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ABSTRACT

There are two parts in this paper. In part |, we discuss the Strichartz estimates on
Schrédinger equation. First, we.observe the restrictions on exponent pair (p,q) from
the viewpoint of dimension. Then we also provide a rigid proof, and conclude that the
so-called admissible pair coincides with the arguments of dimensional analysis.

In part I, we study the semiclassical limit of thethree coupled long wave-short
wave interaction equations: First, we employ the Madelung transformation to discuss
the hydrodynamical structures and the conservation laws. Then, we apply the
modified Madelung transformation and energy estimates to justify the existence and
uniqueness of the local classical solution. Finally, we prove the existence of the
semiclassical limit of the solution.
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Part 1
Strichartz Estimates for
Schrodinger Equation

1 Introduction

In the part I of this paper, we consider the solution of the initial value problem
for the nonhomogenerous Schrodinger equation in R

Owu(t,z) =iAu(t,z) + f(t,x) (t,z) €[0,7] x R", (1.1)
u(0,x) = uo, (1.2)

where T > 0, A = 92 +---+ 02 and f(t,x) is a real-valued function.
By Duhamel principle, the solution wito-(1.1),(1.2) can be described as the
following integral equation

u(t, z) =" ugln) + /t eI f (s, x)ds (1.3)
0

where the operator e”* is defined as

2
[z

ug(z) = (SRR 2 A o). (1.4)
(47it)=
The main subject here is to earn more inequalities, known as Strichartz
estimates, from some existing decay estimates. We have the following results
[3, 17] to answer the above question. Before that, we introduce the notion of
admissible pair.

Definition 1.1. (1) We say that the exponent pair (p,q) is admissible if
n 2 n
n,2_n 1.5
PRI (1.5)
and

2<p< o forn=1,

2<p<oo forn=2, (1.6)
2<p<% for n > 3.

(2) We say that the exponent pair (p,q) is an endpoint if

(p.q) = (00,2) for n=2,
{(zqu):(%ﬂ) for n > 3. (1.7)



Theorem 1.2 (Strichartz estimates). For admissible pair (p,q), we have

(1) HeitAUOHL?Lg < ClHUOHL% . (18)

@ | [~ e seom| <alit ol 19
—co L%

@ | [t o] <alft ol (110
—o LILE

This paper is organized as follows. In section 2, we collect some important
preliminaries, including dimensional analysis which provides us an intuitional
point of view to treat the equations and inequalities. Furthermore, it gives
us a glance why we need the assumption, like the admissible pair. We also
provide a rigid proof in section 3. In section 4, there are some remarks on
Strichartz estimates.

Notations. LP(R"), 1 <.p < 0o, represents the Lebesgue space with

norm || fllr = (fgn |fPdz) 2 L (R™) sis.with norm || f|| = = esssupga |f]-
The mixed Lebesgue space L L2(T x R™) = LI(I[;LP(R™)), 1 < ¢ < 00, con-
1

sists of f : T — L? with f| rps = (f, ||f(t)||ngdt>a < oo, LLP(I x R?) =
L>(I; LP(R™)) consists of f : I — LEwith ||f || oo ppe= esssupye; || f][ 1z < o0

2 Preliminaries

2.1 Dimensional Analysis

Dimensional analysis is employed extensively in many fields in science espe-
cially physics and mathematics [7]. Here we establish some knowledge about
applications on mathematical analysis.

Proposition 2.1 (Operation). We star from two basic operations, differ-

entiation and integration. The notation [-] stands for the dimension of a
function.

d*f Af
1 = 1.11
W %] = &% (L11)

@) [ /. fdm] — (A (D) (1.12)

Proposition 2.2 (Function space). We use the notation =~ to describe the
dimension of a function space.



(1) (LP). If f € LP(R™), then

e = ([ 16Pae)” <

Hence [(Af)p(Ax)"]% = (Af)(Ax)r, and formally we say

[P ~ g. (1.13)
(2) (W’“’p). If f € WFP(R™), then roughly we say that
d* f dfIP N ”
- = —1| d .
’ dzk ||, </Rn dxk x) =0

Hence {[(Af)(Az)~F]" (Ax)”}% = (Af)(Az)r 7, and formally we say

whe ~ 2k, (1.14)
P
Proposition 2.3 (Differential equation).~A'differential equation basically is
an equality. If it makes semse, the dimension must be balanced. There, we
can acquire some properties of this-equation before applying any mathematical
techniques. For example, the Schrodinger equation

Oru = 1Au.
Matching the dimension on both sides, we have
X 2y
AL r(dxz)2
or
At = (Az)? (1.15)

This characterizes the relation between time variable and space variable in
some sense.

Proposition 2.4 (Inequality). In mathematical analysis, we usually need
various inequalities to estimate our solutions of equations. These inequalities
usually have annoying restrictions on its exponents. For example, the Holder
inequality: if 1 < p,q < 00, i + % =1 and f € LP(Q),g € LI(Q) then

/Q Faldz < [1fllrllgllze.

Checking the dimensions, we have
(AN)(Dg)(Ax)" = (Af)(Ax)? (Ag)(Az)s.

Hence %D + % =1 is natural.



2.2 Decay Estimates, Other Inequalities

In the following we present useful estimates in studying of Schrodinger equa-
tions as well as Strichartz estimates.

Proposition 2.5. Let the operator e*® be defined as (1.4) and t # 0, then

(1) (L= L). e, < calt] 31 (1.16)
@) (12— 12). [|e*2 ]| o = [1fllse (1.17)
3) (17 — L), [l £, < esltl 22 g (1.18)

1 1
if —+—==1andp €[1,2].
p D

Proof. (1) By Young’s inequality.
(2) By the nature of Fourier transform.
(3) Together with (1),(2) and Riesz-Thorin theorem. O

Proposition 2.6 (Hardy-Littlewood-Soboley inequality). Let 0 < a < n,
l<p<g< oo wz’th%—l—oc:%, then

C‘“/n\ f(y) o

||Iocf||Lq - e
x —y|

SCanpll e, (1.19)

La
L (")
T (3)
We ignore the proof. However;from the viewpoint of dimension, we have
{[(Af)(Lz)~ =) (Ax)"]* (Ax)"}% -2 [(Af)p(Ax)"]% . Thus, the exponent

. n -
(p, q) satisfies Sta=2.

where ¢, =

Proposition 2.7 (Minkowski integral inequality). For 1 < p < oo,

Proposition 2.8 (Riesz Representation theorem). Let 1 < p < oo with
]lj + é = 1. Then

f(z,y)dx

R

< | @ y)llpde (1.20)
Lg R™

(LP(Q))" = LY(Q). (1.21)
To be more precise, every L € (LP(Q))" is of the form
L(f) = /Qfgda: Ve LP(2) (1.22)
for a unique g € L(2). Moreover, we have
L[] = {lgll za- (1.23)



3 Proof of Theorem 1.2

Before setting to prove the theorem, we check the dimension of Theorem
n

1.2(a). We obtain that the exponent pair (p, q) satisfies o % = 7.

PROOF OF THEOREM 1.2.

—9’
for n > 3. As for endpoint estimates of admissible pair, we refer to [6].

2
We only give the proof of (p, ¢) which is non-endpoint, i.e. (p,q) # ( n 2>
n

(3) Employing Minkowski integral inequality, L” — L estimate applying to
space and Hardy-Littlewood-Sobolev inequality applying to time respectively,
we have

‘/ei(t_smf(s,x)ds
R

/ Hei(t_s)Af(s, x)HLz ds
R L

/R!t—S\

(L,l) ||f(87 x)”Lp’dS
p P x

< ‘
LILY

S Cnpf

w3 |

L{

< C'rz,p',ql ||f(87 ZL’) ||LglL§/ .

/ ) 1 1
At L7 — LP estimate, weneed.— 4= =1, 1 < p' < 2 < p < oo (for p =
p

p
P’ = 2, we have (1.17)), and-at Hardy-Littlewood-Sobolev inequality, we need
n (1 1 , 1 1 1 n (1 1
sl -)>01<d<g<egand==—-+ta=—+|1-5|5—-]|
2\ »p g g q 2\ »p

(2) By Hélder inequality and (3), we have

‘ /R D F (1, 2t i _ /R n ( /R it f(t,x)dt) ( /R s f(s,a:)ds)da:
_ / n /R F(t, ) ( /R ei(t_S)AMds) dtdz

<)y / AT s

< C’mp’,q’ ||f(t7 J,’)Hig/Lg .

LILY

1 1 2
At Hoélder inequality, we need —+— = 1, and hence (p, ¢) satisfies E—l—— = g
qa q P q



(1) Applying Fubini theorem, we have

ilz—yl

/ / n ( /R m%(y)dy) f(t, x)dzdt

ZII y\

//n (/Rn Amit) izl ‘”)dl“> uo(y)dydt.

By Cauchy-Schwarz inequality and (2)
/ uo () (/ eimf(t,a;)dt) dx
n R

/ e F(t, x)dt

< Cn7p’7q’||u0||L§ ||f(ta IL‘) ||L2,Lg/ .

") () f(t, x)dmdt‘

< luol| 22

L3

Using Riesz Representation theorem, we conclude that

it 0 _
[ LILE .

e ug) () f(t, l‘)dl‘dt’

n

!lfH
S Cn,p’,q’HUOHL%-

This completes the proof. O

From the process of the proof that-we-establish, we learn that the inequal-
ities must be dimensional balanced as well as the results of the theorem. The
admissible pair inherits from all the restriction on the exponents of these
inequalities. On the other hand, if we conjecture on a phenomenon ahead,
then apply dimensional analysis on it. Observing the relations between the
dimensions of the units, it also help us to learn more knowledge about the
nature of the phenomenon. It even points the way to the proof.

4 Remarks

Here are some observations. First, 5 and i are linear with slope m,, = -5,
for fixed n. The increase of p costs the decrease of ¢q. Second, they all pass
through (2, 00) which also means that (2, 00) is always admissible for all n.
We portray as in Figure 1.

Finally, we end Part I by going back to the Theorem 1.2. If the initial
datum wug is given in L2, the the solution w is in L2 with p > 2. We gain
more integrability, that is the so-called smooth effect. This also reflects the

dispersive nature of Schrodinger equation partially.



1 2
2) — —+-==
(00,2) 3 PR
o, : admissible
O : endpoint, non-adimissible
® : endpoint, admissible
(0074) n
1 n=—=
slope m 5
1
o 1 1 1
(0,0) 00 6 4 2 . p
(2,00)
Figure 1: exponent pair
. . n 2 n
Dimension — 4+ — = 5 Range of p  Range of ¢
p q
2 1
n=1 _+_:§ 2<p< @ 4<qg< @
q
11 1
n=2 -+ -== 2<p<o© 2<qg< o0
p q 2
2 2
n>3 S4+°=0 2<p< 1 2<g<
p q 2 n—2

Tabular 1: admissible pair



Part 11

Semiclassical Limit of the Long
Wave-Short Wave Interaction
Equations

5 Introduction

In the Part II, we consider the existence and uniqueness of solutions of the
initial value problem for the three coupled long wave-short wave interaction
(LSI) equations

Z-hatwh_i_ %28$$¢h — 6(|¢h|2 +wh,)¢h (51)

ind,0" + h;amqsﬁ = Bt w')e" (5:2)

o =89 (14 +1¢"%) (5.3)

with initial values M0, )=l () (5.4)
#(0g) =5 () (5.5)

w" (0, 7) = w) () (5.6)

where 5 > 0, w” is real-valued and @, @" ‘are complex-valued. w" char-
acterizes the long wave and ", ¢" represent the short waves.This system
describes the resonance when the group velocity of the short waves and the
phase velocity of the long wave coincide.

In section 2, we employ the Madelung transformation to LSI equations
(5.1)=(5.3) and rewrite them as a perturbation of the Euler equations. The
conservation laws are also derived.

In section 3, we apply the modified Madelung transformation to LSI equa-
tions (5.1)—(5.3) and rewrite them as a perturbation of a quasilinear hyper-
bolic system. For suitable assumptions on initial data, there exists local
classical solution to the quasilinear hyperbolic system as well as the LSI
equations. Furthermore, the solution that we establish is uniformly bounded
in h. This allows us to pass to the limit A — 0.

Notations. H* = W*? represents the Sobolev space with norm || f||zs =

1
| fllwese = (Za<s f |D°“f|2dx)§ where D®f, the ath derivatives of f, exists
in the weak sense. C'([0,77; X) consists of f : [0,T] — X with || f|lc(or.x) =
maxo<<r || fllx < oo




6 Hydrodynamical Structures and Conserva-
tion Laws

In this section, we will derive some conservation laws of the LSI equations
(5.1)-(5.3) first. For further references (6.1)-(6.26),(6.46)—(6.51), we ignore
the superscript hA.

By Madelung transformation, we introduce the complex-valued wave func-
tions

P = Ajexp <z%) , (6.1)
¢ = Asexp <z%> , (6.2)

where A;, Ay, S7 and Sy are real-valued functions. A;, A, are called the
amplitudes, and Sy, Sy the classieal ‘actions. Substituting (6.1) (resp.(6.2))
into (5.1) (resp.(5.2)), (A1, S, 42, Ss) obeys the following equations

1
Os At 0, A10, 51 + 5/118”5'1 =0, (6.3)
1 h%0,. A
0uS1 + 5(0,51) 2 £ FAT + pu = =—2—1 (6.4)
2 2 A
1
0:Ag ¥ 03.A50,55 + §A28m82 =0, (6.5)
1 h? 0., A
0pSs + = (0,9)2 4 BAZ 4+ P = — 2222 (6.6)
2 2 A
Consider the new variables
o =A% u = 0,9, (6.7)
po = A2, uy = 0,5, (6.8)
we have the following two conservation laws
atpl + 3z(p1u1) = 0, (69)
1 2 . hZ axx P1
Oip2 + Oz (pauz) = 0, (6.11)
1 2 o hQ aa:ac P2
Oyt + Oy <§u2 + 6w> = 3@0 i (6.12)



Equations (6.9)—(6.12) have the form of a perturbation of the Euler equations
with w satisfying

Oyw = B0 (p1 + p2), (6.13)

which is equivalent to

w(t,z) = wo(x) + B/O Ox(p1 + pa2)dr. (6.14)

Here (6.9) and (6.11) are conservation laws of mass. From (6.9), (6.10)
(resp.(6.11), (6.12)), we can also derive the equation of the canonical mo-
mentum pyu; (resp. paus)

hQ
O(prur) + Oy (pluf + gpf) + Bp10,w = Zax(plam log p1), (6.15)

h?
Oi(pauz) + Oy (P2U§ + gﬂg) + Bp20,w = Zaz(Pzam log p2), (6.16)

which is not conservative. However, adding (6.15), (6.16) together and em-
ploying (6.13), we have the.conservation law of momentum as follows

1
O (P1U1 5 pats — §w2>
2 é 2 2 é 2
+0: | prur £5 P Bol etz 7 52 + Bp2w
h2
=7 Or (01022 108 P14 20,4108 D3 ). (6.17)

So far, we complete the conservation laws of mass and momentum. Next,

we will seek for the conservation laws of energy. Multiply (6.9) by —%u% and
pw respectively, and (6.15) by u;, we have
1 1
Bw dypr + Bw O (p1ur) = 0, (6.19)
h2
uy Og(pruy) + ug Oy (plu% + gpf) + Bprui 0w = Zulax(plﬁm log p1).
(6.20)
Summing (6.18), (6.19) and (6.20), we obtain
1 B2 (Dyp1)? 1 W2 uy (Opp1)?
o, | =pju? + — 1227 0, | =pyud + ———2220
¢ (201% + 3 + 51U T 3 o + Bprugw
h? Opap1 — Oy 0
+ Bwdypy + 110, <§p§) — =0, (plul P1 ; (prun) pl) . (6.21)
1

10



Also, from the symmetry point of view, we have

1 h? (0pp2)? 1 I3 Opp2)?
at (—,02 2+_ﬂ) —i—@ (2 Pl 2+_M+BPQU2U}>

2 8 P2 8 P2
12 By — Ou(patiz)
+ Bwdyps + updy (gpg) = 0, (pm P2 ; (p2uz) '02) . (6.22)
2

Equations (6.21) and (6.22) are not in the conservative forms yet. Adding

(6.21), (6.22) together and employing (6.13), we then have the conservation
law of energy

1 h* (0,
3t(—,01 1+—ﬂ+§ + fp1w

2 8 P1
1 h2 ( xp2) 6 2
+5 P21 2+ S, T2t Bp2w
1 B2 uq (0yp1)?
+ 0, (5101?@’ + gM + B = Bprurw
1 B2 ug(0,02)> 2
+ o pas + R ua(0:87 +Bp5us + Bpzisiv— B—(m +pa)°
2 8 05 2
hz xrx - Uz e T - Ug x
_ 8 (plula p1 — Oz(p111) 0z p1 ” Pous0gpa = O (pati)0 Pz) . (6.23)
P1 P2
Define energy densities Ey, £y by
Ey = Eyy 4 Epe + Lyt iy,
1 2 w0 ( a:pl) 8 2
= _ 6.24
Ty ” +50 + Bprw, (6.24)
1 2 h* (0 ( zp2) 6 2
= _ 6.25
5Pt + g . 502+ B2, (6.25)
then we can rewrite (6.23) as
O (Ey + Ey)
2
+ &L« ((Ew -+ Ed,,g)ul —+ (E¢ -+ E¢73)u2 — %(pl + p2)2)
_ 8 (P1U1 P1 (Plul) L1 _ P2U2 P2 (PQUQ) PQ> ‘ (6.26)
P1 P2

The total energy of the LSI equations (5.1)—(5.3) is constituted by the classi-
cal part, Ey 1 + Ey 1 the kinetic energy, Ey 3+ Ey 4+ Eg 3+ Ey 4 the potential
energy, and the quantum part E, 5 + Ego which is of order O(R?).

11



The general problem of the semiclassical limit is to determine the limiting
behavior of any function of the field ¢, ¢" and w" as h — 0. It is natural to
conjecture that the dispersive term O(h?) which appears in (6.15) and (6.16)
is negligible as h — 0 and the limiting density (pi, u1, p2, us) satisfies the
limiting Fuler system with initial values

8t,01 + Gx(plul) = 0, (627)
O (pr1ur) + Oy (Pluf + gﬂ%) + Bp10;w = 0, (6.28)
Oipa + 0. (pauz) = 0, (6.29)
Oy(pauu2) + Oy (P2Ug + gﬂ%) + Bp20,w = 0, (6.30)

with initial values
pro(x) = p1(0,z) = Af (), (6.31)
uy o) =u1(0, ) =045 0(z), (6.32)
Pp20(7) =p (0] ) = A3 (), (6.33)
ugp(x) =ug(0,2)=050(2), (6.34)

which w satisfies

Qrw = B0 (p1-+-p2); (6.35)
w(0, r) = wy(x)- (6.36)

This argument is self-consistent ‘only: if ‘the limiting Euler system (6.27)—
(6.36) remains classical. Furthermore, the limiting energy densities will be
given by

Ey=Ep1+ Eps+ Eypa

= o+ 50+ o, (6.37)
Ey=FE41+ Eys+ Fya
= o+ S0+ o, (6.38)
and will satisfy
Oy (Ey + Ey)
+ O ((Ezp + Eyz)un + (Eg + Eg3)us — %2@1 + Pz)2>
—0. (6.39)

12



Moreover we introduce the modified Madelung transformation as follows

S
Y = Ajexp <z%> ,

Ay = /prexp(iby), u = 0,5,
S
¢ = Ay exp f) :
AQ = \/Eexp(iﬁg), U = 8;552,

which A; and A, are complex-valued. Plugging (6.40)—(6.43) into (5.1),(5.2),
(p1,01, w1, p2, B2, us) satisfies

8t,01 + az(plul + hplazﬁl) = 0, (644)
h o hOwn/p1
8t81 + u18x91 + 5((91«91) = 5 \/E R (645)
Oyuy + uidetiy + B0 (pyf +.w) = 0, (6.46)
atpg N7 (%(ngg T hpgaxeg) = 0, (647)
h A IOz \/P2
8t02 + u23x92 == §(a$02) = QW, (648)
Oyus+ U0, g+ B0y (pe + w) = 0, (6.49)
which w is given by
Oyw = BOy(pr + p2), (6.50)
or is equivalent to
t
w(t, z) = wo(x) + B/ Ox(p1 + p2)dr. (6.51)
0

It is remarkable that the quantum effect in this system is of order O(h)
different from the perturbation of the Euler equations (6.9)—(6.14) of order
O(h?).

7 Semiclassical Limit

In this section, we will derive the existence and uniqueness of local clas-
sical solutions for LSI equations (5.1)—(5.3) with initial values (5.4)—(5.6).
Then we will study their semiclassical limit by utilizing the hydrodynamical
structures presented in the previous section.

13



First, we employ the modified Madelung transformation [4] to rewrite
(5.1)=(5.3) into a perturbation of a quasilinear hyperbolic system [5, 14]. Let

Y = Alexp (2—) (7.1)
Al =a) +ibh, Wl =0,8 (7.2)
" = Alexp ( g) (7.3)
Al =ab bl b = 0,57, (7.4)
then substituting (7.1) (resp.(7.3)) into (5.1) (resp.(5.2)), we have
0L+ 0,510, A1 + AL, S] = 170, AL (75)
08!+ 50517 + BIAN + pul =0, (7.6
0,44 + 0. i+ ASILS — 100, A (7.7)
0,8 4 %(axsgf = BIABN B’ = 0. (7.8)

Differentiating (7.6) (resp:(7.8)) w.r.t. @ and replacing (A", ST) (resp.(A%, S%))
by (7.2) (resp.(7.4)), we have

h
ora + ulidal + al(? ul = §8mb’f, (7.9)
h
O + ul o, b+ —bh(? ul = Ef)ma;f, (7.10)
ol + ul ol 4+ 28al0, al + 2Bb10,b" 4 BO,w" = 0, (7.11)
h
Oal 4+ ubo,al + ag’axug = —§8mbg’, (7.12)
h
&gbh + u28 bh bha Uh = §8mag, (713)
oyl + ubd,ul 4+ 28ab0,al 4 28b50,bh 4+ B0, w" = 0, (7.14)

with initial values
a?(O,x) - a?,0<x)’ b?(ovx) = b?,o(@a uili(owr) = ul 0L = Oy Sr( )7 (715)
ag(()? I) = a§,0<x>7 bg(o,l’) = bg,o(x)a ug(()?x) - ug,ox = amsg( 7I>‘ (716)
According to (5.3), w" is given explicitly by

w'(z,t) = wg(x) + /t Oy [(aff)Q + (b}f)2 + (azf)2 + (b’g)ﬂ dr. (7.17)
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Hence, (7.9)—(7.17) form a quasilinear hyperbolic system which is equivalent
to the LSI equations (5.1)—(5.3) with initial values (5.4)—(5.6). The system
can be rewritten in the vector form

QU + AUMOLU" + Glu") = gwh, (7.18)
Uh(ov J}) = Ug(x) = (a}z,o(x)’ b?,o(l’)v U?,o(x)a ag,o(x>’ bg,O(I)7 ug,o(:)j))t, (719)
w"(0, x) = wo(z), (7.20)

where U" = (al, b2, u?, al, b, ul)!, G(w") = (0,0, BO,w", 0,0, BO,w")!,

I
a,

w0 L0 0 0
bL
0 ul 51
1 26al 2Bb} w0 0 0
A(Uﬁ) — B 1 ﬁ 1 1 o 7
0 00 ruk 0 2
2
0 00 0 ub 52
|0 0 0- _28ah "\ 28vh ub |

and
[0, —~0p 0:-0 0~ 0]
Ot 0 0 O 0 0
- 0 0 0 0 0 0
o 0 0" "0"°0 =04 O
0 0 0 O 0 0
| 0 0O 0 O 0 0
Now, we introduce S,
[43 0 0 0 0 O]
0 43 0 0 0 O
0O 0 1 0 0 O
5= 0O 0 0 48 0 0]’ (7.21)
0O 0 0 0 48 O
| 0 0 0 0 0 1]

which is symmetry and positive define for § > 0. Multiplying (7.18) by S,
we have the quasilinear symmetry hyperbolic system

hEo (7.22)

SO,U" + A(UMOU" + G(uw") = 3

15



where G(w") = SG(w"), £ = SL and A" = SA" is symmetry. The local
existence in time for the initial values (7.19) of the quasilinear symmetry
hyperbolic system (7.22) follows the iteration scheme as below. For con-
venience, we ignore the superscript £ in (7.23)—(7.30) and some calculating
process. Define U°(t, ) = Uy(x), w'(t,z) = wo(x) where Up(x), wo(z) are
the given initial values and define U¥*1(¢,2), w**1(¢,2) inductively as the
solution of the linear initial value problem

h

SOUMT + A(UMO,UM! 4+ G(wF ) = 5EU’M, (7.23)

t
wH(t) = wo(o) +8 [ 0, [P+ B+ (@) + 052 dr, (20

0
U0, 2) = U (2) = Ug(2), (7.25)
for k = 0,1,2,.... Assume Uy, € H® and wy € H*"' where s is to be
determined. Let U be a solution of (7.18) and belongs to C'([0,T]; C?(Q2))

which is of compact support for each . "The ¢anonical energy associated with
the quasilinear symmetry hyperbolic.system (7:18) is defined by

(ST, T) = / U5 de (7.26)

The classical energy estimate follows immediately by the symmetry of .S, A
and antisymmetry of £. Indeed,

@Umz/wﬂm:/wﬁwm

/iﬂ Um::—/fﬂZUm:

—(LU,U)

and this implies (EU ,U) =0. So, if A together with its derivatives of any de-
sire order are continuous and bounded uniformly in [0, 7] x €2, by integration
by parts, then

d

7 (SUU) = (SOU,U) + (SU.OU)

— 2(S9,U,U)

= K(LU,U) — 2(A8,U,U) — 2(G,U)
=0+ ((0,A)U,U) —2(G,U)

< ey (H)(SU,U).

16



By applying Gronwall inequality, we deduce the energy inequality

(SU,U) < (SUsy, Up)elo e1(dr (7.27)
and hence
o 10 (8) 12 < call U 2 (7.25)

The higher energy estimate can be obtained in the similar way. We differen-
tiate (7.18) w.r.t. z, then multiply on both sides by S, we have

S0,0,U + AU + 8,A0,U + 0,G = gf&xU, (7.29)
8,U(0, ) = 0,Up(x). (7.30)

With similar calculation,

%(S@xU, 8.U) = (S8,0,U, 5l0) + (S8,U, 8,0,10)
= 2(58,0:U,0,17)
= W(L0,U,0,U) = 2(8,A0,U, 8,U) = 2(A8,0,U, 8,U) — 2(8,G, d,U)
= 0 — 2(8pA0, U, U + (0, 40,U,8,U) — 2(0,G, 8,U)
= —(8,A0,U,0,U) — 2(8,G, 0,U)
< e3()(50,.U, 0:U):

By Gronwall inequality again, we have

max [|0,U"(t)|| 22 < cal|0:U || 12 (7.31)

0<t<T

Moreover, the estimate of the time derivative 0;U is directly derived from
the equation (7.18) itself.

gL’Uh — A0, U" — G(w")

max ||0,U"|| gs-> = max
0<t<T 0<t<T

Hs—2

< P s M| g .
< o5 max [[U%| + co max [|G(w")|n (7.32)

0,U" only belongs to H*~2 because of the twice derivative appearing in L.
So far, we have shown that for fixed h,

Ut e C([0,T); H) N CY([0,T]; H*?) (7.33)
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for all k. Hence {U"*} wey 18 uniformly bounded in k. Moreover, by mean
value theorem,

max ||Uh”k(t +h) — Uh’k(t)\

0<t<T Hs=2
_ k(e N
= max [|0.U"(€) - hllg=2, €€ (1t +D) C[0,T]
— . h,k .
=h o [0 U™ ()] prs—

tends to 0 as h goes to 0, for all k. Thus the sequence {U h’k} ren 1S equicon-
tinuous. Following the Arzela-Ascoli theorem, there exists

U" e L>([0,T); H*) N Lip([0, T); H*™?),
such that as & — oo
Utk — U i i@ (10, T); HS2).
Thus, by interpolation inequality,
max [|U™F — UM2|| yo_on epmax [T < U2 5. > max | U™ — UM*2|

0<t<T 0<t<T 0<t<T

3\ AR U

for 0 < 6 < 2, we have the convergence
Ut — UM Cin TC([0,T]; HO).

In addition, we discuss the convergence A(U*)d,U**! to A(U)0,U. Indeed,
it can be done with the fact that

hk h
o, U™ — 0,U",
as k — oo, since

|A(URO,U — A(U)0,U || s
= |A(UM0,UM — A(UM)0,U + A(UM)0,U — A(U)0,U|| s
< NAUH|| o1 [|0.U = 0,U || gor + || AUR) — A(U)|| o1 ]|0:U|

Hs—1
Consequently, we have

U e o([0,T]; H).

18
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Then the original equation (7.18) implies U" € C*([0,T]; H*~2); hence we
have the solution
U" e C([0,T); H) N C*([0, T); H*?). (7.34)
Also, from the relation between U" and w" in (7.17), we have
w' € C([0,T]; H Y)Y n C* ([0, T); H?). (7.35)
Furthermore, by Sobolev type inequality, if s > % + 4 then
H* % — O
This can be easily checked by the dimensions of two function spaces H*2
and C?, 3 — (s —2) < = — 2. Then we have
U" e C([0,T); H*) n CH([0, T}, H*™?) — C([0,T}; C?), (7.36)
w' € C([0,T]; H") n C'([0,T); H*~®) — C*([0,T]; CY), (7.37)
and hence the solution (U", ") of the quasilinear hyperbolic system (7.18)—
(7.20) is classical.
The uniqueness of the-classical solution of (7.18) follows from the energy
estimate for the differenee of two given solutions.~Make U and V' two so-

lutions with the same initial data. Define U* "= U — V, and we have the
equation

SOU* + A0l [A(U) — A0,V = SZU*. (7.38)

With previously similar arguments and U, V' are of compact support, we
have

L su+,U%) = (58,0, U%) + (SU*, 0,U)

dt
= 2(S9,U*,U*)
= h(LU",U") = 2(A(U)0,U*, U*) = 2([A(U) — A(V)]0,V,U")
= 0+ (0, AW)U*, U") = 2([A(U) = A(V)]9,V, U*)
< (1) (SU*, U™).
By Gronwall inequality, we have
(SU*,U*) < (SUE, Uz)elo codr — g, (7.39)

This implies U* = 0 and hence U = V. Therefore the classical solution
(U" w") is unique.
To summarize all this, we have the following result:
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Theorem 7.1. Let s > % 4+ 4. Assume the initial values

Ugl - (a;io,b?7o,u’11707agVO,bg,O,u};C’) € HS X HS X HS X HS X HS X HS’
(7.40)
wh € HH, (7.41)

then there exists T > 0 such that the quasilinear hyperbolic system (7.18)
with initial values (7.19),(7.20) has a unique classical solution

U e C([0,T]; H) N C*([0, T); H*?) — C*([0,T]; C?), (7.42)
w' € C([0,T]; H) n C'([0,T); H3) — CY([0,T]; CY), (7.43)
for all t €10, 7).

As an immediate consequence, we have the similar result for the LSI
equations (5.1)—(5.6).

Theorem 7.2. Let s > % + 4. Assume-the initial values
(A7 o, STo AL o, S50, wo) €HEpx HS % HS x H*™ x H*, (7.44)

then there exists T > 0 such that the LSI equations (5.1)—(5.3) with initial
values (5.4)—(5.6) have a-unique classical solution (", ¢" w") of the form

h
Yt =Aexp (l%) :

h
¢" = Ajexp (zi) :
h
t
w'ta) = ule) + 8 | 0 [(AL? + (45)] dr
0
which A, St AR Sk (resp. w") are bounded in L>=([0, T); H*) (resp. L*=([0,T1;

H*™Y)) uniformly in h.
Proof. Since

h

h h 5] h h S5
P = A exp Zf and ¢" = Ajexp Zf

where A? = aff +ib", ul = 9,57, Ab = ab +ib} and uh = 9,5%, by Theorem
7.1, we have

Al e ([0, T); H) 0 C([0, T); H*2),
8,50 e C([0,T): H*) N C([0, T); H*2),
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and hence St e ¢([0,T]; H) N CH([0,T); H*™2).

Similarly,
Al € C(0,T); HY) N CY([0,T); H2),
0,5 € C([0,T]; H) n C*([0,T); H*?),
and hence Sy e C([0,T]; HS) N CY([0,T]; H*2).

By Moser type calculus inequality, we conclude that

e O([0,T); H) A1 C ([0, T); H?) = C'([0,T); C?),
¢ € C([0,T); H*) N CH([0, T]; H*2) — C([0,T]; C?).

Moreover,
t
wta) = ule) + 8 [ 0, [(A? + (AL)] dr
0
e CL({o,7];C"),
and thus the theorem follows. OJ

Because of the nature of the antisymmetry of L, the term R(LU,U) van-
ishs in our estimates. The time interval [0, 7] and the boundary for U" in
H* are independent of h.-These will allow us to pass to the limit A — 0 in
(7.18).

Proposition 7.3. Let (pl, 07 uf; phs 08wl w™) be in CL([0,T); C?) and be
the solution of equations (6.44)-(6.51). For i = 1,2, if plo(x) > 0 then
pl(t,r) > 0, Vt > 0. Furthermore, when the h wvaries, pl' will not be too
small; that is, too closed to zero.

Proof. Since u, 0" € C'([0,T];C?), ul' + hd,0" € C([0,T] x R). From

79

(6.44), we have
Oplt + 0, [l (u] + ho,0)] =0, (7.45)
or
0up} + (u; + 10:07)0upl = —p O + 107 (6.46)
In addition, the ordinary differential equations

dx b B
AN / 4
o w; + ho.0;, (7.47)



has a unique solution x = T['(t) which belongs to C*([0,7T] x R). Equation
(7.46) implies

P T(0) =~ T(1)0uul + 10,60 (7.49)

Integrating over [0, 7], we have
oh(7,€) = p(0,T(0)) exp [— [ ontul 4 noghar). (0
0

Hence p(t,z) > 0 if p]y(z) > 0. Moreover, the integration in the r.h.s. of
(7.50) will not tend to the infinity when the h varies, hence p! will not be
too closed to zero. O

The limiting system of the quasilinear hyperbolic system (7.18) with ini-
tial value (7.19) is also a quasilinear hyperbolic system as the following shows:
(formally letting h — 0)

U+ A(U)U, + G(w) =0 (7.51)
U0, @)= Up(x) (7.52)
w(0, ) = wo(x) (7.53)
where w is given by
Op=\B05 (a5 + b3 + a34-b3), (7.54)
or is equivalent to
t
w(t,x) = wo(x) + ﬁ/ Dy (a3 + b} + a3 + b3)dr. (7.55)
0

This is equivalent to the limiting Euler system (6.27)—(6.36) as long as the
solutions are smooth. Next, we will show the existence and uniqueness of
the local smooth solution to the system (6.27)—(6.36).

Theorem 7.4. Let s > 1+ +4 and [0, T] be the fized time interval determined
in Theorem 3.1. Given initial values U, Uy € H®, and Ul converges to Uy
i H® as h — 0. Then, there exists

U € ([0, T]; H) 0 CH([0, T]; H*2) — CY([0,T}; C?),
w e O([0,T]; H*=1) n CH([0, T); H %) — C([0, T}; O,
which s a classical solution to the IVP for the limiting quasilinear hyperbolic

system (7.51)—(7.55), and so is to the IVP for the limiting Euler system
(6.27)(6.36).
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Proof. Since {U h} , 1s bounded uniformly in 7, by Arzela-Ascoli theorem and
interpolation inequality, we have a function U such that, as A — 0

U= U in C([0,T]; H7?),
for 0 < 6 < 2. Also, from the equation (7.18) itself, we have
U= U in CY[0,T); H*7Y),

for 0 < 6 < 2. LU" is uniformly bounded in H*2, so the perturbation term
gﬁU " tends to 0 as h — 0. Hence the sequence converges to a solution of the
limiting quasilinear hyperbolic system (7.51)—(7.55). The solution w is then
given by (7.55) and belongs to C*([0,T]; C1). O

Theorem 7.5. Let (p1, uy, p2, us, w) be a solution of the limiting Euler system
(6.27)-(6.36) on [0,T], which initial value (p1 0, U1,0, P20, U2,0, Wo) belongs to
H®x H* x H* x H* x H*". dssume A}, (resp: Al o, w() converges strongly
to Ay (resp. Asg, wo) inH* (resp. H®, H*" ) as h — 0. Then, for h small
enough, there exists a unique classical solution (h,¢", w") to the IVP for the
LSI equations (5.1)—(5.6)-

Proof. Consider the difference)of (7.18) and (7.51). Define U" = U" — U,

then we have
OU" + A(U" + U)0,U" + [A(U" +U) = A(U)]0,U + [G(w") - G(w)]

= g,c(fjﬁ + ). (7.56)

We introduce S = S ((7 " 4+ U) which is symmetry, positive define and can
symmetrize A(ﬁ b+ U). Multiplying (7.56) by S, we have

SOU" + SAU" + U)d,U" + S[AU" + U) — AU))9,U + S [G(w") — G(w)]
_ g‘sc@h L), (7.57)

The energy associated with (7.56) is defined by

(SU", U") = / (UM SU" dx. (7.58)
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We apply the energy estimate again.
%(8(7”, U = (8o,0",U") + (SU", ,0™)

= 2(S9,U", UM

= (SLU" +U),U" — 2(SAU" + U)o,U", UM

— 2(S[A(U" + U) — A(U))0,U, U") — 2(S[G(w") — G(w)], TM.
By the antisymmetry of £, we have
rSLU", U = o.

The Cauchy-Schwarz inequality implies

R(SLU,U") < hew||LU || 2|0 22 < Fen |U |2 |02 < el U2
— 2(SAU" + U)0,U", UM =S (9, AU" FUNU", U") < 3| U122
e[ A" % U)y— AU)]0,U|| 2| 0" 12

<
< sl 0uUl| 12| U2 < casl| U | U 2
<

017||(7h||%2 ;

(S[A(U" 4+ U) — A(U)]0,UT"

(S[G(w") = G(w)], U") < exsl| U35

Hence we have the inequality

d ~, ~ o ~
E(SU’% U") < cro(t)(SUM, UM).

By Gronwall inequality,
(ST Uy < (STL, Ulels crodr (7.59)

which the r.h.s. tends to 0 as h — 0 because of ﬁg = U — Uy tends to 0.
Then the theorem follows. O

We conclude that the behavior of the quasilinear hyperbolic system (7.18)
resembles the limiting system (7.51). That is to say, the h appearing in the
Euler equations (6.9)—(6.13) is negligible. Hence the quantum equations can
be depicted by the classical hydrodynamics equations.
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