

The following well known Theorem shows that being of positive 2-by-2
contiguous minors is a sufficient condition for being eventually totally posi-

tive. See [5] for detail.

Theorem 8.5. ([5]) Suppose A is an m-by-n matriz. Then the following

statements are equivalent:
(i) A is eventually totally positive.
(it) A€ TP,

(1ii) A is entry-wise positive and-all 2-by-2 contiguous minors of A are pos-

itive.

Proof. (i) = (ii) Suppose A is-eventually totally. positive then clearly A
must have positive entries.Since the 2-by-2 minor in row {z j } and columns

Dl 5 Mgl by taking ¢-th

®)
{p, ¢} in AY is positive for some ¢, we-have.a;, a;, i ]p,

roots, this minor of A is positive. Since the 2-by-2 minor is arbitrary, then
AeTh,.

(1) = (iii) Since A € TP,, then A is entry-wise positive and all 2-by-2
minors of A are positive, so the 2-by-2 contiguous minors of A are positive.
(17i) = (1) Since A is entry-wise positive and all 2-by-2 contiguous minors of
A are positive, then Ala | 3] € TN, . By Theorem 7.7, Ala | 3] is eventually

of positive determinant. We conclude that A is eventually T P.
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Example 8.6. Let A be the following square matrix

8 3 2 1
2111
1 11 2

1 2 37

Note that A € TN, but A ¢ T'N since det(A[{2,3,4}]) = —1.
Corollary 8.7. If A € T'P, then A is eventually totally positive.

Proof. If A is in TP, then A must be in T'P,. By the Theorem 8.5, A is in
eventually TP. O

But A is eventually totally positive does notimply that A is in T'P.

Example 8.8. Let
v/ QG
2N\ 1896
€ L1
where € is a sufficiently small positive number. Then A is not in TP since

det(A) = —1 4 3%/2¢ — 4e? < 0. Consider the ¢-th power of matrix A,

1 32 ¢
AW — /2 4t ot
e 1 1
The 2-by-2 minors of A® are trivially positive and det(A®) = 4* — 2t — 3t +

6t — 4% > 0 for any t > 2. Thus A is eventually totally positive.
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