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有界面活性劑之軸對稱界面在不同黏滯性之流體模

擬 

學生：楊承翰 

 

指導教授：賴明治 

國立交通大學應用數學學系﹙研究所﹚碩士班 

摘 要       

本論文把 Immersed boundary method 發展到軸對稱圓柱座標系中來模擬液滴

在不可壓縮流中，液滴內外不同的黏滯度是我們所關心的。為方便分佈界面所產

生的力至流體以及內插流體流速至界面的移動速度，須藉由 Dirac delta function 
將 Eulerian 流體和 Lagrangian 界面變數合併。我們使用 semi-implicit 
second-order projection method 來解 Navier-Stokes 方程式並且利用 Indicator 
function 來更新密度和黏滯度。把液滴放入流場中，觀察有加表面活性劑與沒加

表面活性劑的差異性。表面活性劑會分佈在界面中，並且影響表面張力的大小。

上述的方程式，我們皆加入人工速度去調整界面上網格的位置，使其分佈均勻。 
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ABSTRACT 
In this study, the simulation of drop deformation in incompressible flow was executed 

by developing an immersed boundary method in the axisym metric cylindrical 
coordinates. The viscosity difference between two sides of drop interface was 

particularly considered in this paper. We implemented a semi-implicit second-order 
projection scheme to solve Navier-Stokes equations. Various viscosity between two 

sides of drop were tested on simulation, as well as the effect of the surfactant on drop, 
which affect the surface tension. In addition, the distribution of marker positions were 

stabilized by imposing the artificial velocity and compared to the original manner 
without imposition of artificial velocity. 
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1 Introduction

The immersed boundary method was first used in reference to the method devel-
oped by Peskin (1972) to simulate cardiac mechanics and associated blood flow. In
this paper, we used this method to simulate the behavior of drop in extensional flow
using Navier-Stoke equations in cylindrical geometries, where axisymmetric case was
performed for convenience of computation. Numerous research has been studied in
the subject as above. We attempted to resolve Navier-Stokes equations with various
viscosity and density of a drop. Furthermore, we consider the case that surfactant
was added on the interface and surfactant, such as soap, detergent, will impact the
strength of surface extension.

We first consult [6] and [7] in order to transform the immersed boundary
formulation [5] in three-dimensional coordinates into the cylindrical coordinates.
Then, we must set the boundary conditions on r = 0 such as ur = 0 and ∂uz/∂r = 0
[6] for our study in the axisymmetric cylindrical coordinates. [5] presented the
surfactant concentration equation in Lagrangian coordinates on the interface in the
Cartesian coordinates. In order to examine a variety of axisymmetric cases, and
according to [10], we should transform the equation into cylindrical coordinates for
our study.

Since our initial velocity field has to satisfy Navier-Stokes equations and the
axisymmetric boundary conditions, the uniaxial extensional flow ur = −0.5rG, uz =
zG[2] is an optimum. Surfactant on the drifts are flowing along (the direction of) the
fluid. Similarly, the flow (has) also affected the markers in Lagrangian coordinates
on the interface. The following section will introduce a artificial method about
marker redistribution.

The remaining sections of this paper are organized as follows. We present
the governing equations in lagrangian coordinates on the interface which includes
the immersed boundary formulas and the surfactant concentration equation in sec-
tion 2. We imposed artificial velocities on some equations to modify the distance
between markers. Since viscosity and density are variables in Navier-Stokes equa-
tions, we update data of viscosity and density by indicator function. The numerical
method which includes an algorithm of solving the Navier-Stokes equations, a mass
conservative scheme for the surfactant equation and indicator function is described
in section 3. In Section 4, we first examine the convergence of Navier-Stokes equa-
tions , then we present the Oscillating drop and observe how much the drop volume
leaks or bulks up. we emphasize the effects of the drop deformation on viscosity,
surfactant and Peclet number Pes, and observe the degree of deformation by [11].
we summarize conclusions and future work in section 5.
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2 The governing equations

In this paper, we consider an incompressible two-phase flow problem in a fixed
three-dimensional cubic domain.The interface of the drop Σ separates two parts, Ω1

inside the interface and Ω2 outside the interface from our domain,which is a simple
closed surface immersed in the fluid. i.e.Ω = Ω1

⋃
Ω2.

In each fluid region, the Navier-Stokes equations are satisfied as

ρi

(
∂ui

∂t
+ (ui · ∇)ui

)
= ∇ ·Ti + ρig, in Ωi, (2.1)

∇ · ui = 0, in Ωi, (2.2)

u = ub, in ∂Ω, (2.3)

where Ti = −piI + µi(∇ui +∇uT
i ) is the stress tensor, pi is the pressure, ui is the

fluid velocity, ρi is the density, µi is the viscosity for i = 1, 2 in each fluid domain,
and g is the gravitational constant. The velocity is continuous across the interface
Σ. Thus,

[u]Σ = u|Σ,2 − u|Σ,1 = 0 (2.4)

and the normal stress jump is balanced by the interfacial force F (defined only on
Σ) as

[Tn]Σ + F = 0 (2.5)

where n is the unit normal vector on Σ directed towards fluid 2. In this paper,
we use the immersed boundary method to approach the velocity solutions of the
Navier-Stokes equations. The immersed boundary ( the interface ) exerts force F to
the fluids and moves with local fluid velocity. For simplicity, gravity is neglected, so
the same density of drop is only considered in this study. i.e. ρ1 = ρ2 = ρ.

To be convenient for calculation, our numerical experiment in the single phase
was computed by non-dimensionlizing the following three dimensional equations,

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p +∇ · (2µE) + f, (2.6)

∇ · u = 0, (2.7)

∂Γ

∂t
+ (∇s · u) Γ = Ds∇2

sΓ, (2.8)

where u is the velocity, p is the pressure, ρ is the density, µ is the viscosity, Γ is
the surfactant concentration, Ds is diffusivity, and E = (∇u +∇uT )/2 is the rate
of deformation tensor.

Assume the dimensionless numbers, x = r0x
∗, u = U∞u∗, µ = µ0µ

∗, ρ = ρ0ρ
∗,

t = (r0/U∞)t∗, p = ρ0U
2
∞p∗, f = f0f

∗, and Γ = Γ∞Γ∗. Then, the non-dimensional
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equations are presented as follows.

ρ∗
(

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗

)
= −∇∗p∗ +

1

Re
∇∗ · (2µ∗E∗) +

r0f0

ρ0U2∞
f∗, (2.9)

∇∗ · u∗ = 0, (2.10)

∂Γ∗

∂t∗
+ (∇∗

s · u∗) Γ∗ =
1

Pes

∇∗2
s Γ∗, (2.11)

where Re = ρ0U∞r0/µ0 and Pes = r0U∞/Ds. In the axisymmetric cylindrical
coordinates, we spread the interfacial force into fluid by Dirac delta function δ(x) =
δ(r)δ(z) as follows.

f (x, t) =

∫

Σ

F (s, t) δ (x−X (s, t)) ds,

where x = (r, z) is the fluid position, X (s, t) = (R (s, t) , Z (s, t)) is the interfacial
position, s is the interfacial parameter, F is the interfacial force, σ is the surface
tension, and Σ is the domain of parameter.

Assume the dimensionless number σ = σ0σ
∗, Ca = µ0U∞/σ0, then we can get

ρ∗
(

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗

)
= −∇∗p∗ +

1

Re
∇∗ · (2µ∗E∗) +

1

ReCa
f∗ (2.12)

∇∗ · u∗ = 0, (2.13)

∂Γ∗

∂t∗
+ (∇∗

s · u∗) Γ∗ =
1

Pes

∇∗2
s Γ∗. (2.14)

The operator forms of governing equaitons in the acisymmetric cylindrical coordintates
will be introduced on the following sections. In fact, the characteristic velocity
U∞ = Gr0 where G is the principle strain rate and 2r0 is the equivalent diameter of
the drop. Hence, we have Re = ρ0(Gr0)r0/µ0, Ca = µ0Gr0/σ0, and Pes = r0U∞/Ds.

2.1 Immersed boundary formulation

In every corner of this paper, we consider the Navier-Stokes equations in cylin-
drical coordinates instead of Cartesian coordinates,in addition the domain is ax-
isymmetric. Hence, it is convenient to compute our data in a cylindrical coordinate
system (r, θ, z). Because of axisymmetric, domain is azimuthal symmetry and the
flow depends spatially on only two cylindrical coordinates (r, z). The interface Σ
is represented by a parametric form (r(s, t), z(s, t)), 0 ≤ s ≤ Lb, where s is the
parameter of the initial configuration of the interface, which is not necessarily the
arc-length.

The following governing equations can be expressed in the usual immersed bound-
ary formulation using the non-dimenionlization process.
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ρ

(
∂ur

∂t
+ ur

∂ur

∂r
+ uz

∂ur

∂z

)
+

∂p

∂r
=

1

Re

{
1

r

∂

∂r

(
2µr

∂ur

∂r

)
+

∂

∂z

[
µ

(
∂ur

∂z
+

∂uz

∂r

)]
− 2µur

r2

}

+
1

ReCa
fr, (2.15)

ρ

(
∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z

)
+

∂p

∂z
=

1

Re

{
1

r

∂

∂r

[
µr

(
∂ur

∂z
+

∂uz

∂r

)]
+

∂

∂z

(
2µ

∂uz

∂z

)}

+
1

ReCa
fz, (2.16)

1

r

∂rur

∂r
+

∂uz

∂z
= 0, (2.17)

f (x, t) =

∫

Σ

F (s, t) δ (x−X (s, t)) ds, (2.18)

∂X (s, t)

∂t
= U (s, t) = u (X (s, t) , t) =

∫

Ω

u (x, t) δ (x−X (s, t)) dx, (2.19)

F (s, t) =
∂

∂s
(σ (s, t) τ (s, t))− 1

R

∂Z

∂s
(τ (s, t)n) , (2.20)

τ (s, t) =
∂X
∂s∣∣∂X
∂s

∣∣ =
(Rs, Zs)√
R2

s + Z2
s

, (2.21)

n =
(Zs,−Rs)√

R2
s + Z2

s

. (2.22)

Here, u = (ur, uz) is the velocity of the fluid,( ur is the radial velocity and uz is the
axial velocity), U = (Ur, Uz) is the velocity of the drop , σ is the surface tension, τ
is the unit tangent vector on the interface,and n is the outward normal vector on the
interface. The dimensionless numbers are Reynolds number and Capillary number,
respectively. The Reynolds number (Re) describing the ratio between the inertial
force and the viscous force.The capillary number (Ca) describing the strength of
the surface tension. The Eq.(2.17) is the divergence free equation which means
continuity. we get the force f = (fr, fz) on the fluid by the Eq.(2.18). Because the
Eq.(2.18) represents the interfacial force F spreads to the fluid, and the force F on
the interface is balanced by the normal stress. The Eq.(2.19) represents the interface
was moved by the fluid velocity. The Eulerian (x) and Lagrangian (X) variable are
used in the three-dimensional Dirac delta function δ(x) = δ(r)δ(z).The Eq.(2.20)
represents the interfacial force F which arises from the surface tension and its form
is derived from Laplace-Young condition.
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We consider the case that the drop is contaminated by the surfactant. Let the
interface be contaminated by the surfactant, which reduces the surface tension, so
that we can find the phenomenon that the surface tension is smaller as the surfactant
concentration is higher. The relation between surface tension and surfactant concen-
tration can be described by the linear equation. The following is the approximation
of linear equation.

σ (Γ) = σc (1− βΓ) , (2.23)

where Γ is the surfactant concentration, σc is the surface tension of a clean interface,
and β is a dimensionless number that measures the sensitivity of surface tension to
variation in surfactant concentration.

2.2 Surfactant concentration equation

Since we want to close the system, the surfactant is insoluble to the buck fluids
such that it is convected and diffused along the interface. Hence, there is no exchange
between the interface and the bulk fluids. Due to those reasons, the total mass of the
surfactant must be conserved. The equation of surfactant concentration is derived
in this subsection. In the three dimensional cylindrical coordinates, we present a
slightly different derivation from Stone [9] for the surfactant transport equation in
order to make the total mass of the surfactant conserved.

We can regard the surface as the curve in r-z coordinates in the case of ax-
isymmetric cylindrical coordinates. So, let L(t) be an interfacial segment where
the surfactant concentration (the mass of the surfactant per unit surface area) is
defined. Since the surfactant on the material element don’t transport nor spread to
the surrounding (bulk) fluids, the mass on the segment remained consistent.

Hence,
d

dt

∫

L(t)

Γ (l, t) Rdl = 0, (2.24)

where dl is the arc-length element. In order to apply the time derivative more easily,
we rewrite the above equation in terms of the initial parameter s as

d

dt

∫

L(0)

Γ (s, t)

∣∣∣∣
∂X

∂s

∣∣∣∣ Rds = 0. (2.25)

Further we take the time derivative inside the integral,

∫

L(0)

(
∂Γ

∂t

∣∣∣∣
∂X

∂s

∣∣∣∣ R + Γ
∂

∂t

(∣∣∣∣
∂X

∂s

∣∣∣∣ R

) )
ds = 0. (2.26)

Note that, the interface and surfactant concentration are tracked in a Lagrangian
manner in our present formulation. Thus, the time derivative of the first term in

5



Eq.(2.26) is exactly the material derivative of Stones derivation. Now we need to
compute the rate of the stretching factor, and using Eq.(2.19), we have

∂

∂t

( ∣∣∣∣
∂X

∂s

∣∣∣∣R

)
=

∂R

∂t

∣∣∣∣
∂X

∂s

∣∣∣∣ + R
∂

∂t

∣∣∣∣
∂X

∂s

∣∣∣∣

= Ur

∣∣∣∣
∂X

∂s

∣∣∣∣ + R
∂R
∂s

∂
∂s

(
∂R
∂t

)
+ ∂Z

∂s
∂
∂s

(
∂Z
∂t

)
∣∣∂X

∂s

∣∣

= Ur

∣∣∣∣
∂X

∂s

∣∣∣∣ + R
∂R
∂s

∂Ur

∂s
+ ∂Z

∂s
∂Uz

∂s∣∣∂X
∂s

∣∣ (2.27)

= Ur

∣∣∣∣
∂X

∂s

∣∣∣∣ + R
∂R
∂s

(∇Ur · ∂X
∂s

)
+ ∂Z

∂s

(∇Uz · ∂X
∂s

)
∣∣∂X

∂s

∣∣

= Ur

∣∣∣∣
∂X

∂s

∣∣∣∣ +

(
∂U

∂τ
· τ

)
R

∣∣∣∣
∂X

∂s

∣∣∣∣

= (∇s · u) R

∣∣∣∣
∂X

∂s

∣∣∣∣ .

Where, the notation ∇s ·u means the surface divergence in axisymmetric cylindrical
coordinates and∇s·u = Ur/R+(∂U/∂τ )·τ . Since the material segment is arbitrary,
we can get

R

∣∣∣∣
∂X

∂s

∣∣∣∣
∂Γ

∂t
+ R

∣∣∣∣
∂X

∂s

∣∣∣∣ (∇s · u ) Γ = 0. (2.28)

If we permit surfactant diffusion along the interface, we obtain the surfactant transport-
diffusion equation as

R

∣∣∣∣
∂X

∂s

∣∣∣∣
∂Γ

∂t
+ r

∣∣∣∣
∂X

∂s

∣∣∣∣ (5s · u ) Γ =
1

Pes

∂

∂s

[(
R

∂Γ

∂s

) / ∣∣∣∣
∂X

∂s

∣∣∣∣
]

(2.29)

where Pes (Peclet number) is a dimensionless number relevant in the study of trans-
port phenomena in fluid flows and the boundary condition of Γ is ∂Γ/∂s = 0 on
∂L (t) . We note that surface diffusion is also written in terms of initial parameter
s.

2.3 Controlling the interfacial markers uniformly

The interface might be deformed as a velocity field in the domain, which causes
our computational markers on the interface to concentrate on some part of interface
along the fluid flowing direction. This phenomenon leads into a larger error on the
drop volume than the one which interfacial markers are uniformly distributed.
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Since drop deformation is only related to the force in the normal direction, we
impose an artificial velocity on Eq.(2.19) to redistribute the interfacial markers uni-
formly. Hence, substitute Eq.(2.19) into

∂X (s, t)

∂t
= U (s, t) + Ua (s, t) τ

= u (X (s, t) , t) + Ua (s, t) τ

=

∫

Ω

u (x, t) δ (x−X (s, t)) dx + Ua (s, t) τ , (2.30)

where the scalar Ua is the artificial velocity, and it can modify the marker posi-
tions such that they avoid being moved by the tangential force. This condition
∂ |∂X/∂s| /∂s = 0 means that the tangential displacement of markers remains un-
changed. According to those conditions, we obtain

Ua (s, t)− Ua (0, t) =
s

2π

∫ 2π

0

∂U

∂s′
· τ ′ds′ −

∫ s

0

∂U

∂s′
· τ ′ds′, (2.31)

where Ua (0, t) = 0, since we should fix one marker to modify their relative positions.
The new marker positions have changed after adding the artificial velocity term,

so Eq.(2.29) has to add some term to preserve that the equation holds. The following
is the modified surfactant transport-diffusion equation,

R

∣∣∣∣
∂X

∂s

∣∣∣∣
∂Γ

∂t
+ R

∣∣∣∣
∂X

∂s

∣∣∣∣ (5s · u ) Γ− ∂

∂s
(RUaΓ) =

1

Pes

∂

∂s

[(
R

∂Γ

∂s

) / ∣∣∣∣
∂X

∂s

∣∣∣∣
]

.

(2.32)

2.4 Density and viscosity equations

Because the drop formation would change as fluid flows by, we have to update
the viscosity and density of domain, including inside and outside of the drop, need
to be updated using indicator function.

I (x, t) =

∫

Ω

δ (x−X) dX,

Then, we take gradient to both side to obtain,

OI (x, t) = O
∫

Ω

δ (x−X) dX,

=

∫

Ω

Oδ (x−X) dX

, = −
∫

∂Ω

n · δ (x−X) ds

7



Furthermore, we take divergence to both side to obtain,

O · OI (x, t) = −O ·
∫

∂Ω

n · δ (x−X) ds (2.33)

Moreover,

ρ (x, t) = ρ2 + (ρ1 − ρ2) I (x, t) , (2.34)

µ (x, t) = µ2 + (µ1 − µ2) I (x, t) (2.35)

3 Numerical method

In this paper,computational solution of the fluid flow variables are defined on
a staggered grid. This implies that different dependent variables are evaluate at
different grid points.

More specifically, the pressure is defined on the grid points labelled as x =
(ri−1/2, zj−1/2) = ((i − 1/2)h, (j − 1/2)h) for i = 1, 2, . . . ,M, j = 1, 2, . . . , N , the
velocity components ur and uz are defined at (ri+1/2, zj) = (ih, (j − 1/2)h),for
i = 1, 2, . . . , M − 1, j = 1, 2, . . . , N and (ri, zj+1/2) = ((i − 1/2)h, jh),for i =
1, 2, . . . , M, j = 1, 2, . . . , N − 1,respectively, where the spacing h = ∆r = ∆z. In
addition, the positions of density and viscosity are the same with those of pressure.
A accepted staggered grid configuration is shown in Fig.3.1.It can be seen that pres-
sures are defined at the center of each cell while velocity components are defined at
the center of the call faces.

For the immersed interface, we use a collection of discrete points sk = k∆s, k =
1, 2, . . . , MK such that the Lagrangian markers are denoted by X = X(sk) =
(Rk, Zk). The surfactant concentration Γk and surface tension σk are defined at
the half-integer points given by sk−1/2 = (k − 1/2)∆s. Without loss of generality,
for any function defined on the interface φ(s), we approximate the partial derivative
∂φ/∂s by

Dsφ (s) =
φ (s + ∆s/2)− φ (s−∆s/2)

∆s
. (3.1)

Since |DsXk| can approximate the interface stretching factor by using this finite
difference convention, the unit tangent vector τ k are defined at the half-integer
points.

Let ∆t be the time step size, and n be the superscript time step index. At the
beginning of each time step, e.g., step n, the variables Xn

k = X (sk, n∆t) , Γn
k =

Γ
(
sk−1/2, n∆t

)
,un = u (x, n∆t), and pn = p (x, n∆t) are all given. The details of

the numerical time integration are as follows.
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Figure 3.1: The computational domain Ω using staggered grid with mesh size h.

1. Surface tension and unit tangent vector
Compute the surface tension and unit tangent vector on the interface as

σn
k = σc (1− βΓn

k) , (3.2)

τ n
k =

DsX
n
k

|DsX
n
k |

, (3.3)

both of which hold for sk−1/2 = (k − 1/2)∆s. Then we define the interfacial
force as

Fn
k = Ds (σn

kτ n
k)− DsZ

n
k

Rn
k

(τ n
kn

n
k) , (3.4)

at point Xk.

2. Force to the fluid
Distribute the force from the markers to the fluid by

fn (x) =
∑

k

Fn
kδh (x−Xn

k) ∆s, (3.5)
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where the smooth version of Dirac delta function,

δh (x) =

{
1
4h

(
1 + cos

(
πx
2h

))
, if −2h ≤ x ≤ 2h

0, otherwise,
(3.6)

is used.

3. Navier-Stokes equations
Solve the Navier-Stokes equations. This can be done by the following semi-
implicit second-order projection scheme, where the nonlinear term is approxi-
mated by a second-order extrapolation to avoid solving a nonlinear system at
each time step.

ρn

[
3ũr

n+1 − 4un
r + un−1

r

2∆t
+

(
2un

r

∂un
r

∂r
− un−1

r

∂un−1
r

∂r

)
+

(
2un

z

∂un
r

∂z
− un−1

z

∂un−1
r

∂z

)]

= −∂pn

∂r
+

1

Re
{2

r

∂

∂r

(
rµn ∂ũr

n+1

∂r

)
+

∂

∂z

(
µn ∂un

z

∂r

)
+

∂

∂z

(
µn ∂un

r

∂r

)
− 2µnũr

n+1

r2
}

+
1

ReCa
fn

r

ρn

[
3ũz

n+1 − 4un
z + un−1

z

2∆t
+

(
2un

r

∂un
z

∂r
− un−1

r

∂un−1
z

∂r

)
+

(
2un

z

∂un
z

∂z
− un−1

z

∂un−1
z

∂z

)]

= −∂pn

∂z
+

1

Re
{1

r

∂

∂r

(
rµn ∂ũz

n+1

∂r

)
+

1

r

∂

∂r

(
rµn ∂un

r

∂z

)
+ 2

∂

∂z

(
µn ∂un

z

∂z

)
}

+
1

ReCa
fn

z (3.7)

ũ = ub, on ∂Ω, (3.8)

∇̃h · un+1 = 0, (3.9)

∇̃h ·
(

1

ρn
∇̃hφ

n+1

)
=

3∇̃h · ũ
2∆t

,
∂φ

∂n
= 0, on ∂Ω (3.10)

∇̃hφ
n+1 =

3ρn
(
ũn+1 − un+1

)

2∆t
, (3.11)

pn+1 = pn + φn+1. (3.12)

Here the gradient operator ∇̃h = (∂/∂r, ∂/∂z) , the divergent operator ∇̃h· =
(1

r
∂
∂r

r, ∂
∂z

)· and the Laplace operator

∆̃hũ
n+1 =

(
∂2un+1

r

∂r2
+

1

r

∂un+1
r

∂r
+

∂2un+1
r

∂z2
− un+1

r

r2
,

∂2un+1
z

∂r2
+

1

r

∂un+1
z

∂r
+

∂2un+1
z

∂z2

)
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∇̃2
hφ

n+1 =
∂2φn+1

∂r2
+

1

r

∂φn+1

∂r
+

∂2φn+1

∂z2

are the standard centered difference operator on the grid which is defined at
the staggered grid mesh. One can see that the above Navier-Stokes solver
involves solving two Helmholtz equations for velocity ũn+1 and one Poisson
equation for pressure. These elliptic equations are solved by using the direct
sparse solver which is provided by CXML.

4. Ghost values form boundary condition
The numercial experiment in next section is concerned with a drop in a
extensional flow. In this case, the initial condition of a extensional flow
u = G (−0.5r, z) is applied in the beginning. The velocity of the computational
domain is [a, b]× [c, d] where a = 0 because of axisymmetric, and the bound-
ary conditions of the velocities are ur = 0 and ∂uz/∂r = 0 on r = 0. That
is,ur (r, c) = −0.5rG, ur (r, d) = −0.5rG, ur (a, z) = 0, ur (b, z) = −0.5bG,and
uz (r, c) = cG, uz (r, d) = dG, uz (a, z) = zG, uz (b, z) = zG. Then approxima-
tions for ghost values from linear extrapolation are given in the following.

ur (i, 0) = −rG− ur (i, 1) ,

ur (i, N + 1) = −rG− ur (i, N) ,

ur (0, j) = 0,

ur (M, j) = −0.5bG;

uz (i, 0) = cG,

uz (i, N) = dG,

uz (0, j) = −uz (1, j) ,

uz (M + 1, j) = 2zG− uz (M, j) .

Note that ur (i, 1) , ur (i, N) , uz (1, j) , anduz (M + 1, j) are unknowns for the
system when these ghost values are used. Therefore, the effect of these ghost
values will appear in the right-hand side of the linear system and simultane-
ously affect the coefficients of the linear system.

5. Updating position of marks
Interpolate the new velocity on the fluid lattice points onto the marker points
and move the marker points to new positions.

Un+1
k =

∑
x

un+1δh(x−Xn
k)h2, (3.13)

Xn+1
k = Xn

k + ∆tUn+1
k . (3.14)
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In order to redistribute the interfacial markers more uniformly, we should add
the artificial velocity,

UAn+1

k =
k∆s

2π

M∑

k′=0

DsU
n+1
k · τ n+1

k ∆s−
k∑

k′=0

DsU
n+1
k · τ n+1

k ∆s. (3.15)

From the above equations, we have the modified marker positions,

Xn+1
k = Xn

k + ∆tUn+1
k + ∆tUAn+1

k τ n+1
k . (3.16)

6. Update surfactant concentration distributionΓn+1
k

Since the surfactant is insoluble, the total mass on the interface must be con-
served. Thus, it is important to develop a numerical scheme for the surfactant
concentration equation to preserve the total mass. This can be done as follows.
Substitute Eq.(2.27) of rate of stretching factor into the Eq.(2.29), we have

R

∣∣∣∣
∂X

∂s

∣∣∣∣
∂Γ

∂t
+

∂

∂t

( ∣∣∣∣
∂X

∂s

∣∣∣∣R

)
Γ =

1

Pes

∂

∂s

[ (
R

∂Γ

∂s

) / ∣∣∣∣
∂X

∂s

∣∣∣∣
]

(3.17)

Now we discretiz the above equation by the Crank-Nicholson scheme in a
symmetric way as

Γn+1
k − Γn

k

∆t

rn+1
k

∣∣DsX
n+1
k

∣∣ + Rn
k |DsX

n
k |

2
+

Rn+1
k

∣∣DsX
n+1
k

∣∣−Rn
k |DsX

n
k |

∆t

Γn+1
k + Γn

k

2

=
1

Pes

1

∆s

[
Rn+1

k+1/2

|DsX
n+1
k+1 |+ |DsX

n+1
k |

Γn+1
k+1 − Γn+1

k

∆s
−

Rn+1
k−1/2

|DsX
n+1
k |+ |DsX

n+1
k−1 |

Γn+1
k − Γn+1

k−1

∆s

+
Rn

k+1/2∣∣DsX
n
k+1

∣∣ + |DsX
n
k |

Γn
k+1 − Γn

k

∆s
−

Rn
k−1/2

|DsX
n
k |+

∣∣DsX
n
k−1

∣∣
Γn

k − Γn
k−1

∆s

]

(3.18)

Where k is “half-integer” index, i.e. k = 0.5, 1.5, . . . , MK − 1/2. According
to the new interfacial marker position Xn+1

k obtained in the previous step and
the boundary condition (Γn+1

k − Γn+1
k−1)/∆s = 0, where k = 0.5 or MK + 1/2,

on the endpoints of the interface, Eq.(3.18) results in a symmetric tri-diagonal
linear system which can be solved easily. More importantly, the total mass of
surfactant is conserved numerically; that is,

∑

k

Γn+1
k |DsX

n+1
k |Rn+1

k−1/2∆s =
∑

k

Γn
k |DsX

n
k |Rn

k−1/2∆s (3.19)

The summation in Eq.(3.19) is the mid-point rule discretization for the inte-
gral in Eq.(2.25).The thing that the total mass is conserved can be derived
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by taking the summation of both sides of Eq.(3.18) and using the boundary
condition.

Note that, when the artificial velocity is imposed on our equations like Eq.(3.16),
Eq.(3.18) also have to impose the artificial velocity as follows.

Γn+1
k − Γn

k

∆t

Rn+1
k

∣∣DsX
n+1
k

∣∣ + Rn
k |DsX

n
k |

2
+

Rn+1
k

∣∣DsX
n+1
k

∣∣−Rn
k |DsX

n
k |

∆t

Γn+1
k + Γn

k

2

−
[

Rn+1
k+1/2U

An+1
k+1/2

(
Γn+1

k+1 + Γn+1
k

)
/2− rn+1

k−1/2U
An+1

k−1/2

(
Γn+1

k + Γn+1
k−1

)
/2

2∆s

+
Rn

k+1/2U
An

k+1/2

(
Γn

k+1 + Γn
k

)
/2−Rn

k−1/2U
An

k−1/2

(
Γn

k + Γn
k−1

)
/2

2∆s

]

=
1

Pes

1

∆s

[
Rn+1

k+1/2

|DsX
n+1
k+1 |+ |DsX

n+1
k |

Γn+1
k+1 − Γn+1

k

∆s
−

Rn+1
k−1/2

|DsX
n+1
k |+ |DsX

n+1
k−1 |

Γn+1
k − Γn+1

k−1

∆s

+
Rn

k+1/2∣∣DsX
n
k+1

∣∣ + |DsX
n
k |

Γn
k+1 − Γn

k

∆s
−

Rn
k−1/2

|DsX
n
k |+

∣∣DsX
n
k−1

∣∣
Γn

k − Γn
k−1

∆s

]
.(3.20)

7. Update density and viscosity
Since the density and viscosity are discontinuous constants across the interface,
they can be represented by Eq.(2.34)and Eg.(2.35). By Eq.(2.32) and Lapace
operator in the cylindrical coordinates, we obtain

∆̃hIi,j =
Ii+1,j − 2Ii,j + Ii−1,j

∆r2
+

1

ri

Ii+1,j − Ii−1,j

2∆r
+

Ii,j+1 − 2Ii,j + Ii,j−1

∆z2
,

∂I

∂n
= 0, on ∂Ω

=
Gi+1/2,j −Gi−1/2,j

∆r
+

Gi,j

ri

+
Gi,j+1/2 −Gi−1,j−1/2

∆z
(3.21)

where,

Gi,j =

(
Gi+1/2,j

Gi,j+1/2

)
=




∑
k

n1
kdh

(
ri+1/2,j −Rk

)
dh (zi,j − Zk) dh∆s

∑
k

n2
kdh (ri,j −Rk) dh

(
zi,j+1/2 − Zk

)
dh∆s



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4 Numerical results

4.1 convergent test

First of all, we test the convergence of Navier-Stokes solver. Here, we perform
different computations with varying meshes h = ∆r = ∆z = 1/32, 1/64, 1/128,and
the time step size is ∆t = h/4.The solutions are computed up to time T = 1.The
problem is set up in fluid domain Ω = [0, 1]× [−1, 1], the Reynolds number Re = 1
and the capillary number Ca = 1. We set exact solutions as follows and fr, fz obtain
by E.q.(2.15) ,E.q.(2.16).

ur (r, z, t) =
π

2
r3cos (πz) e−t

uz (r, z, t) = r2 (cos (πr)− 2sin (πz)) e−t

p (r, z, t) = cos (2πr) cos (πz) e−t

When,

ρ (r, z, t) = 1

µ (r, z, t) = 1

Table 1: The mesh refinement analysis of the velocity ur, uz.

h ‖ur − uexact‖∞ Rate ‖uz − uexact‖∞ Rate
1/32 4.6868E − 04 - 7.7483E − 04 -
1/64 2.0812E − 04 1.1712 4.1138E − 04 0.9134
1/128 1.1699E − 04 0.8310 2.2038E − 04 0.9005

When,

ρ (r, z, t) = (1.5 + cos (πr)) e−t

µ (r, z, t) = 1

Table 2: The mesh refinement analysis of the velocity ur, uz.

h ‖ur − uexact‖∞ Rate ‖uz − uexact‖∞ Rate
1/32 6.1872E − 04 - 7.6975E − 04 -
1/64 2.1793E − 04 1.5054 4.2531E − 04 0.8559
1/128 1.1867E − 04 0.8769 2.2278E − 04 0.9329
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When,

ρ (r, z, t) = (1.5 + cos (πr)) e−t

µ (r, z, t) =
((

2r3 − 3r2
)
cos (πz) + 1

)
e−t

Table 3: The mesh refinement analysis of the velocity ur, uz.

h ‖ur − uexact‖∞ Rate ‖uz − uexact‖∞ Rate
1/32 6.3648E − 04 - 8.9644E − 04 -
1/64 2.3356E − 04 1.4463 5.4650E − 04 0.7140
1/128 1.2293E − 04 0.9260 3.3458E − 04 0.7079

Table 3 shows the mesh refinement analysis of the velocity ur, uz. One can see
that the error decreases substantially when the mesh is refined, and the rate of con-
vergence is somewhat first order. Note that, the fluid variables are defined at the
staggered grid in r− z coordinates, but the density and viscosity are defined at the
center of of the uniform grid. In addition there are some cross derivative terms in
our equations, so it is not fully implicit. Thus it is why the rate of convergence
behaves less than second-order.

After above test, we impose the surfactant on the interface to observe the drop
behavior. We observe effects of the clean drop deformation on the viscosity in an
extensional flow , ur = −0.5Gr and uz = Gz, where G is the principal strain
rate [6], and is chosen as G = 1. The computational domain is chosen as Ω =
[0, 1]× [−1, 1] in the axisymmetrical cylindrical coordinates, and the initial drop is
chosen as a circular one with radius r0 = 0.25. We choose β = 1 for the surface
tension equation Eq.2.23. In order to make our research convinced, we should carry
out the convergence study of the immersed boundary method. We use the different
mesh h = ∆r = ∆z = 1/32, 1/64, 1/128 and 1/256 to perform our computation
relatively. The Lagrangian mesh is chosen as ∆s ≈ h and the time step size is
∆t = h/8. The solutions are computed up to time T = 1. Since it is not easy to
obtain the analytical solution from our problem, we choose the finest mesh as our
reference solution to compute the L∞ error between the reference solution and the
solution which is solved from the coarser grid. Here, we choose Reynolds number
Re = 1, Capillary number Ca = 0.25, Peclet number Pes = 12.5, the viscosity
inside drop µ1 = 5, and the viscosity outside drop µ2 = 1.
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Table 4: The mesh refinement analysis of the velocity ur, uz, and the surfactant
concentration Γ.

h ‖ur − URref‖∞ Rate ‖uz − UZref‖∞ Rate ‖Γ− Γref‖∞ Rate
1/32 7.2843E − 03 - 8.4765E − 03 - 1.1299E − 02 -
1/64 3.9920E − 03 0.8677 3.7282E − 03 1.1850 6.2283E − 03 0.8593
1/128 2.0879E − 03 0.9350 1.3146E − 03 1.4744 2.4108E − 03 1.3692

Table 4 shows that the error of ‖ur −URref‖∞, ‖uz −UZref‖∞, and ‖Γ−Γref‖∞
converge to zero where URref , UZref , and Γref are r-axial, z-axial reference velocities,
and reference surfactant concentration relatively. The convergent rates for ur, uz,
and Γ are about first order, but our method is a second order scheme. Note that since
the fluid velocities are defined at the staggered grid in r− z coordinates, the refined
mesh will not coincide with the same grid locations. Thus, we approximate the
coarser grid by cubic spline interpolation the velocities obtained from the reference
grid near the coarser grid. In addition there are some cross derivative terms in our
equations, so it is not fully implicit. We attribute this is part of the reason why
the rate of convergence behaves less than second-order. Similarly, the surfactant
concentration is defined at “half-integer” grid. When we average the reference grid,
we should use the weighted average since the concentration is the mass per unit
surface area.

4.2 Oscillating drop

Before to proceed, it is important to check how much the drop volume leaks or
bulks up since it affects the computational accuracy. We test a simple case that
a spheroid drop in the static liquid will be shrunk and turn into a sphere drop.
This computational domain is set up as Ω = [0, 1] × [−1, 1] in the axisymmetrical
cylindrical coordinates, and put a spheroid drop with the semi-major axis whose
length is a = 3/4 and with the semi-minor axis whose length is b = 1/3, respectively
into our domain. Then, given the computational mesh h = ∆r = ∆z, ∆t = h/8, the
Reynolds number Re = 25, the Capillary number Ca = 0.04, and the surface Peclet
number Pes = 12.5. The initial surfactant concentration is uniformly distributed
along the interface such as Γ (0, s) = 0.5. The parameters in E.q.2.23 are chosen as
σc = 1 and β = 0.5,respectively. In the meanwhile, we consider the density inside
and outside of the drop are µ1 = 2 and µ2 = 1, respectively, and we computed the
relative error of the drop volume Ver by

Ver =
|V − Vi|

Vi
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, where Vi = initial volume.
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Figure 4.1: In the fluid velocity field, we observe the time evolution of a spheroid
drop in a static liquid with Re = 25, Ca = 0.04 and ∆t = h/8.

In figure 4.1, the oscillation of the drop depends on the fluid velocity field and
the incompressibility of the drop. We also observe the distribution of the viscosity
in figure 4.1. The spheroid drop with a = 3/4 and b = 1/3 oscillates from the time
T = 0 to T = 2, and its steady state is the sphere drop with the radius r ∼= 0.4145.
After T = 2, the amplitude of vibration is smaller than the one before T = 2, but
the drop volume leaks with the time evolution. The reason of this phenomenon
is that there is the spurious velocities in our computational process. The spurious
velocities influence the computation of the new marker positions on the interface
.Thus, we only do our best to reduce the relative error of the drop volume. The
relative error of the drop volume is smaller than 1% at T = 2.75 in figure 4.1. So,
this is an acceptable error range for us.

4.3 Effects of the clean drop deformation on the viscosity

There is different viscosity inside the drop,so we will study it in this section. We
observe effects of the clean drop deformation on the viscosity in an extensional flow
, ur = −0.5Gr and uz = Gz, where G is the principal strain rate [6], and is chosen
as G = 1. Throughout this computation, the computational domain is chosen as
Ω = [0, 1] × [−3, 3] in the axisymmetrical cylindrical coordinates, and the initial
drop is chosen as a circular one with radius r0 = 0.25. We also fix the density inside
and outside the drop ρ1 = ρ2 = 1, the Reynolds number Re = 1, and the Capillary
number Ca = 0.6. Here, we use the mesh h = ∆x = ∆y = 1/64, the Lagrangian
grid with size ∆s ≈ h, the time step size ∆t = h/8, and computed up to time
T = 4. A convenient method for expressing the viscosity difference between two
sides of drop is viscosity ratio λ, where µ1 and µ2 mean viscosity inside and outside
the drop,

λ =
µ1

µ2

.
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In general, a drop will be stretched along the direction of fluid flow if it is
put into the extensional flow. But there is surface tension on the interface, it may
restrict a tendency of stretching drop. Therefore,we first observe a property for
the clean drop with the viscosity ratio λ = 1, 5 and 10, and we fix µ2 = 1 in this
computation.
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Figure 4.2: The time evolution of a drop in an extensional flow with λ = 1, 5 and
10 at T = 4.
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Viscosity describes a fluid’s internal resistance to flow and may be thought of
as a measure of fluid friction. For example, high-viscosity magma will create a tall,
steep stratovolcano, because it cannot flow far before it cools, while low-viscosity
lava will create a wide, shallow-sloped shield volcano. We can observe the defor-
mation of the drop by flow in Fig.4.2, and as λ = 1, 5, and 10 the tip point of the
interface on the z−axis are at about the positions (r, z) ≈ (0,±1.221), (0,±0.6437)
and (0,±0.4515),respectively at T = 4. By Eq.2.6 we know that E is the rate of
deformation rate and the larger viscosity leads to smaller E. That is, the harde the
drop will deform. We can observe this phenomenon from Fig.4.2. Thus drop is more
sticky as viscosity is higher, the shape of drop is more difficult to be affected by flow.

We then examine how the bubble would deform when viscosity of the inside
drop is smaller than that of outside drop, i.e., viscosity ratio λ ≤ 1. We also
observe effects of the clean drop deformation on the viscosity in an extensional flow
, ur = −0.5Gr and uz = Gz, where G is the principal strain rate [6], and is chosen
as G = 1. Throughout this computation, the computational domain is chosen as
Ω = [0, 1] × [−3, 3] in the axisymmetrical cylindrical coordinates, and the initial
drop is chosen as a circular one with radius r0 = 0.25. We also fix the density
inside and outside the drop ρ1 = ρ2 = 1, the viscosity inside drop µ1 = 1, the
Reynolds number Re = 1, and the Capillary number Ca = 0.6. Here, we use the
mesh h = ∆x = ∆y = 1/64, the Lagrangian grid with size ∆s ≈ h, the time step
size ∆t = h/8, and computed up to time T = 4.
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Figure 4.3: The time evolution of a drop in an extensional flow with λ = 0.1, 0.5
and 1 at T = 2.

We can observe the deformation of the drop by flow in Fig.4.3, and as λ =
0.1, 0.5, and 1 the tip point of the interface on the z−axis are at about the positions
(r, z) ≈ (0,±2.1323), (0,±1.0702) and (0,±0.4951),respectively at T = 2. As above
we observe the deformation of drop is more intense when viscosity ration is lower.
From Fig.4.2 and Fig.4.3, we notice the velocity of drop deformation with viscosity
ratio λ < 1 is faster than that with viscosity ratio λ > 1. By Eq.2.6 we know
that E is the rate of deformation rate and the larger viscosity leads to smaller E.
As viscosity ratio λ < 1, we can think of it as viscosity outside drop µ2 < 1 and
viscosity inside drop µ1 = 1. Therefore we can perceive that the drop would be
easier to deform from Fig.4.3. Thus drop is less sticky as viscosity is higher, the
shape of drop is easier to be affected by flow.
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4.4 Effects of the drop deformation on surfactant

There is different behavior for clean interface and contaminated interface, so we
will study it in this subsection. We compare a clean drop with a contaminated drop
in an extensional flow, ur = −0.5Gr and uz = Gz, where G = 1. By the comparison,
we observe that the surface tension reduces when the surfactant is on the interface.
Here, we use the mesh h = ∆x = ∆y = 1/64, the Lagrangian grid with size ∆s ≈ h,
and the time step size ∆t = h/8.

The problem is set up as a drop immersed in a fluid domain Ω = [0, 1]× [−3, 3]
with viscosity 1, which the drop is a circle with radius r0 = 0.25. We also fix the den-
sity inside and outside the drop ρ1 = ρ2 = 1, the Reynolds number Re = 1, the Cap-
illary number Ca = 0.6,and the surface Peclet number Pes = 1.25. The initial surfac-
tant concentration is uniformly distributed along the interface such as Γ (0, s) = 0.5,
and the parameters in E.q.2.23 are chosen as σc = 1 and β = 0.5,respectively. We ex-
amine viscosity ratio λ = 1, 5 and 10 repeatedly and observe the distinction between
the clean interface (no surfactant) and contaminated interface (with surfactant).
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Figure 4.4: The time evolution of a drop in an extensional flow with λ = 1.

From the Fig4.4, the tip points of the interface on the z-axis are about at the
positions (r, z) ≈ (0,±2.0376), then we obtain the distance of contaminated drop
from the tip point to the center is larger than that of clean drop. We observe the
contaminated drop deforms more intensely because surfactant decrease the surface
tension, causing the drop more likely to deform.
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Figure 4.5: The time evolution of a drop in an extensional flow with λ = 5.

From the Fig4.5, the tip points of the interface on the z-axis are about at the
positions (r, z) ≈ (0,±0.8187), then we also obtain the distance of contaminated
drop from the tip point to the center is larger than that of clean drop. Then,
We examine viscosity ratio λ = 10 and observe the distinction between the clean
interface (no surfactant) and contaminated interface (with surfactant).
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Figure 4.6: The time evolution of a drop in an extensional flow with λ = 10.

From the Fig4.6, the tip points of the interface on the z-axis are about at the
positions (r, z) ≈ (0,±0.4929), then we we also obtain the distance of contaminated
drop from the tip point to the center is larger than that of clean drop.
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Figure 4.7: This is the total mass of surfactant for Pes = 1.25.

Even though surfactant would affect the drop deformation, viscosity is the main
factor, and flow is more sticky as viscosity is higher, the shape of drop is more
difficult to be affected by flow. Since the surfactant is insoluble, the total mass of
the surfactant must be conserved In Fig.4.7, no matter which viscosity we choose,
the total mass of surfactant for Pes = 1.25 is conserved very well by our method.
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4.5 Effects of the drop deformation on Peclet number

In this subsection, we compare the influence of different surface Peclet number
Pes on the elongation of contaminated drop, and we choose peclet number Pes from
0 to 500, partitioned 50 choices at once. Here, we first put a contaminated drop in
the extensional flow, ur = −0.5Gr and uz = Gz, where G = 1 and compute up to
T = 4 in the domain Ω = [0, 1]× [−3, 3]. Then, we fix the Reynolds number Re = 1,
the Capillary number Ca = 0.3,and Γ (0, s) = 0.5 with the parameters in E.q.2.23
chosen as σc = 1 and β = 0.5,respectively.

Figure 4.8: Drop in axisymmetric flow.

A convenient method for expressing the results of experiment is to measure L, the
length of the drop in the direction of the r axis, and B, the breadth in the direction
of the z axis. As noting in Fig.4.8, the degree of deformation can be characterized
by the scalar Df that was originally introduced by Taylor [11].

Df =
L−B

L + B
(4.1)
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Figure 4.9: This is the deformation of drop with Peclet number Pes at T = 4.
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Figure 4.10: This is the total mass of surfactant for every Peclet number Pes.

Since the underlying extensional drives the surfactant toward to the tip points of
the drop, the surfactant concentration is higher and thus the surface tension is lower
near the tips. When the Peclet number is lager, the surfactant gradient along the
interface is lager too, therefore, the overall drop elongation is greater. From Fig.4.9
we noticed from Peclet number Pes from 0 to 150 the larger the deformation the
more obvious, but past 150 the larger the change will also be additional, but the
higher the number the higher the tendency to plateau. By Fig.4.10 we also obtain
the total mass of surfactant conserved no matter Peclet number which we choose.

5 Conclusion

In this paper, we used the immersed boundary method such that the interface is
in the different phases with different densities and viscosities by an indicator function
in the cylindrical coordinates to construct our formulation. Since the velocity field
is in the axisymmetric coordinates, the velocity boundary conditions on r = 0 must
be set ur = 0 and ∂uz/∂r = 0.We solve the Navier-Stokes equations by projection
method, and update the new marker positions by imposing the artificial velocity
in order to make the new positions uniformly. Controlling marker positions uni-
formly can make the volume error smaller. Similarly, the surfactant equation must
impose the artificial velocities to control the concentration locations. The surface
tension is reduced by the surfactant, and Peclet number influences the diffusion of
the surfactant.

In our future work, for a drop on a solid, controlling the equilibrium contact angle
can produce the hydrophobic phenomenon or hydrophilic phenomenon. Imposing
the surfactant on the interface affects the equilibrium contact angle in this mov-
ing contact line case. Furthermore, we can develop the more general 3-dimension
simulation.
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