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三角形邊著色的決定性問題

學生：陳泓勳 

 

指導教授：林松山教授

國立交通大學應用數學學系﹙研究所﹚碩士班 

摘        要 

 

這個研究是關於用邊著色的正三角形與倒三角形拼湊整個平面。如果對

每個正三角形與倒三角形相對應的邊都有相同的顏色，則這兩個三角形可

以放在相鄰的位置。在這篇論文，我們考慮邊上著兩色與三色的三角形。

我們研究的問題為：是否任意可佈滿整個平面的正三角形集合必存在週期

性的拼法覆蓋整個平面。我們使用演算法來研究這個問題，然後藉由電腦

計算得到結果。最後，這篇論文的主要結果為：在著兩色及三色的前提

下，如果整個平面可以被邊著色的三角形拼滿，則整個平面就存在週期性

的拼法覆蓋整個平面，反之亦然。 
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ABSTRACT 

This investigation is about tiling the whole plane with upper triangles and 
lower triangles which have colors on edges. Upper and lower triangles can be 
placed side by side if each of the intersections has the same color. In this paper, 
we consider upper and lower triangle with two and three colors on edges. The 
problem we studied is that: any set of triangle that can fill with the whole plane 
whether it can cover the whole plane periodically. We use an algorithm to do the 
problem and get the result by computers. Finally, the main result of this paper is 
that the whole plane can be tiling by triangle with two and three colors if and 
only if the whole plane is covered by the local pattern periodically.  
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1 Introduction

The coloring of unit squares onZ2 has been studied for many years [6]. In 1961, in studying
proving theorem by pattern recognition, Wang [12] started to study the square tiling of a
plane. The unit squares with colored edges are arranged side by side so that the adjacent
tiles have the same color; the tiles cannot be rotated or reflected. Today, such tiles are called
Wang tiles or Wang dominos [4, 6].

The 2 × 2 unit squares is denoted by Z2×2. Let Sp be a set of p (≥ 1) colors. The total set

of all Wang tiles is denoted by Σw
2×2

(p) ≡ SZ2×2
p . A set B of Wang tiles, such that B ⊂ Σw

2×2
(p),

is called a basic set (of Wang tiles). Let Σ(B) be the set of all global patterns on Z2 that can
be constructed from the Wang tiles in B and P(B) be the set of all periodic patterns on Z2

that can be constructed from the Wang tiles in B. Clearly, P(B) ⊆ Σ(B). The nonemptiness
problem is to determine whether or not Σ(B) , ∅. In [12], Wang conjectured that any set of
tiles that can tile a plane can tile the plane periodically, i.e.,

if Σ(B) , ∅ then P(B) , ∅. (1.1)

However, in 1966, Berger [4] proved that Wang’s conjecture was wrong. He presented
a set B of 20426 Wang tiles that could only tile the plane aperiodically:

Σ(B) , ∅ and P(B) = ∅. (1.2)

Later, he reduced the number of tiles to 104. Now, the nonemptiness problem is called
undicidable whenever (1.2) holds. Thereafter, smaller basic sets were found by Knuth,
Läuchli, Robinson, Penrose, Ammann, Culik and Kari [5, 6, 7, 10, 11]. Currently, the
smallest number of tiles that can tile the plane aperiodically is 13, with five colors: (1.2)
holds and then (1.1) fails for p = 5 [5].

Recently, Hu and Lin [13] show that Wang’s conjecture (1.1) holds provide p = 2: any
set of Wang tiles with two colors that can tile a plane can tile the plane periodically.

In [13], statement (1.1) is understood by studying how periodic patterns can be gener-
ated from a given basic set. First, the minimal cycle generator is introduced. B ⊂ Σw

2×2(p) is
called a minimal cycle generator if P(B) , ∅ and P(B′) = ∅ whenever B′ $ B. B ⊂ Σw

2×2(p)
is called a maximal non-cycle generator if P(B) = ∅ and P(B′′) , ∅ for any B′′ % B.
Given p ≥ 2, denote the set of all minimal cycle generators by C(p) and the set of maximal
non-cycle generators byN(p). Clearly,

C(p) ∩N(p) = ∅. (1.3)

Statement (1.1) follows for p = 2.
In this work, the triangle edge-coloring of p = 2 and 3 are investigated. A square tile

can be divided to a upper triangle and a lower triangle. Therefore, this problem is a special
case of Wang tile for p = 3 which is still under investigation. We apply a similar method in
[13] and this problem is deciable in p = 2 and 3, i.e, (1.1) holds.

In Section 2, for p = 3, the ordering matrix of all 54 local patterns on upper and
lower triangle tiles is introduced. These local patterns are classified into two groups. The
recurrence formula for patterns on Zm×n are derived which is important in proving that
maximal non-cycle generator cannot generate global patterns.

In section 3, the procedure to determine the set of all minimum cycle generator C(3)
and maximum non-cycle generator N(3) are introduced. By the assistance of computer,
the main result is proved.
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2 Ordering Matrix of Triangle Patterns

In this section, the triangle tiles are classified into upper triangle tiles and lower triangle
tiles. Denote by the upper triangle 4. The color of bottom, left and right edge on an upper
triangle tile α are denoted v1(α), h1(α), d1(α). Similarly, the lower triangle is denoted by 5.
The color of top, right and left edge on a lower triangle tile β are denoted v2(β), h2(β), d2(β),
respectively.

When an upper triangle tile α and a lower triangle tile β satisfying d1(α) = d2(β), the
parallelogram is formed which can be regarded as a square, denoted by Z2×2, see Fig 1.

h1(α)
h1(α)

h1(α)

v1(α)
v1(α)v1(α)

d1(α)
d1(α)

h2(β) h2(β)h2(β)

v2(β) v2(β)
v2(β)

d2(β) d2(β) ≡≡
·

Figure 1.

Denote the set of p colors by Sp = {0, 1, · · · , p− 1}. Then the set of all local patterns with
colored edge on triangle tiles over Sp denoted by ΣT

2×2
(p).

Given B ⊂ ΣT
2×2(p), B means the set of all square tiles can be formed by B. Let Σm×n(B)

be the set of all local patterns onZm×n generated by B; Σ(B) be the set of all global patterns

generated by B, and P(B) be the set of all periodic patterns generated by B.
Clearly,

if Σm×n(B) = ∅ for some m, n ≥ 2 then Σ(B) = ∅. (2.1)
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The ordering matrix Y4 = [y4; i, j] of all upper triangle patterns in ΣT
2×2(3) is denoted by

Y4 =

0

0

0

0

0

1

1

1

2

2

2

1

2

0

1

2

0

1

2

0

0

0

0

0

0

0

0

0

1

2

0

1

2

0

1

2

2

2

2

1

1

1

0

0

0 1

1

1

1

1

1

1

1

1

2

2 2

1

2 2

0

2 2

2

1 2

1

1 2

0

1 2

2

0 2

1

0 2

0 2

0

9×3

(2.2)

The ordering matrix Y5 = [y5; i, j] of all lower triangle patterns in ΣT
2×2(3) is denoted by

Y5 =

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0

1

2

0 0 0

1 1 1

2 2 2

0

0

0

1

1

1

2

2

2

0

0

0

1

1

1

2

2

2

0

0

0

1

1

1

2

2

2

0 0 0 1 1 1 2 2 2

0 0 0

0 0 0

1

1

1

1

1

1

2

2

2

2

2

2

3×9

(2.3)

Then, The vertical ordering matrix Y2×2 = [yi, j] of all local patterns on square in Σ2×2(3)
is denoted by
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Y2×2 =

0
0

0

0 0

0

1
0 0

0

2
0 0

0

0
1

0
1

0

0 0

1

1
0 0

1

2
0 0

1

0
1

0
2

0

0 0
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1
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2
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0
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0 1
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0

0
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0
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1

1 0

0

2
1 0

0

0
2 0
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1
2

0
1

1

1 0

1

2
1 0

1

0
2 0

1

1
2

0
2

1

1 0

2

2
1 0

2

0
2 0

2

1
2

1

0

1
1 1

0

2
1 1

0

0
2 1

0

1
2

1
1

0

0 1

1

1
0 1

1

2
0 1

1

0
1

1
2

0

0 1

2

1
0 1

2

2
0 1

2

0
1

2
0

0

0 2

0

1
0 2

0

2
0 2

0

0
1

2

1

0
0 2

1

1
0 2

1

2
0 2

1

0
1

1
1

1

1 1

1

2
1 1

1

0
2 1

1

1
2

1
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1

1 1

2

2
1 1

2

0
2 1
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1
2
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1

1 2

0

2
1 2

0

0
2 2

0

1
2

2

1

1
1 2

1

2
1 2

1

0
2 2

1

1
2

2

2

0
0 2

2

1
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2

2
0 2

2
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2

1
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2

2
1 2

2

0
2 2

2

1
2

0
0

2
2

0

1

2
2

0
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2
2

1

0

2
2

1
1

2
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1

2

2
2

2
0

2
2
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1

2
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2

2
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0
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0
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2

1
0

1
1

1
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0
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1
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0

0

1

0
2

0

0

1

1

1

2

1
0
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1
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2

2

(2.4)

≡ Y4 · Y5 (2.5)

=







































































y1,1 y1,2 y1,3 y1,4 y1,5 y1,6 y1,7 y1,8 y1,9

y2,1 y2,2 y2,3 y2,4 y2,5 y2,6 y2,7 y2,8 y2,9

y3,1 y3,2 y3,3 y3,4 y3,5 y3,6 y3,7 y3,8 y3,9

y4,1 y4,2 y4,3 y4,4 y4,5 y4,6 y4,7 y4,8 y4,9

y5,1 y5,2 y5,3 y5,4 y5,5 y5,6 y5,7 y5,8 y5,9

y6,1 y6,2 y6,3 y6,4 y6,5 y6,6 y6,7 y6,8 y6,9

y7,1 y7,2 y7,3 y7,4 y7,5 y7,6 y7,7 y7,8 y7,9

y8,1 y8,2 y8,3 y8,4 y8,5 y8,6 y8,7 y8,8 y8,9

y9,1 y9,2 y9,3 y9,4 y9,5 y9,6 y9,7 y9,8 y9,9







































































(2.6)

=





















Y2;1 Y2;2 Y2;3

Y2;4 Y2;5 Y2;6

Y2;7 Y2;8 Y2;9





















9×9

(2.7)

where ·means upper and lower triangle pattern is glued together as in Fig 1.

Y2 =

9
∑

i=1

Y2;i (2.8)

Y2;i =

[

y2;i;p;q

]

3×3
= {

p − 1

q − 1

α1 α2 } (2.9)

where i = 1 + α1 · 3
1
+ α2 · 3

0, αi ∈ {0, 1, 2}.

Now consider Ym+1, for m ≥ 2, the ordering matrix of all local patterns on Z(m+1)×2,

Ym+1 =

9
∑

i=1

Ym+1;i (2.10)

Ym+1;i = {
··
··

··
α β· · · · · ·

m + 1
} (2.11)
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where i = 1 + α · 30
+ β · 31, α, β and · ∈ {0, 1, 2}.

The recurrence formula for Ym+1;i in terms of Ym; j are given as follows.
For i = 1, 4, 7

Ym+1;i =















































3
∑

j=1

y2; j+i−1;1;1Ym;3 j−2

3
∑

j=1

y2; j+i−1;1;2Ym;3 j−2

3
∑

j=1

y2; j+i−1;1;3Ym;3 j−2

3
∑

j=1
y2; j+i−1;2;1Ym;3 j−2

3
∑

j=1
y2; j+i−1;2;2Ym;3 j−2

3
∑

j=1
y2; j+i−1;2;3Ym;3 j−2

3
∑

j=1

y2; j+i−1;3;1Ym;3 j−2

3
∑

j=1

y2; j+i−1;3;2Ym;3 j−2

3
∑

j=1

y2; j+i−1;3;3Ym;3 j−2















































3m×3m

For i = 2, 5, 8

Ym+1;i =















































3
∑

j=1

y2; j+i−2;1;1Ym;3 j−1

3
∑

j=1

y2; j+i−2;1;2Ym;3 j−1

3
∑

j=1

y2; j+i−2;1;3Ym;3 j−1

3
∑

j=1

y2; j+i−2;2;1Ym;3 j−1

3
∑

j=1

y2; j+i−2;2;2Ym;3 j−1

3
∑

j=1

y2; j+i−2;2;3Ym;3 j−1

3
∑

j=1
y2; j+i−2;3;1Ym;3 j−1

3
∑

j=1
y2; j+i−2;3;2Ym;3 j−1

3
∑

j=1
y2; j+i−2;3;3Ym;3 j−1















































3m×3m

For i = 3, 6, 9

Ym+1;i =















































3
∑

j=1
y2; j+i−3;1;1Ym;3 j

3
∑

j=1
y2; j+i−3;1;2Ym;3 j

3
∑

j=1
y2; j+i−3;1;3Ym;3 j

3
∑

j=1

y2; j+i−3;2;1Ym;3 j

3
∑

j=1

y2; j+i−3;2;2Ym;3 j

3
∑

j=1

y2; j+i−3;2;3Ym;3 j

3
∑

j=1

y2; j+i−3;3;1Ym;3 j

3
∑

j=1

y2; j+i−3;3;2Ym;3 j

3
∑

j=1

y2; j+i−3;3;3Ym;3 j















































3m×3m

GivenB ⊂ ΣT
2×2(3), the associated vertical transition matrix Vm(B) is obtained from Ym×2.

Indeed, V2(B) = [vi, j], where vi, j = 1 if and only if yi, j ∈ B.
The recurrence formula for higher order vertical triangle follow from (15).

V2 =

9
∑

i=1

V2;i;

V2;i =

[

v2;i;p;q

]

3×3

For m ≥ 2,

Vm+1 =

9
∑

i=1

Vm+1;i
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For i = 1, 4, 7

Vm+1;i =















































3
∑

j=1
v2; j+i−1;1;1Vm;3 j−2

3
∑

j=1
v2; j+i−1;1;2Vm;3 j−2

3
∑

j=1
v2; j+i−1;1;3Vm;3 j−2

3
∑

j=1
v2; j+i−1;2;1Vm;3 j−2

3
∑

j=1
v2; j+i−1;2;2Vm;3 j−2

3
∑

j=1
v2; j+i−1;2;3Vm;3 j−2

3
∑

j=1

v2; j+i−1;3;1Vm;3 j−2

3
∑

j=1

v2; j+i−1;3;2Vm;3 j−2

3
∑

j=1

v2; j+i−1;3;3Vm;3 j−2















































3m×3m

For i = 2, 5, 8

Vm+1;i =















































3
∑

j=1
v2; j+i−2;1;1Vm;3 j−1

3
∑

j=1
v2; j+i−2;1;2Vm;3 j−1

3
∑

j=1
v2; j+i−2;1;3Vm;3 j−1

3
∑

j=1

v2; j+i−2;2;1Vm;3 j−1

3
∑

j=1

v2; j+i−2;2;2Vm;3 j−1

3
∑

j=1

v2; j+i−2;2;3Vm;3 j−1

3
∑

j=1

v2; j+i−2;3;1Vm;3 j−1

3
∑

j=1

v2; j+i−2;3;2Vm;3 j−1

3
∑

j=1

v2; j+i−2;3;3Vm;3 j−1















































3m×3m

For i = 3, 6, 9

Vm+1;i =















































3
∑

j=1

v2; j+i−3;1;1Vm;3 j

3
∑

j=1

v2; j+i−3;1;2Vm;3 j

3
∑

j=1

v2; j+i−3;1;3Vm;3 j

3
∑

j=1

v2; j+i−3;2;1Vm;3 j

3
∑

j=1

v2; j+i−3;2;2Vm;3 j

3
∑

j=1

v2; j+i−3;2;3Vm;3 j

3
∑

j=1
v2; j+i−3;3;1Vm;3 j

3
∑

j=1
v2; j+i−3;3;2Vm;3 j

3
∑

j=1
v2; j+i−3;3;3Vm;3 j















































3m×3m

Then

| Σ(m+1)×n(B) |=| V
n−1

m+1 |; (2.12)

Now, two set of periodic patterns are studied. Given a periodic sequenceα = (α1, α2, · · · , αn−1)∞.
Define shift function σ by σ(αi) = (αi+1).

Denote the periodic set of Zn×k = PB(

[

n 0
0 k

]

)

= {

……

……

…
…

…
…

v1

v1

v1v1

v2

v2v2 vn−2

vn−2

vn−2vn−2

vn−1

vn−1vn−1

h1
h1h1

hn−1hn−1

}.
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which vi, hi ∈ Sp.

The set of Zn×k with l shift = PB(

[

n l
0 k

]

)

= {

……

……

…
…

…
…

α1α1α1 α2α2 αn−2αn−2αn−2 αn−1αn−1

β1 β2 βn−2 βn−1

h1
h1h1

hn−1hn−1

}

which σl(α1, · · · , αn−1) = (β1, · · · , βn−1), vi, hi ∈ Sp .

Denoted by Tm, periodic of patterns in Ym+1;i.

T1 =

∑

i=1,5,9

V2;i;

Tm =

∑

i=1,5,9

Vm+1;i

and the # of

[

n l
0 k

]

periodic is ΓB(

[

n l
0 k

]

) = tr(Tk
mRl

m), 0 ≤ l ≤ m − 1,

where Rm =

[

rm;i, j

]

is the rotational matrix for p = 3.

More precisely,

ri j =

{

rm;i,3i−2 = 1, rm;3m−1+i,3i−1 = 1rm;2·3m−1+i,3i = 1 1 ≤ i ≤ 3m−1

rm;i, j = 0 otherwise.

Now, the symmetry of the upper and lower triangle is introduced. The symmetry
group of the triangle is D3, the dihedral group of order six. The group D3 is generated
by the rotation ρ, through 2π

3
, and the reflection m about the y-axis. Denote by D3 =

{I, ρ, ρ2,m,mρ,mρ2}.

mm

ρ

ρ

ρ2

ρ2

Next, consider the permutation Sp on triangle tiles. The three edge of trinagle tile are
mutually independent. If two directions of trinagle are periodic, the remaing one is also
periodic [14]. Since, in edge coloring, the permutation of colors in the horizontal, vertical
and diagonal directions are mutually independent. Denote the permutations of colors in
the horizontal, vertical and diagonal edges by ηh ∈ Sp, ηv ∈ Sp and ηd ∈ Sp, respectively.
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ηv

ηv

ηhηh ηdηd

Finally, the upper triangle and lower triangle can be exchanged to each other simulta-
neously. Denote this act by ξ.

Then for any B ⊂ ΣT
2×2(p), define the equivalent class [B] of B by

[B] =
{

B′ ⊂ ΣT
2×2(p) : B′ =

(

((((B)τ)ηh
)ηv

)

ηd

)ξ, τ ∈ D3 , ηh, ηv, ηd ∈ Sp and ξ
}

.
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3 Main Result

In this section, we only consider p = 3, the result in p = 2 is given in Appendix Table 1 and
Table 2. Now, we need some definitions.

Definition 3.1. For B ⊂ ΣT
2×2

(p),

(i) B is called a cycle generator if P(B) , ∅.

(ii) B is called a minimal cycle generator if P(B) , ∅ and P(B′) = ∅ for all B′ $ B.

(iii) B is called a non-cycle generator if P(B) = ∅.

(iv) B is called a maximal non-cycle generator if P(B) = ∅ and P(B′′) , ∅ for all B′′ % B .

(v) C(p) is the set of all minimal cycle generators that are subsets of ΣT
2×2

(p).

(vi) N(p) is the set of all maximal non-cycle generators that are subsets of ΣT
2×2(p).

Notably, if B is a cycle generator, then it has a subset of minimal cycle generator. In
contrast, ifB′ is a non-cycle generator, thenB′ is a subset of a maximal non-cycle generator.

The total 27 local patterns on upper triangle tile α = (α0, α1, α2) with three colors S3 =

{0, 1, 2} can be ordered as follow:

φ1((α0, α1, α2)) = 1 + α0 · 3
0
+ α1 · 3

1
+ α3 · 3

2

Hence, the upper triangle tiles are given by 1 ≤ φ1(α) ≤ 27.
Similarly, the total 27 local patterns on lower triangle β = (β0, β1, β2) with S3 can be

ordered by

φ2((β0, β1, β2)) = 28 + β0 · 3
0
+ β1 · 3

1
+ β3 · 3

2

Hence, the lower triangle tiles are given by 28 ≤ φ1(α) ≤ 54.
Clearly, φ1 andφ2 are one to one and onto on upper and lower triangle tiles, respectably.

Hence, the order of local patterns of triangle tiles from 1 to 54.
Since a local pattern (α) in Z2×2 with h1(α) = h2(α), v1(α) = v2(α) is the periodic pattern

which is formed by an upper triagnle tile and a lower triangle tile. We use this idea to
divided all 54 local patterns on triangle into two such sets G1 and G2 as follows.

Definition 3.2. All 54 local patterns on triangle tile into two sets G1 and G2.

G1 = { 1, 2, 3, 10, 11, 12, 19, 20, 21, 28, 29, 30, 37, 38, 39, 46, 47, 48 }.

G2 = { 4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17, 18, 22, 23, 24, 25, 26, 27,

31, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45, 49, 50, 51, 52, 53, 54 }

There are many ways to choose G1 and G2. We want every upper triangle tiles can
joint every lower triangle tiles in G1, then these tiles are easily to form periodic patterns
on horizontal direction. The iterative method to obtain C(3) and N(3) are introduced as
follows.

9



Algorithm 1

m = 0
repeat

m = m + 1
C(m)
N(m)

until (Σ(B) = ∅ for all B ∈ N(m))

Define

C(0) = {∅}

C(m) = {B : B ∈ PB(

[

n l
0 k

]

), which m = n × k, 0 ≤ l ≤ n − 1}

N(0) = {B1 ∪ B2 : B1 j G1,B2 j G2}

N(m) = {B : B ∈ N(m − 1), c * B,∀c ∈ C(m)}

If this algorithm stops, then C(3) = C(m),N(3) = N(m) and this problem is decidable.

Lemma 3.3. GivenB = B1∪B2, whichB1 ∈ G1,B2 ∈ G2. For anyB2 ∈ [B2], ∃B
′

1
⊆ Σ(G1) such

that B
′

1
∪ B2 ∈ [B].

Proof. Since B2 ∈ [B2], there exists ξ ∈ A s.t B2 = ξ(B2).
We know ξ(B) = ξ(B1) ∪ ξ(B2) ∈ [B], where ξ(B1) ⊆ Σ(G1) and ξ(B2) ⊆ Σ(G2).

Therefore, ξ(B1) ∪ ξ(B2) = ξ(B1) ∪ B2 ∈ [B]. �

We can use the above lemma to reduce the algorithm’s computation. From lemma, G2

can be replace by [G2].
Now, the following theorem gives the classes of minimal cycle generators in C(3) and

the classes of maximal non-cycle generators inN(3). Table 1 and Table 2 present the details
of equivalent classes of minimal cycle generators inC(2) and maximal non-cycle generators
inN(2).

Theorem 3.4. (i) The classes of minimal cycle generators in C(3) are given in Table 3.

(ii) The classes of maximal non-cycle generators inN(3) are given in Table 4.

(iii) If B ∈ N(3), then Σ(B) = ∅.
Furthermore, (1.1) holds for p = 3.

Proof. The basic sets in Table 3 are easily seen to be minimal cycle generators. The basic sets
in Table 4 are obtained from the minimal cycle generators in Table 3 by finding all maximal
basic sets B ⊂ ΣT

2×2
(3) that do not contain any minimal cycle generator in Table 3.

Then, to prove (i), (ii) and (iii), only Σ(B) = ∅ for all B ∈ N(3) need to be proven.

From the transition matrix Vm, all the case in Table 4 has be straightforwardly proven by
Γ7×10(B) = 0 for all B ∈ N(3); then, Σ(B) = ∅ for all B ∈ N(3). Therefore, the results (i), (ii)
and (iii) hold.

Finally, from (iii), Σ(B) = ∅ is easily seen for any B ⊂ ΣT
2×2(3) with P(B) = ∅. Therefore,

(1.1) holds for p = 3 in edge coloring of triangle. The proof is complete.
�
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A Table1

Table 1: Minimal Data with P = 2(Classify)

Tile B Zm×n

2tile { 1, 9 } Z2×2

4tile { 1, 7, 11, 13 } Z3×2

{ 1, 8, 11, 14 } Z3×2

5tile { 1, 8, 10, 11, 13 } Z4×2

B Table2

Table 2: Maximal Data with P = 2(Classify)

Tile B

8tile { 1, 2, 3, 4, 5, 6, 7, 8 }
{ 1, 2, 3, 4, 5, 6, 7, 16 }
{ 1, 2, 3, 5, 6, 7, 12, 16 }
{ 1, 2, 3, 5, 7, 12, 14, 16 }
{ 1, 2, 3, 5, 12, 14, 15, 16 }
{ 1, 3, 5, 7, 10, 12, 14, 16 }

C Table3

Table 3: Minimal Data (Classify)

Tile B

2tile { 1, 28 }
4tile { 1, 5, 29, 31 }

{ 1, 14, 29, 40 }
5tile { 1, 5, 11, 29, 40 }
6tile { 1, 2, 15, 30, 31, 38 }

{ 1, 5, 9, 29, 33, 34 }
{ 1, 5, 12, 29, 33, 37 }
{ 1, 5, 18, 29, 33, 43 }
{ 1, 5, 18, 30, 35, 40 }
{ 1,14, 27, 29, 42, 52 }
{ 1,14, 27, 33, 43, 47 }
{ 1, 5, 12, 29, 33, 40 }
{ 1, 5, 18, 36, 38, 40 }

7tile { 1, 5, 9, 11, 29, 33, 43 }
{ 1, 2, 6, 18, 30, 34, 41 }
{ 1, 2, 13, 18, 33, 35, 37 }

Continued. . .
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Tile B

{ 1, 5, 12, 26, 29, 43, 51 }
{ 1, 2, 15, 27, 30, 43, 50 }
{ 1, 5, 9, 11, 29, 42, 43 }
{ 1, 5, 9, 11, 30, 35, 40 }

8tile { 1, 2, 13, 26, 32, 34, 38, 46 }
{ 1, 2, 13, 27, 32, 34, 39, 46 }
{ 1, 2, 13, 27, 30, 31, 44, 46 }
{ 1, 2, 13, 27, 31, 35, 39, 46 }
{ 1, 2, 13, 27, 31, 34, 39, 47 }
{ 1, 2, 13, 27, 30, 32, 43, 46 }
{ 1, 5, 11, 27, 30, 35, 40, 47 }
{ 1, 5, 12, 25, 29, 34, 40, 48 }
{ 1, 5, 11, 27, 29, 33, 44, 46 }
{ 1, 2, 6, 12, 27, 30, 43, 50 }
{ 1, 5, 12, 26, 29, 33, 43, 46 }
{ 1, 5, 12, 26, 29, 37, 45, 51 }
{ 1, 5, 12, 26, 29, 33, 44, 49 }
{ 1, 2, 15, 27, 30, 31, 43, 47 }
{ 1, 5, 11, 27, 29, 33, 43, 50 }
{ 1, 2, 13, 27, 31, 39, 43, 47 }
{ 1, 2, 15, 27, 30, 31, 44, 46 }
{ 1, 2, 13, 18, 26, 35, 37, 51 }
{ 1, 5, 11, 18, 24, 30, 41, 52 }
{ 1, 5, 12, 26, 29, 33, 43, 49 }
{ 1, 5, 11, 27, 29, 33, 43, 49 }
{ 1, 5, 12, 26, 29, 36, 37, 51 }
{ 1, 5, 12, 25, 29, 36, 43, 49 }
{ 1, 5, 12, 26, 30, 38, 43, 49 }
{ 1, 5, 11, 27, 29, 42, 43, 49 }
{ 1, 5, 11, 18, 29, 36, 42, 43 }

9tile { 1, 2, 6, 13, 26, 32, 34, 39, 46 }
{ 1, 2, 13, 17, 24, 30, 34, 41, 46 }
{ 1, 2, 13, 14, 27, 31, 39, 44, 47 }
{ 1, 5, 11, 18, 24, 30, 40, 44, 50 }
{ 1, 2, 13, 17, 24, 34, 39, 41, 47 }
{ 1, 2, 13, 27, 33, 34, 41, 45, 46 }
{ 1, 2, 13, 17, 24, 32, 39, 43, 47 }
{ 1, 2, 13, 18, 24, 32, 36, 39, 49 }
{ 1, 2, 13, 18, 26, 33, 35, 38, 52 }
{ 1, 2, 4, 15, 27, 30, 35, 45, 49 }
{ 1, 5, 11, 18, 24, 30, 34, 41, 46 }
{ 1, 5, 11, 27, 30, 34, 42, 44, 47 }
{ 1, 2, 13, 18, 24, 26, 32, 39, 52 }
{ 1, 5, 11, 18, 24, 25, 30, 40, 53 }
{ 1, 5, 12, 17, 24, 25, 29, 40, 54 }

Continued. . .
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Tile B

{ 1, 5, 11, 18, 24, 30, 34, 41, 54 }
{ 1, 2, 13, 27, 33, 34, 39, 41, 46 }
{ 1, 5, 11, 18, 24, 33, 39, 40, 53 }
{ 1, 5, 11, 15, 25, 34, 40, 45, 47 }
{ 1, 5, 11, 18, 24, 29, 36, 42, 49 }
{ 1, 2, 6, 13, 27, 31, 45, 48, 53 }
{ 1, 2, 13, 18, 24, 30, 34, 42, 47 }
{ 1, 5, 11, 18, 24, 30, 34, 41, 53 }

10tile { 1, 5, 11, 18, 24, 33, 35, 39, 40, 47 }
{ 1, 2, 13, 17, 24, 32, 36, 38, 39, 49 }
{ 1, 2, 6, 13, 18, 25, 26, 34, 41, 48 }
{ 1, 2, 13, 17, 24, 32, 36, 39, 47, 49 }
{ 1, 5, 11, 18, 24, 25, 29, 42, 43, 49 }

11tile { 1, 2, 4, 10, 15, 17, 23, 27, 33, 43, 47 }

13
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