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中文摘要

我們證明一個由二階投影平面的關係矩陣, 刪去一列所得到大小為6乘以

7的二元矩陣其分離性為二。 我們同時證明不存在分離性為二, 行數小於七,

列數小於六的二元矩陣。
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A projective plane of order 2 offers
the best group tests

- - - - - - - -for 7 items and at most 2 defectives

Student: Chien-Wen Chen Advisor: Chih-Wen Weng
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Abstract

We prove that the matrix obtained by deleting a row of the incidence

matrix of the projective plane of order 2 is 2-separable. We also prove that

there is no 2-separable s × t matrix with s < t < 7.
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1 Introduction

In combinatorial group testing, a prototype problem called (d, n) problem is

to assume that there are up to d defectives among n given items, and the

problem is to separate the good items from the defective ones by group tests.

A group test is administered on an arbitrary subset S of the items with two

possible outcomes; a negative outcome means S contains no defectives and

a positive outcome means S contains at least one defective, not knowing

exactly how many or which ones. A group testing algorithm is nonadaptive

if all tests must be specified at once. A nonadaptive algorithm can be rep-

resented by a 0-1 matrix where columns are items, rows are tests, and a

1-entry in cell (i, j) means item j is contained in test i. Note that a column

can be viewed as a subset whose elements are indices of the rows incident

to the column. Thus we can talk about the union of columns. S.H.Hung

and F.K.Hwang [1] prove that what values of n, given d, individual testing

is optimal on nonadaptive group testing.

Group testing has applications to biological experiments, DNA sequenc-

ing, electrical and chemical testing, coding, etc. The binary matrices have

three types: d-separable, d-separable and d-disjunct which have been found

to be major tools in understanding and constructing a nonadaptive group

testing. Hong-Bin Chen and Frank K. Hwang [3] proved that M is a d-

separable matrix and 1 ≤ k ≤ d − 1, then M is k + 1-separable, if and only

if M is k-disjunct. We use the property to prove that the matrix obtained

by deleting a row of the incidence matrix of a projective plane of order n is

n-separable. In particular, n = 2, the matrix obtained by deleting a row of

the incidence matrix of the projective plane of order 2 is 2-separable. In this
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paper, we want to show there is no 2-separable s × t matrix with s < t < 7.

For example, there is a 2-separable matrix M5×7. Now, we get a matrix M5×6

by deleting a column from the matrix M5×7. Then, the matrix M5×6 must

be not 2-separable.

2 The Matrix Representation

Consider a s× t 0-1 matrix M where Ri and Cj denote row i and column j,

respectively. M is called d-separable if the boolean sums of d columns are

all distinct. M is called d-separable if the boolean sums of ≤ d columns are

all distinct. M is called d-disjunct if the boolean sum of any d columns does

not contain any other column. It is clear to know that d-separable implies

d-separable and d-separable implies k-separable for every 1 ≤ k ≤ d.

Let B(S) denote the boolean sum of a set S of columns.

Lemma 1. [2] If the matrix M is d-disjunct then M is d-separable.

Proof. Suppose that M is not d-separable, i.e., there exist a set K of k

columns and another set K ′ of k′ columns, 1 ≤ k ≤ k′ ≤ d, such that

B(K) = B(K ′). Let Cj be a column in K ′ \ K. Then Cj ⊆ B(K) and M is

not k-disjunct, hence not d-disjunct.

Lemma 2. [2] Deleting any row Ri from a d-disjunct matrix M yields a

d-separable matrix Mi.

Proof. Let S be a set of d columns and S ′ be an another set of d columns.

We claim that B(S) and B(S ′) must differ in at least 2 rows. Suppose not,

B(S) and B(S ′) differ in one row. Assume B(S) ⊆ B(S ′), then there is a
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cloumn Ci in S\S ′ such that Ci ⊆ B(S) ⊆ B(S ′). Since, M is d-disjunct.

This is a contradiction. Hence, they are different even after the deletion of a

row.

Theorem 3. [3] Let M be a d-separable matrix and 1 ≤ k ≤ d − 1. Then

M is k + 1-separable, if and only if M is k-disjunct.

Proof. Sufficiency:

Suppose to the contrary that there exist two distinct sets S and S ′ of

columns in M , | S |≤ k + 1, | S ′ |≤ k + 1, such that B(S) = B(S ′). By the

d-separable property of M , we may assume | S |<| S ′ |≤ k + 1. Then there

exist a column C ∈ S ′\S. Since C ⊆ B(S ′), we obtain C ⊆ B(S), which

violates the k-disjunct property of M .

Necessity:

Suppose M is not k-disjunct, i.e., there exist a column C and a set S of k

other columns such that C ⊆ B(S). Then B(S) = B(S ′) where S ′ = S
⋃

{C}

and | S |, | S ′ |≤ k + 1. Hence M is not k + 1-separable.

3 Basic Definitions of BIBD

Definition 4. A design is a pair (X, B) such that the following properties

are satisfied:

1. X is a set of elements called points, and

2. B is a collection of nonempty subsets of X called blocks.

Let v, k, and λ be positive integers such that v > k ≥ 2. A (v, k, λ)-

balanced incomplete block design (which we abbreviate to (v, k, λ)-BIBD) is
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a design (X, B) such that the following properties are satisfied:

1. | X |= v,

2. each block contains exactly k points, and

3. every pair of distinct points is contained in exactly λ blocks.

Example 5. A (7, 3, 1)-BIBD

X = {1, 2, 3, 4, 5, 6, 7},

B = {123, 145, 167, 246, 257, 347, 356}.

We will use the notation that b =| B | and rx is the number of blocks

containing x, for all x ∈ X. In a (v, k, λ)-BIBD, every point has the same

number of blocks which pass it. So, we called rx = r.
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Definition 6. The incidence matrix of (X, B) is the v × b 0-1 matrix M =

(mi,j) defined by the rule

mi,j =







1 if xi ∈ Aj ,

0 if xi /∈ Aj ,

where A1, · · ·, Av are blocks. The incidence matrix, M of a (v, k, λ)-BIBD

satisfies the following properties:

1. every column of M contains exactly k 1’s ,

2. every row of M contains exactly r = λ(v−1)
k−1

1’s,

3. two distinct rows of M both contain 1 in exactly λ columns.

An (n2 + n + 1, n + 1, 1)-BIBD with n ≥ 2 is called a projective plane of

order n and it is a symmetric BIBD (b = v, r = k).

Corollary 7. The incidence matrix of a projective plane of order n is n-

disjunct.

Proof. In the incidence matrix of a projective plane of order n, any two

columns intersect in exactly 1 point and every column contains exactly n+1

1’s. Now, we take a set S of n columns. Suppose there exists another cloumn

Cj with weight n + 1 such that Cj ⊆ B(S). By Pigeonhole Principle, the

column Cj and one of columns in S have two 1’s in their intersection. This

is a contradiction.

Corollary 8. The matrix obtained by deleting a row of the incidence matrix

of the projective plane of order n is n-separable.
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Proof. Now, we delete a point from a projective plane, i.e.,deleting a row

from the incidence matrix M . Let it be M ′. By Lemma 2, M ′ is n-separable.

Every column in M ′ contains n+1 or n 1’s. Now, we claim that M ′ is (n−1)-

disjunct. We take a set S of n − 1 columns. Suppose there exists another

cloumn Cj with weight n such that Cj ⊆ B(S). By Pigeonhole Principle,

the column Cj and one of columns in S have two 1’s in their intersection.

This is a contradiction. M ′ is (n − 1)-disjunct. By Theorem 3, M ′ is n-

separable.

In particular, when n = 2, this is a (7,3,1)-BIBD, i.e., this is a projective

plane of order 2. The 6×7 matrix obtained by deleting a row of the incidence

matrix of the projective plane of order 2 is 2-separable. Now, we prove that

there is no 2-separable s × t matrix with s < t < 7.

4 The main result

Theorem 9. There is no 2-separable s × t matrix with s < t < 7.

Proof. If the s×t matrix is not 2-separable, the k×t matrix is not 2-separable

for k < s, either. So, we just consider the condition s = t − 1. Suppose to

the contrary that there exists a 2-separable matrix Ms×t = [mij ]. So, any

two columns in Ms×t are different. Let (s, t) be such a pair of Ms×t that t is

smallest.

First, we have two claims:

1. Each column in Ms×t has at least 2 1’s
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Suppose there is a zero column in Ms×t. Any column union with the

zero column is still itself. This is a contradiction.

Suppose there is a column with one 1 in Ms×t. Then the other elements

of the row corresponding to this 1 are all 0. Otherwise, Ms×t is not a

2-separable matrix. So, Ms×t has the following form.



































0
. . .

...

0

0 . . . 0 1 0 . . . 0

0
...

. . .

0



































But we can get a 2-separable matrix Ms−1×t−1 by deleting the row and

the column corresponding to this 1. This is a contradiction to t be the

smallest.

2. Each column in Ms×t has at most s-2 1’s

Suppose there is a column with all 1’s in Ms×t. Any column union with

the this column is this column. This is a contradiction.

Suppose there is a column with s-1 1’s in Ms×t. Say this is the last
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column as follows.




























1

1
...

1

1

0





























Then msj = 1, where 1 ≤ j ≤ t − 1. Otherwise, if a msk = 0 for some

1 ≤ k ≤ t − 1, the union of column k and column t is identical with

column t. So, Ms×t=





























1

1
...

1

1

1 1 · · · 1 1 0





























But the union of any column from 1 to t-1 and the column t is a column

with all 1’s. This is a contradiction to Ms×t be 2-separable.

Since Ms×t is 2-separable. The columns which we choosed have




t

1



 +





t

2





conditions. Since each column in M5×6 has at least 2 1’s, the boolean sum

of the columns which we choosed have




s

2



 +





s

3



 + · · ·+





s

s




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results. Since the number of results is more than the number of conditions,

the 2-separable matrix Ms×t satisfies





t

1



 +





t

2



 ≤





s

2



 +





s

3



 + · · · +





s

s



 .

Now we want to discuss the conditions for t < 7.

1. When s=2, t=3; LHS= 6, RHS= 1.

This is a contradiction.

2. When s=3, t=4; LHS= 10, RHS= 4.

This is a contradiction.

3. When s=4, t=5; LHS= 15, RHS= 11.

This is a contradiction.

4. When s=5, t=6; LHS= 21, RHS= 26.

This case satisfies the neccessary condition.

Hence, we just consider the matrix M5×6 .

By two claims, the weight of a column in M5×6 is 2 or 3, so we have 5

conditions.

1. There are at least four columns with weight 3.

2. There are three columns with weight 3 and three columns with weight

2 in M5×6.

9



3. There are two columns with weight 3 and four columns with weight 2

in M5×6.

4. There are only one column with weight 3 in M5×6.

5. The weight of every column in M5×6 is 2.

Now we discuss the cases step-by-step.

First, we define N = (n1, n2, n3, n4, n5) where ni is the number of zeros

at the ith row in M5×6.

Case 1: There are at least four columns with weight 3.

We just consider the matrix M5×4 which consists of four columns with

weight 3. In other word, every column in this M5×4 has 2 0’s. So, there

are 8 0’s in this M5×4. Now, we want to discuss the conditions of N . If

N = (4, 4, 0, 0, 0), then M5×4 as follows.

0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

But there are two columns identical. This is a contradiction. Thus, we

find N such that any two columns are different. So, when N = (4, 4, 0, 0, 0), (4, 3, 1, 0, 0),

(4, 2, 2, 0, 0), (4, 2, 1, 1, 0), (3, 3, 2, 0, 0) and (3, 3, 1, 1, 0), they do not satisfy

the condition. And we find five cases for N which satisfy the condition.

10



Case 1.1: N = (4, 1, 1, 1, 1). W.L.O.G, we take M5×4 as follows.

A B C D

0 0 0 0

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

But the unions of any two columns are identical. Hence, M5×4 is not 2-

separable. Thus, M5×6 is not 2-separable in this case.

Case 1.2: N = (3, 2, 2, 1, 0). W.L.O.G, we take M5×4 as follows.

A B C D

0 0 0 1

1 1 0 0

1 0 1 0

0 1 1 1

1 1 1 1

But the union of column A and column B is identical with the union of

column A and column C. Hence, M5×4 is not 2-separable. Thus, M5×6 is not

2-separable in this case.
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Case 1.3: N = (3, 2, 1, 1, 1). W.L.O.G, we take M5×4 as follows.

A B C D

0 0 0 1

0 1 1 0

1 0 1 1

1 1 0 1

1 1 1 0

But the union of column A and column B is identical with the union of

column A and column C. Hence, M5×4 is not 2-separable. Thus, M5×6 is not

2-separable in this case.

Case 1.4: N = (2, 2, 2, 1, 1). W.L.O.G, we take M5×4 as follows.

A B C D

0 0 1 1

1 0 0 1

1 1 0 0

0 1 1 1

1 1 1 0

But the union of column A and column C is identical with the union of

column A and column D. Hence, M5×4 is not 2-separable. Thus, M5×6 is not

2-separable in this case.
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Case 1.5: N = (2, 2, 2, 2, 0). W.L.O.G, we take M5×4 as follows.

A B C D

0 0 1 1

1 0 0 1

1 1 0 0

0 1 1 0

1 1 1 1

But the union of column A and column C is identical with the union of

column B and column D. Hence, M5×4 is not 2-separable. Thus, M5×6 is not

2-separable in this case.

Note: A column with weight 2 has ten conditions.

A B C D E F G H I J

1 1 1 1 0 0 0 0 0 0

1 0 0 0 1 1 1 0 0 0

0 1 0 0 1 0 0 1 1 0

0 0 1 0 0 1 0 1 0 1

0 0 0 1 0 0 1 0 1 1

In the following cases, we will use it.

Case 2: There are the three columns with weight 3 and three columns

with weight 2 in M5×6.

First, we take three columns with weight 3. There are 6 0’s in these

cloumns. Now, we find N such that two columns are different. So, when

N = (3, 3, 0, 0, 0) and (3, 2, 1, 0, 0), they do not satisfy the condition. And

we find four cases for N which satisfy the condition.
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Case 2.1: N = (3, 1, 1, 1, 0). W.L.O.G, we take the three columns as

follows.

0 0 0

0 1 1

1 0 1

1 1 0

1 1 1

But the union of any two columns are identical. Thus, M5×6 is not 2-

separable in this case.

Case 2.2: N = (2, 2, 1, 1, 0). W.L.O.G, we take the three columns as

follows.

X Y Z

0 0 1

0 1 0

1 0 1

1 1 0

1 1 1

Since M5×6 is 2-separable matrix, we can’t take columns B, D, F, G, H, I, J.

Hence, we have M5×6 as follows.

X Y Z A C E

0 0 1 1 1 0

0 1 0 1 0 1

1 0 1 0 0 1

1 1 0 0 1 0

1 1 1 0 0 0

14



But the union of column X and column A is identical with the union of

column Y and column Z. Thus, M5×6 is not 2-separable in this case.

Case 2.3: N = (2, 2, 2, 0, 0). W.L.O.G, we take the three columns as

follows.

0 0 1

0 1 0

1 0 0

1 1 1

1 1 1

Since M5×6 is 2-separable, we can’t take columns C, D, F, G, H, I, J. Hence,

we have M5×6 as follows.

A B E

0 0 1 1 1 0

0 1 0 1 0 1

1 0 0 0 1 1

1 1 1 0 0 0

1 1 1 0 0 0

But the union of column A and column B is identical with the union of

column A and column E. Thus, M5×6 is not 2-separable in this case.

Case 2.4: N = (2, 1, 1, 1, 1). W.L.O.G, we take the three columns as

15



follows.

X Y Z

0 0 1

1 1 0

1 0 1

0 1 1

1 1 0

But the union of column X and column Z is identical with the union of

column Y and column Z. Thus, M5×6 is not 2-separable in this case.

Case 3: There are two columns with weight 3 and four columns with

weight 2 in M5×6.

First, we take two columns with weight 3. There are 4 0’s in these

cloumns. Now, we find N such that two columns are different. So, when

N = (2, 2, 0, 0, 0), it do not satisfy the condition. And we find two cases for

N which satisfy the condition.

Case 3.1: N = (1, 1, 1, 1, 0). W.L.O.G, we take the two columns as

follows.

0 1

0 1

1 0

1 0

1 1

Since M5×6 is 2-separable, we can’t take columns A, D, G, H, I, J. Hence,

16



we have M5×6 as follows.

B C E F

0 1 1 1 0 0

0 1 0 0 1 1

1 0 1 0 1 0

1 0 0 1 0 1

1 1 0 0 0 0

But the union of column B and column F is identical with the union of

column C and column E. Thus, M5×6 is not 2-separable in this case.

Case 3.2: N = (2, 1, 1, 0, 0). W.L.O.G, we take the two columns as

follows.

0 0

0 1

1 0

1 1

1 1

Since M5×6 is 2-separable, we can’t take columns F, G, H, I, J and we just

can take one of columns B, C, D. But we only have five columns. This is a

contradiction. Thus, M5×6 is not 2-separable in this case.

Case 4: There are only one column with weight 3 in M5×6.

First, we take the column with weight 3. W.L.O.G, we take one column

17



as follow.

1

1

1

0

0

Since M5×6 is 2-separable, we can’t take columns A, B, E. And we just can

take one of columns C, F, H, we just can take one of columns D, G and we

just can take two of columns H, I, J. But we only have five columns. This is

a contradiction. Thus, M5×6 is not 2-separable in this case.

Case 5: The weight of every column in M5×6 is 2.

There are 2×6 = 12 1’s in M5×6. But there are five rows. By Pigeonhole

Principle, there must be a row that contains 3 1’s in M5×6.























1 1 1






















There are 3×3 = 9 0’s in these columns. It remains four rows. By Pigeonhole
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Principle, there must be a row that contains 3 0’s.























1 1 1

0 0 0























W.L.O.G, the three columns are























B C D

1 1 1

0 0 0

1 0 0

0 1 0

0 0 1























M5×6 is 2-separable. But the union of column C and column H is identical

with the union of column B and column H, the union of column B and

column I is identical with the union of column D and column I and the

union of column C and column J is identical with the union of column D and

column J. So, we can not take cloumns H, I and J. Since the union of column

A and column D is identical with the union of column G and column D, we

just can take one of columns A, G. Since the union of column C and column

E is identical with the union of column B and column F, we just can take

one of columns E, F. But we only have five columns. This is a contradiction.

Thus, M5×6 is not 2-separable in this case.
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Through above discussion, M5×6 is not 2-separable. Thus, there is no

2-separable s × t matrix with s < t < 7.

Conjecture 10. There is no d-separable matrix of size s × t with s < t <

d2 + d + 1.
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