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Edge-coloring

student : Hung-Shiun Chen Advisors : Dr. Song-Sun Lin

Department ( Institute ) of Applied Mathematics
National Chiao Tung University

ABSTRACT

This investigation is.about tiling the whole plane with upper triangles and
lower triangles which have colers on-edges.-Upperand lower triangles can be
placed side by side if each of the‘intersections has the same color. In this paper,
we consider upper and lower triangle with.two and three colors on edges. The
problem we studied is that: any set of triangle that can fill with the whole plane
whether it can cover the whole plane periodically. We use an algorithm to do the
problem and get the result by computers. Finally, the main result of this paper is
that the whole plane can be tiling by triangle with two and three colors if and
only if the whole plane is covered by the local pattern periodically.
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1 Introduction

The coloring of unit squares on Z? has been studied for many years [6]. In 1961, in studying
proving theorem by pattern recognition, Wang [12] started to study the square tiling of a
plane. The unit squares with colored edges are arranged side by side so that the adjacent
tiles have the same color; the tiles cannot be rotated or reflected. Today, such tiles are called
Wang tiles or Wang dominos [4, 6].

The 2 X 2 unit squares is denoted by Z,,. Let S, be a set of p (> 1) colors. The total set

of all Wang tiles is denoted by X ,(p) = SPZM. A set B of Wang tiles, such that 8 C LY (p),
is called a basic set (of Wang tiles). Let £(8) be the set of all global patterns on Z? that can
be constructed from the Wang tiles in 8 and P(B) be the set of all periodic patterns on Z?
that can be constructed from the Wang tiles in 8. Clearly, P(8) C X(8B). The nonemptiness
problem is to determine whether or not Z(8) # 0. In [12], Wang conjectured that any set of

tiles that can tile a plane can tile the plane periodically, i.e.,

if X2(B) #0 then P(B) + 0. (1.1)

However, in 1966, Berger [4] proved that Wang’s conjecture was wrong. He presented
a set B of 20426 Wang tiles that could only tile the plane aperiodically:

LB)#0 and P(B)=0. (1.2)

Later, he reduced the number of tiles to 104. Now, the nonemptiness problem is called
undicidable whenever (1.2) holds." Thereafter, smaller basic sets were found by Knuth,
Lauchli, Robinson, Penrose, Ammann, Culiksand Kari [5, 6, 7, 10, 11]. Currently, the
smallest number of tiles that:can tile the plane aperiodically is 13, with five colors: (1.2)
holds and then (1.1) fails for p = 5 [5].

Recently, Hu and Lin [13] show that Wang’s‘conjecture (1.1) holds provide p = 2: any
set of Wang tiles with two colors that can.tile’a plane can tile the plane periodically.

In [13], statement (1.1) is understood -by-studying how periodic patterns can be gener-
ated from a given basic set. First, thesminimal-cycle generator is introduced. 8 C IF ,(p) is
called a minimal cycle generator'if P(B) # 0 and P(B’). = 0 whenever B’ & B. B C LI ,(p)
is called a maximal non-cycle generator-if £(8) =0 and P(B”) # 0 for any 8" 2 8.
Given p > 2, denote the set of all minimal‘cycle generators by C(p) and the set of maximal
non-cycle generators by N(p). Clearly,

Clp) N N(p) = 0. (1.3)

Statement (1.1) follows for p = 2.

In this work, the triangle edge-coloring of p = 2 and 3 are investigated. A square tile
can be divided to a upper triangle and a lower triangle. Therefore, this problem is a special
case of Wang tile for p = 3 which is still under investigation. We apply a similar method in
[13] and this problem is deciable in p = 2 and 3, i.e, (1.1) holds.

In Section 2, for p = 3, the ordering matrix of all 54 local patterns on upper and
lower triangle tiles is introduced. These local patterns are classified into two groups. The
recurrence formula for patterns on Z,, are derived which is important in proving that
maximal non-cycle generator cannot generate global patterns.

In section 3, the procedure to determine the set of all minimum cycle generator C(3)
and maximum non-cycle generator N(3) are introduced. By the assistance of computer,
the main result is proved.



2 Ordering Matrix of Triangle Patterns

In this section, the triangle tiles are classified into upper triangle tiles and lower triangle
tiles. Denote by the upper triangle A. The color of bottom, left and right edge on an upper
triangle tile a are denoted v;(«t), hi(a), di(a). Similarly, the lower triangle is denoted by V.
The color of top, right and left edge on a lower triangle tile p are denoted v,(B), h2(B), d2(B),
respectively.

When an upper triangle tile @ and a lower triangle tile  satisfying di(a) = d»(p), the
parallelogram is formed which can be regarded as a square, denoted by Z,,,, see Fig 1.

ha(B) Ia(B) ha(P)
h«Adl(a). dZWz(@ = ’“(ﬁ) = a ()
v1(a) v1(a) v1(a)
Figure 1.

Denote the set of p colors by S, = {0,1,:+-,p= 1}. Then the set of all local patterns with
colored edge on triangle tiles over.S, denoted by Z7.,(p).

Given 8B c ¥ ,(p), B means the set of all square tiles ¢an be formed by B. Let men(ﬁ)

be the set of all local patternsion Z,,x; generated by E; Z(@) be the set of all global patterns
generated by 8B, and P(B) be-the'set of all periodic patterns:generated by B.
Clearly,
if ¥n(B) = 0 for.some n1,11=2 then (B) = 0. (2.1)



The ordering matrix Y* = [y,;1, j] of all upper triangle patterns in X.I_(3) is denoted by

o/ No o/ o\
0 0 0
oo 0o\t o/\2
1 1 1
W o1 o/\2
2 2 2
1/ No 11 1/\2
0 0 0
Ve - 110 111 112 22
N 1\1 1/\2
2 2 2
0 0 0
2/ \0 2/\1  2/\2
1 1 1
W 21 2/\2
Y 2 2|

9%3

The ordering matrix Y¥ = fyy; 1, jl of all dlower triangle patterns in X ,(3) is denoted by

0 1 2 0 1 0 1 2
o\ /0 O\ 0 0\ /O O\ . A0 A 0"/ 0™/720 /20 /2
0 - W 0 1188 2 0 1 2
N0 N0 A0 N N BTN 2 1N /21 /2 (2.3)

YV

o 1 2 Q=== 2 0 1 _2
202020212121%%2222

3x9

Then, The vertical ordering matrix szz = [y ]-] of all local patterns on square in X)x,(3)
is denoted by



FEFFFFFFFF

M EMNNMEEEEKHE._]

S

X
X

X
X

/N

X

= -]

HEEREKEKKEMEEEK.A

/N

X

HEEREKKXKEK .

Rl
X B X
x| B X

X X X

R

SR N R R R

Yoo = X X X X K .
M M K
= Y*. Y (2.5)
[ Yix Yiz2 Yi3| YVia Yis Yie| Y17 Yi8 Yio ]
Y21 Y22 Y23| Y24 VY25 VYo6| Y27 Y28 Y20
Y31 Y32 Y3pll [ Ysa VY35 Y3e| Y37 Y3 Y39
Ya1 Ya2 Yaz| Yaa Yas Yae| Y47 Yas8 Yo
= | Y5 W52 VYs3l.Ysa 55 Yse| Ys7 Ys8 Yso (2.6)
Vo1 Ye2 —Ye3 . Yea Ye5 Yeel Y67 Vo8 Yoo
Y71 Y72 Y73\ Yza Y75+ Y6l Y77 Y78 Y79
Ys1 "Ys2 Y83| Ys4s- Yss VYse| Y87 VYss Yso
| You Yoo Yo3qi Yoa VYos5' YoM Yo7 Yos Yoo |
22;1 22;2 22;3
= | Yo Yo Y3 (2.7)
| Y2,7 Y2,8 Y2,9 9%9
where - means upper and lower triangle pattern is glued together as in Fig 1.
— 9 —
Y, = ZYZ;i (2.8)
i=1
— qil
Yz;i = [ Yoip:g ]3><3 = { alp_la2 } (29)

wherei=1+a;-3'+a,-3° a;, €{0,1,2).

Now consider Y,,.1, for m > 2, the ordering matrix of all local patterns on Z,,.1yx2,

Ym+1

= |

m+1;i

= {

9
§ Ym+1;i
i=1

(2.10)

(X.’

} (2.11)




wherei=1+a-3"+8-3!, a,pand - €{0,1,2}.
The recurrence formula for Y,,,y;; in terms of Y,,;; are given as follows.
Fori=1,4,7

-3 _ 3 _ 3 _ 1
Y Yo;j+i-1;11 Y3 -2 Y Y2;j+i-151 2Ym3 -2 Y Yo,j+i-151 3Ym3 -2
=1 j=1 =1
_ 3 _ 3 _ 3 _
Y1 = )y Y2;j+i-12:1 Y3 -2 Y Y241 22Ym3 -2 Y Y241 23Ym3 j—2
j=1 j=1 j=1
3 _ 3 _ 3 _
Y Yojvicizn Ymaj2 L Yzjricis2Ymsj2 L Yoij+i-133Ymaj-2
| j=1 j:1 j=1 Agmy3m
Fori=2,5,8
-3 _ 3 _ 3 _ 1
Y Y2;j+i-2;1,1 Y3 -1 Y Y2;j+i-2;1 2Ym3 -1 Y Yo,j4i-2:1 3Ym3 -1
j=1 j=1 j=1
_ 3 _ 3 _ 3 _
Yo = | LYojpio2aYmsjot L Yujsi222Ymzji-1 L Y2jvi-223Ym3j-1
j=1 j=1 j=1
3 _ 3 _ 3 _
Y Yoijri-231 Ymaj1 - L Y2jwi22Ymaj-1  LY2j+i-233Ymaj1
| j=1 j=1 j=1 d3myzm
Fori=3,6,9
3 L 3 o 3 ]
Y Yojri-ata Ymsj 1 Yoj+i-3:10 Ymar, 2 Y2ij+i-313 Y3
=1 i j=1
_ 3 _ 3 & 3 _
Yo = | L Yoii800 Yuz Db 300 0m3; 0 Yo,j+i-323 Ym3;
j=1 = il
3 x2 3 = 3 _
YYo= Ymj - LWaijeiaa2 Ymsj | 2 Y2iji-333 Ymsj
| j=1 = s | dgmy3m
Given B C Z§X2(3), the associated veértical transition matrix V,,(8B) is obtained from Y.

Indeed, VZ(B) = [v;;], where v;; = T'if and only if y;; € B.
The recurrence formula for higher order vertical triangle follow from (15).

v2 = Zg“vz;i;
i=1

Vi = [ 2 |,

Form > 2,

9
Vi = E Vm+1;i
i=1



Fori=1,4,7

-3 _ 3 _ 3 _ :
2. U24i-1:1:1 Vingj—2 2 U2jsi-112 Vimzj—2 2 U2j4i-1:13 Vin3j—2
]:1 ]:] ]:]
_ 3 _ 3 _ 3 _
Vi = | L0121 Vimsj2 L 0%jsic122Vmsj2 2 02+i-123 Vinsj-2
]:1 ]:] ]:]
3 _ 3 _ 3 _
Y Unjvic131 Vimsjz L 02jwic132Vmsj2 1. 02j4i-133 Vimsj—2
= = = |~
Fori=2,5,8
-3 _ 3 _ 3 _ :
2. U%4i-2:1:1 Vingjo1 2 U2jsi212 Vimzj—1 20242113 Vinajo1
]:1 ]:] ]:]
_ 3 _ 3 _ 3 _
Visti = | L02jri221Vimsjr  L02ji222Vimsj1 X 02;4i-223Vimsj-1
]:1 ]:] ]:]
3 _ 3 _ 3 _
Y Ujvic231 Vmsjol 1024232 Vmzj1 L 02j+i-233 Vinzj-1
[ /=1 j=1 =1 A3msgm
Fori=3,6,9
-3 _ 3 _ 3 A
2 U2j4i-3:1:1 Vimnsj 2 U2j+i-312Vim3j 2 U2j+i-3:13 Vi
=1 = j=1
_ 3 _ 3 _ 3 _
Vit = | L02jvi-321 Vauldy o 00jwiaBaVmsj Y. U2j+i-323 Visj
j=1 1 j=1
3 > 3 b 3 _
Y. 02 i=a81 Vonssj e 2 Varjicgag Vgt ). 02;j4i-333 Vs
| j=1 =L j=1 d3myam
Then
—n-1
| Lo B)I=L Vs | (2.12)

Now, two set of periodic patterns are studied. Givenaperiodicsequencea = (a1, ay, - -+, @y-1)~.
Define shift function o by o(a;) =(a@is1):

Denote the periodic set of Z,x = 7)@([ n 0 ])

1 ) Un-2 Un-1
hyp< | X | e Ny
Mo I
151 v2 Un-2 Un-1




which v, h; € S,,.

The set of Z, with [ shift = Pg( K )

& B2 n—2 Bn-1
hppX | X0 | e Ny—q

o X L Iy

a1 az ap—2 [

which al(all Tty an—l) = (ﬁl/ e Iﬁﬂ—l)l 0i, hi € Sp .
Denoted by T,, periodic of patterns in Ymﬂ;i.

T, = Vo
i=1,5,9

T, = E Vm+1;i
i=1,5,9

nol
0 k
where R,, = [ Vs j ]is the rotational matrix:forp =3.
More precisely,

and the # of [ g ]l{ ] periodic is l"g([ ]) =tr(TEREY,0<1<m—1,

_ e I ; -1
o= ] Tmigiz = b a1 il = Mo gu1 4,3 =8 1 <i<3"
4 Tz, j = 0 otherwise.

Now, the symmetry of the tipper and lower triangle is introduced. The symmetry
group of the triangle is D3, the dihedral group of order six. The group D3 is generated
by the rotation p, through 2%, and the reflection m about the y-axis. Denote by D; =

{I, p, p*, m, mp, mp?}.
BP

2

o\ # (3

)e

m m

Next, consider the permutation S, on triangle tiles. The three edge of trinagle tile are
mutually independent. If two directions of trinagle are periodic, the remaing one is also
periodic [14]. Since, in edge coloring, the permutation of colors in the horizontal, vertical
and diagonal directions are mutually independent. Denote the permutations of colors in
the horizontal, vertical and diagonal edges by i, € S,, 1, € S, and 1, € S, respectively.



o
Ui
Finally, the upper triangle and lower triangle can be exchanged to each other simulta-

neously. Denote this act by &.

Then for any 8 C X1 (p), define the equivalent class [8B] of B by

[B] = {3/ CXi () :8 = (((((3)T)nh)nv)nd)g,’£ € D3, ), Mo, 1a € Sp and 5}.




3 Main Result

In this section, we only consider p = 3, the result in p = 2 is given in Appendix Table 1 and
Table 2. Now, we need some definitions.

Definition 3.1. For 8 c ] ,(p),

x
(i) Bis called a cycle generator if P(B) # 0.

(ii) Bis called a minimal cycle generator if P(B) # 0 and P(B’) =D forall B’ & B.

(iii) B is called a non-cycle generator if P(B) = @.

(iv) Bis called a maximal non-cycle generator if P(B) = 0 and P(B”) # O forall B” 2 B.

(v) C(p) is the set of all minimal cycle generators that are subsets of Z;Xz(p).

(vi) N(p) is the set of all maximal non-cycle generators that are subsets of ] ,(p).

Notably, if 8 is a cycle generator, then it has a subset of minimal cycle generator. In
contrast, if 8’ is a non-cycle generator, then 8’ is a subset of a maximal non-cycle generator.

The total 27 local patterns on upper triangle tile @ = (o, a1, ap) with three colors Sz =
{0,1, 2} can be ordered as follow:

¢1((a0,6¥1,6¥2)) =1+a- 30 el 31 + a3 - 32

Hence, the upper triangle tilestare givensby 1 < ¢y(a) < 27.
Similarly, the total 27 local patterns on lower triangle 5 = (Bo, 1, 52) with S; can be
ordered by

d2((Bo, B1,B2)) = 284 B0 3% +.51 - 3 +65 - 3

Hence, the lower triangle tiles‘are given by 28 <" (). < 54.

Clearly, ¢ and ¢, are one to one and onto on upperand lower triangle tiles, respectably.
Hence, the order of local patterns of'triangle tilés from 1 to 54.

Since a local pattern (a) in Zsy, with hy(a) = hy(a), vi(a) = v2(a) is the periodic pattern
which is formed by an upper triagnle tile and a lower triangle tile. We use this idea to
divided all 54 local patterns on triangle into two such sets G; and G, as follows.

Definition 3.2. All 54 local patterns on triangle tile into two sets G; and Go,.

G = {1,2,3,10,11,12,19, 20, 21, 28, 29, 30, 37, 38, 39, 46, 47, 48 }.
G, = {4,56,7,89,13,14,15,16,17,18, 22, 23, 24, 25, 26, 27,
31,32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45, 49, 50, 51, 52, 53, 54 }

There are many ways to choose G; and G,. We want every upper triangle tiles can
joint every lower triangle tiles in Gy, then these tiles are easily to form periodic patterns
on horizontal direction. The iterative method to obtain C(3) and N(3) are introduced as
follows.



Algorithm 1
m=0
repeat
m=m+1
C(m)
N(m)
until (X(8B) = 0 for all B € N(m))

Define

C(0) {0}
Cm) = {B:BEPB([Z Il{]),whichmznxk,OSZSn—l}

N@O) = {B1UB,: 8, S G, 8B, <G}
N (m) {B:Be Nim-1),c L B,¥Yc e C(m)}

If this algorithm stops, then C(3) = C(m), N(3) = N(m) and this problem is decidable.

Lemma 3.3. Given 8 = B, UB,, which B, €1Gi3Ba,.€ G,. For any B, € [B,], AB; C (Gy) such
that B, U B, € [B].

Proof. Since B, € [B,], there exists & e As.t B, = &(B,):
We know &(B) = &(B1) U &(8,) € [B], where £(B1) C E(G1) and £(B,) € E(Gy).
Therefore, £(B1) U &(B,) = &(B1) U B, € [B] O

We can use the above lemma to reduce the algorithm’s.computation. From lemma, G,
can be replace by [G,].

Now, the following theorem gives the classes of minimal cycle generators in C(3) and
the classes of maximal non-cycle generators in N (3): Table 1 and Table 2 present the details
of equivalent classes of minimal cycle generators in C(2) and maximal non-cycle generators

in N(2).
Theorem 3.4. (i) The classes of minimal cycle generators in C(3) are given in Table 3.
(ii) The classes of maximal non-cycle generators in N'(3) are given in Table 4.

(iii) If B € N(3), then Z(B) = 0.
Furthermore, (1.1) holds for p = 3.

Proof. The basic sets in Table 3 are easily seen to be minimal cycle generators. The basic sets
in Table 4 are obtained from the minimal cycle generators in Table 3 by finding all maximal
basic sets B C L] ,(3) that do not contain any minimal cycle generator in Table 3.

Then, to prove (i), (ii) and (iii), only X(8) = 0 for all B € N(3) need to be proven.
From the transition matrix V,, all the case in Table 4 has be straightforwardly proven by
I'7410(B) = 0 for all B € N(3); then, X(B) = 0 for all B € N(3). Therefore, the results (i), (ii)
and (iii) hold.

Finally, from (iii), 2(8) = 0 is easily seen for any 8 c LI (3) with P(B) = 0. Therefore,
(1.1) holds for p = 3 in edge coloring of triangle. The proof is complete.

O
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A Tablel

Table 1: Minimal Data with P = 2(Classify)

Tile B Z.ixn
2tile {1,9)} Zoyr
4tile {1,7,11,13} 2350
{ ]-/ 8/ 11/ 14 } Z3><2
5tile {1,8,10,11,13} Z4
B Table2
Table 2: Maximal Data with P = 2(Classity)
Tile B
8tile {1,2,3,4,5,6,7,8}
{1,2,3,4,5,6,7,16 }
{1,2,3,5,6,7,12,16}
{1,923, 5,,%,712,14, 16 }
{1,2,3,5,12,14,15,16 }
{1,3,5,7,10,12,14,16 }
C Table3

Table 3: Minimal Data (Classify)

Tile B

2tile }

4

4tile 9,31}

4

2
4,29,40}

7

5tile .5,11,29,40 }

6tile

,5,12,29, 33,37 }

1

1
,5,9,29,33,34 }

1

1

,5,18,29,33,43 }

28
5,
1
5
,2,15,30, 31,38}
5
5
5
5,

,5,18,30, 35,40 }

14,27,29,42,52 }

14,27,33,43,47 }

,5,12,29, 33,40 }

,5,18, 36,38, 40 }

7tile

{1
{1
{1
{1
{1
{1
{1
{1
{1
{1,14
{1,14
{1
{1
{1
{1
{1

51
51
,5,9,11,29,33,43 }
,2,6,18,30,34, 41}
2,13,18, 33,35,37}

4 4

Continued. ..
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Tile

2,26,29,43,51}
5,27,30,43,50}

,11,29,42,43}
11, 30, 35, 40 }

8tile

26, 32,34, 38, 46

27,32,34, 39, 46

27,30, 31, 44, 46

27,31, 35, 39, 46

27,30, 32, 43, 46

27,30, 35, 40, 47

25,29, 34,40, 48

3, )
3, )
3, )
3, }
3,27,31,34,39,47 )
3, }
L )
2, )
1 )

27,29, 33,44, 46

12,27, 30, 43, 50 }

,26,29,33,43,46

,26,29,37,45,51

, 26,29, 33,44, 49

27,30, 31,43, 47

27,29,33,43,50

27,31,39,43,47

27,30, 31, 44, 46

18, 24,.30,41, 52

27,29, 33, 43, 49

26,.29, 36,37, 51

25, 29,36, 43, 49

26, 30, 38, 43,49

}
}
}
)
)
)
)
18,26, 35,37, 51 }
)
}
)
}
J
i
}

,26,29,33,43,49

27,29,42, 43,49

2
2
2
5
1
3
5
3
1
2
1
2
2
2
1
1

18,29, 36,42, 43 }

9tile

13, 26, 32, 34, 39, 46 }

17,24, 30, 34,41, 46

14, 27,31, 39, 44, 47

18, 24, 30, 40, 44, 50

27,33, 34, 41, 45, 46

17,24, 32,39, 43, 47

18, 24, 32, 36, 39, 49

3, }
3, }
1, }
3,17,24,34,39,41,47 }
3, )
3, )
3, }

}

3,18, 26, 33, 35, 38, 52

, 15,27,30, 35, 45, 49 |

1,18, 24, 30, 34, 41, 46

,27,30,34, 42, 44, 47

, 18, 24, 25, 30, 40, 53

R R R R R AR R R R R R R~ R R R R R R, R R R RO R R, R R R R R R~ OO~

}
1 }
3,18,24,26,32,39,52 )
1 }
2

,17,24,25,29,40,54 }

Continued. ..
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Tile

B

, 18, 24, 30, 34, 41, 54

4 7

,27,33,34, 39,41, 46

4 4

4 7

15, 25, 34, 40, 45, 47

7~

1 }
3 }
1,18, 24,33, 39,40,53 ]
L, }
L, }

8,24,29,36,42, 49

7~

7 =7

8,24,30,34,42,47 }

1
13,27, 31, 45, 48, 53 }
1
1

8,24, 30, 34, 41, 53 }

4

10tile

18, 24, 33, 35, 39, 40, 47 }

4 7

3,
1,
1,
3,

17,24, 32, 36, 38, 39, 49 }

4 4

,2,6,13,18,25,26,34,41,48 }

,2,13,17,24,32,36,39,47,49 }

,5,11,18, 24, 25,29, 42,43, 49 }

11tile

(1,51
(1,21
(1,51
(1,51
(1,51
(1,2,6
(1,21
(1,51
(1,51
(1,21
(1,2,6,
(1,21
(1,51
(1,24,

7 =7

13

10,15,17,23,27,33,43,47 }
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