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Quantum interference in spontaneous emission from a

V-type three-level atom in photonic crystals

Student: Yen-Yin Li Advisor: Prof. Wen-Feng Hsieh

Institute of Electro-Optical Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University

Abstract

We study the spontaneous®emission from a V-type three-level atom
embedded in a photonic crystal with-isotropic and anisotropic band structures.
Through detuning the two allowed atomic transition frequencies with respect
to the photonic band edge, we observed that the quantum interference
between the two transitions and the coherent interference of the atom-field
system lead to the splitting of the atomic energy levels into four regimes,
namely anti-trapping, no population inversion, enhanced population, and
enhanced periodic oscillation. The photon-atom bound states will not exist
in the anti-trapping regime, but they do exist in the others. Furthermore, the
V-type three-level atom system is equivalent to a two-level atom system for
distinguishing the bound and unbound states if one up shifts the band edge of

three-level atom system by two atom-field coupling constants.
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Chapter 1  Introduction

1-1 Background

It is well-known that spontaneous emission (SE) rate and optical properties can
be modified effectively by placing the atoms in photonic band gap (PBG) materials
[1], where the density of modes of the reservoirs has significantly been deviated
from that of free space vacuum. This modification changes the atomic coherence
and quantum interference effects and provides potential applications to quantum
optical communication. Through.ithe 'photonic crystals design, we can tailor
dispersion relations to make the unsmooth_ .density: of states (DOS) of photon.
Therefore, the robust characteristics. of "a, photonic. crystal have stimulated
investigation of a broad range of problems pertaining tothe interaction of few-level
atoms with unusual reservairs.

Three-level atom systems'are of particularinterest in quantum optics, including
V-, cascade-, or A-type arrangement. For the V-type system, its decay properties
are very interesting due to quantum interference effect. The quantum interference
between different atomic transitions and atomic coherence can lead to various
effects, such as change of spectra, population trapping, phase-sensitive amplification,
and laser without inversion [2-4].

Studying dynamics of SE for optical systems is important because SE rate affects
the performance of photonic devices greatly. SE from an emitter or an atom in free
space decays exponentially with time which is a result of Markovian approximation
that assumes the density of modes of photon is basically a constant within the

spectral linewidth of SE thus the atom instantaneously responses to the photon field.
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SE will be changed if the emitter is put into different environments with special
photon DOS according to the Purcell effect [2]. In this case, the emitted photons
couple with the “structured” reservoir which leads to the invalidity of the Markovian
approximation [3]. Especially in the presence of threshold-like DOS, non-Markovian
effects become of major relevance. Typical features of the non-Markovian
dynamics include non-exponential decay, population trapping, atom photon bound
states and damped Rabi oscillation [4-7], etc. Traditionally, the dynamics of SE for
the optical systems with non-Markovian effects was studied by means of Laplace
transform with the complex function integration and residue theorem. Especially
for the system of an anisotropic PC embedded with an atom, the excited-state
probability amplitude was expressed by the functional form of integral and discussed
through analyzing the integration contours of the amplitude [8, 9]. Based on the
regions of the integration.contours, the dynamical behavior was connected to the
dressed states of this atom-field interacting system. The mathematical method,
fractional calculus, whose definition'is "integration‘and differentiation of arbitrary
order”, has been proven better for studying the dynamical behavior of the optical
systems with non-Markovian effects [4].

When a three-level atom with transition frequency within the frequency gap, it
has been predicted that an excited atom placed in a photonic band gap (PBG)
material can form a photon —atom bound dressed state when the atomic resonant
frequency lies within the forbidden gap [10, 11].

This photon-atom bound state does not exist as the atom frequency lies within
the allowed band. So, it is very interesting to study the system that a three-level
atom has embedded in a PBG material has two allowed transitions causing

non-Markovian effects by the effect of quantum interference.



1-2 Motivation

Of late, the long-time memory phenomena have also attracted a great attention
in statistical physics. Such a long-time memory is intrinsic to all time scales of the
phase space of a system, provided that the number of divisions generating a fractal
set tends to infinity. The research of spontaneous emission of an atom in photonic
crystals has been developed for a long time. These long-time memory phenomena
of spontaneous emission from a two-level atom in PBG materials were studied by
John et al. [12] using the Laplace transform method to solve the time evolution
equations with long-time memory kernel. However, there is an unphysical state of
fractionalized atomic populationin the excited state when the resonant atomic

frequency lies outside the photonic-band-gap [13]:

In the thesis, we study the spontanheous emissionafrom a V-type three-level
atom coupled to the radiation field in a threé-dimensional periodic dielectric. The
two excited states of this three:level atom are-coupled by the same modes of the
field continuum to the ground state. We applied the fractional calculus to solve the

time evolving equation of this atom-field interacting system.

Similar dynamical behavior of the probabilities in the two excited states as the
previous studies [14, 15]. Spontaneous emission from the three-level atom can be
significantly enhanced without the help of a driving field, which is essential in free
space. The reabosrption and reemission of photons in the three-level system
embedded in PBG materials are more pronounced [14]. Interesting behavior of the
probabilities in the two excited states caused by the quantum interference between

the two atomic transition includes anti-trapping, periodic oscillation, and no



population inversion [15]. These phenomena were obtained through using Laplace
transform method. This method deriving unphysical bound state in the two-level
atom system has been proven incorrect [4] as the atomic transition frequency lies
near the photonic band edge. When this method was applied to the V-type
three-level atom system by Zhu et al. [14, 15], we found that, besides the calculation
being complicated, there exist unphysical bound dressed states as the two upper
levels lie outside the photonic band gap. These unphysical bound dressed states
would lead to the incorrect dynamical behavior of the system obtained by the
previous studies [14, 15]. Instead of using Laplace transform method, we apply
fractional calculus in this thesis to solve the dynamical behavior of the V-type
three-level atom system which has been proven asbetter and correct mathematical
method for studying the dyhamical behavior of the two*level atom system [4]. The
results showed that no unphysical bound dressed state exist as the two upper levels
lie deeply inside the allowed band.! When the two upper levels are shifted toward
the proximity of the allowed:band, the oscillating bound states will exist because of
the quantum interference between the two atomic transitions.  These different
physical results from those obtained by the previous studies [14, 15] illuminate the

effect of quantum interference on the interior structure of the atom.



1-3 Organization of the thesis

In this thesis, four chapters are given as follows. In Chapter 2, the basic theory
of a V-type three-level atom in isotropic and anisotropic photonic crystals with
one-band model is described through projecting the time-dependent Schrédinger
equation of the system on the one-photon sector of the Hilber space. The equation
of motion of the system are solved by using fractional calculus and expressed in
terms of the fractional exponential functions. In Chapter 3, the dynamics of
spontaneous emission for the system is presented giving the interesting phenomena
of quantum interference between the two atomic transitions. In the end, we

summarize our results and discuss the future works;in Chapter 4.



Chapter 2 Theory and Calculation Method

2-1 Dynamics of the spontaneous emission

In this section, we treat the atom-field interaction of the system quantum
mechanically, providing a basic understanding of spontaneous emission. It is well
known that an atom in an excited state is not in a stationary state —it will eventually
decay to the ground state by spontaneously emitting a photon. The nature of this

evolution is due to the coupling of the atom to the electromagnetic vacuum field.

We begin by investigation_a system involving the interaction of one three-level

atom with the multi-modestfield. —Initially the atom isiprepared in its excited states

a,),

a,) and the field isin vacuum state|0)’. *We use

| (0)) = A(0)|a,, 0)+A0)|ay,0) (2.1)

to denote this initial state with the “initial ‘condition of known A;(0) and A,(0).

Since this is not a stable state, the atom will decay to the ground |b> state and give

off a photon to one of the field modes (k,s) with wavevector k and polarization s.
These state vectors form a complete set for expanding the time-dependent state of

the system:

v (®) = Ae™[a,,0)+ A (e

a,,0)+ > B (t)e™™
k

ble) . (2.2)

where @ and @» are the atomic transition frequencies from excited states |al>

and |a,) to ground state |b) the initial condition is By(0)=0. The state vector



|a,,0) describes the atom in its excited state |a,) with no photons in all reservoir

modes, and the state vector |a,,0) describes the atom in its excited state |a,)
with no photons in all reservoir modes.

The state vector

b,1,,) represents the
atom in its ground state |b> and a single photon in the mode with frequency s,
wavevector k and polarization s. (see Fig.2-1)

@ A .
3 ‘ 1 >
' Im

@c

\ IM
€
5 7 a2>
,@ﬁ;

0 ¥

Fig. 2-1. A three-level atom in a photonic band gap structure. The two excited states

(|a1> and |a2>) are placed from the band gap edge by A, and A,.

Hint-

The total Hamiltonian for the coupled atom-reservoir system is Hyot = Ha+ He +

Ha represents the Hamiltonian of the free atom can be written as

H, =M@,0,, +®,,05,).

(2.3)
Here o, =|i)(j| [i,j=1(a),2(a,),b] are the atomic operators projecting its state



|j) to state |i) and oy =|i)(i| gives the population of state [i), that is, the
probability to fine the atom in level ||> He stands for the energy of the quantized

radiation field in the absence of the atom (neglecting the zero-point energy). It is

given by

H F— kZha)ksaljsaks ’ (2.4)
)

where a, and &), are annihilation and creation operators of the radiation field

for the mode {k s} with frequency ax in the reservoir. Let us now concentrate on

the interaction Hamiltonian

H =-d-E. (2.5)

)

The dipole operator d =ef can be expressedas

—

d =d,,oy, +d,,64F0d53655 0,545, (2.6)

where we have used the property that states |1) and |2) have opposite parity

such that <1|f|1> = <2|F|2> =0. And the quantized electric field is [16]

/2
= _ | ho i ik
E= |§Lgo'\<; } e (@ —ale™). (2.7)

Here e, is the unit vector of polarization for the reservoir mode (k,s), and ¢, is
the Coulomb constant. In the optical regime of the spectrum where photon
wavelengths are long compared with atomic dimensions ( A ghoton™ 10°A and X atom”
1A), it is useful to make the electric dipole approximation (k + r ~ 0) in Eq. (2.7), thus

the interaction Hamiltonian can be written as



|:|int = Ih[z Gis (als _aks)(abl + 0y + 0y + 03 ) | (2.8)

k,s

where @, isthe atom-field coupling constant having

12

_od h €4s Uy - (2.9)

Yo =T | 20,0

Here d and u, are the absolute value and unit vector of the atomic dipole
moment, and V is the sample volume. In this system, we set the same atom-field

coupling constant on two allowed transitions. The interaction energy in Eqg. (2.8)

consists of eight terms.  The terms a/.c,, describes the process in which the atom

is taken from the excited state |a2> into the ground state |b> and a photon of

mode (k,s) is created; the term @,0,, describes the opposite process. Similar
situation is for the terms “alo,, and“a.o;,  The energy is conserved in both the

processes for two allowed +transitions. The other four terms violate energy

conservation, therefore we invoke the'rotation wave approximation (RWA) to

neglect the terms o,a. o0,a. 0,8, and 0,,a8,. The resultant simplified
’ 7

Hamiltonian is

0o i i
Hinw =] 3" 04 (85001 +800%, — O1pa — 08 ) |- (2.10)
k.s

We want to determine the state of the atom and the state of the radiation field
at some later time when the atom begins to emit photons. From Schrddinger

equation in interaction picture



ih%\w(t)>l —H, \W<t>>, , (2.11)

we get the equations of motion for the probability amplitudes As(t), A,(t) and B(t) :

At) == 0, B (e >, (2.12)
k,s
A (1) == g, B (t)e @, (2.13)
k,s
Bio (t) = Gy (A (D7 + A (e, (2.14)

In order to get an equation that involves A(t) only, we first integrate Eq. (2.14).

t

B (1) = 0 [ (A (28 )" + A (r)e @ > )7 . (2.15)

0

On substituting this expression of Bys(t) into Eq. (2.12) and.Eq. (2.13), we obtain

At)=— [Gt-o)Aw)dr - (2.16)

where G (t-t’) is the memory kernel tensor is given by

eI (@—p)(t=7) eia«(tr)ﬂwmtiwzbr}

p=g 2
G(t - T) = Z|gk | |:e—ia4( (t—7)+iw,pt—iay,r e—i(w)(—a)Zb)(t—r)
k : (2.17)

and vector of E(r) ’K(r) are X(t) = [22))} and A(r)= [QZ))} G (t-t) is

a measure of the reservoir’s memory of its previous state on the time scale for the

evolution of the probability amplitude of the system.

In free space, the density of the field modes is broad and slowly varying, so we

do in the Weisskopf-Wigner approximation, resulting in the kernel that exhibits
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Markovian behavior, G(t-t’) = (7 /2) 0 (t-t’), where 7 is the usual decay rate for

spontaneous emission [17].

In next section, we turn our attention to the case when the three-level atom is
located within a photonic band structure, in which the SE behaves non-Markovian,
and use an effective-mass approximation to the full dispersion relation for a photonic
crystal.  Within this approximation, we consider two models for the near-band-edge

dispersion, isotropic and anisotropic model.

11



2-2 Fractional solution of spontaneous emission

2-2.1 Isotropic model

In the isotropic model of a photonic crystal, we assume that the Bragg
condition is satisfied for the same magnitude of wave vectors in all directions in k

space. This yields an effective-mass dispersion of the form
_ _ 2
o=+ AK|=Ik 1), (2.18)

where @, is the bandedge frequency, ko is of its corresponding wavevector at the
Brillouin zone boundary in the kispace, and A'is a constant. The band-edge density

of states derived from thjs dispersion-relationship'in* the isotropic model has a

singular form as plw) =Y {o(a (k) -w)=B(w-,) ", where

_wdk 1 4

d 2heyw, 2m) 3

It is a fractal phenomenon that induces the long-time memory of the
spontaneous emission in the photonic crystal. The natural mathematics of
describing the fractal phenomenon is the fractional calculus. Using the fractional
calculus we can evaluate derivatives and integrals with fractal orders. Therefore, in
this section we will treat the density of states in isotropic model as singularity in
isotropic model by applying fractional calculus to solve the time evolution integral

equation of the excited probability amplitude.

The band-edge density of states in the isotropic model has the singular form

12



p@)=Y 50 ®-0)= —L _ow-a) (2.19)

(a) — @ )1/2

where O is the Heaviside step function. We change the k summation to an
integration by introducing a continuum density of states p(w) such that p(w)dw
gives the number of oscillators in the frequency interval wto w+dw[18]. Hence
we can obtain the memory kernel from Eq. (2.17) as

Git-0=Y [la,

e*i(a’k*“’lb)(t*T) e*i%(t*T)Jriﬂhbt*iwsz
k,s 0 €

—iay (t-7)+Ha,pt—im,r g (@@ X1-7)

(2.20)

@ g i@-ap)t-0) iox (o) iyt )
- r.[p(a)) e—i{q< (t—7)+iwyt—iwy,r e—i(cq(—(qu)(t—r) @
0

The memory kernel is obtained on substituting Eq. (2.19) into Eq. (2.20) and
integrating over ©, and the integral reduced to-a.complex Fresnel integral given by

[19]

J'Ooxp‘le‘”xdx =Lpl“( p), (2.21)
0 U

where I'is the Gamma function and yields

_iZ . .
— re 4 elAl (t-7) eIAltHAZT
G(t - T) - \/E |:eiAltiAzr e—iAz(t—r) (2'22)

Here, A, =w, -, and A, =w®,—w, are the detuning of the atomic resonant

frequencies from the band edge shown as in Fig. 2.1 and

r=(0’d’k})/ (127" *he,,A'") is the coupling constant.

On the other hand, we can also replace the summation over k by an integral:

13



=Y [dk= (27[)3 j k*dk[dQ (2.23)

k,s s=1
where d’k=k’dkdQ and dQ being the space angle element. Because the isotropic

model associates the band edge with a sphere in k space, there is no angular

dependence in the expansion of @x about the band edge. We may thus separate

out the angular integration over solid angle (2 in Eqg. (2.17). Thus, é(t—r) can

be expressed as

Gt-7)= Zjlgk

k,s o
a)Zd 2 e—i(a)K —oy )(t-7) e—ia)K (t—7)+iwt—iw,, 7
- jk dedQ 2h V —io (t-7)+Hoypt-iay,r —i(ax —wy )(t-7)
( ﬂ) YV )| e e

2d2 © k2 e—'(%‘a’lb)(t—f) e—i%(t—ﬂ*’ia’lbt—i%bf
e—i%(t—r)"’i“’zbt_iwlbr e—i(%—wzb)(t—r)

[ g i (@—e)(t-7) gl (t-o)Hiont-ione }

—iay (t-7)+iwyt—iwyyr e—i(@(—wzb)(t—r)

6h307z o D

(2.24)

Using isotropic dispersion felation near the-upper band edge, wi=wc+ A(|k|-|ko|)?

Eq. (2.24) can be expressed as

(:34([50c +A(\k\—\k0\)z}w|b Nt=1) e—i[wc +A(\ka0\)2}(t—r)+iw|bt—iw2br

242 ©
Git—r)=—2Y [
0

dk
6h807Z2 o, +A |k| |k |) e—i[wc+A(\ka0\)2}(t—r)ﬂwzt)t—iwlbr e—i([a)c+A(\k\—\k0\)2}a}zb)(t—1)

(2.25)
For sufficiently long time, the integrand is a rapidly oscillating function of k. Thus

the main contribution to the integral comes from the stationary point, that is, k = ko.

We can take k¥ @ in the integrand as ko’/ @ ., hence the resultant integral is

2 —IAt—IA,T —iA, (t-7)
bhe,m” o, Y B 0

_ 242 2 [ aid(t-n) iAtHAT Jo s
G(t-7r)=-2 d k_O[ e & }je"‘*(k‘k” gk . (2.26)
e

We apply a complex Fresnel integral [19]
14



® Ry T
in Eq. (2.26) to obtain the memory kernel
re 4 eiAl(t—T) eiAlHiAZT
G(t T) F{ —iAt-iAT e—iAZ(t—r) ’ (2'28)

which is identical to Eq. (2.22).

Using the fractional calculus and making a variable transformation,

At) = (2((?)) _ [E';‘t IAth[g ESJ Eg. (2.16) with memory kernel of Eq. (2.22)

becomes

d - _ iz (Ci(@)+C(7)
Gt CO+IAC () ==re j - dr (2.29)
d i iz [ C(D)ECL(7)
FC:O-IAC, (D) ==re j s dr (2.30)
From the Riemann-Liouville fractional differentiation operator [20] defined by
the formula
dt“ ()_r( 2k j (t—s) ¢ lu(s)ds, (2.31)

where I'(x) is a gamma function. Using a fractional differentiation equation [21]

Eq. (2.29) can be expressed as:

d ; — _yp-in/4 l d
aCl(t)+|A1C1(t)_ re 1“(2)

dt 2

(2.32)
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First, we can apply the integral operator d_l/dt_1 to Eq. (2.32),

C.(1)+C,(0)+iA, I C (t)=—rm e_.,,/4d [co+Cm] @33

1 dt 1
dt
and then the fractional differentiation operator d3/2/dt3/2 to Eq. (2.33) to obtain a

fractional Langevin equation to |a1> state of the spontaneous emission of an atom

in a photonic band gap as

d3/2 d

a2 —37C (t)+IA1 T -7 GO+ rfe"’”“ [C t)+C, (t)] C 1(0) t-3/2

\/; © o (2.34)

Similarly, we can also derive the fractional Langevinsequation to |a2> state of the

spontaneous emission of an atom in a photonic.band gap as

3/2 1/2 C 0
R C-in, S C e e+ 0] -2 21 3s)

We can solve Egs. (2.34) and (2.35) using the Laplace transform of C (t),
C(s)=L{C(t)}= j: e~SIC(t) dt, (2.36)
then the inverse Laplace transform of (3(5) to obtain

Cit)y=r" {C(s)}:% “et6(s) ds, (2.37)

77l -0

where the real number ¢ is chosen so that s = ¢ lies on the right of all singularities

(poles and branch points) of function é(s). Using the formula of the fractional

Laplace transform [20]
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Lt = I(u+1)

i (2.38)

L{;—ZC(D} =s%C(s), (2.39)

the Laplace transform C,(s) and C,(s) can be found from Egs. (2.34) and (2.35)

C (t -iat t
and using [ i )]:[e Stj(Al()j, we can obtain the Laplace transform
C, (1) 0 e J\AM

K(s) and ﬂ;(s) as

A (0)(S~IADHTA0) — A (0)] rcef“
A(s+iA) = — S ) (2.40)
§* +is(A Ay il B0 Y fare s 5 4 A,
5
A, (0)(s +TA) £ [A,(0)~ A (0)] rcef“
A (s—iA,) = S , (2.41)

4 _i™
sz+iS(A1—A2)+ir°f/_(AI—A2)+2rCe sJs+AA,
S

where rC:r\/;. If the detuning frequencies A, =A,, the obtained Laplace
transforms in Egs. (2.40) and (2.41) are the same of those derived by the previous
study in Ref. [14]. Converting the variable as X =sl/2, we can then rewrite Egs.
(2.40) and (2.41) as a sum of partial fractions

oL a, 8, a4 &
A8 = o X=Xy X=Xy (K-X0) (K-X))

(2.42)
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RV S ——
A (X IAz)_(X_X1)+(X_2X2)+(X—3X3)+(x—4x4)+(x_sxs)

(2.43)

Note that the parameters X, (n=1,2,...,5) of Eqg. (2.42) and Eq. (2.43) are the roots of
. re L

X*+iX? (A, = A,) +i CX (A, —A)+2re *X+AA, =0, and the coefficients a,

(n=1,2,...,5) of Eq. (2.42) and b, (n=1,2,...,5) of Eq. (2.43)are given by

_ AO[X-iaX Jae (A0 - A 0]
T (X = XK = X ) (K= X) (Xa = X, ) (2.44)

(n= jEm=t=kin, j,mLk=L2,3,4,5)

_ AOLX; A X JEre s A 0)=A 0]
T (X XK= X=X (X - X, ) (2.45)

(n# j=mel=k; n,j,mlLk=12,3,4,5)

From the formula of the inverse fractional Laplace transform [20]
_ 1 1 2
L l{s—} = Et(—z,a2)+a edt (2.46)

we can yield the inverse Laplace transform of Eqgs. (2.42) and (2.43)

H 5
AD=¢" g, E (. XD+ X, 247
n=1
: 5
and A(t)=e ' Zb{Et(—%, X2)+ xnexrﬂ, (2.48)
n=1
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where E,(a,a) is the fractional exponential function of order a with constant a

and is defined as

E(a.a)=t3 ()

It could be observed from Eqgs. (2.47) and (2.48) that the dynamics of the
spontaneous emission strongly depends on the atomic detuning frequencies

A =w,-0, A =wn,—o, and the roots of the indicial equation X, . Here we
got the roots through the help of numerical;calculations. We found that if X,f is

complex (with negative realsand imaginany-parts), the two terms in the right-hand
side of amplitude function of' excited 'states in- Egs. (2.47) and (2.48) decay

exponentially to zero as=t > o which:corresponds tospropagating mode in the
emitted field. |If er is pure imaginary, these-two terms oscillate with time which

is related to localized mode in the'emitted filed [14].
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2-2.2 Anisotropic model

We consider now a more realistic model, in which the dispersion relation is
anisotropic. In anisotropic dispersion models, we account for the fact that, as k
moves away from ko, both the direction and magnitude of the band-edge wave
vector are modified, and use an effective-mass approximation to the full dispersion

relation for a photonic crystal. This gives a dispersion relation of the form
0] =a)CiA(IZ—|ZO)2. The positive (negative) sign indicates that @y is expanded

about the upper (lower) edge of the PBG, and @y is the frequency of the
corresponding band edge. For a large gap.and a collection of atoms that are nearly
resonant with the upper band edge, it is a very'good approximation to completely
neglect the effects of the [ower photon bands[22]. ~'Under these assumptions, the

dispersion relation about the upper band edge (the air band) is
o, = 0.+ Ak =k;)>. (2.50)

The anisotropic effective mass dispersion ‘relation leads to a photonic density of

12

states at a band edge . which behaves as p(w)~ f(o—-®,)”, ®> @,. For our

purposes, we shall therefore assume that A is a scalar constant, a condition that is
satisfied exactly for crystal geometries in which the band-edge wave vector possesses
cubic symmetry within the Brillouin zone [10, 11], and is otherwise a reasonable
approximation for the dispersion near a band edge after averaging over all directions.

And the band-edge density of states in the anisotropic model has the form
pl@)=3 5o (K)-0)= f0-0)0w-a,) (2.51)
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odk 1 4
where © isthe step function and f=——""" «“

2he,w, 2m) 3

So, using the same method (Egs.2-20 to 2-22) in isotropic model, we can obtain

Sz
i

. re 4 eiAl (t-7) eiA1t+iA2r
Gt-r)=- [

m I L (2.52)

Here, A, =w,-w, and A, =wo,—w,, are the detuning of the atomic resonant

frequency from the band edge shown as in Fig. 21 and

r=(w’d’k})/ (127" he,0,A") is coupling constant.

Using the fractional calculus-and making-a.transformation,
. t eiAlt O C t
Alt) = A = 2 | i(®) with.memory kernel of Eq. (2.53) becomes
A (1) 0 e ){Ci(D)

d o v e (HEl ()
G CO+iACH=— ! AR dr (2.54)

d : e Le C
SCO-iAC.H="5, ! 1&”_*;);2(%7. (2.55)

From the Riemann-Liouville fractional differentiation operator (Eq. 2.31),

Eq. (2.54) can be expressed as:

5 1

e m+inc =", 41 9 rem+cm] (2.56)
at Q) dt >

We can apply the integral operator d_l/dt_1 to Eq. (2.56) first, and then the
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fractional differentiation operator d3/2/dt3/2 to obtain a fractional Langevin
equation to |a1> state of the spontaneous emission of an atom in a photonic band

gap as

d3/2 d1/2 i3 C 0
dt3/2 —57C (t)‘HAl dt2 — 7 GO -——— [C 0+C (t):' \;—)t - (2.57)

So, we can also derive the fractional Langevin equation to |a2> state of the

spontaneous emission of an atom in a photonic band gap as

d 3/2 d 1/2

e —=C,(t)—IA, pri - C (t)—— [C(H)+C,(1)]=- C (O)t 2 (258

NG

We can solve Egs. (2.57) and (2.58) using'the Laplace transform to obtain the Laplace

transform of C, (s) and “C,(s). Then, using(glitt))J :(e_(l)l 'Azt}(ﬁ;g))j so we

can obtain the Laplace transform K(s) and g(s) as

. AO)S=i4,) + e VSIA D)= AO)] . (@259)

s2-2r e s +is(A, —A,)—ir e Vs(A —A)+AA,

Az(s_iA2)=

AO)SHiA) F e VS[A(0)— A (0] . (2.60)

. .5
2 i—r 3 R . i—r
s?-2r.ed s +is(A —A)—ire? \s(A —A)+AA,
r . . ,
where T :T. Converting the variable as X = s>, we can then rewrite Egs.
p/a

(2.59) and (2.60) as a sum of partial fractions

_ 9 a, a3 a
A(X +iA)= X X)+(X Xz) e X)+(X 4X) (2.61)
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o by b b b
A (X 'Az)_(x—x1)+(X—2x2)+(x—3x3)+(x—4x4) . (2.62)

Note that the parameters X, (n=1,2,...,4) of Eqs. (2.61) and (2.62) are the roots of

.5 .5
s’ —2raceI4 Js' +is(A, —Az)—iraceI4 Js(A,—A,)+AA, =0, and the coefficients a,

(n=1,2,...,4) and b, (n=1,2,...,4) are given by

L _AO[X s, e X, [A0-AO)
n (Xn—Xj)(Xn—Xm)(Xn—XI) , (2.63)

(n;t jEm=l=k; n, j,m,l,k:1,2,3,4,5)

A (0)] X, 44 ]+ e ex, [A0)-A,0)]
(X = X5 )Xo = XR)Xa= X )(X0 - X, ) - (2.64)

(n=4#m=l=kn,j,mlk~=123,4,5)

n

From the formula of the inverse fractional=taplace,transform, we can yield the

inverse Laplace transform of Egs.(2.63) and (2.64)

; 4
A(t)=e'™ Za{a(—%, X2)+ xnexrﬂ and (2.65)
n=1
i 4
AW =e Sh B XD x| (256
n=l1

where E,(a,a) is the fractional exponential function of order « and is defined in

Eq. (2.49).
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Chapter 3 Numerical results and Discussion

3-1 Spontaneous emission in isotropic model

Using the explicit forms for A;(t) and Ay(t) in Eqs. (2.46) and (2.47), we can
calculate the excited-state probabilities Pl,z(t)=|A1,2(t)|2 of the isotropic system with

initial condition P1(0)= P,(0)=0.5.

The quantum interference between the two allowed transitions strongly affects
the atomic splitting, where the dressed states of the system are formed. There exist
two kinds of dressed states in the system according to their formation. One kind is
formed through the interference between the atom ahd the vacuum fields of the
“structured” reservoir. Theother kind comes:from' the;interference between the
radiation fields of the atomic transitions.  The.quantum interference between the
radiation fields is enhanced.by the'localized field :asthe atomic states lie near or
inside the photonic band gap. ‘The energy levels of these dressed states, which
correspond to the eigen energies of the system, could be determined by the squares

of roots of the indicial equation Xo2. For the dressed states split from the atomic

n n

state |a,), the energy levels are equal to A —Im[Xz] while —A, —Im[Xz] for

|a2> with Im[Xf] standing for the imaginary part of X,”.

When the relative position of the two excited states is kept constant, the
influence of the quantum interference on the atomic splitting could be found out
through detuning the transition frequency ,, with respect to the band edge

frequency @, which is shown in Figure 3-1. According to the behavior of the
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dressed states, we could divide the region of Figure 3-1 into four parts whose names
are given as anti-trapping regime, no population inversion regime, enhanced
population regime, and enhanced population regime. In these four regimes, the
behavior of the dressed states is discussed as follows through observing the energy
levels of these dressed state and the atomic populations of the two excited states

which are shown in Figures 3-2, 3-3, and 3-4 respectively.

I.  Enhanced periodic oscillation regime

In this regime, the five dressed states split from either atomic |a1> or |a2>

state form photon-atom bound states with energy levels lying inside the photonic
band gap. The populations.6f the two atomic, excited states |a1> and |a2>
oscillate with time through exchanging their. populations (see Fig. 3-3(a)). The
oscillating frequencies of the two populations:depend on the relative energy levels of

the dressed states to the band edge’/A+—As—A-increases (moving deeply inside the

photonic band gap), the population oscillates faster.to reach its steady-state value.

We defined this oscillating frequency as the 'generalized Rabi frequency € whose

value is related to the energy level of the dressed state A through
Q = JA? +4ng® with the coupling strength g and the number of photons n.
II.  Enhanced population regime

In this regime, the dressed states split from |a1> state begin to shift into the
allowed band. The value of population in |a,) state becomes smaller as |a,)

state moving toward the allowed band which is larger than the initial value 0.5 in

these two regimes of I and II. (see Fig. 3-3(b))
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[ll.  No population inversion regime

In this regime, the energy levels of the dressed states split from atomic state

|a1> are all situated in the allowed photonic band while some of those from the
atomic state |a2> are pushed into the forbidden band edge that leads to the
photon-atom bound dressed states. Therefore, the population of |a1> state decays

to zero, whereas, that of |a2> state experiences fast decay at the beginning and

then reaches a nonzero steady-state value due to photon localization as shown in
Figure 3-4(a). This photon localization results from photon tunneling through the
photonic crystal for a short length before being Bragg reflected back to the emitting
atom to re-excite it which is a,strongly coupled eigenstate between the atom and the
electromagnetic modes of'the dielectric. This photon-atom bound state is the
optical analogue of an .electronic impurity level- bound state in the gap of a
semiconductor[4].
IV. Anti-trapping regime

When the two excited states of the unperturbed atom are initially located in the
allowed photonic band, the unperturbed atomic states will split into five dressed
states lying within the allowed photonic band. The populations of the two atomic
excited states decay to zero in this regime (see Fig. 3-4(b)). Dressed states formed
in this regime comes from the interference between the atom and the vacuum fields
of the reservoir. The dynamical behavior of the dressed states acts like a two-level
atom with transition frequency lying in the allowed band of photonic crystals. No
bound dressed state (localized mode) could be formed in this regime. This
reasonable result is radically different from that of the previous study in Ref.[15]

where one localized mod was found in this regime IV show in Fig. 3-5. This
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Unphysical bound dressed state (localized mode) has the same origination as the
unphysical bound state in the two-level system derived from Laplace transform
method.

In Figure 3-6, we investigate how the strength of quantum interference between

the dressed states of the four regimes changes with the energy level w, and o,
of the atomic states |a,) and |a,) with fixed frequency w,, =|w, —@,|. It is

found that the strength of the quantum interference is small when the energy level
w,, lies in the region of the photonic allowed band with @, > @, +2r,, where @,
is the photonic band edge and r, is the coupling constant of the isotropic model
atom-field interacting system. In this region, the populations of the two excited
states do not exchange so often that these populations decay with time naturally.
On the other hand, when*@,; <@, + 21, the populations of the two excited states
exchange so frequently that the populations-oscillate with time. That is, there do
exist oscillating bound states in.themsystemmwhen the two atomic transition
frequencies lie outside the photonic band gap. . This result is very different from
that of the previous studies [13, 15] where a complete decay of the populations in
the two excited states is observed as the two atomic frequencies is located outside

the band gap.

Through observing the dynamical behavior of the dressed states in the four
regimes, we found that no unphysical bound dressed states exist as the two atomic
excited states lie deeply inside the allowed band. When the two atomic states are
shifted toward the proximity of the allowed band edge, there will exist oscillating

bound states resulting from the quantum interference between the dressed states.
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Fig. 3-1. Four regimes of the dressed states for the isotropic system.
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IT. Enhanced population IV. Anti-trapping

Fig. 3-2. Energy levels of the dressed states in the four regimes. The
unperturbed atomic states are drawn in solid lines. The number in the circle stands

for the number of dressed states.
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Fig. 3-3. Atomic populations of the excited states in (a) enhanced periodic
oscillation regime with @,, =—y and (b) enhanced population regime with @, =y

where R(t)=|A(t)|2 is for the upper excited state, Pz(t)=|A2(t)|2 for the lower

excited state.
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P() = |Al(t)|2 is for the upper excited state, P,(t)= |A2(t)|2 for the lower excited

state.
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3-2 Spontaneous emission in anisotropic model

In a real three-dimensional photonic crystal, the photonic band structure is
highly anisotropic. A vector form of photon dispersion relation is required to

describe a more realistic picture of the band edge behavior. In this vector form of
dispersion relation, the photon DOS is proportional to /@—@, which that of an

isotropic dispersion relation is proportional to %/7, where @ stands for the
o — o,

eigenmode frequency and @, for the band edge frequency.

For the anisotropic density of states, no singularity exists near band edge like
the isotropic density of states.”- The photon-atom bound dressed states might also
exist near the allowed band due to the quantum interféerence between the dressed
states. The temporal evolution of the excited atomic population for the anisotropic
system based on Eq. (2.65) and Eg./(2:66)saresgiven in Figs. 3-9 and 3-10 with initial
condition P4(0)= P,(0)=0.5 in anisotropic model.and'plot it on a time scale of the

order of y,..

It could be observed from Figures 3-9 and 3-10, that typical characteristic of
non-Markovian dynamics including non-exponential decay and atom-photon bound
states exists in the system which results from the special density of states. In this
anisotropic system, the behavior of the dressed state is similar with that of the
isotropic system show in Fig. 3-7 whose region is divided into four parts according to
the energy levels of the dressed states drawn in Fig. 3-8. The dynamical
populations of the anisotropic system are almost the same as those of the isotropic
system except for the smaller population of photon-atom bound states and faster

decaying behavior of decaying states. This dynamical difference of spontaneous
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emission in the two systems results from the different DOS in these two systems and
the existence of diffusion field in the anisotropic system [23-25]. As the atomic
frequencies move from the bandgap to the allowed band, the density of states “seen”
by the excited photon is singularly large near band edge in the isotropic system and
small in the anisotropic case. The singularity of DOS in isotropic system leads to the
appearance of coherent propagating field which not large enough DOS results in the
appearance of incoherent diffusion field in the anisotropic system. The energy
transfer from localized field leads to the smaller population of the photon-atom

bound state and faster decaying behavior of decaying states. Besides, the coupling

strength of the anisotropic system r,, = is smaller than that of the isotropic

r
2ANZ
system rc:r\/; with the ddispersion curvature A, and the coupling constant
r=(0’d’k})/ (1277 he,:A'"").. This weaker: coupling-strength of the anisotropic

system also results in the small population of.the photon-atom bound state and

faster decaying behavior of decaying states.
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Fig. 3-8. Energy levels of the dressed states in the four regimes . The
unperturbed atomic states are drawn in solid lines. The number in the circle stands

for the number of the dressed states.
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3-3 Summary

We have reported the property of spontaneous emission of a V-type three-level

atom in isotropic and anisotropic photonic crystals with one-band model. The
populations of the two atomic excited states Pl(t)=|A1(t)|2 and Pz('[)=|A2(t)|2 are

obtained numerically through the squares of roots of the indicial equation X,’.

The quantum interference between the two atomic allowed transitions leads to
the forming of the dressed states. The behavior of the dressed states is discussed
through observing the energy levels of the dressed states and the atomic populations
of the two excited states in the four regimes. The strength of quantum interference
between the dressed states of the four regimes differs with the lying region of the
atomic energy level. In the region of @, > @, +2r_, this strength is weak and the
dressed atomic populations of the two excited states decay with time spontaneously.
The dressed states form oscillating. bound.-states.-as the atomic energy level @, lies

in o, <o, +2r, because of the strong quantum interference.
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Chapter 4 Conclusions and Future works

4-1 Conclusions

The dynamics of spontaneous emission for a V-type three-level atom in isotropic
and anisotropic photonic crystals is studied through applying the fractional calculus.
The atomic excited states split into the dressed states through the quantum
interference between the two allowed transitions. The energy levels of the dressed
states in the four regimes of Figs. 3-1 and 3-5 determine the dynamical behavior of
the atomic populations in these two excited states. The atomic populations exist
non-zero steady values whenever one of the dressed states forms photon-atom

bound state with energy lével lying in the bandgap. -\ The corresponding region of

the energy level of atomic state |a)"is @, >, +2r for non-zero steady

populations in isotropic photonic crystals.  ~There do exist oscillating bound states in
the system as the two atomic"transition frequencies lie outside the photonic band
gap which differs from the result of the previous studies [15] where a complete
decay of the populations in the two excited states in observed as the atomic
frequencies lie outside the band gap.

When the dynamical behaviors of the isotropic and anisotropic systems are
compared, we found that the excited-state populations of the two systems are
almost the same except for the smaller populations of the photon-atom bound states
and faster decaying behavior of decaying states. This dynamical difference results
from the different DOS and coupling strength in the two systems. The small DOS
near band edge and weaker coupling strength in the anisotropic system leading to

the energy transfer to incoherent diffusion field and loosing photon-atom bound
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states of the anisotropic system causes the smaller populations of the photon-atom
bound states and faster decaying behavior of decaying states.

From the result of the strength of quantum interference between the dressed
states, it could be inferred that the few-level atom system can be treated as the

effective two-level atom system with shifted photonic band edge frequency. In the

isotropic system, this shifted frequency is equal to 2r, (rczr«/;), whereas, that of

the anisotropic system is 1, (I,,= When the atomic transition frequency

L
AT
lies above the shifted photonic band edge, there does not exist photon-atom bound

state while the bound state is formed as the atomic frequency lies below the shifted

band edge.
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4-2 Future works

The band structure of photonic crystals is an important factor for spontaneous
emission of an atom under atom-field interaction. In ours previous studies, the
band structure of photonic crystal was only considered as one-band model with
dispersion relation for the air band edge. We could consider the band structure
with either one or multiple bands in the future. The existence of multiple bands
would lead to a more realistic description of the dynamics.

On the other hand, driving a multi-level atom with a sufficiently strong resonant
field in the photonic crystal system alters the radiative dynamics in a fundamental
way. It leads to such interesting effects as the enhancement of the index of
refraction with greatly reduced absorption,s electromagnetically, quantum
interference and optical amplification: without population inversion. It would be
interesting to investigate the combining effects-of the system by adding an external
driving field to the atom embedded in-a-photonic band gap material.

It is well known that the radiative decay of an atom can be substantially altered
by frequently repeated measurements.  This result of the interplay between
guantum dynamics and measurement, which is absent in classical measurements, is
known as the quantum Zeno (decay suppression) or quantum-anti-Zeno (decay
acceleration) effects. We hope to do deeper research for example with quantum
measurement of the behavior of an atom in photonic crystal by using Quantum
Optics.

Meanwhile, it is useful to investigate the coherent control of spontaneous
emission, not from a single three-level atom, but from two neighbouring three-level
atoms coupled via resonant dipole-dipole interaction. Quantitative results on the
energy transfer between the two atoms found from such an investigation may give us

a qualitative picture on the effects of the presence of many atoms within a cubic
40



wavelength of the atom of interest.
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