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摘要

比較型基因組雜交分析技術(CGH)，是一種分子生物學上測量腫瘤
細胞中，染色體複製倍數(增生或減少)的方法。在生物領域中，通
常樹模型是用於研究生物的演化、物種間的進化關係。近幾十年
來，生物學家認為癌症發生的過程和DNA的增生或減少息息有關，
而且不單單只是某一個基因改變，而是一連串不同基因改變事件
發生。因此，也將樹模型當作分析CGH資料的工具，用來研究、
探索癌症的發展過程(carcinogenesis)。在數學的基礎下，我們可以
從CGH的資料去推導出數學模型。Desper 及其合作者提出了分支
樹和距離樹兩種模型，比Vogelstein 等學者提出的直腸癌的單路徑
模型更加精確。在這篇論文中，我們介紹了分支樹和距離樹兩個不
同的樹模型，比較兩者的相異處。另外，也利用最大概似估計法，
來建立引起腫瘤、癌症的樹模型(oncogenetic tree model)。

中 華 民 國 一 百 年 六 月
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Reconstruction of Oncogenetic Trees

Student: Yen-Lin Chou Advisor: Hung-Lin Fu

Department of Applied Mathematics
National Chiao Tung University

June, 2011

Comparative Genomic Hybridization (CGH) is a molecular cy-
togenetic method to measure the copy number aberrations of
chromosomal in tumor cells. In biological domain, tree model
is usually used on the evolutionary relationship between organic
and different biological species. In decades, the biologists be-
lieve that increase and decrease of DNA cause the occurrence of
cancer. Furthermore, not only the change of one genetic event
results in the cancer occurrence, but also serial alteration of dif-
ferent genes. Therefore, tree model is used as the tool to analyze
CGH data and explore carcinogenesis. The mathematical model
from CGH data can be inferred under mathematical ground.
Desper et al. stated two models: maximum-weight branching
model and distance-based tree model. These two models are
more accurate than path model of colorectal-tumor which was
brought up by Vogelstein et al.. In this paper, we introduce two
different tree models and compare the differences between them.
In addition, the oncogenetic tree model is reconstructed by using
the idea of maximum likelihood.
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1 Introduction

1.1 Motivation and background

Cancer has become the main cause for human death around the world.

According to the indication of statistical data, cancer continues to hold the

top of human dead causes in Taiwan for 28 years, which bring patients

great sufferings. There are a lot of factors that are likely to induce cancers,

for instance, heredity, diet habit, endocrine disorder, stimulus of chemical

substances, etc. Generally, the earlier detect occurrence of cancer, the cure

result would be better. Hence, biologists devote on oncogenic mechanism

research.

In general, a normal cell has a cell cycle, and check points among cell

cycle can determine the growth and replication of cells. Because the mech-

anisms fail in tumor cells, the cells proliferate abnormally. When growth

control mechanisms became abnormal, the cell would be out of control and

reproduce a great number of cells, which is called a tumor.

Tumors are classified into two types: benign tumors and malignant tu-

mors. Both of them can proliferate without control. Furthermore, malig-

nant tumors can also penetrate into nearby cells, tissues, even body’s organ

and may be lethal. Consequently, malignant tumors, which are called can-

cer, are more dangerous than benign tumors.

Deoxyribonucleic acid (DNA) is a self-replicating linear molecule with

a large molecular weight, which is contained in living cells. It is a carrier

of genetic information. The chain of DNA contains the bases adenine (A),

thymine (T), cytosine (C), guanine (G). The sequence of the bases along the
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chain forms a genetic code directing the synthesis of RNAs and proteins.

According to biological central dogma, a gene is a specific fragment of

DNAs, and it will be transcribed into a RNA fragment, which will then be

translated into proteins. Proteins are not only the critical consistent of the

organisms’ structure but also can maintain vital mechanisms in organisms,

including cell cycle check points.

Despite there are many factors may result in some mutations of DNA,

DNA repair system largely reduces the abnormal DNA amount. When DNA

mutations are too serious that cannot be repaired, the protein expression

might be affected. The cell cycle could then be abnormal, causing cancer

at this time. This is why we confer about the genetic alterations for cancer

studies.

1.2 CGH method

Comparative genomic hybridization (CGH) is an important experimen-

tal method in molecular cytogenetic. It is derived from florescence in situ

hybridization (FISH). They mark DNAs in a normal cell and a tumor cell

individually by probes with different colors. Then mix the dyed DNAs, and

put them into the chromosomes of the target cell which is in metaphase.

After hybridization, the corresponding DNA pairs would bind together.

The mutative DNAs in the tumor cell proliferate massively. The ampli-

fied DNAs would be more, but the deleted DNAs are less. In the hybridiza-

tion, the locations of amplified DNAs may bind with DNAs of the tumor

cell, and the locations of deleted DNAs bind with DNAs of the normal cell.

Chromosome is one of the small, rod-shaped, deeply staining bodies
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in a cell nucleus. Each chromosome consists of a single long molecule of

DNA associated with proteins. DNA are scattered throughout the nucleus

ordinarily, but they would be centralized and become chromosomes among

cell division.

Consequently, by the order numbers of chromosomes in goal cell, the

chromosomes which show color of the tumor cell are amplified chromosomes,

and the chromosomes which show color of the normal cell are deleted chro-

mosomes.

During the duplicating process, the chromosomes are in pairs and so

do the DNAs in a normal cell, because of this, it is the feature used in

CGH. In different situation such as amplifications, deletions, or normal

conditions, the process of hybridization are different and the fluorescence

on DNA display differently. These chromosome variations observed in a

tumor are called copy number aberrations (CNAs).

Therefore, the gains or losses of DNAs in tumor cells and the DNA

locations of abnormal copies can be detect by these fluorescent markers. A

series data of CNAs would be obtained after these experiment.

Based on the information of DNA CNAs, we specify the relationships be-

tween genetic alterations and diseases or cancers. CNAs play a critical role

in medical science. Furthermore, CGH can efficiently detect the amplifica-

tions and deletions of all DNA fragments in a tumor at a time. Therefore,

CGH is used widely in research.

However, after accumulating a large amount of laboratory data, how

to analyze these data in order to explain the relationship between genetic

alterations and tumorigenesis becomes another bigger topic.
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1.3 Tree model

There are 23 pairs of chromosomes in a human cell, number 1 to number

22, X, and Y . Because of chromosome Y not contained in females, we do not

consider the mutations of chromosome Y . The longer arm of a chromosome

is denoted by q, and the shorter one is denoted by p. Each chromosome has

the longer arm q, but the shorter arm is not in chromosome 13, 14, 15, 21,

22. As a result, there are 41 regions that we can consider, and each one will

probably amplify or delete. Then the chromosome variations are at most

82 possible conditions.

The models early proposed are based on the path model stated by Vo-

gelstein et al. [3]. From a large CGH database, we can infer that col-

orectal cancer is mainly lead by four genetic events +2q, −7p, −13q, −6q.

The model of colorectal cancer is built with pathway by these four genetic

events. And these four events from the data show a causal link. When +2q

occurs, −7p has greater chances of occurring. When −7p occurs, then −13q

has greater chances of occurring. When −13q occurs, −6q is more likely to

occur. Therefore, the four genetic events are important indicators of cancer

detection.

colorectal

r + 2 q - 7 p - 13 q - 6 q

Figure 1: oncogenetic path for colorectal cancer

However, while widely used, the path model still has many shortcom-

ings. According to statistics from biological research, the genetic events

which occur during the formation of tumor cells do not so much resem-
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ble a chain, rather the accumulation of multiple alterations. Moreover, the

genetic events are possible form many different branches. Therefore, tree

topology would be more suitable than path topology as a model for the

analysis of the carcinogenic process.

1.4 Definition

A graph is an ordered pair G = (V,E), where V is a finite set of

elements called vertices and E is a set of unordered pairs of vertices called

edges. In general, the vertex set is denoted by V (G) or V , and the edge set

is denoted by E(G) or E.

A graph Pn with vertex set V (Pn) = {v0, v1, ..., vn−1} and edge set

E(Pn) = {(vi, vi+1) | i = 0, 1, ..., n − 2} is call an v0 − vn−1 path. The

length of Pn is the number of E(Pn) = n − 1. A graph Cn with ver-

tex set V (Cn) = {v0, v1, ..., vn−1} and edge set E(Cn) = {(vi, vi+1) | i =

0, 1, ..., n− 2} ∪ {(v0, vn−1)} is call a cycle.

A graph G is connected if there exists an u − v path in G for any

u, v ∈ V (G). A subgraph of a graph G is a graph H such that V (H) ⊆ V (G)

and E(H) ⊆ E(G). A spanning subgraph of a graph G is a subgraph with

vertex set V (G). The components of a graph G are its maximal connected

subgraphs.

A tree or branching is a connected graph which has no cycle. A spanning

tree of graph G is a spanning subgraph of G without cycles.

The degree of vertex v in a graph G is the number of edges incident to

v. The vertex whose degree is 1 in a tree is called a leaf. The set which is a

collection of leaves of a tree T is called the leaf set of T , denoted by L(T ).
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A directed graph or digraph is an ordered pair D = (V,E) with vertex

set V and edge set E which is a set of ordered pairs of vertices. We call the

ordered pair as directed edge or arc. Given a directed edge e = (u, v), the

first vertex u of e is called the tail of e and the second vertex v is called the

head of e. Furthermore, u is called a parent of v, denoted by par(v), and v

is called a child of u, denoted by ch(u).

In a directed tree T , if the vertex v ∈ V (T ) has no parent, then we called

v is the root of tree T .

A digraph Pn with vertex set V (Pn) = {v0, v1, ..., vn−1} and directed

edge set E(Pn) = {(vi, vi+1) | i = 0, 1, ..., n − 2} is called a directed path

from v0 to vn−1 (v0 − vn−1 directed path).

In a directed tree T , let r be the root of T , then there exists a directed

path from r to v for every vertex v ∈ V (T ). Every vertex on the r − v

directed path unless v is called an ancestor of v. For any two distinct vertex

u, v, if w is an ancestor both of u and v, then w is called the common ancestor

of u, v. If the vertex w is an common ancestor of u, v with maximum length

path from root to w, then we call w is the least common ancestor of u, v,

denoted by l.c.a.(u, v).

In a directed graph D, if there exists a directed path P4 with vertex set

V (P4) = {v0, v1, v2, v3} and directed edge set E(P4) = {ei = (vi, vi+1) | i =

0, 1, 2} , then e0 is a predecessor edge of e1, denoted by pre(e1), and e2 is a

successor edge of e1, denoted by su(e1). A leaf edge e is a directed edge if

su(e) = ∅.

In this paper, all graphs we mentioned are directed. Therefore, we use

”graph” instead of ”directed graph”, ”edge” instead of ”directed edge”,
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”tree” instead of ”directed tree”, and so on.

Before discussing with the tree models, we define the probability distri-

bution on a tree.

Definition 1.4.1. Given a vertex set V , a function P which assign non-

negative real number to all subset of V such that
∑
S⊆V

P (S) = 1 is called a

probability distribution P on 2V .

Definition 1.4.2. An oncogenetic tree T = (V,E, r, p, L) is a rooted directed

tree with 0 < p(e) ≤ 1, ∀e ∈ E, where V is the vertex set of tree, E is a set

of pairs of vertices, r is the root of tree (no genetic alterations), L is the

important genetic event set, and p(e) is the probability that edge e is present

independently.

Each oncogenetic tree T is useful as the generator of distribution on 2V ,

and we denote the distribution as PT .

In the process of causing tumorigenesis, there are some causal link be-

tween different genetic events, or different alterations probably occur in

different stages. So we will divide into two mathematical models, untimed

and timed.

Definition 1.4.3. A pure untimed oncogenetic tree is a tree T with a prob-

ability p(e) attached to each edge e. This tree generates observations on

mutation presence/absence the following way : each edge e is independently

retained with probability p(e); the set of vertices that are still reachable from

root r gives the set of the observed genetic alterations.

Definition 1.4.4. A pure timed oncogenetic tree is a tree T with a rate λ(e)

attached to each edge e and an observation-time distribution φ on +. This
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tree generates observations on mutation presence/absence the following way

: first the time of observation t is drawn from φ and the transition time

along each edge e is drawn independently from an exponential distribution

with rate λ(e). The set of vertices that are reachable from root r along a

path for which the sum of transition times is less than t gives the set of the

observed genetic alterations.

Next, there are some notations for probabilities.

Notation : An oncogenetic tree T = (V,E, r, p, L) with distribution P ,

define

• pi = P (vi occurs), for i = 1, · · · , n; p0 = 1

• pij =

{
P (vi and vj occur) , for i 6= j, i, j = 1, · · · , n
pi , o.w.

• pi|j = P (vi occurs | vj occurs), for i 6= j, i, j = 1, · · · , n

• pi∨j = P (vi or vj occur), for i 6= j, i, j = 1, · · · , n

, where v0 = r.

8



2 Reconstruction of oncogenetic tree model

Since each timed oncogenetic tree with path topology has an equivalent

untimed oncogenetic tree [11], by the biological statistics, we can get the

correlative genetic events of a specific tumor type, but we cannot have the

occurrence order of all genetic events immediately in an individual tumor.

Supposed that each alteration occurs at most once in every tumor at a

time. Besides, a genetic event may occur in different stages, but we don’t

consider the number of occurrences of each alteration. We just care about

if the alteration occurs in an individual tumor or not. Thus, we will talk

about untimed cases in this thesis.

How to use the reconstruction of tree model to find the optimal onco-

genetic tree for given CGH data is an crucial problem. In this section, we

shall talk about the reconstruction problem as the following:

Input :

A set L of genetic events, and k samples from a distribution p over 2L.

Output :

An oncogenetic tree T = (V,E, r, p, L) with L ⊂ V , such that PT is an

approximation of P .

2.1 Maximum-weight branching model

In maximum-weight branching model, each vertex should be an impor-

tant genetic event. Suppose there are n genetic events (including root r),

we construct a directed complete graph Kn on V . Then there are n(n− 1)

possible direct edges, but the oncogenetic tree obtained from maximum-

weight branching model just has n − 1 edges finally. So the reconstruc-
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tion of maximum-weight branching model is to find the maximum spanning

branching such that the sum of all edges weights in the branching is maxi-

mum.

Now, we introduce the definition of edge weight. Let T = (V,E, r, p, L)

be an oncogenetic tree. The weight function is a mapping from p to real

number for the pairs in V 2. In the maximum-weight branching model,

there is a vertex as the root, and other vertices are important events, i,e,

V = L ∪ r. The directed edge eij means the cause-effect, in other terms,

if event i occurs , then the occurrence of event j is more possible. So, the

weight wij should reflect the possibility from event i to event j.

1. The weight should reflect the likelihood ratio for i and j occurring to-

gether. The likelihood of assumption over the likelihood which could

occur is
pij
pipj

.

2. The weight should reflect that it is more possible to occur first for event

i. If pi > pj, then the high possibility of an edge from i to j may exist

with
pi

pi + pj
.

Then, we combine the above two to obtain

pi
(pi + pj)

× pij
pipj

=
pij

pj(pi + pj)
. (∗)

The logarithm (*) of is chosen instead of the above-mentioned weight

for proving reconstruction algorithm works. Thus, we define the weight

function on the directed edge from event i to event j :

wij = log
pij

pj(pi + pj)
= log pij − log(pi + pj)− log pj.

10



The spanning tree with the sum of all directed edges maximum is the opti-

mal branching tree in this model.

Definition 2.1.1. Let T = (V,E, r, p, L) be an oncogenetic tree. Then T is

not skewed if for all distinct vertices vi, vj, vk ∈ V where vk =l.c.a.(vi, vj),

then pi|j < pi∨j|k.

Theorem 2.1.1. [11] Let T = (V,E, r, p, L) be a non-skewed oncogenetic

tree. Then the maximum branching over V with respect to the weight defined

by wij = log
pij

pj(pi + pj)
is precisely T .

2.2 Distance-based tree model

The idea of distance-based tree model comes from the combination of

Cavender-Farris trees [6, 8] and path metrices [7]. And, we use distance-

based algorithms from the phylogenetic literature. In this model, the im-

portant genetic event set L is exactly the leaf set of oncogenetic tree, and

there are some unknown (or hidden) genetic events as internal nodes of tree.

So far, there is no algorithm which can ensure that the output of re-

construction algorithm is exactly the real oncogenetic tree. Actually, the

reconstruction which was brought up by Desper et al. [12] is an approxi-

mation.

Now, we consider the distance by path metrices. The logarithm of edge

probability is negative since it is small than 1. For all edge e, we define the

distance d(e) = − log p(e). If x and y are two leaves of tree, then we define

the distance

d(x, y) = log
pxpy
p2xy

= −2 log pxy + log px + log py.
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Given a sample S, we obtained the probability p̂x, p̂xy from sample S for

all genetic events x, y, where p̂x is the observed probability of x, and p̂xy is

the observed joint probability of x and y. Next, we calculate the distance

d̂(x, y) = −2 log p̂xy + log p̂x + log p̂y for each events x and y. Finally, we

use a tree-fitting algorithm to find optimal oncogenetic tree T ′ such that

the metric dT ′ is close to the metric d̂.

In [12], Desper et al. use the L1 distance [9] between two trees to measure

the approximation. Let pmin be the minimum px for all genetic event x.

Theorem 2.2.1. [12] Suppose that the input data are k samples from the

distribution pT of an oncogenetic tree T . Our oncogenetic tree reconstruction

algorithm converges to a tree T∗ and distribution pT∗ such that the expected

L1 distance between pT and pT∗ is O(
|L|2√
kpmin

).

Thus, we infer that if the number of samples is considerable enough,

then the output tree by the reconstruction algorithm is approaching to real

tree.

2.3 Comparison

A tree can be regarded as a collection of path. Then maximum-weight

branching models are developments of path models. However, on an onco-

genetic tree derived from maximum-weight branching model, each vertex

may not have a single direction, but the vertex likely occur on many paths.

Thus, we can observe the heterogeneity of a tumor in this model.

As a result of reconstruction of maximum-weight branching model, we

can get the information shown as below:
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r - 4 q - 13 q - 9 q - 18 q

-3p -4p + X p
- X p

Renal branching

- 8 p - 6 q + 17 q + 17 p

Figure 2: Maximum-weight branching model for renal cancer cell [5]

1. Just like path models, there exists a causal relationship between the

vertices on each path of an oncogenetic tree. That is, if the predecessor

occurs, then the possibility of successor occurrence increase.

2. Events on a branch would be marked as a subclass of the tumor.

Distance-based tree model is discussed from another direction. The dis-

tances between various vertices are calculated, then we find the approxima-

tion of an optimal tree by the distance matrix.

As a result of reconstruction of distance-based tree model, we can get

the information as below:

1. Each edge e has length − log p(e) on the oncogenetic tree, and the hor-

izontal distance between endpoints of e is proportional to the length

of e.

2. The vertex which is more closed to root would be the event which occurs

earlier.

3. Just like maximum-weight branching model, events on a branch can be

marked as a subclass of the tumor.

13



Renal distance-based

r

- 8 p

+ X p

- 3 p

- X p

- 9 p- 9 p

- 4 p

- 4 q

- 18 q
- 13 q

- 6 q

+ 17 q

+ 17 p

Figure 3: Distance-based tree model for renal cancer cell [5]

Although maximum-weight branching model and distance-based model

construct the oncogenetic tree according to different mathematical ways,

they have partial common features and their own advantages. Especially,

maximum-weight branching model shows the cause and effect between events.

On the other hand, distance-based model focuses on the correlation between

each two events. Therefore, both two models are commonly used on most

of cancer researchs.

Due to the advantages of two models, the reliability of oncogenetic trees

increases after matching the pairwise inferred relationships. Then the relia-

bility of oncogenetic trees reconstructed by both two models would increase.

We can deduce from the influence of genetic alterations on the cancer by

the oncogenetic trees derived from tree models.

We know that the early events are closed to the root in the two models.

14



However, the distance-based tree model is more accurate because of the

horizontal distance from root to the vertex. For example, by the oncogenetic

trees in Figure 2 and 3, we know that the events +3p and −4q closed to the

root are early genetic events.

Furthermore, the events with strong correlations are assembled in a

branch in both models. Figure 2 and Figure 3 show that there are sub-

trees with −13q, −9p, and −18q in both two models. The subtrees with

−6q, +17q, and +17p also exist in both two models, and so on. We also

observe that −4q is very closed to −4p, and so do +17q to +17p.

On the contrary, −8p and −3p are independent with other vertices.

This implies that the correlation between them and all other events are

very small. Both of two models show that −3p is very closed to the root.

However, −4q is the important vertex on the oncogenetic trees because it

is highly pertinent to other events.
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3 Main result and conclusion

In section 2.2, we infer tree models by distance-based methods from

phylogenetics. The maximum likelihood model adopt the suggest of distance-

based model.

3.1 Maximum likelihood model

We start with building a binary matrix M from given CGH data infor-

mation. The row index corresponds to each genetic event and the column

index corresponds to each tumor. The entries of M stand for the occurrence

relation, i.e., mij = 1 if and only if the genetic event i occurs in the tumor j.

According to this matrix we can organize the relationship between genetic

events and tumor. The column vector m.j shows the variations of tumor j,

called the profile of j.

In this section, we consider the variation of an individual tumor with

conditional probability.

Definition 3.1.1. Let Xv be a random variable with value in {0, 1} for all

vertex v of tree, such that Xv = 1 if v = r; otherwise, P (Xv = 1 | Xpar(v) =

1) = pe, and P (Xv = 1 | Xpar(v) = 0) = 0. Notice that Xv = 0 implies that

v isn’t observed at the tumor in the experiment. Conversely, Xv = 1 implies

that v is observed in the tumor.

The subtree of T rooted at v is denoted by T (v). The leaf set of T (v) is

denoted by L(T (v)). Then we define qe, the conditional probability, as below:

16



qe := P (Xl = 0,∀l ∈ L(T (v)) | Xpar(v)=1)

=


(1− pe) , for all leaf edge e

(1− pe) + pe
∏

k∈su(e)
qk , o.w.

, where e is an edge from par(v) to v.

The probability qe is separated into two conditions: (i) par(v) occurs,

but v does not. (ii) Both par(v) and v occurs, but all leaves in L(T (v))

do not. And we use the recursion to compute part (ii). Trivially, if e is a

leaf edge, i.e., su(e) = ∅, then qe = 1 − pe. For example, in Figure 4 (a),

qe3 = (1− pe3) + pe3qe7qe8 .

Next, we discuss the condition of alterations in a individual tumor.

Given an oncogenetic tree T = (V,E, r, L, p) and an observed data matrix

M from the experiments, we have some notations:

1. A set Lj is collecting the alterations observed in tumor j, i.e., Lj :=

{v ∈ L | mvj = 1}.

2. The subtree of T rooted at r and spanned by r ∪Lj is denoted by Tj.

3. E ′(Tj) = {e ∈ E(T ) \ E(Tj) | pre(e) ∈ E(Tj)}.

4. me = |{j | e ∈ E(Tj)}|.

5. ne = |{j | e ∈ E ′(Tj)}|.

The profile m.j respects to all occurrences of alterations in tumor j.

Then the probability of profile m.j is

P (m.j) =
∏

e∈E(Tj)

pe
∏

e∈E′(Tj)

qe. (1)
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Example of pro. of a profile
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Figure 4: (a) an oncogenetic tree T ; (b) a subtree Tj of T

For example, an oncogenetic tree T is the part (a) of Figure 4. Sup-

pose alterations v1, v3, v4 are observed in tumor j, i.e., {v1, v3, v4} is the

profile of tumor j. And the part (b) is the subtree Tj of T . E(Tj) =

{e1, e2, e3, e4, e5, e7}, and E ′(Tj) = {e6, e8}. So,we calculate the probability

of profile of tumor j which is P (m.j) = pe1pe2pe3pe4pe5pe7qe6qe8 .

We can obtain a series of genetic data from CGH experimental result.

Each tumor has its own data, then tumors are taken as independent between

each other. There is an equation formed by (1) for each tumor’s profile.

Thus, we define the likelihood of the oncogenetic tree as the product of

tumors’ probabilities:

L (T ;M) :=
∏
j

(
∏

e∈E(Tj)

pe
∏

e∈E′(Tj)

qe) =
∏

e∈E(T )

(pme
e qne

e ).

In next section, we’d like to construct a reconstruction algorithm for a

given fixed matrix M . Then the likelihood of an oncogenetic tree T will be

denoted by L (T ) instead of L (T ;M).
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3.2 Reconstruction algorithm

We start with introducing some definitions and notations. Given a tree

T ,

1. AEv = {e ∈ E(T ) | e is in the path from the root of tree to v} is

called the ancestor edge set of v.

2. CEv = {e ∈ E(T ) | e = vv′ for some child vertex v′ of v} is called the

child edge set of v.

3. A free vertex is an internal node which has only one child. In the

following algorithm, each tree contains at most one free vertex, then

we denote the free vertex set by f(T ). For instance, the vertex v1 in

Figure 5. is the free vertex of T .

4. Let T = (V,E) be a tree with vertex set V and edge set E in the

following algorithm.

Free vertex

vv

r

T

v
3

v
4

v
5

v
2

v
1

v
7

v
6

Figure 5: an example of oncogenetic tree in a step of algorithm
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Input:

r: no genetic alteration.

L: the set of important events.

I: the set of hidden events (as the internal node in the tree).

Output:

A binary tree T with maximal likelihood.

Algorithm 1 RECONSTRUCTION-BY-MAXIMUM-LLIKELIHOOD

1: V ← {r}.
2: Choose an event in L, denoted by v.
3: V ← V ∪ {v}, E ← {rv}.
4: while (|L \ V | 6= 1) do
5: (i) Choose an event in L \ V , denoted by v.
6: (ii) V ← V ∪ {v, v′}, E ← E ∪ f(T )v′, v′v, where v′ is the

parent of v. % v’ is as an ”hidden” event.
7: (iii) Count the likelihood L (T ).
8: (iv) a← f(T ), and DE ← AEa ∪ CEa

9: Step1 (create a new tree T ′ = (V ′, E ′) from T )
10: (a) E ′ ← E, V ′ ← V , choose an edge e /∈ DE, which

separate T into two components T1 and T2 where
r is contained in T1, E

′ ← (E ′ {e})
11: (b) DE ← DE ∪ {e}.
12: (c) Connect the root u of T2 and vertex a by a new edge,

E ′ ← E ′ ∪ {au}.
13: (d) Count the likelihood L (T ′).
14: Step2 (Compare the likelihood of T and T ′)
15: if L (T ′) < L (T ) and DE 6= E(T ) then
16: go to Step1.
17: else if L (T ′) < L (T ) and DE = E(T ) then
18: Return T .
19: else
20: T ← T ′, DE ← {au}, a← f(T ), DE ← DE ∪ AEa ∪ CEa,

and go to Step1.
21: end if
22: end while
23: Add the last event v, V ← V ∪ {v}, E ← E ∪ {f(T )v}.
24: Return T .
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The main idea of this algorithm:

In step 1 (rearrangement), we cut an edge e of T \ DE, such that the

original tree separate two components T1 and T2, where root of T is containd

in T1. And then, we link these two components with an new edge e′ 6= e.

For keeping the order of vertices in each component, we connect the two

components T1, T2 with f(T ) and root of T2. Next, we’d like to find the

tree with larger likelihood. So, we compare the original tree T and the new

tree T ′ in step 2.

(I) If L (T ′) < L (T ) and DE 6= E(T ), it implies that T is better than

T ′ in this size, and there are more choice of edges for cutting. Then we

go back to rearranging step again. At the same time, e is taken in DE for

avoiding a tree occurring more than once.

(II) If L (T ′) < L (T ) and DE = E(T ), it implies that T is better than

T ′. But there is no edge which could be cut. So, the tree T is the optimal

tree with maximal likelihood in this size. We will add a pair of vertices to

T in order to proceed rearranging step with next size.

(III) If L (T ′) > L (T ), it implies that the T ′ is better than T . So, we

use T ′ in place of T , and then go back to rearranging step.

3.3 Conclusion

Every time rearranging is to figure out the tree with maximum likeli-

hood in this algorithm. It keeps sorting until there is no tree with larger

likelihood. By following the algorithm steps, the likelihood of the tree does

not increase in the end. Although it may be the local maximum, it is the

optimum condition for the algorithm.
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Maximum likelihood model has the common point with the two models

in previous section. The genetic events assembled in a branch are more

correlative between each other. That is, the genetic events which triggered

together are gather in the same branch.

The previous two models can analyze the effect on the tumor by genetic

alterations. However, maximum likelihood model analyze the data about a

specific type of tumors since the observed matrix will collect a specific type

of cancer of many individual tumors. Therefore, the maximum likelihood

model can integrate correlation between genetic alterations in a specific type

of cancer.

Through these models, we know which genetic alterations would cause

cancer lesions easily. Recently, many researchers use tree model to explore

and analyze the mechanism of tumor.

We can combine the relevant biomedical information. Not only CGH

data but also the results of other experiments, e.g., array-CGH, fluorescence

in situ hybridization (FISH), detection methods of single nucleotide poly-

morphisms, can reconstruct the tree model. It would deepen the knowledge

of tumor developing mechanism, and are good for preventing.Furthermore,

it helps earlier detecting, diagnosis, and treatment.
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