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Comparative Genomi¢ Hybridization (CGH) is a molecular cy-
togenetic method to measure the copy number aberrations of
chromosomal in tumor cells. “In biological domain, tree model
is usually used on the evolutionary relationship between organic
and different biological species.  In decades, the biologists be-
lieve that increase and decrease of DNA cause the occurrence of
cancer. Furthermore, not' only the change of one genetic event
results in the cancer occurrence, but also serial alteration of dif-
ferent genes. Therefore, tree model is used as the tool to analyze
CGH data and explore carcinogenesis. The mathematical model
from CGH data can be inferred under mathematical ground.
Desper et al. stated two models: maximum-weight branching
model and distance-based tree model. These two models are
more accurate than path model of colorectal-tumor which was
brought up by Vogelstein et al.. In this paper, we introduce two
different tree models and compare the differences between them.
In addition, the oncogenetic tree model is reconstructed by using
the idea of maximum likelihood.
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1 Introduction

1.1 Motivation and background

Cancer has become the main cause for human death around the world.
According to the indication of statistical data, cancer continues to hold the
top of human dead causes in Taiwan for 28 years, which bring patients
great sufferings. There are a lot of factors that are likely to induce cancers,
for instance, heredity, diet habit, endocrine disorder, stimulus of chemical
substances, etc. Generally, the earlier detect occurrence of cancer, the cure
result would be better. Hence, biologists devote on oncogenic mechanism
research.

In general, a normal cell has a cell cyele, and check points among cell
cycle can determine the:growth-and replication of cells. Because the mech-
anisms fail in tumor cells, the cells proliferate abnormally. When growth
control mechanisms became abnormal, the cell would be out of control and
reproduce a great number of cells, which is called a tumor.

Tumors are classified into two types: ‘benign tumors and malignant tu-
mors. Both of them can proliferate without control. Furthermore, malig-
nant tumors can also penetrate into nearby cells, tissues, even body’s organ
and may be lethal. Consequently, malignant tumors, which are called can-
cer, are more dangerous than benign tumors.

Deozyribonucleic acid (DNA) is a self-replicating linear molecule with
a large molecular weight, which is contained in living cells. It is a carrier
of genetic information. The chain of DNA contains the bases adenine (A),

thymine (T), cytosine (C), guanine (G). The sequence of the bases along the



chain forms a genetic code directing the synthesis of RNAs and proteins.

According to biological central dogma, a gene is a specific fragment of
DNAs, and it will be transcribed into a RNA fragment, which will then be
translated into proteins. Proteins are not only the critical consistent of the
organisms’ structure but also can maintain vital mechanisms in organisms,
including cell cycle check points.

Despite there are many factors may result in some mutations of DNA,
DNA repair system largely reduces the abnormal DNA amount. When DNA
mutations are too serious that cannot be repaired, the protein expression
might be affected. The cell cycle could then be abnormal, causing cancer
at this time. This is why we confer about the genetic alterations for cancer

studies.

1.2 CGH method

Comparative genomic hybridization (CGH) is an important experimen-
tal method in molecular cytogenetic. It is.derived from florescence in situ
hybridization (FISH). They mark DNAS in a normal cell and a tumor cell
individually by probes with different colors. Then mix the dyed DNAs, and
put them into the chromosomes of the target cell which is in metaphase.
After hybridization, the corresponding DNA pairs would bind together.

The mutative DNAs in the tumor cell proliferate massively. The ampli-
fied DNAs would be more, but the deleted DNAs are less. In the hybridiza-
tion, the locations of amplified DNAs may bind with DNAs of the tumor
cell, and the locations of deleted DNAs bind with DNAs of the normal cell.

Chromosome is one of the small, rod-shaped, deeply staining bodies



in a cell nucleus. Each chromosome consists of a single long molecule of
DNA associated with proteins. DNA are scattered throughout the nucleus
ordinarily, but they would be centralized and become chromosomes among
cell division.

Consequently, by the order numbers of chromosomes in goal cell, the
chromosomes which show color of the tumor cell are amplified chromosomes,
and the chromosomes which show color of the normal cell are deleted chro-
mosomes.

During the duplicating process, the chromosomes are in pairs and so
do the DNAs in a normal cell, because of this, it is the feature used in
CGH. In different situation such as amplifications, deletions, or normal
conditions, the process of hybridization are different and the fluorescence
on DNA display differéntly. These chromosome variations observed in a
tumor are called copy number aberrations (CNAs).

Therefore, the gains or losses of DNAs in tumor cells and the DNA
locations of abnormal copies can.be detect by these fluorescent markers. A
series data of CNAs would be obtained after these experiment.

Based on the information of DNA CNAs, we specify the relationships be-
tween genetic alterations and diseases or cancers. CNAs play a critical role
in medical science. Furthermore, CGH can efficiently detect the amplifica-
tions and deletions of all DNA fragments in a tumor at a time. Therefore,
CGH is used widely in research.

However, after accumulating a large amount of laboratory data, how
to analyze these data in order to explain the relationship between genetic

alterations and tumorigenesis becomes another bigger topic.



1.3 Tree model

There are 23 pairs of chromosomes in a human cell, number 1 to number
22, X, and Y. Because of chromosome Y not contained in females, we do not
consider the mutations of chromosome Y. The longer arm of a chromosome
is denoted by ¢, and the shorter one is denoted by p. Each chromosome has
the longer arm ¢, but the shorter arm is not in chromosome 13, 14, 15, 21,
22. As a result, there are 41 regions that we can consider, and each one will
probably amplify or delete. Then the chromosome variations are at most
82 possible conditions.

The models early proposed are based on the path model stated by Vo-
gelstein et al. [3]. From a.large-CGH database, we can infer that col-
orectal cancer is mainly dead by four genetic events +2q, —7p, —13¢q, —6q.
The model of colorectal cancer is built with pathway by these four genetic
events. And these four events from the data show-a causal link. When +2¢
occurs, —7p has greater chances of occurring. When —7p occurs, then —13q
has greater chances of occurring,; When =13q occurs, —6q is more likely to
occur. Therefore, the four genetic events are important indicators of cancer

detection.

[ > @ > @ > @ > @
r +2q -7p -13¢q -6q

Figure 1: oncogenetic path for colorectal cancer

However, while widely used, the path model still has many shortcom-
ings. According to statistics from biological research, the genetic events

which occur during the formation of tumor cells do not so much resem-
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ble a chain, rather the accumulation of multiple alterations. Moreover, the
genetic events are possible form many different branches. Therefore, tree
topology would be more suitable than path topology as a model for the

analysis of the carcinogenic process.

1.4 Definition

A graph is an ordered pair G = (V,E), where V is a finite set of
elements called vertices and E is a set of unordered pairs of vertices called
edges. In general, the vertex set is denoted by V(G) or V, and the edge set
is denoted by E(G) or E.

A graph P, with vertex set V() .= {vo,v1,...,0n—1} and edge set
E(P,) = {(vi,vit1) | i =.0,1,...,n — 2} iscall an vy — v,y path. The
length of P, is the number of E(P,) = n.— 1.. A graph C, with ver-
tex set V(C,) = {vo,v1,..., 051} and edge set E(C,) = {(vi,vi41) | i =
0,1,....,n — 2} U {(vo, va=1)} is call a eyele:

A graph G is connected . if there exists an v — v path in G for any
u,v € V(G). A subgraph of a graph'G is'a graph H such that V(H) C V(G)
and F(H) C E(G). A spanning subgraph of a graph G is a subgraph with
vertex set V(G). The components of a graph G are its maximal connected
subgraphs.

A tree or branching is a connected graph which has no cycle. A spanning
tree of graph G is a spanning subgraph of G without cycles.

The degree of vertex v in a graph G is the number of edges incident to
v. The vertex whose degree is 1 in a tree is called a leaf. The set which is a

collection of leaves of a tree T is called the leaf set of T', denoted by L(T).



A directed graph or digraph is an ordered pair D = (V| E) with vertex
set V and edge set F which is a set of ordered pairs of vertices. We call the
ordered pair as directed edge or arc. Given a directed edge e = (u,v), the
first vertex u of e is called the tail of e and the second vertex v is called the
head of e. Furthermore, u is called a parent of v, denoted by par(v), and v
is called a child of u, denoted by ch(u).

In a directed tree T, if the vertex v € V(T') has no parent, then we called
v is the root of tree T'.

A digraph P, with vertex set V(P,) = {vo,v1,...,v,_1} and directed
edge set E(P,) = {(vi,vi41) | © = 0,1,...,n — 2} is called a directed path
from vy to v,_1 (vo — v,_1 directed path):

In a directed tree T, let 7 be the root-of T'; then there exists a directed
path from r to v for every vertex v € V(T). Every vertex on the r — v
directed path unless v is-called an ancestor of v. For any two distinct vertex
u, v, if w is an ancestor both of w and v, then w is called the common ancestor
of u,v. If the vertex w is an’ common ancestor of u, v with maximum length
path from root to w, then we call w is the least common ancestor of u, v,
denoted by l.c.a.(u,v).

In a directed graph D, if there exists a directed path P, with vertex set
V(Py) = {vo,v1,v2,v3} and directed edge set E(Py) = {e; = (v;,vi11) | i =
0,1,2} , then e is a predecessor edge of ey, denoted by pre(e;), and e; is a
successor edge of e1, denoted by su(ey). A leaf edge e is a directed edge if
su(e) = 0.

In this paper, all graphs we mentioned are directed. Therefore, we use

"graph” instead of "directed graph”, "edge” instead of "directed edge”,



"tree” instead of ”directed tree”, and so on.
Before discussing with the tree models, we define the probability distri-

bution on a tree.

Definition 1.4.1. Given a vertex set V', a function P which assign non-
negative real number to all subset of V' such that »  P(S) =1 is called a

SCV
probability distribution P on 2V .

Definition 1.4.2. An oncogenetic tree T = (V, E,r,p, L) is a rooted directed
tree with 0 < p(e) < 1, Ve € E, where V is the vertex set of tree, E is a set
of pairs of vertices, r is the root of tree (no genetic alterations), L is the
important genetic event set, and p(e) is the probability that edge e is present

independently.

Each oncogenetic tree T is useful-as the generator of distribution on 2V,
and we denote the distribution as Py

In the process of causing tumorigenesis, there are some causal link be-
tween different genetic events, or different alterations probably occur in
different stages. So we will divide into two mathematical models, untimed

and timed.

Definition 1.4.3. A pure untimed oncogenetic tree is a tree T with a prob-
ability p(e) attached to each edge e. This tree generates observations on
mutation presence/absence the following way : each edge e is independently
retained with probability p(e); the set of vertices that are still reachable from

root v gives the set of the observed genetic alterations.

Definition 1.4.4. A pure timed oncogenetic tree is a tree T' with a rate \(e)

attached to each edge e and an observation-time distribution ¢ on *. This
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tree generates observations on mutation presence/absence the following way
. first the time of observation t is drawn from ¢ and the transition time
along each edge e is drawn independently from an exponential distribution
with rate A(e). The set of vertices that are reachable from root r along a
path for which the sum of transition times is less than t gives the set of the

observed genetic alterations.

Next, there are some notations for probabilities.
Notation : An oncogenetic tree T' = (V, E,r,p, L) with distribution P,

define

e p;, = P(v; occurs), for i = Lavpm; po =1

P(v; and vjoceur) ,fori# jui,j=1,---,n
® Dij =

Di , O.W.
e pij; = P(v; occurs| v; oceurs), for i # 5, 4,5 =1,--- ,n
e pyj = P(v; or v; ocenr), for i # j, i3 =1, . n

, where vy = r.



2 Reconstruction of oncogenetic tree model

Since each timed oncogenetic tree with path topology has an equivalent
untimed oncogenetic tree [11], by the biological statistics, we can get the
correlative genetic events of a specific tumor type, but we cannot have the
occurrence order of all genetic events immediately in an individual tumor.
Supposed that each alteration occurs at most once in every tumor at a
time. Besides, a genetic event may occur in different stages, but we don’t
consider the number of occurrences of each alteration. We just care about
if the alteration occurs in an individual tumor or not. Thus, we will talk
about untimed cases in this thesis.

How to use the reconstruction of tree-model to find the optimal onco-
genetic tree for given CGH data is an crueial problem. In this section, we
shall talk about the reconstruction problem as the following:

Input :

A set L of genetic events; and k samples from a distribution p over 2%
Output :

An oncogenetic tree T = (V, E,r,p, L) with L C V', such that Pr is an

approximation of P.

2.1 Maximum-weight branching model

In maximum-weight branching model, each vertex should be an impor-
tant genetic event. Suppose there are n genetic events (including root ),
we construct a directed complete graph K, on V. Then there are n(n — 1)
possible direct edges, but the oncogenetic tree obtained from maximum-

weight branching model just has n — 1 edges finally. So the reconstruc-



tion of maximum-weight branching model is to find the maximum spanning
branching such that the sum of all edges weights in the branching is maxi-
mum.

Now, we introduce the definition of edge weight. Let T'= (V, E,r,p, L)
be an oncogenetic tree. The weight function is a mapping from p to real
number for the pairs in V2. In the maximum-weight branching model,
there is a vertex as the root, and other vertices are important events, i,e,
V = L Ur. The directed edge e;; means the cause-effect, in other terms,
if event 7 occurs , then the occurrence of event j is more possible. So, the

weight w;; should reflect the possibility from event ¢ to event j.

1. The weight should reflect: the-likelihood ratio for ¢ and j occurring to-

gether. The likelihood of assumption over the likelihood which could

Dij
bip;

occur is

2. The weight should reflect that it is more possible to occur first for event

t. If p; > pj, then the high possibility-of an edge from ¢ to j may exist
Pi

with .
D + P

Then, we combine the above two to obtain

D Dij Dij
X = . *
(pi +pj)  pipj  pi(pi+p;) *)

The logarithm (*) of is chosen instead of the above-mentioned weight
for proving reconstruction algorithm works. Thus, we define the weight

function on the directed edge from event ¢ to event j :

Dij
w;; = log : 7= log pij — log(p; + p;) — logp;.

p;(pi + p;

10



The spanning tree with the sum of all directed edges maximum is the opti-

mal branching tree in this model.

Definition 2.1.1. Let T = (V, E,r,p, L) be an oncogenetic tree. Then T is

not skewed if for all distinct vertices v;, vj, vi, € V' where v, =l.c.a.(v;,v)),

Theorem 2.1.1. [11] Let T = (V,E,r,p, L) be a non-skewed oncogenetic

tree. Then the maximum branching over V with respect to the weight defined
Dij

1s precisely T
pi(pi + pj)

by w;; = log

2.2 Distance-based tree model

The idea of distance-based tree model comes from the combination of
Cavender-Farris trees [6; 8] and path metrices [7]. And, we use distance-
based algorithms from,the phylogenetic literature.. In this model, the im-
portant genetic event set L is exactly the leaf set of oncogenetic tree, and
there are some unknown (or hidden) genetic.events as internal nodes of tree.

So far, there is no algorithm which can ensure that the output of re-
construction algorithm is exactly the real oncogenetic tree. Actually, the
reconstruction which was brought up by Desper et al. [12] is an approxi-
mation.

Now, we consider the distance by path metrices. The logarithm of edge
probability is negative since it is small than 1. For all edge e, we define the
distance d(e) = —logp(e). If x and y are two leaves of tree, then we define

the distance

d(z,y) = log]% = —2log pyy + log p, + log py.

Yy

11



Given a sample S, we obtained the probability p,, ps, from sample S for
all genetic events z, y, where p, is the observed probability of z, and p,, is
the observed joint probability of z and y. Next, we calculate the distance
oi(x,y) = —2log p.y + log p, + logp, for each events z and y. Finally, we
use a tree-fitting algorithm to find optimal oncogenetic tree 1" such that
the metric d is close to the metric d.

In [12], Desper et al. use the L, distance [9] between two trees to measure

the approximation. Let p,,;, be the minimum p, for all genetic event x.

Theorem 2.2.1. [12] Suppose that the input data are k samples from the
distribution pr of an oncogenetic tree T'. Our oncogenetic tree reconstruction

algorithm converges to a tree:Tx-and distribution pr. such that the expected
|L[? )
V kpmm '

Thus, we infer that if the number of samples is considerable enough,

Ly distance between pr and pr.is O

then the output tree by the reconstruction algorithm is approaching to real

tree.

2.3 Comparison

A tree can be regarded as a collection of path. Then maximum-weight
branching models are developments of path models. However, on an onco-
genetic tree derived from maximum-weight branching model, each vertex
may not have a single direction, but the vertex likely occur on many paths.
Thus, we can observe the heterogeneity of a tumor in this model.

As a result of reconstruction of maximum-weight branching model, we

can get the information shown as below:
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r -4 -13q -9¢q -18 ¢

>® >Q
-8p -6q +17q +17p

Figure 2: Maximum-weight branching model for renal cancer cell [5]

1. Just like path models, there exists a causal relationship between the
vertices on each path of an oncogenetic tree. That is, if the predecessor

occurs, then the possibility of successor occurrence increase.
2. Events on a branch would be marked as'a subclass of the tumor.

Distance-based tree model is discussed from another direction. The dis-
tances between various.vertices are calculated, then we find the approxima-
tion of an optimal tree by the distance matrix.

As a result of reconstruction of distance-based tree model, we can get

the information as below:

1. Each edge e has length —logp(e) on the oncogenetic tree, and the hor-
izontal distance between endpoints of e is proportional to the length

of e.

2. The vertex which is more closed to root would be the event which occurs

earlier.

3. Just like maximum-weight branching model, events on a branch can be

marked as a subclass of the tumor.

13



_8p

Figure 3: Distance-based tree model for renal cancer cell [5]

Although maximum-weight branching model and distance-based model
construct the oncogenetic tree according to different mathematical ways,
they have partial common features and their own advantages. Especially,
maximum-weight branching modelshowsthe cause and effect between events.
On the other hand, distance-based model focuses on the correlation between
each two events. Therefore, both two models are commonly used on most
of cancer researchs.

Due to the advantages of two models, the reliability of oncogenetic trees
increases after matching the pairwise inferred relationships. Then the relia-
bility of oncogenetic trees reconstructed by both two models would increase.
We can deduce from the influence of genetic alterations on the cancer by
the oncogenetic trees derived from tree models.

We know that the early events are closed to the root in the two models.

14



However, the distance-based tree model is more accurate because of the
horizontal distance from root to the vertex. For example, by the oncogenetic
trees in Figure 2 and 3, we know that the events +3p and —4q closed to the
root are early genetic events.

Furthermore, the events with strong correlations are assembled in a
branch in both models. Figure 2 and Figure 3 show that there are sub-
trees with —13¢, —9p, and —18¢ in both two models. The subtrees with
—6q, +17q, and +17p also exist in both two models, and so on. We also
observe that —4q is very closed to —4p, and so do +17¢q to +17p.

On the contrary, —8p and —3p are independent with other vertices.
This implies that the correlation” between them and all other events are
very small. Both of two models shew.that =3p is very closed to the root.
However, —4q is the important-vertex-on the oncogenetic trees because it

is highly pertinent to other events.

15



3 Main result and conclusion

In section 2.2, we infer tree models by distance-based methods from
phylogenetics. The maximum likelihood model adopt the suggest of distance-

based model.

3.1 Maximum likelihood model

We start with building a binary matrix M from given CGH data infor-
mation. The row index corresponds to each genetic event and the column
index corresponds to each tumor. The entries of M stand for the occurrence
relation, i.e., m;; = 1 if and only if the genetic event 7 occurs in the tumor j.
According to this matrix we.can organize the relationship between genetic
events and tumor. The column-vector m ; shows-the variations of tumor 7,
called the profile of j.

In this section, we consider the variation of an individual tumor with

conditional probability.

Definition 3.1.1. Let X, be a random variable with value in {0,1} for all
vertex v of tree, such that X, =1 if v =r; otherwise, P(X, =1 | Xpar(v) =
1) = pe, and P(Xy, = 1| Xparw) = 0) = 0. Notice that X, = 0 implies that
v 1sn’t observed at the tumor in the experiment. Conversely, X, = 1 implies

that v is observed in the tumor.

The subtree of T rooted at v is denoted by T . The leaf set of T is

denoted by L(T™)). Then we define ., the conditional probability, as below:

16



ge 1= P(Xl = O,Vl € L(T(U)) | Xpa'r(v):l)
(1 —pe) , for all leaf edge e

(1 _pe) + De H dr , O.-W.
kesu(e)

, where e is an edge from par(v) to v.

The probability ¢. is separated into two conditions: (i) par(v) occurs,
but v does not. (ii) Both par(v) and v occurs, but all leaves in L(T®™)
do not. And we use the recursion to compute part (ii). Trivially, if e is a
leaf edge, i.e., su(e) = ), then ¢ = 1 — p.. For example, in Figure 4 (a),
Ges = (1 = Pes) + PeglerGes-

Next, we discuss the condition of alterations in a individual tumor.
Given an oncogenetic tree. T = (VB ryL,p) and an observed data matrix

M from the experiments, we have some notations:

1. A set L; is collecting the alterations observed in tumor j, ie., L; :=

{veL|m, =1}
2. The subtree of T rooted at r and spanned by U L; is denoted by 7j.
3. B'(Tj) = {e € E(T)\ E(T}) | pre(e) € E(T})}-
4. me = {jlee E(T))}.
5. me={jlee E(T))}

The profile m ; respects to all occurrences of alterations in tumor j.

Then the probability of profile m ; is

= I » H qe (1)

c€E(T;)  ecE/(T.

17



Figure 4: (a) an oncogenetic tree T'; (b) a subtree T; of T

For example, an oncogenetic tree T is the part (a) of Figure 4. Sup-
pose alterations vy, v3, vy are observed in tumor j, i.e., {vy,vs,v4} is the
profile of tumor j. And the part (b) is the subtree T; of T. E(1;) =
{e1,e2,€3, €4, €5, €7}, and B’ (T;) = {es,es}. So,we calculate the probability
of profile of tumor j which is P(m.j) = pe, PeyDesPegDes Per Qeg des -

We can obtain a series of genetic data from CGH experimental result.
Each tumor has its own data, then tumors are taken as independent between
each other. There is an equation formed by (1) for each tumor’s profile.
Thus, we define the likelihood of the oncogenetic tree as the product of
tumors’ probabilities:

M) =11 II »e Il @)= II ).
J e€E(Ty)  ecE'(Ty) e€E(T)
In next section, we’d like to construct a reconstruction algorithm for a

given fixed matrix M. Then the likelihood of an oncogenetic tree T" will be

denoted by £ (T') instead of £ (T'; M).
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3.2 Reconstruction algorithm

We start with introducing some definitions and notations. Given a tree

T,

1. AE, = {e € E(T) | e is in the path from the root of tree to v} is

called the ancestor edge set of v.

2. CE,={e€ E(T) | e = v for some child vertex v" of v} is called the

child edge set of v.

3. A free vertex is an internal node which has only one child. In the
following algorithm, each tree contains at most one free vertex, then
we denote the free vertexset by f(7T). For instance, the vertex v; in

Figure 5. is the free vertex of 7.

4. Let T = (V,E) be a tree with vertex sett V. and edge set E in the

following algorithm.

Figure 5: an example of oncogenetic tree in a step of algorithm
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Input:

r: no genetic alteration.

L: the set of important events.

I: the set of hidden events (as the internal node in the tree).
Output:

A binary tree T with maximal likelihood.

Algorithm 1 RECONSTRUCTION-BY-MAXIMUM-LLIKELTHOOD

1.V« {T’}

2: Choose an event in L, denoted by v.

3: V< VU{v}, E+ {rv}.

4: while (|[L\ V| #1) do

5. (i) Choose an event in L\ V, denoted by v.

6: (i) V< VU{v,v'}, E< EUf)V, v'v, where v is the

parent of v. % is as an ”hidden” event.

7. (ili) Count the likelihood £ (1'):

8:  (iv) a < f(T), and DE + AFE, U CE,

9: Stepl (create & new tree 1" = (V' E') from T)

10: (a) E' < By V' <V, choose an edge e ¢ DE, which
separate 1" inte two-components 17 and T, where
r is contained in Ty, B’ (E' {e})

11: (b) DE < DEU{e}.
12: (c) Connect the root wof- 75 and vertex a by a new edge,
E' + E'U{au}.

13: (d) Count the likelihood £ (77).

14: Step2 (Compare the likelihood of 7" and T”)

15 if L(T") < L (T) and DE # E(T) then

16: go to Stepl.

17: elseif L (T") < L (T) and DE = E(T) then

18: Return 7'

19: else

20: T+ T, DE + {au}, a « f(T), DE + DEU AE, UCE,,
and go to Stepl.

21:  end if

22: end while
23: Add the last event v, V <~ VU {v}, £+ EU{f(T)v}.
24: Return T
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The main idea of this algorithm:

In step 1 (rearrangement), we cut an edge e of 7'\ DFE, such that the
original tree separate two components 77 and 75, where root of T is containd
in 77. And then, we link these two components with an new edge €' # e.
For keeping the order of vertices in each component, we connect the two
components 71, T with f(7T') and root of Ty. Next, we’d like to find the
tree with larger likelihood. So, we compare the original tree T" and the new
tree T" in step 2.

() If £L(T") < L (T) and DE # E(T), it implies that T is better than
T’ in this size, and there are more choice of edges for cutting. Then we
go back to rearranging step again. At the.same time, e is taken in DF for
avoiding a tree occurringmore than-once:

(IT) If £ (T") < L (T) and DE = E(T), it implies that T is better than
T’. But there is no edge which could be cut. So, the tree T is the optimal
tree with maximal likelthood in this size. We will add a pair of vertices to
T in order to proceed rearranging step with next size.

(III) If £ (T") > L (T), it implies that the 7" is better than 7. So, we

use 7" in place of T', and then go back to rearranging step.

3.3 Conclusion

Every time rearranging is to figure out the tree with maximum likeli-
hood in this algorithm. It keeps sorting until there is no tree with larger
likelihood. By following the algorithm steps, the likelihood of the tree does
not increase in the end. Although it may be the local maximum, it is the

optimum condition for the algorithm.
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Maximum likelihood model has the common point with the two models
in previous section. The genetic events assembled in a branch are more
correlative between each other. That is, the genetic events which triggered
together are gather in the same branch.

The previous two models can analyze the effect on the tumor by genetic
alterations. However, maximum likelihood model analyze the data about a
specific type of tumors since the observed matrix will collect a specific type
of cancer of many individual tumors. Therefore, the maximum likelihood
model can integrate correlation between genetic alterations in a specific type
of cancer.

Through these models, we know which genetic alterations would cause
cancer lesions easily. Recently, many researchers use tree model to explore
and analyze the mechanism of tumor.

We can combine the relevant biomedical information. Not only CGH
data but also the results‘of other experiments, e.g.; array-CGH, fluorescence
in situ hybridization (FISH), detection methods of single nucleotide poly-
morphisms, can reconstruct the tree model. It would deepen the knowledge
of tumor developing mechanism, and are good for preventing.Furthermore,

it helps earlier detecting, diagnosis, and treatment.
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