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薛丁格方程的 Strichartz 估計與 

長波短波交互作用方程式的半古典極限 

 

研究生：陳家豪                        指導教授：林琦焜 教授 

 

國立交通大學應用數學系碩士班 

摘        要 

    此篇文章分為兩個部分。第一部分主要討論薛丁格方程上的

Strichartz 估計，我們先從量綱分析的角度觀察不等式中指數對 

(p,q) 所需滿足的關係式，再給予嚴格的証明。從而結論在推導中可

允許的 (p,q) 符合量綱分析的結果。 

    第二部分討論長波短波交互作用方程式的半古典極限。首先利用

Madelung 轉換，討論方程式的流體結構與守恆律。再透過修正的

Madelung 轉換與能量估計，證明局部古典解的存在性與唯一性。最

後證明半古典極限解的存在性。 
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Strichartz Estimates for Schrödinger Equation and 

Semiclassical Limit of the Long Wave-Short Wave 

Interaction Equations 

 
Student: Jia-Hao Chen                       Advisor: Chi-Kun Lin 

 

Department of Applied Mathematics 

National Chiao Tung University 

 
ABSTRACT 

 

There are two parts in this paper. In part I, we discuss the Strichartz estimates on 

Schrödinger equation. First, we observe the restrictions on exponent pair (p,q) from 

the viewpoint of dimension. Then we also provide a rigid proof, and conclude that the 

so-called admissible pair coincides with the arguments of dimensional analysis. 

In part II, we study the semiclassical limit of the three coupled long wave-short 

wave interaction equations. First, we employ the Madelung transformation to discuss 

the hydrodynamical structures and the conservation laws. Then, we apply the 

modified Madelung transformation and energy estimates to justify the existence and 

uniqueness of the local classical solution. Finally, we prove the existence of the 

semiclassical limit of the solution. 

 

 

 

 

 

 

 

 

 

 

 

 



 iii  

誌誌誌誌                        謝謝謝謝    

    首先最要感謝的是我的指導教授林琦焜老師。老師總教我們如何培養直

觀，從最自然的角度看問題，以及老師有一套數學上的哲學思想，我想這對我們

在自然的探索上是一生受用的。老師在交通大學的開放式課程中還分享了很多學

習資源，包含影音課程與課程講義，在傑出研究之餘仍不忘在教學上努力，且其

無私奉獻的精神自然也是令人敬佩的。 

    還要感謝在碩士班教我實變的王夏聲老師。老師的上課方式是吸引人的，而

其具體表現在我在教室內座位與黑板的距離，學期初我坐在最後一排，到學期末

我坐在第二排(第一排往往是沒坐人的)。另外還要感謝江鑑聲老師，江老師是同

門師兄，待人和善親切，也多次來交大演講，其中讓我獲益良多。吳恭檢是同門

的博士班學長，不論在研討會上或是在私底下與學長的交談中都獲得相當多的寶

貴知識，其數學能力自然是不用多說的，往後出去也一定是位傑出的數學家。再

者要感謝蔡佳穎同學，佳穎與我ㄧ起在林琦焜老師底下學習，她的學習態度積

極、堅毅，是我最佳的學習夥伴。 

                此篇文章中所提及參考文獻的作者個個都是在該領域中偉大的人物，這些作

者提供了富饒的研究成果，指引著我學習方向，除了敬佩，特此也表達感謝之意。 

    楊雅如小姐也在我寫作期間幫我檢查英文語法上的問題，沒有她的幫忙，此

篇文章就不算完整。最後要感謝我的家人，從小家裡爸媽就很注重教育，不僅僅

在學業上，更是在待人處事上對我都有所期許，是家人成就了現在的我。 

    在學習的路上總覺得受之於人太多，在此也期許自己，當自己也有機會教育

別人的時候，你們都是我最好的榜樣，從你們身上所得到的再回報給其他人、下

一代。由衷感謝大家。 

 

 

 

 

 

 



 iv 

Contents 
 
PartI  Strichartz Estimates for Schrödinger Equation 
1 Introduction …………………………………………………………....................... 1 

2 Preliminaries ………………………………………………………………………. 2 

  2.1 Dimensional Analysis …………………………………………………………. 2 

  2.2 Decay Estimates, Other Inequalities ………………………………………….. 4 

3 Proof of Theorem 1.2 ……………………………………………………………… 5 

4. Remarks …………………………………………………………………………… 6 

 

Part II  Semiclassical Limit of the Long Wave-Short Wave 
Interaction Equations 

5 Introduction………………………………………………………………………… 8 

6 Hydrodynamical Structures and Conservation Laws ……………………………… 9 

7 Semiclassical Limit ………………………………………………………………. 13 

 

References …………………………………………………………………………. 25 



Part I

Strichartz Estimates for
Schrödinger Equation

1 Introduction

In the part I of this paper, we consider the solution of the initial value problem
for the nonhomogenerous Schrödinger equation in Rn

∂tu(t, x) = i∆u(t, x) + f(t, x) (t, x) ∈ [0, T ]× Rn, (1.1)

u(0, x) = u0, (1.2)

where T > 0, ∆ = ∂2
x1

+ · · · + ∂2
xn and f(t, x) is a real-valued function.

By Duhamel principle, the solution u to (1.1),(1.2) can be described as the
following integral equation

u(t, x) = eit∆u0(x) +

∫ t

0

ei(t−s)∆f(s, x)ds (1.3)

where the operator eit∆ is defined as

eit∆u0(x) =
(
e−4π2it|ξ|2û0(ξ)

)∨
=

e−
|x|2
4it

(4πit)
n
2

∗ u0(x). (1.4)

The main subject here is to earn more inequalities, known as Strichartz
estimates, from some existing decay estimates. We have the following results
[3, 17] to answer the above question. Before that, we introduce the notion of
admissible pair.

Definition 1.1. (1) We say that the exponent pair (p, q) is admissible if

n

p
+

2

q
=
n

2
(1.5)

and 
2 6 p 6∞ for n = 1,
2 6 p <∞ for n = 2,

2 6 p 6 2n
n−2

for n > 3.
(1.6)

(2) We say that the exponent pair (p, q) is an endpoint if{
(p, q) = (∞, 2) for n = 2,
(p, q) = ( 2n

n−2
, 2) for n > 3.

(1.7)
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Theorem 1.2 (Strichartz estimates). For admissible pair (p, q), we have

(1)
∥∥eit∆u0

∥∥
LqtL

p
x
6 c1‖u0‖L2

x
. (1.8)

(2)

∥∥∥∥∫ ∞
−∞

eit∆f(t, x)dt

∥∥∥∥
L2
x

6 c2‖f(t, x)‖Lq′t Lp′x . (1.9)

(3)

∥∥∥∥∫ ∞
−∞

ei(t−s)∆f(s, x)ds

∥∥∥∥
LqtL

p
x

6 c3‖f(t, x)‖Lq′t Lp′x . (1.10)

This paper is organized as follows. In section 2, we collect some important
preliminaries, including dimensional analysis which provides us an intuitional
point of view to treat the equations and inequalities. Furthermore, it gives
us a glance why we need the assumption, like the admissible pair. We also
provide a rigid proof in section 3. In section 4, there are some remarks on
Strichartz estimates.

Notations. Lp(Rn), 1 6 p < ∞, represents the Lebesgue space with

norm ‖f‖Lp =
(∫

Rn |f |
pdx
) 1
p . L∞(Rn) is with norm ‖f‖L∞ = ess supRn |f |.

The mixed Lebesgue space LqtL
p
x(I × Rn) = Lq(I;Lp(Rn)), 1 6 q <∞, con-

sists of f : I → Lpx with ‖f‖LqtLpx =
(∫

I
‖f(t)‖q

Lpx
dt
) 1
q
<∞. L∞t L

p
x(I ×Rn) =

L∞(I;Lp(Rn)) consists of f : I → Lpx with ‖f‖L∞t Lpx = ess supt∈I ‖f‖Lpx <∞.

2 Preliminaries

2.1 Dimensional Analysis

Dimensional analysis is employed extensively in many fields in science espe-
cially physics and mathematics [7]. Here we establish some knowledge about
applications on mathematical analysis.

Proposition 2.1 (Operation). We star from two basic operations, differ-
entiation and integration. The notation [ · ] stands for the dimension of a
function.

(1)

[
dkf

dxk

]
=
4f

(4x)k
(1.11)

(2)

[∫
Rn
fdx

]
= (4f)(4x)n (1.12)

Proposition 2.2 (Function space). We use the notation ≈ to describe the
dimension of a function space.
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(1) (Lp). If f ∈ Lp(Rn), then

‖f‖Lp =

(∫
Rn
|f |pdx

) 1
p

<∞.

Hence [(4f)p(4x)n]
1
p = (4f)(4x)

n
p , and formally we say

Lp ≈ n

p
. (1.13)

(2)
(
W k,p

)
. If f ∈ W k,p(Rn), then roughly we say that∥∥∥∥dkfdxk

∥∥∥∥
Lp

=

(∫
Rn

∥∥∥∥dkfdxk
∥∥∥∥p dx)

1
p

<∞.

Hence
{[

(4f)(4x)−k
]p

(4x)n
} 1
p = (4f)(4x)

n
p
−k, and formally we say

W k,p ≈ n

p
− k. (1.14)

Proposition 2.3 (Differential equation). A differential equation basically is
an equality. If it makes sense, the dimension must be balanced. There, we
can acquire some properties of this equation before applying any mathematical
techniques. For example, the Schrödinger equation

∂tu = i∆u.

Matching the dimension on both sides, we have

4u
4t

=
4u

(4x)2

or

4t = (4x)2 (1.15)

This characterizes the relation between time variable and space variable in
some sense.

Proposition 2.4 (Inequality). In mathematical analysis, we usually need
various inequalities to estimate our solutions of equations. These inequalities
usually have annoying restrictions on its exponents. For example, the Hölder
inequality: if 1 6 p, q 6∞, 1

p
+ 1

q
= 1 and f ∈ Lp(Ω), g ∈ Lq(Ω) then∫

Ω

|fg|dx 6 ‖f‖Lp‖g‖Lq .

Checking the dimensions, we have

(4f)(4g)(4x)n = (4f)(4x)
n
p (4g)(4x)

n
q .

Hence 1
p

+ 1
q

= 1 is natural.

3



2.2 Decay Estimates, Other Inequalities

In the following we present useful estimates in studying of Schrödinger equa-
tions as well as Strichartz estimates.

Proposition 2.5. Let the operator eit∆ be defined as (1.4) and t 6= 0, then

(1) (L1 − L∞).
∥∥eit∆f∥∥

L∞
6 c4|t|−

n
2 ‖f‖L1 . (1.16)

(2) (L2 − L2).
∥∥eit∆f∥∥

L2 = ‖f‖L2 . (1.17)

(3) (Lp′ − Lp).
∥∥eit∆f∥∥

Lp
6 c5|t|

−n
2

(
1
p′−

1
p

)
‖f‖Lp′ , (1.18)

if
1

p
+

1

p′
= 1 and p′ ∈ [1, 2].

Proof. (1) By Young’s inequality.
(2) By the nature of Fourier transform.
(3) Together with (1),(2) and Riesz-Thorin theorem.

Proposition 2.6 (Hardy-Littlewood-Sobolev inequality). Let 0 < α < n,
1 < p < q <∞ with n

q
+ α = n

p
, then

‖Iαf‖Lq =

∥∥∥∥cα ∫
Rn

f(y)

|x− y|n−α
dy

∥∥∥∥
Lq

6 cα,n,p‖f‖Lp , (1.19)

where cα =
Γ
(
n−α

2

)
π
n
2 2αΓ

(
α
2

) .
We ignore the proof. However, from the viewpoint of dimension, we have{[

(4f)(4x)−(n−α)(4x)n
]q

(4x)n
} 1
q = [(4f)p(4x)n]

1
p . Thus, the exponent

(p, q) satisfies n
q

+ α = n
p
.

Proposition 2.7 (Minkowski integral inequality). For 1 6 p <∞,∥∥∥∥∫
Rn
f(x, y)dx

∥∥∥∥
Lpy

6
∫
Rn
‖f(x, y)‖Lpydx (1.20)

Proposition 2.8 (Riesz Representation theorem). Let 1 6 p < ∞ with
1
p

+ 1
q

= 1. Then

(Lp(Ω))∗ = Lq(Ω). (1.21)

To be more precise, every L ∈ (Lp(Ω))∗ is of the form

L(f) =

∫
Ω

fgdx ∀f ∈ Lp(Ω) (1.22)

for a unique g ∈ Lq(Ω). Moreover, we have

‖L‖ = ‖g‖Lq . (1.23)
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3 Proof of Theorem 1.2

Before setting to prove the theorem, we check the dimension of Theorem
1.2(a). We obtain that the exponent pair (p, q) satisfies n

p
+ 2

q
= n

2
.

Proof of Theorem 1.2.

We only give the proof of (p, q) which is non-endpoint, i.e. (p, q) 6=
(

2n

n− 2
, 2

)
for n > 3. As for endpoint estimates of admissible pair, we refer to [6].

(3) Employing Minkowski integral inequality, Lp
′ − Lp estimate applying to

space and Hardy-Littlewood-Sobolev inequality applying to time respectively,
we have∥∥∥∥∫

R
ei(t−s)∆f(s, x)ds

∥∥∥∥
LqtL

p
x

6

∥∥∥∥∫
R

∥∥ei(t−s)∆f(s, x)
∥∥
Lpx
ds

∥∥∥∥
Lqt

6 cn,p′

∥∥∥∥∥
∫
R

1

|t− s|
n
2

( 1
p′−

1
p

)
‖f(s, x)‖

Lp
′
x
ds

∥∥∥∥∥
Lqt

6 cn,p′,q′‖f(s, x)‖
Lq
′
t L

p′
x
.

At Lp
′ − Lp estimate, we need

1

p
+

1

p′
= 1, 1 6 p′ < 2 < p 6 ∞ (for p =

p′ = 2, we have (1.17)), and at Hardy-Littlewood-Sobolev inequality, we need
n

2

(
1

p′
− 1

p

)
> 0, 1 < q′ < q <∞ and

1

q′
=

1

q
+α =

1

q
+

[
1− n

2

(
1

p′
− 1

p

)]
.

(2) By Hölder inequality and (3), we have∥∥∥∥∫
R
eit∆f(t, x)dt

∥∥∥∥2

L2
x

=

∫
Rn

(∫
R
eit∆f(t, x)dt

)(∫
R
eis∆f(s, x)ds

)
dx

=

∫
Rn

∫
R
f(t, x)

(∫
R
ei(t−s)∆f(s, x)ds

)
dtdx

6 ‖f(t, x)‖
Lq
′
t L

p′
x

∥∥∥∥∫
R
ei(t−s)∆f(s, x)ds

∥∥∥∥
LqtL

p
x

6 cn,p′,q′‖f(t, x)‖2

Lq
′
t L

p′
x
.

At Hölder inequality, we need
1

q
+

1

q′
= 1, and hence (p, q) satisfies

n

p
+

2

q
=
n

2
.

5



(1) Applying Fubini theorem, we have∫
R

∫
Rn

(∫
Rn

e
i|x−y|2

4t

(4πit)
n
2

u0(y)dy

)
f(t, x)dxdt

=

∫
R

∫
Rn

(∫
Rn

e
i|x−y|2

4t

(4πit)
n
2

f(t, x)dx

)
u0(y)dydt.

By Cauchy-Schwarz inequality and (2)∣∣∣∣∫
R

∫
Rn

(
eit∆u0

)
(x)f(t, x)dxdt

∣∣∣∣ =

∣∣∣∣∫
Rn
u0(x)

(∫
R
eit∆f(t, x)dt

)
dx

∣∣∣∣
6 ‖u0‖L2

x

∥∥∥∥∫
R
eit∆f(t, x)dt

∥∥∥∥
L2
x

6 cn,p′,q′‖u0‖L2
x
‖f(t, x)‖

Lq
′
t L

p′
x
.

Using Riesz Representation theorem, we conclude that∥∥eit∆u0

∥∥
LqtL

p
x

= sup
‖f‖

L
q′
t L

p′
x

=1

∣∣∣∣∫
R

∫
Rn

(
eit∆u0

)
(x)f(t, x)dxdt

∣∣∣∣
6 cn,p′,q′‖u0‖L2

x
.

This completes the proof.

From the process of the proof that we establish, we learn that the inequal-
ities must be dimensional balanced as well as the results of the theorem. The
admissible pair inherits from all the restriction on the exponents of these
inequalities. On the other hand, if we conjecture on a phenomenon ahead,
then apply dimensional analysis on it. Observing the relations between the
dimensions of the units, it also help us to learn more knowledge about the
nature of the phenomenon. It even points the way to the proof.

4 Remarks
Here are some observations. First, 1

p
and 1

q
are linear with slope mn = −n

2
,

for fixed n. The increase of p costs the decrease of q. Second, they all pass
through (2,∞) which also means that (2,∞) is always admissible for all n.
We portray as in Figure 1.

Finally, we end Part I by going back to the Theorem 1.2. If the initial
datum u0 is given in L2

x, the the solution u is in Lpx with p > 2. We gain
more integrability, that is the so-called smooth effect. This also reflects the
dispersive nature of Schrödinger equation partially.
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∞
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∞
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(2,∞)

(∞, 4)
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(6, 2) (4, 2) (

2n

n− 2
, 2)

Figure 1: exponent pair

Dimension
n

p
+

2

q
=
n

2
Range of p Range of q

n = 1
1

p
+

2

q
=

1

2
2 6 p 6∞ 4 6 q 6∞

n = 2
1

p
+

1

q
=

1

2
2 6 p <∞ 2 < q 6∞

n > 3
n

p
+

2

q
=
n

2
2 6 p 6

2n

n− 2
2 6 q 6∞

Tabular 1: admissible pair

7



Part II

Semiclassical Limit of the Long
Wave-Short Wave Interaction
Equations

5 Introduction

In the Part II, we consider the existence and uniqueness of solutions of the
initial value problem for the three coupled long wave-short wave interaction
(LSI) equations

i~∂tψ~ +
~2

2
∂xxψ

~ = β(|ψ~|2 + w~)ψ~ (5.1)

i~∂tφ~ +
~2

2
∂xxφ

~ = β(|φ~|2 + w~)φ~ (5.2)

∂tw
~ = β∂x

(
|ψ~|2 + |φ~|2

)
(5.3)

with initial values
ψ~(0, x) = ψ~

0(x) (5.4)

φ~(0, x) = φ~
0(x) (5.5)

w~(0, x) = w~
0(x) (5.6)

where β > 0, w~ is real-valued and ψ~, φ~ are complex-valued. w~ char-
acterizes the long wave and ψ~, φ~ represent the short waves.This system
describes the resonance when the group velocity of the short waves and the
phase velocity of the long wave coincide.

In section 2, we employ the Madelung transformation to LSI equations
(5.1)–(5.3) and rewrite them as a perturbation of the Euler equations. The
conservation laws are also derived.

In section 3, we apply the modified Madelung transformation to LSI equa-
tions (5.1)–(5.3) and rewrite them as a perturbation of a quasilinear hyper-
bolic system. For suitable assumptions on initial data, there exists local
classical solution to the quasilinear hyperbolic system as well as the LSI
equations. Furthermore, the solution that we establish is uniformly bounded
in ~. This allows us to pass to the limit ~→ 0.

Notations. Hs = W s,2 represents the Sobolev space with norm ‖f‖Hs =

‖f‖W s,2 =
(∑

α6s

∫
|Dαf |2dx

) 1
2 where Dαf , the αth derivatives of f, exists

in the weak sense. C([0, T ];X) consists of f : [0, T ]→ X with ‖f‖C([0,T ];X) =
max06t6T ‖f‖X <∞.
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6 Hydrodynamical Structures and Conserva-

tion Laws

In this section, we will derive some conservation laws of the LSI equations
(5.1)–(5.3) first. For further references (6.1)–(6.26),(6.46)–(6.51), we ignore
the superscript ~.

By Madelung transformation, we introduce the complex-valued wave func-
tions

ψ = A1 exp

(
i
S1

~

)
, (6.1)

φ = A2 exp

(
i
S2

~

)
, (6.2)

where A1, A2, S1 and S2 are real-valued functions. A1, A2 are called the
amplitudes, and S1, S2 the classical actions. Substituting (6.1) (resp.(6.2))
into (5.1) (resp.(5.2)), (A1, S1, A2, S2) obeys the following equations

∂tA1 + ∂xA1∂xS1 +
1

2
A1∂xxS1 = 0, (6.3)

∂tS1 +
1

2
(∂xS1)2 + βA2

1 + βw =
~2

2

∂xxA1

A1

, (6.4)

∂tA2 + ∂xA2∂xS2 +
1

2
A2∂xxS2 = 0, (6.5)

∂tS2 +
1

2
(∂xS2)2 + βA2

2 + βw =
~2

2

∂xxA2

A2

. (6.6)

Consider the new variables

ρ1 ≡ A2
1, u1 ≡ ∂xS1, (6.7)

ρ2 ≡ A2
2, u2 ≡ ∂xS2, (6.8)

we have the following two conservation laws

∂tρ1 + ∂x(ρ1u1) = 0, (6.9)

∂tu1 + ∂x

(
1

2
u2

1 + βw

)
=

~2

2
∂x
∂xx
√
ρ1√

ρ1

, (6.10)

∂tρ2 + ∂x(ρ2u2) = 0, (6.11)

∂tu2 + ∂x

(
1

2
u2

2 + βw

)
=

~2

2
∂x
∂xx
√
ρ2√

ρ2

. (6.12)
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Equations (6.9)–(6.12) have the form of a perturbation of the Euler equations
with w satisfying

∂tw = β∂x(ρ1 + ρ2), (6.13)

which is equivalent to

w(t, x) = w0(x) + β

∫ t

0

∂x(ρ1 + ρ2)dτ. (6.14)

Here (6.9) and (6.11) are conservation laws of mass. From (6.9), (6.10)
(resp.(6.11), (6.12)), we can also derive the equation of the canonical mo-
mentum ρ1u1 (resp. ρ2u2)

∂t(ρ1u1) + ∂x

(
ρ1u

2
1 +

β

2
ρ2

1

)
+ βρ1∂xw =

~2

4
∂x(ρ1∂xx log ρ1), (6.15)

∂t(ρ2u2) + ∂x

(
ρ2u

2
2 +

β

2
ρ2

2

)
+ βρ2∂xw =

~2

4
∂x(ρ2∂xx log ρ2), (6.16)

which is not conservative. However, adding (6.15), (6.16) together and em-
ploying (6.13), we have the conservation law of momentum as follows

∂t

(
ρ1u1 + ρ2u2 −

1

2
w2

)
+ ∂x

(
ρ1u

2
1 +

β

2
ρ2

1 + βρ1w + ρ2u
2
2 +

β

2
ρ2

2 + βρ2w

)
=

~2

4
∂x(ρ1∂xx log ρ1 + ρ2∂xx log ρ2). (6.17)

So far, we complete the conservation laws of mass and momentum. Next,
we will seek for the conservation laws of energy. Multiply (6.9) by −1

2
u2

1 and
βw respectively, and (6.15) by u1, we have

−1

2
u2

1 ∂tρ1 −
1

2
u2

1 ∂x(ρ1u1) = 0, (6.18)

βw ∂tρ1 + βw ∂x(ρ1u1) = 0, (6.19)

u1 ∂t(ρ1u1) + u1 ∂x

(
ρ1u

2
1 +

β

2
ρ2

1

)
+ βρ1u1∂xw =

~2

4
u1∂x(ρ1∂xx log ρ1).

(6.20)

Summing (6.18), (6.19) and (6.20), we obtain

∂t

(
1

2
ρ1u

2
1 +

~2

8

(∂xρ1)2

ρ1

)
+ ∂x

(
1

2
ρ1u

3
1 +

~2

8

u1(∂xρ1)2

ρ1

+ βρ1u1w

)
+ βw∂tρ1 + u1∂x

(
β

2
ρ2

1

)
=

~2

4
∂x

(
ρ1u1∂xxρ1 − ∂x(ρ1u1)∂xρ1

ρ1

)
. (6.21)
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Also, from the symmetry point of view, we have

∂t

(
1

2
ρ2u

2
2 +

~2

8

(∂xρ2)2

ρ2

)
+ ∂x

(
1

2
ρ2u

3
2 +

~2

8

u2(∂xρ2)2

ρ2

+ βρ2u2w

)
+ βw∂tρ2 + u2∂x

(
β

2
ρ2

2

)
=

~2

4
∂x

(
ρ2u2∂xxρ2 − ∂x(ρ2u2)∂xρ2

ρ2

)
. (6.22)

Equations (6.21) and (6.22) are not in the conservative forms yet. Adding
(6.21), (6.22) together and employing (6.13), we then have the conservation
law of energy

∂t

(
1

2
ρ1u

2
1 +

~2

8

(∂xρ1)2

ρ1

+
β

2
ρ2

1 + βρ1w

+
1

2
ρ2u

2
2 +

~2

8

(∂xρ2)2

ρ2

+
β

2
ρ2

2 + βρ2w

)
+ ∂x

(
1

2
ρ1u

3
1 +

~2

8

u1(∂xρ1)2

ρ1

+ βρ2
1u1 + βρ1u1w

+
1

2
ρ2u

3
2 +

~2

8

u2(∂xρ2)2

ρ2

+ βρ2
2u2 + βρ2u2w −

β2

2
(ρ1 + ρ2)2

)
=

~2

4
∂x

(
ρ1u1∂xxρ1 − ∂x(ρ1u1)∂xρ1

ρ1

− ρ2u2∂xxρ2 − ∂x(ρ2u2)∂xρ2

ρ2

)
. (6.23)

Define energy densities Eψ, Eφ by

Eψ = Eψ,1 + Eψ,2 + Eψ,3 + Eψ,4

≡ 1

2
ρ1u

2
1 +

~2

8

(∂xρ1)2

ρ1

+
β

2
ρ2

1 + βρ1w, (6.24)

Eφ = Eφ,1 + Eφ,2 + Eφ,3 + Eφ,4

≡ 1

2
ρ2u

2
2 +

~2

8

(∂xρ2)2

ρ2

+
β

2
ρ2

2 + βρ2w, (6.25)

then we can rewrite (6.23) as

∂t (Eψ + Eφ)

+ ∂x

(
(Eψ + Eψ,3)u1 + (Eφ + Eφ,3)u2 −

β2

2
(ρ1 + ρ2)2

)
=

~2

4
∂x

(
ρ1u1∂xxρ1 − ∂x(ρ1u1)∂xρ1

ρ1

− ρ2u2∂xxρ2 − ∂x(ρ2u2)∂xρ2

ρ2

)
. (6.26)

The total energy of the LSI equations (5.1)–(5.3) is constituted by the classi-
cal part, Eψ,1 +Eφ,1 the kinetic energy, Eψ,3 +Eψ,4 +Eφ,3 +Eφ,4 the potential
energy, and the quantum part Eψ,2 + Eφ,2 which is of order O(~2).
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The general problem of the semiclassical limit is to determine the limiting
behavior of any function of the field ψ~, φ~ and w~ as ~→ 0. It is natural to
conjecture that the dispersive term O(~2) which appears in (6.15) and (6.16)
is negligible as ~ → 0 and the limiting density (ρ1, u1, ρ2, u2) satisfies the
limiting Euler system with initial values

∂tρ1 + ∂x(ρ1u1) = 0, (6.27)

∂t(ρ1u1) + ∂x

(
ρ1u

2
1 +

β

2
ρ2

1

)
+ βρ1∂xw = 0, (6.28)

∂tρ2 + ∂x(ρ2u2) = 0, (6.29)

∂t(ρ2u2) + ∂x

(
ρ2u

2
2 +

β

2
ρ2

2

)
+ βρ2∂xw = 0, (6.30)

with initial values

ρ1,0(x) = ρ1(0, x) = A2
1,0(x), (6.31)

u1,0(x) = u1(0, x) = ∂xS1,0(x), (6.32)

ρ2,0(x) = ρ2(0, x) = A2
2,0(x), (6.33)

u2,0(x) = u2(0, x) = ∂xS2,0(x), (6.34)

which w satisfies

∂tw = β∂x(ρ1 + ρ2), (6.35)

w(0, x) = w0(x). (6.36)

This argument is self-consistent only if the limiting Euler system (6.27)–
(6.36) remains classical. Furthermore, the limiting energy densities will be
given by

Eψ = Eψ,1 + Eψ,3 + Eψ,4

=
1

2
ρ1u

2
1 +

β

2
ρ2

1 + βρ1w, (6.37)

Eφ = Eφ,1 + Eφ,3 + Eφ,4

=
1

2
ρ2u

2
2 +

β

2
ρ2

2 + βρ2w, (6.38)

and will satisfy

∂t (Eψ + Eφ)

+ ∂x

(
(Eψ + Eψ,3)u1 + (Eφ + Eφ,3)u2 −

β2

2
(ρ1 + ρ2)2

)
= 0. (6.39)
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Moreover we introduce the modified Madelung transformation as follows

ψ = A1 exp

(
i
S1

~

)
, (6.40)

A1 =
√
ρ1 exp(iθ1), u1 = ∂xS1, (6.41)

φ = A2 exp

(
i
S2

~

)
, (6.42)

A2 =
√
ρ2 exp(iθ2), u2 = ∂xS2, (6.43)

which A1 and A2 are complex-valued. Plugging (6.40)–(6.43) into (5.1),(5.2),
(ρ1, θ1, u1, ρ2, θ2, u2) satisfies

∂tρ1 + ∂x(ρ1u1 + ~ρ1∂xθ1) = 0, (6.44)

∂tθ1 + u1∂xθ1 +
~
2

(∂xθ1)2 =
~
2

∂xx
√
ρ1√

ρ1

, (6.45)

∂tu1 + u1∂xu1 + β∂x(ρ1 + w) = 0, (6.46)

∂tρ2 + ∂x(ρ2u2 + ~ρ2∂xθ2) = 0, (6.47)

∂tθ2 + u2∂xθ2 +
~
2

(∂xθ2)2 =
~
2

∂xx
√
ρ2√

ρ2

, (6.48)

∂tu2 + u2∂xu2 + β∂x(ρ2 + w) = 0, (6.49)

which w is given by

∂tw = β∂x(ρ1 + ρ2), (6.50)

or is equivalent to

w(t, x) = w0(x) + β

∫ t

0

∂x(ρ1 + ρ2)dτ. (6.51)

It is remarkable that the quantum effect in this system is of order O(~)
different from the perturbation of the Euler equations (6.9)–(6.14) of order
O(~2).

7 Semiclassical Limit

In this section, we will derive the existence and uniqueness of local clas-
sical solutions for LSI equations (5.1)–(5.3) with initial values (5.4)–(5.6).
Then we will study their semiclassical limit by utilizing the hydrodynamical
structures presented in the previous section.
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First, we employ the modified Madelung transformation [4] to rewrite
(5.1)–(5.3) into a perturbation of a quasilinear hyperbolic system [5, 14]. Let

ψ~ = A~
1 exp

(
i
S~

1

~

)
, (7.1)

A~
1 = a~1 + ib~1, u~1 = ∂xS

~
1 , (7.2)

φ~ = A~
2 exp

(
i
S~

2

~

)
, (7.3)

A~
2 = a~2 + ib~2, u~2 = ∂xS

~
2 , (7.4)

then substituting (7.1) (resp.(7.3)) into (5.1) (resp.(5.2)), we have

∂tA
~
1 + ∂xS

~
1∂xA

~
1 +

1

2
A~

1∂xxS
~
1 = i

~
2
∂xxA

~
1, (7.5)

∂tS
~
1 +

1

2
(∂xS

~
1)2 + β|A~

1|2 + βw~ = 0, (7.6)

∂tA
~
2 + ∂xS

~
2∂xA

~
2 +

1

2
A~

2∂xxS
~
2 = i

~
2
∂xxA

~
2, (7.7)

∂tS
~
2 +

1

2
(∂xS

~
2)2 + β|A~

2|2 + βw~ = 0. (7.8)

Differentiating (7.6) (resp.(7.8)) w.r.t. x and replacing (A~
1, S

~
1) (resp.(A~

2, S
~
2))

by (7.2) (resp.(7.4)), we have

∂ta
~
1 + u~1∂xa

~
1 +

1

2
a~1∂xu

~
1 = −~

2
∂xxb

~
1, (7.9)

∂tb
~
1 + u~1∂xb

~
1 +

1

2
b~1∂xu

~
1 =

~
2
∂xxa

~
1, (7.10)

∂tu
~
1 + u~1∂xu

~
1 + 2βa~1∂xa

~
1 + 2βb~1∂xb

~
1 + β∂xw

~ = 0, (7.11)

∂ta
~
2 + u~2∂xa

~
2 +

1

2
a~2∂xu

~
2 = −~

2
∂xxb

~
2, (7.12)

∂tb
~
2 + u~2∂xb

~
2 +

1

2
b~2∂xu

~
2 =

~
2
∂xxa

~
2, (7.13)

∂tu
~
2 + u~2∂xu

~
2 + 2βa~2∂xa

~
2 + 2βb~2∂xb

~
2 + β∂xw

~ = 0, (7.14)

with initial values

a~1(0, x) = a~1,0(x), b~1(0, x) = b~1,0(x), u~1(0, x) = u~1,0x = ∂xS
~
1(0, x), (7.15)

a~2(0, x) = a~2,0(x), b~2(0, x) = b~2,0(x), u~2(0, x) = u~2,0x = ∂xS
~
2(0, x). (7.16)

According to (5.3), w~ is given explicitly by

w~(x, t) = w~
0(x) + β

∫ t

0

∂x
[
(a~1)2 + (b~1)2 + (a~2)2 + (b~2)2

]
dτ. (7.17)
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Hence, (7.9)–(7.17) form a quasilinear hyperbolic system which is equivalent
to the LSI equations (5.1)–(5.3) with initial values (5.4)–(5.6). The system
can be rewritten in the vector form

∂tU
~ + A(U~)∂xU

~ +G(w~) =
~
2
LU~, (7.18)

U~(0, x) = U~
0 (x) = (a~1,0(x), b~1,0(x), u~1,0(x), a~2,0(x), b~2,0(x), u~2,0(x))t, (7.19)

w~(0, x) = w0(x), (7.20)

where U~ = (a~1, b
~
1, u

~
1, a

~
2, b

~
2, u

~
2)t, G(w~) = (0, 0, β∂xw

~, 0, 0, β∂xw
~)t,

A(U~) =



u~1 0
a~1
2

0 0 0

0 u~1
b~1
2

0 0 0

2βa~1 2βb~1 u~1 0 0 0

0 0 0 u~2 0
a~2
2

0 0 0 0 u~2
b~2
2

0 0 0 2βa~2 2βb~2 u~2


,

and

L =


0 −∂xx 0 0 0 0
∂xx 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −∂xx 0
0 0 0 ∂xx 0 0
0 0 0 0 0 0

 .

Now, we introduce S,

S =


4β 0 0 0 0 0
0 4β 0 0 0 0
0 0 1 0 0 0
0 0 0 4β 0 0
0 0 0 0 4β 0
0 0 0 0 0 1

 , (7.21)

which is symmetry and positive define for β > 0. Multiplying (7.18) by S,
we have the quasilinear symmetry hyperbolic system

S∂tU
~ + Ã(U~)∂xU

~ + G̃(w~) =
~
2
L̃U~, (7.22)
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where G̃(w~) = SG(w~), L̃ = SL and Ã~ = SA~ is symmetry. The local
existence in time for the initial values (7.19) of the quasilinear symmetry
hyperbolic system (7.22) follows the iteration scheme as below. For con-
venience, we ignore the superscript ~ in (7.23)–(7.30) and some calculating
process. Define U0(t, x) = U0(x), w0(t, x) = w0(x) where U0(x), w0(x) are
the given initial values and define Uk+1(t, x), wk+1(t, x) inductively as the
solution of the linear initial value problem

S∂tU
k+1 + Ã(Uk)∂xU

k+1 + G̃(wk+1) =
~
2
L̃Uk+1, (7.23)

wk+1(t, x) = w0(x) + β

∫ t

0

∂x
[
(ak1)2 + (bk1)2 + (ak2)2 + (bk2)2

]
dτ, (7.24)

Uk+1(0, x) = Uk+1
0 (x) = U0(x), (7.25)

for k = 0, 1, 2, . . .. Assume U0 ∈ Hs and w0 ∈ Hs+1 where s is to be
determined. Let U be a solution of (7.18) and belongs to C1([0, T ];C2(Ω))
which is of compact support for each t. The canonical energy associated with
the quasilinear symmetry hyperbolic system (7.18) is defined by

(SU,U) =

∫
U tSUdx. (7.26)

The classical energy estimate follows immediately by the symmetry of S, Ã
and antisymmetry of L̃. Indeed,

(L̃U,U) =

∫
U tL̃Udx =

∫
(U tL̃U)tdx

=

∫
U t
(
L̃
)t
Udx = −

∫
U tL̃Udx

= −(L̃U,U)

and this implies (L̃U,U) = 0. So, if Ã together with its derivatives of any de-
sire order are continuous and bounded uniformly in [0, T ]×Ω, by integration
by parts, then

d

dt
(SU,U) = (S∂tU,U) + (SU, ∂tU)

= 2(S∂tU,U)

= ~(L̃U,U)− 2(Ã∂xU,U)− 2(G̃, U)

= 0 + ((∂xÃ)U,U)− 2(G̃, U)

6 c1(t)(SU,U).
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By applying Gronwall inequality, we deduce the energy inequality

(SU,U) ≤ (SU0, U0)e
∫ t
0 c1(τ)dτ , (7.27)

and hence

max
06t6T

‖U~(t)‖L2 6 c2‖U~
0 ‖L2 . (7.28)

The higher energy estimate can be obtained in the similar way. We differen-
tiate (7.18) w.r.t. x, then multiply on both sides by S, we have

S∂x∂tU + Ã∂2
xU + ∂xÃ∂xU + ∂xG̃ =

~
2
L̃∂xU, (7.29)

∂xU(0, x) = ∂xU0(x). (7.30)

With similar calculation,

d

dt
(S∂xU, ∂xU) = (S∂t∂xU, ∂xU) + (S∂xU, ∂t∂xU)

= 2(S∂t∂xU, ∂xU)

= ~(L̃∂xU, ∂xU)− 2(∂xÃ∂xU, ∂xU)− 2(Ã∂x∂xU, ∂xU)− 2(∂xG̃, ∂xU)

= 0− 2(∂xÃ∂xU, ∂xU) + (∂xÃ∂xU, ∂xU)− 2(∂xG̃, ∂xU)

= −(∂xÃ∂xU, ∂xU)− 2(∂xG̃, ∂xU)

6 c3(t)(S∂xU, ∂xU).

By Gronwall inequality again, we have

max
06t6T

‖∂xU~(t)‖L2 6 c4‖∂xU~
0 ‖L2 . (7.31)

Moreover, the estimate of the time derivative ∂tU is directly derived from
the equation (7.18) itself.

max
06t6T

‖∂tU~‖Hs−2 = max
06t6T

∥∥∥∥~2LU~ − A∂xU~ −G(w~)

∥∥∥∥
Hs−2

6 c5 max
06t6T

‖U~‖Hs + c6 max
06t6T

‖G(w~)‖Hs . (7.32)

∂tU
~ only belongs to Hs−2 because of the twice derivative appearing in L.
So far, we have shown that for fixed ~,

U~,k ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−2) (7.33)
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for all k. Hence
{
U~,k

}
k∈N is uniformly bounded in k. Moreover, by mean

value theorem,

max
06t6T

‖U~,k(t+ h)− U~,k(t)‖Hs−2

= max
06t6T

‖∂tU~,k(ξ) · h‖Hs−2 , ξ ∈ (t, t+ h) ⊂ [0, T ]

= h · max
06t6T

‖∂tU~,k(t)‖Hs−2

tends to 0 as h goes to 0, for all k. Thus the sequence
{
U~,k

}
k∈N is equicon-

tinuous. Following the Arzela-Ascoli theorem, there exists

U~ ∈ L∞([0, T ];Hs) ∩ Lip([0, T ];Hs−2),

such that as k →∞

U~,k → U~ in C([0, T ];Hs−2).

Thus, by interpolation inequality,

max
06t6T

‖U~,k1 − U~,k2‖Hs−θ 6 c7 max
06t6T

‖U~,k1 − U~,k2‖Hs−2 max
06t6T

‖U~,k1 − U~,k2‖Hs

6 c8 max
06t6T

‖U~,k1 − U~,k2‖Hs−2

for 0 < θ < 2, we have the convergence

U~,k → U~ in C([0, T ];Hs−θ).

In addition, we discuss the convergence A(Uk)∂xU
k+1 to A(U)∂xU . Indeed,

it can be done with the fact that

∂xU
~,k → ∂xU

~,

as k →∞, since

‖A(Uk)∂xU
k+1 − A(U)∂xU‖Hs−1

= ‖A(Uk)∂xU
k+1 − A(Uk)∂xU + A(Uk)∂xU − A(U)∂xU‖Hs−1

6 ‖A(Uk)‖Hs−1‖∂xUk+1 − ∂xU‖Hs−1 + ‖A(Uk)− A(U)‖Hs−1‖∂xU‖Hs−1

Consequently, we have

U~ ∈ C([0, T ];Hs).
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Then the original equation (7.18) implies U~ ∈ C1([0, T ];Hs−2); hence we
have the solution

U~ ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−2). (7.34)

Also, from the relation between U~ and w~ in (7.17), we have

w~ ∈ C([0, T ];Hs−1) ∩ C1([0, T ];Hs−3). (7.35)

Furthermore, by Sobolev type inequality, if s > 1
2

+ 4 then

Hs−2 ↪→ C2.

This can be easily checked by the dimensions of two function spaces Hs−2

and C2, 1
2
− (s− 2) < 1

∞ − 2. Then we have

U~ ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−2) ↪→ C1([0, T ];C2), (7.36)

w~ ∈ C([0, T ];Hs−1) ∩ C1([0, T ];Hs−3) ↪→ C1([0, T ];C1), (7.37)

and hence the solution (U~, w~) of the quasilinear hyperbolic system (7.18)–
(7.20) is classical.

The uniqueness of the classical solution of (7.18) follows from the energy
estimate for the difference of two given solutions. Make U and V two so-
lutions with the same initial data. Define U∗ = U − V , and we have the
equation

S∂tU
∗ + Ã(U)∂xU

∗ + [Ã(U)− Ã(V )]∂xV =
~
2
L̃U∗. (7.38)

With previously similar arguments and U , V are of compact support, we
have

d

dt
(SU∗, U∗) = (S∂tU

∗, U∗) + (SU∗, ∂tU
∗)

= 2(S∂tU
∗, U∗)

= ~(L̃U∗, U∗)− 2(Ã(U)∂xU
∗, U∗)− 2([Ã(U)− Ã(V )]∂xV, U

∗)

= 0 + ((∂xÃ(U))U∗, U∗)− 2([Ã(U)− Ã(V )]∂xV, U
∗)

6 c9(t)(SU∗, U∗).

By Gronwall inequality, we have

(SU∗, U∗) 6 (SU∗0 , U
∗
0 )e

∫ t
0 c9(τ)dτ = 0. (7.39)

This implies U∗ = 0 and hence U = V . Therefore the classical solution
(U~, w~) is unique.

To summarize all this, we have the following result:
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Theorem 7.1. Let s > 1
2

+ 4. Assume the initial values

U~
0 = (a~1,0, b

~
1,0, u

~
1,0, a

~
2,0, b

~
2,0, u

~
2,0) ∈ Hs ×Hs ×Hs ×Hs ×Hs ×Hs,

(7.40)

w~
0 ∈ Hs+1, (7.41)

then there exists T > 0 such that the quasilinear hyperbolic system (7.18)
with initial values (7.19),(7.20) has a unique classical solution

U~ ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−2) ↪→ C1([0, T ];C2), (7.42)

w~ ∈ C([0, T ];Hs−1) ∩ C1([0, T ];Hs−3) ↪→ C1([0, T ];C1), (7.43)

for all t ∈ [0, T ].

As an immediate consequence, we have the similar result for the LSI
equations (5.1)–(5.6).

Theorem 7.2. Let s > 1
2

+ 4. Assume the initial values

(A~
1,0, S

~
1,0, A

~
2,0, S

~
2,0, w

~
0) ∈ Hs ×Hs+1 ×Hs ×Hs+1 ×Hs+1, (7.44)

then there exists T > 0 such that the LSI equations (5.1)–(5.3) with initial
values (5.4)–(5.6) have a unique classical solution (ψ~, φ~, w~) of the form

ψ~ = A~
1 exp

(
i
S~

1

~

)
,

φ~ = A~
2 exp

(
i
S~

2

~

)
,

w~(t, x) = w~
0(x) + β

∫ t

0

∂x
[
(A~

1)2 + (A~
2)2
]
dτ,

which A~
1, S~

1 , A~
2, S~

2 (resp. w~) are bounded in L∞([0, T ];Hs) (resp. L∞([0, T ];
Hs−1)) uniformly in ~.

Proof. Since

ψ~ = A~
1 exp

(
i
S~

1

~

)
and φ~ = A~

2 exp

(
i
S~

2

~

)
where A~

1 = a~1 + ib~1, u~1 = ∂xS
~
1 , A~

2 = a~2 + ib~2 and u~2 = ∂xS
~
2 , by Theorem

7.1, we have

A~
1 ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−2),

∂xS
~
1 ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−2),
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and hence S~
1 ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−2).

Similarly,

A~
2 ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−2),

∂xS
~
2 ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−2),

and hence S~
2 ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−2).

By Moser type calculus inequality, we conclude that

ψ~ ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−2) ↪→ C1([0, T ];C2),

φ~ ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−2) ↪→ C1([0, T ];C2).

Moreover,

w~(t, x) = w~
0(x) + β

∫ t

0

∂x
[
(A~

1)2 + (A~
2)2
]
dτ

∈ C1([0, T ];C1),

and thus the theorem follows.

Because of the nature of the antisymmetry of L̃, the term ~(LU,U) van-
ishs in our estimates. The time interval [0, T ] and the boundary for U~ in
Hs are independent of ~. These will allow us to pass to the limit ~ → 0 in
(7.18).

Proposition 7.3. Let (ρ~1, θ
~
1, u

~
1, ρ

~
2, θ

~
2, u

~
2, w

~) be in C1([0, T ];C2) and be
the solution of equations (6.44)–(6.51). For i = 1, 2, if ρ~i,0(x) > 0 then
ρ~i (t, x) > 0, ∀t > 0. Furthermore, when the ~ varies, ρ~i will not be too
small; that is, too closed to zero.

Proof. Since u~i , θ
~
i ∈ C1([0, T ];C2), u~i + ~∂xθ~i ∈ C1([0, T ] × R). From

(6.44), we have

∂tρ
~
i + ∂x

[
ρ~i (u

~
i + ~∂xθ~i )

]
= 0, (7.45)

or

∂tρ
~
i + (u~i + ~∂xθ~i )∂xρ~i = −ρ~i ∂x(u~i + ~∂xθ~i ). (6.46)

In addition, the ordinary differential equations

dx

dt
= u~i + ~∂xθ~i , (7.47)

x(τ) = ξ, (7.48)

21



has a unique solution x = Γ(t) which belongs to C1([0, T ] × R). Equation
(7.46) implies

d

dt
ρ~i (t,Γ(t)) = −ρ~i (t,Γ(t))∂x(u

~
i + ~∂xθ~i ). (7.49)

Integrating over [0, τ ], we have

ρ~i (τ, ξ) = ρ~i (0,Γ(0)) exp

[
−
∫ τ

0

∂x(u
~
i + ~∂xθ~i )dt

]
. (7.50)

Hence ρ~i (t, x) > 0 if ρ~i,0(x) > 0. Moreover, the integration in the r.h.s. of
(7.50) will not tend to the infinity when the ~ varies, hence ρ~i will not be
too closed to zero.

The limiting system of the quasilinear hyperbolic system (7.18) with ini-
tial value (7.19) is also a quasilinear hyperbolic system as the following shows:
(formally letting ~→ 0)

Ut + A(U)Ux +G(w) = 0 (7.51)

U(0, x) = U0(x) (7.52)

w(0, x) = w0(x) (7.53)

where w is given by

∂tw = β∂x(a
2
1 + b2

1 + a2
2 + b2

2), (7.54)

or is equivalent to

w(t, x) = w0(x) + β

∫ t

0

∂x(a
2
1 + b2

1 + a2
2 + b2

2)dτ. (7.55)

This is equivalent to the limiting Euler system (6.27)–(6.36) as long as the
solutions are smooth. Next, we will show the existence and uniqueness of
the local smooth solution to the system (6.27)–(6.36).

Theorem 7.4. Let s > 1
2

+ 4 and [0, T ] be the fixed time interval determined
in Theorem 3.1. Given initial values U~

0 , U0 ∈ Hs, and U~
0 converges to U0

in Hs as ~→ 0. Then, there exists

U ∈ C([0, T ];Hs) ∩ C1([0, T ];Hs−2) ↪→ C1([0, T ];C2),

w ∈ C([0, T ];Hs−1) ∩ C1([0, T ];Hs−3) ↪→ C1([0, T ];C1),

which is a classical solution to the IVP for the limiting quasilinear hyperbolic
system (7.51)–(7.55), and so is to the IVP for the limiting Euler system
(6.27)–(6.36).
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Proof. Since
{
U~
}
~ is bounded uniformly in ~, by Arzela-Ascoli theorem and

interpolation inequality, we have a function U such that, as ~→ 0

U~ → U in C([0, T ];Hs−θ),

for 0 < θ < 2. Also, from the equation (7.18) itself, we have

U~ → U in C1([0, T ];Hs−2−θ),

for 0 < θ < 2. LU~ is uniformly bounded in Hs−2, so the perturbation term
~
2
LU~ tends to 0 as ~→ 0. Hence the sequence converges to a solution of the

limiting quasilinear hyperbolic system (7.51)–(7.55). The solution w is then
given by (7.55) and belongs to C1([0, T ];C1).

Theorem 7.5. Let (ρ1, u1, ρ2, u2, w) be a solution of the limiting Euler system
(6.27)–(6.36) on [0, T ], which initial value (ρ1,0, u1,0, ρ2,0, u2,0, w0) belongs to
Hs×Hs×Hs×Hs×Hs+1. Assume A~

1,0 (resp. A~
2,0, w~

0) converges strongly
to A1,0 (resp. A2,0, w0) in Hs (resp. Hs, Hs+1) as ~→ 0. Then, for ~ small
enough, there exists a unique classical solution (ψ~, φ~, w~) to the IVP for the
LSI equations (5.1)–(5.6).

Proof. Consider the difference of (7.18) and (7.51). Define Ũ~ = U~ − U ,
then we have

∂tŨ
~ + A(Ũ~ + U)∂xŨ

~ + [A(Ũ~ + U)− A(U)]∂xU +
[
G(w~)−G(w)

]
=

~
2
L(Ũ~ + U). (7.56)

We introduce S = S(Ũ~ + U) which is symmetry, positive define and can

symmetrize A(Ũ~ + U). Multiplying (7.56) by S, we have

S∂tŨ
~ + SA(Ũ~ + U)∂xŨ

~ + S[A(Ũ~ + U)− A(U)]∂xU + S
[
G(w~)−G(w)

]
=

~
2
SL(Ũ~ + U). (7.57)

The energy associated with (7.56) is defined by

(SŨ~, Ũ~) =

∫
(Ũ~)tSŨ~dx. (7.58)
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We apply the energy estimate again.

d

dt
(SŨ~, Ũ~) = (S∂tŨ

~, Ũ~) + (SŨ~, ∂tŨ
~)

= 2(S∂tŨ
~, Ũ~)

= ~(SL(Ũ~ + U), Ũ~)− 2(SA(Ũ~ + U)∂xŨ
~, Ũ~)

− 2(S[A(Ũ~ + U)− A(U)]∂xU, Ũ
~)− 2(S[G(w~)−G(w)], Ũ~).

By the antisymmetry of L, we have

~(SLŨ~, Ũ~) = 0.

The Cauchy-Schwarz inequality implies

~(SLU, Ũ~) 6 ~c10‖LU‖L2‖Ũ~‖L2 6 ~c11‖U‖H2‖Ũ~‖L2 6 c12‖Ũ~‖2
L2 ;

− 2(SA(Ũ~ + U)∂xŨ
~, Ũ~) = (S(∂xA(Ũ~ + U))Ũ~, Ũ~) 6 c13‖Ũ~‖2

L2 ;

(S[A(Ũ~ + U)− A(U)]∂xU, Ũ
~) 6 c14‖[A(Ũ~ + U)− A(U)]∂xU‖L2‖Ũ~‖L2

6 c15‖∂xU‖L2‖Ũ~‖L2 6 c16‖U‖H1‖Ũ~‖L2

6 c17‖Ũ~‖2
L2 ;

(S[G(w~)−G(w)], Ũ~) 6 c18‖Ũ~‖2
L2 .

Hence we have the inequality

d

dt
(SŨ~, Ũ~) 6 c19(t)(SŨ~, Ũ~).

By Gronwall inequality,

(SŨ~, Ũ~) 6 (SŨ~
0 , Ũ

~
0 )e

∫ t
0 c19(τ)dτ , (7.59)

which the r.h.s. tends to 0 as ~ → 0 because of Ũ~
0 = U~

0 − U0 tends to 0.
Then the theorem follows.

We conclude that the behavior of the quasilinear hyperbolic system (7.18)
resembles the limiting system (7.51). That is to say, the ~ appearing in the
Euler equations (6.9)–(6.13) is negligible. Hence the quantum equations can
be depicted by the classical hydrodynamics equations.
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