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電力系統中電壓崩潰偵測與電壓調節之研究 

 

研究生：劉宏毅             指導教授：梁耀文 博士 

                                     
 

國立交通大學電機與控制工程研究所 

  
 

摘   要 

 

在本論文中，我們利用錯誤診斷濾波器設計一電壓崩潰的偵測方

法。同時為了更進一步提升電力系統之電壓品質，我們利用可變結構

控制法則設計一電壓調節器用以達到電壓調節的目的。此外，我們亦

設計一負載估測器用以估測電力系統之負載變動，且在設計電壓調節

器時，亦把負載的變動考慮進去，使我們所設計之電壓調節器有更好

的調節能力。最後，我們把偵測電壓崩潰的機制引入我們所設計之電 

壓調節系統，提供電力系統一個安全、穩定且可靠的操作環境。 
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                          ABSTRACT 
 

In this thesis, we present a means of the detection of voltage collapse in 

a power system based on the linear-based fault identification filter (FIDF) 

design technique. Moreover, in order to promote the voltage quality of 

power supply for secure operation of a power system. We employ 

Variable Structure Control technique to design the voltage regulator of a 

power system. In addition, a load estimator is proposed to provide the 

accurate load variation to the VSC voltage regulator to have better 

regulating capacity. Finally, we combine the prior designs to maintain a  

secure and reliable operation of the power system. 
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CHAPTER 1 
 
Introduction 

 

 

 

 

 

 

1.1 Motivation 

 

Recently, the study of power system stability has attracted lots of attention 

[6,28,34]. Among the possible instabilities, a serious type is the so-called “voltage 

collapse” [1,2,8,9,17,32]. This kind of instability in a power system is characterized 

by an initial slow progressive decline and then rapid decline in the voltage magnitude 

[17]. The voltage collapse behavior has been reported to be attributed to the increase 

of power demand that results in the operation of an electric power system near its  

stability limit [8,17]. 

In 1988, Dobson and Chiang [9] have presented a mechanism for voltage collapse 

and introduced a simple power system model containing a generator, an infinite bus 

and a nonlinear load. They claimed that the voltage collapse behavior might occur 

around a saddle node bifurcation point [8,9]. Abed et al. [1,2,32] have reported the  

oscillatory behavior of a power system using Hopf bifurcation theory. 
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In addition to distinguishing the cause of voltage collapse, to detect such instability 

phenomena is also an important area of research. Traditional available methods have 

relied on utilizing system Jacobian matrix of power flow [4,16,21,37], by exploiting 

either its sensitivity by determining its vicinity to singularity or its eigenvalue 

behavior. These approaches have the drawback of time consuming computations. And 

with increased network size these Jacobian based methods will become very time 

consuming and therefore inappropriate for quick detection. Thus, the first goal in this 

thesis is to provide a means for quick detection of voltage collapse in the power 

system. Various techniques for fault detection of a control system have been 

developed (see e.g., [5,7]). Among these techniques, the so-called “fault identification 

filter’’ (FIDF) is one of the most effective [5,7]. The FIDF has been successfully 

applied to the detection of sensor fault [23], mobile robot [24] and compression 

systems [19]. In this thesis, we adopt the power system model proposed by Dobson 

and Chiang [9], and employ FIDF design technique to detect the voltage collapse. We 

will show how the FIDF may be used to detect the occurrence of voltage  

collapse in a power system without complex computations. 

  In practical, an efficient and reliable operation of power systems should have the 

property that the voltage and frequency should remain nearly constant. As is well 

known, the frequency of a system is dependent on active power balance while the 

voltage magnitude is dependent on reactive power balance [16,27]. From voltage 

stability analysis, we know that the lack of the reactive power in the power system 

may cause the voltage decrease, which may in the worst case lead to the voltage 

collapse. So, an important issue for power system control is to maintain a steady 

acceptable voltage under normal operation and disturbed conditions, which is referred 

as the problem of voltage regulation. Thus, the second goal in this thesis is to provide 

a voltage controller which can achieve voltage regulation purpose. Tap changer is 
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known to be one of an effective device for voltage control. The effect of tap changer 

ratio in the power system has been studied in [20,22,39,16,27]. In this thesis, we will 

employ setting tap changer ratio to achieve voltage regulation. In practical, the power 

systems are large scale nonlinear systems. The simplest controller design for voltage 

regulation might be based on approximate linearization approach. However, this 

controller is usually effective around a neighborhood of operating point. In addition, 

the linearization approach might work well when a small disturbance occurs, but it 

usually cannot survive a large disturbance. Recently, nonlinear control theories have 

been employed to power systems voltage controller design. These designs are mainly 

based on the nonlinear feedback linearization technique [10,33,38], which transforms 

the power system into a linear and controllable one, and thus linear control theories 

can be applied to design an effective control law. Although the feedback linearization 

approach is a powerful tool for nonlinear controller design, it is only suitable for 

nonlinear affine systems (for definition, see e.g., [3]). Since in this thesis we take the 

tap changer as control input, the power system model is found to be a general 

nonlinear system form xç = f(x, u)  in stead of being a nonlinear affine version. 

Thus feedback linearization approach can not be applied. It is known that variable 

structure control (VSC) has many advantages including fast response and small 

sensitivity to system uncertainties and disturbances [25,29]. It then has been widely 

applied to a variety of control problem, such as power system stability control 

[13,34,36], robotic control [15,26], and so on. In this thesis, we will adopt the VSC  

technique in the controller design issues. 

In many practical control problems, the controlled systems usually have parameter 

uncertainty. The uncertainty in power system may come from a large variation in 

loading condition during operation. It is known that the performance of a control 

system might not be acceptable or even result in unstable if it does not take the 
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parameter uncertainty into account for controller design. Thus, the third goal in this 

thesis is to provide a parameter estimation scheme to help voltage controller dealing 

with the power system in the presence of uncertainty or unknown variation in the  

load. 

Finally, we will develop a scheme of prevention of voltage collapse with the aid of  

prior analysis and design. It provides us a secure and reliable operation of the power  

system. 

 

1.2 Outline 

 

  The organization of this thesis is as follows. In Chapter 2, we recall some basic tool 

and theory. These include Fault Identification Filter, short-time Fourier transform, 

Variable Structure Control, Adaptive Control. In Chapter 3, we first introduce the 

model of power system proposed by Dobson and Chiang [9]. Then, we apply the 

FIDF to the detection of voltage collapse in a power system. In Chapter 4, we 

establish the model of power system with tap changer. Then, the Variable Structure 

Control scheme is applied to adjust the tap changer ratio for the purpose of voltage 

regulation. In Chapter 5, a scheme of prevention of voltage collapse is proposed, and 

Simulation results demonstrate the effectiveness of this scheme. Finally, conclusions  

and suggestions for further research are given in Chapter 6. 
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CHAPTER 2 
 
Preliminaries 
 

 

 

 

 

 

 

In this chapter we review some basic tool and theory. These include Fault 

Identification Filter [5,18], short-time Fourier transform [11], Variable Structure 

Control [25,29], adaptive control [25]. These results will be employed in the next two 

chapters to develop the detection of voltage collapse and voltage regulation for the  

electric power system. 

 

2.1  Fault Identification Filter (FIDF) 

 

Fault Identification Filter is a tool that can provide an efficient approach to detect 

the appearance of faults in a control system. In this section we recall the FIDF design  

results presented in [5]. 
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Consider a linear system is given by 

)()()()( 1 tfEtButAxtx ++=&      (2.1) 

        )()()()( 2 tfEtDutCxty ++=     (2.2) 

where ntx ℜ∈)( , mtu ℜ∈)( , qtf ℜ∈)( , and pty ℜ∈)(  denote the state vector, the 

input vector, the fault vector, and the output vector, respectively. From (2.1) and (2.2), 

by taking Laplace transform, we have 

)()()()()( sfsGsusGsy fu +=                   (2.3) 

where 

DBAsICsGu +−= −1)()(                      (2.4) 

and                     21
1)()( EEAsICsG f +−= −                     (2.5) 

 

The object of FIDF design is to obtain two proper and stable filters )(1 sH  and 

)(2 sH  such that the residual vector 

 

 )()()()()( 21 sysHsusHsr +=                  (2.6) 

has the following property : 

0)( →sr  if and only if 0)( →sf               (2.7) 

 

From Eqs. (2.3)-(2.6), we have 

)()()()()]()()([)( 221 sfsGsHsusGsHsHsr fu ++=          (2.8) 
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The configuration of a FIDF is shown in Figure 2.1. 

 

PLANT

)(1 sH )(2 sH+

u y

)(sr  

 

Figure 2.1: FIDF configuration 

 

To fulfill the requirement of (2.7), we first assume that Gf(s) as given by (2.5) is 

invertible. The FIDF design procedure is given in [5] then can be summarized as the  

following algorithm. 

Algorithm 1 (FIDF design procedure) 

 

Step 1 : Construct )(2 sH  so that the transfer matrix )()(2 sGsH f is a diagonal proper 

      and stable one.    

 

Step 2 : Determine )(1 sH  such that 0)()()( 21 =+ sGsHsH u  

 

Step 3 : Establish and check )(sr  according to Eq. (2.6) 
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Under the procedure of Algorithm 1, it is noted from Eq. (2.8) that the residual 

vector is influenced only by the fault vector. Thus, by properly checking the value of 

residual vector as listed in Step 3 of Algorithm 1 above, one can detect the system 

fault accurately. In addition to the effect of fault vector, the system output is also 

affected by nonzero initial state. Since the objective is that the residual be affected 

only by the fault vector, The response to a nonzero initial state should decay to zero.  

This implies that the matrix A in Eq. (2.1) should also be required to be stable. 

 

2.2  Short-Time Fourier Transform 

 

The short-time Fourier transform is the most widely used method for studying 

nonstationary signals. The concept behind it is simple and powerful. Break up the 

signal into small time segments and Fourier analyze each time segment to ascertain 

the frequencies that existed in that segment. That is the basic idea of the Short-time 

Fourier Transform. The totality of such spectra indicates how the spectrum is varying  

in time. 

 

2.2.1  Window function 

If we are interesting in a desired portion of a signal at time t , it can be obtained by 

multiplying the original signal by a window function, which emphasizes the signal at 

that time interval, centered at t , and suppresses the signal at other times. 

Let )(tφ  be a real-valued window function. Then we apply the window function 

to the original signal and obtain the information of )(tf  near bt = , and express this 

as )(:)()( tfbttf b=−φ . In particular, if )(:)( ),[ tt ττχφ −= , as shown in figure2.2, then 

⎩
⎨
⎧

=
,0
),(

)(
tf

tfb .
),[

otherwise
bbt ττ +−∈

                  (2.9) 
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where b  is a sliding factor and we can slide the window function along the time axis 

to analyze the local behavior of the function )(tf  in different intervals. 

 

0 ττ−

)(),[ tττχ −

 
Figure2.2: Characteristic function 

 

In the window function, We have the two most important parameters, its center 

and width. It is clear that the center and the standard width of the window function in 

Figure2.2 are 0 and τ2 , respectively. For a general window function )(tφ , we define 

its center *t  as  

                  ∫
∞

∞−
= dtttt 2

2
* )(1: φ

φ
                        (2.10) 

and the root-mean-square (RMS) radius φ∆ as 

                 
2

1
22* )()(1: ⎥⎦

⎤
⎢⎣
⎡ −=∆ ∫

∞

∞−
dtttt φ

φφ                 (2.11) 

 

The function is called a time window. For the window of Figure2.2, use (2.10) and 

(2.11) to verify that 0* =t  and 3/τφ =∆ . Therefore, the RMS width is smaller 

than the standard width by a factor of 3/1 . 

 



 １０

From the function )(tφ  described above, similarly, we can have a frequency 

window )(ˆ ωφ  with center *ω  and the RMS radius 
φ̂

∆  defined analogous to (2.10) 

and (2.11) as 

∫
∞

∞−
= ωωφω
φ

ω d
2

2
* )(ˆ

ˆ
1:       (2.12) 

2
1

22*
ˆ )(ˆ)(

ˆ
1: ⎥⎦

⎤
⎢⎣
⎡ −=∆ ∫

∞

∞−
ωωφωω

φφ d     (2.13) 

Theoretically, A function cannot be limited in time and frequency simultaneously. 

Verifying )(tφ  for the window of Figure2.2, 0* =ω  and ∞=∆φ , this window is  

the best time window but the worst frequency window. 

 

2.2.2  Short-time Fourier transform 

We want to obtain the properties of a signal )(tf  in the neighborhood of some 

desired location in time bt = , by multiplying an appropriated window function )(tφ  

to produce the windowed function )()()( bttftfb −= φ  and then taking the Fourier 

transform of )(tfb . This is the short-time Fourier transform (STFT). Formally, we 

can define the STFT of a function )(tf  with the window function )(tφ  discussed in 

Section 2.2.1 in the time-frequency plane as  

∫
∞

∞−
= dtttfbfG b )()(:),( ,ξφ φξ      (2.14) 

where 

tj
b ebtt ξ
ξ φφ )(:)(, −=       (2.15) 

Because of the windowing nature of the STFT, this transform is referred to as the 

windowed Fourier transform. 
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2.2.3  Time-Frequency Window 

Let us consider the window function )(tφ  in (2.15). If *t  is the center and φ∆  

the radius of the window function, then (2.14) gives the information of the  

function )(tf  in the time window: 

],[ **
φφ ∆++∆−+ btbt         (2.16) 

To derive the corresponding window in frequency domain, apply Parseval’s identity to  

(2.14). We have 

∫
∞

∞−

−−= dtebttfbfG tjξ
φ φξ )()(:),(                      (2.17) 

∫
∞

∞−

−− −= ωξωφω
π

ωξ defe jbbj )(ˆ)(ˆ
2
1          

[ ] )()(ˆ)(ˆ bfe bj ∨
−= − ξωφωξ                   (2.18) 

where the symbol “∨ ” represents the inverse Fourier transform. Observe that (2.17) 

has a form similar to (2.14). If *ω  is the center and φ̂∆  is the radius of the window 

function )(ˆ ωφ , then (2.17) gives us information about the function )(ˆ ωf  in the  

interval 

]ˆ,ˆ[ ** φξωφξω ∆++∆−+         (2.19) 

Because of the similarity of representation in (2.14) and (2.17), the STFT give  

information about the function )(tf  in the time-frequency widow: 

]ˆ,ˆ[],[ **** φξωφξωφφ ∆++∆−+×∆++∆−+ btbt     (2.20) 

Figure 2.3 represents graphically the notion of the time-frequency windowgiven by 

(2.19). Here we have assumed that 0** == ωt . 
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Figure 2.3: Time-frequency window for short-time Fourier transform( 0** ==ωt ) 

 

2.3 Variable Structure Control 

The Variable Structure Control(VSC) have the advantages of faster response and 

smaller sensitivity to system uncertainties and disturbances. In this thesis, we will 

adopt VSC schemes to design our controller. In this section we review some basic  

concept of VSC theory first. 

2.3.1 Sliding Surface 

Consider a single-input dynamic system 

uxbxfx n )()()( +=                            (2.21) 

where the scalar x  is the output of interest, the scalar u  is the control input, and  

TnxxxX ][ )1( −= K&  is the state vector. In system (2.21), the functions )(xf   

and )(xb  (in general, nonlinear) are not exactly known, but the extent of the 

imprecision on )(xf  is upper bounded by a known continuous function of x , and 

control gain )(xb  is of known sign and bounded by a known continuous function of 

x , respectively. For example, the inertia of a mechanical system is only known to a 

certain accuracy, and friction models only describe part of the actual friction forces. 
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The control problem is to get the state x  to track a specific time-varying state  

Tn
dddd xxxX ][ )1( −= K&  in the presence of model uncertainty on )(xf  and 

)(xb . 

  For the tracking task by using a finite control u , the initial desired state )0(dx   

must be such that : 

)0()0( xxd =                                             (2.22) 

In a second-order system, for example, position or velocity can not "jump", so that 

any desire trajectory feasible from 0=t  necessarily starts with the same position 

and velocity as those of the plant. Otherwise, tracking can only be achieved after a 

transient. 

Define dxxx −=~  is the tracking error in the variable x , and let 

 Tn
d xxxxxx ]~~~[~ )1( −=−= K&                                    

to be the tracking error vector. Furthermore, let us define a time-varying surface )(tS   

in the state-space )(nR  by the scalar equation 0);( =tXs , where 

x
dt
dtXs n ~)();( 1−+= λ                               (2.23) 

Given initial condition (2.22), the tracking problem dXX ≡  is equivalent to that of 

remaining on the surface )(tS  for all 0>t ; indeed 0≡s  represents a linear 

differential equation whose unique solution is 0~ ≡x , given initial conditions (2.22). 

Thus, the problem of tracking the n-dimensional vector dx  can be reduced to that 

keeping the scalar portion s  at zero. More precisely, the problem of tracking the 

n-dimensional vector dx  can in effect be replaced by a orderst −1  stabilization 

problem in s . Indeed, since from (2.23) the expression of s  contains )1(~ −nx , we 

only need to differentiate s  once for the input u  to appear. Furthermore, bounds on 

s  can be directly translated into bounds on the tracking error vector x~ , and 
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therefore the scalar s  represents a true measure of tracking performance. Then, 

orderst −1  problem of keeping the scalar s  at zero can be achieved by choosing the  

control law u  of the system (2.21) such that outside of )(tS  

ss
dt
d η−≤2

2
1                                    (2.24) 

where η  is a strictly positive constant. Practically, (2.24) states that the squared 

"distance" to the surface, as measured by 2s , decrease along system trajectory. Thus, 

it constrains trajectories to points towards the surface )(tS , as illustrated in Figure 2.4. 

In particular, once on the surface, the system trajectories remain on the the surface. In 

other words, satisfying sliding condition (2.24), makes the surface an invariant set. 

Furthermore, as we shall see, (2.24) also implies that some disturbances or dynamics 

uncertainties can be tolerated while still keeping the surface an invariant set. 

Graphically, this corresponds to the fact that in Figure 2.4 the trajectories off the 

surface can "move" while still pointing towards the surface. )(tS  verifying (2.24) is 

referred to as a sliding surface, and the system's behavior once on the surface is called  

sliding mode. 

 

Figure 2.4: The sliding condition 
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The other interesting appearance of the invariant set )(tS  is that once on it, the  

system trajectories are defined by the equation of the set itself, namely 

0~)( 1 =+ − x
dt
d nλ                                        

In other words, the surface )(tS  is both a place and a dynamics. This fact is simply 

the geometric interpretation of the definition (2.23) allow us, in effect, to replace an 

ordernth −  problem by a orderst −1  one. Finally, satisfying (2.24) guarantees that 

if condition (2.22) is not exactly verified, ie., if )0( =tX  is actually off )0( =tX d , 

the surface )(tS  will yet be reached in a finite time smaller than η/)0( =ts . Indeed, 

assume for instance that 0)0( >=ts , and let reacht  be the time required to hit the  

surface 0=s . Integrating (2.24) between 0=t  and reachtt =  leads to 

)0()0()()0(0 −−≤=−===− reachreach ttsttsts η  

while implies that  

η/)0( =≤ tstreach  

Furthermore, definition (2.23) implies that once on the surface, the tracking error 

tends exponentially to zero, with a time constant λ/)1( −n  (form the sequence of  

)1( −n  filters of time constants equal to λ/1 . 

The typical system behavior implied by satisfying sliding condition (2.24) is 

illustrated in Figure 2.5 for 2=n . The sliding surface is a line in the phase plane, of 

slope λ−  and containing the (time-varying) point T
ddd XXX ][ &= . Starting from 

any initial condition, the state trajectory reaches the time-varying surface in a finite 

time smaller than η/)0( =ts , and then slide along the surface towards dX   

exponentially, with a time-constant equal to λ/1 . 
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Figure 2.5: Graphical interpretation of equations (2.23) and (2.24) ( 2=n ) 

 

In summary, the idea behind equations (2.23) and (2.24) is to choose a well-behaved 

function of the tracking error, s , according to (2.23), and then select the feedback 

control law u  in system (2.21) such that 2s  remains a Lyapunov-like function of 

the closed-loop system, despite the presence of model uncertainties and disturbances. 

The controller design procedure then consists of two steps. First, a feedback control 

law u  is selected so as to verifying sliding condition. However, in order to account 

for the presence of modeling uncertainties and disturbances, the control law has to 

be discontinuous across )(tS . Since the implementation of the associate control 

switchings is necessarily imperfect (for example, in practice switching is not 

instantaneous, and the value s  is not known with infinite precision), this leads to  

chattering as showing in Figure 2.6. 
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Figure 2.6 Chattering as result of imperfect control switching 

The chattering is undesirable in practice, since it involves high control activity and 

further may excite high-frequency dynamics neglected in the course of modeling 

(such as unmodeled structure modes, neglected time-delays, and so on). Thus, in a 

second step, the discontinuous control law u  is suitably smoothed to achieve an 

optimal trade-off between control bandwidth and tracking precision: while the first 

step accounts for parametric uncertainty, the second step achieves robustness to  

high-frequency unmodeled dynamics. 

 

2.3.2 Variable Structure Control Design 

The implementation of the Variable Structure Control (VSC) consists of two main 

phases. First, we should construct the sliding surface such that the system states 

restricted to the sliding surface will produce the desired behavior. Second, we 

construct switched feedback gain which derive the plant state trajectory to the sliding 

surface in finite time and restrict the state to sliding surface. The method of equivalent 

control is means of determining the system motion restricted to the sliding surface. 



 １８

Suppose at 0t , the state trajectory of the plant intercepts the sliding surface and a 

sliding mode exists for all 0tt > . The existence of a sliding mode implies (1) 0=s& , 

and (2) 0=s  for all 0tt > . The system's motions on the sliding surface can be given 

an interesting geometric interpretation, as an "average" of the systems' dynamics on  

both sides of the surface. The system while in sliding mode can be written as 

0=s&                                       (2.25) 

By solving the above equation formally for the control input, we obtain an 

expression for u  called the equivalent control, equ  which can be interpreted as the 

continuous control law that would maintain 0=s&  if the dynamics were exactly 

known. For example, for a second-order system 

ufx +=&&                                   (2.26) 

In order to have the system track )()( txtx d= , we define a sliding surface 0=s   

according to (2.23), namely: 

xxx
dt
ds ~~~)( λλ +=+= &                            (2.27) 

We then have: 

xxufxxxs dd
&&&&&&&&& ~~ λλ +−+=+−=                   (2.28) 

the equivalent control equ  of a continuous control law that would achieve 0=s&  is 

xxfu d
eq &&& ~λ−+−=                                (2.29) 

and the system dynamics while in sliding mode is  

xxufx d
eq &&&&& ~λ−=+=                             (2.30) 

Geometrically, the equivalent control can be constructed as 

−+ −+= uuueq )1( αα                              (2.31) 

i.e., as a convex combination of the value of u  on both sides of the surface )(tS . 

The value of α  can again be obtained formally from (2.25), which corresponds to 
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requiring the system trajectories be tangent to the surface. This intuitive construction 

is  summarized in Figure  2 .7,  where Tufxf ][ ++ += & ,  and s imilar ly 

Tufxf ][ −− += &  and Teqeq ufxf ][ += & . Its formal justification was derived in  

the early 1960's by the Russian mathematician A.F.Filippov. 

 

Figure 2.7: Filippov's construction of the equivalent dynamics in sliding mode 

Controller design is the second phase of the VSC design procedure. Here the goal 

is to determine switched feedback gains which derive the plant state trajectory to the 

sliding surface and maintain a sliding mode condition. The presumption is that the 

sliding surface has been designed. Among several approach (e.g. the diagonalization 

method and hierarchical control method), augmenting the equivalent control 

is one popular approach. This structure of control of system (2.26) is 

reeq uuu +=                                   (2.32) 

where reu  is the discontinuous or the switched part of (2.32). Consider the system 

(2.26), we have xxfu d
eq &&& ~λ−+−= . In order to satisfy sliding condition (2.24), we 

add to reu  a term discontinuous across the surface 0=s , and let 

)sgn(sku
uuu

eq

reeq

−=

+=
                                 (2.33) 
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where sgn is the sign function 

⎪
⎩

⎪
⎨

⎧

<−
=
>

=
01
00
01

)sgn(
sif
sif
sif

s                                 (2.34) 

By selecting k  to be a positive scalar, then 

sskssksss
dt
d η−≤−=⋅−=⋅= )sgn(

2
1 2 &                          

For k  is large enough, we can guarantee that (2.24) is verified.  

 

2.4 Adaptive Control 

 

Many dynamic systems to be controlled have constant or slowly-varying uncertain 

parameters. For instance, Power systems may be subjected to large variations in 

loading conditions. Adaptive control is an approach to the control of such system. The 

basic idea in adaptive control is to estimate the uncertain plant parameters (or, 

equivalently, the corresponding controller parameters) on-line based on the measured 

system signal, and use the estimated parameters in the control input computation. An 

adaptive control system can thus be regarded as a control system with on-line  

parameter estimation. 

  An adaptive controller differs from an ordinary controller in that the controller 

parameters are variable, and there is a mechanism for adjusting these parameters 

on-line based on signals in the system. There are two main approaches for 

constructing adaptive controllers. One is the so-called model-reference adaptive  

control method, and the other is the so-called self-tuning method. 
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Model-reference adaptive control (MRAC) 

Generally, a model-reference adaptive control system can be schematically 

represented by Figure 2.8. It is composed of four parts: a plant containing unknown 

parameters, a reference model for compactly specifying the desired output of the 

control system, a feedback control law containing adjustable parameters, and an  

adaptation mechanism for updating the adjustable parameters. 

 

 

Figure 2.8 A model-reference adaptive control system 

 

The plant is assumed to have a known structure, although the parameters are 

unknown, for linear plants, this means that the number of poles and the number of 

zeros are assumed to be known, but that the locations of these poles and zeros are not. 

For nonlinear plants, this implies that the structure of the dynamic equations is 

known, but that some parameters are not. 

A reference model is used to specify the ideal response of the adaptive control 

system to the external command. Intuitively, it provides the ideal plant response 

which the adaptation mechanism should seek in adjusting the parameters. The choice 
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of the reference model is part of the adaptive control system design. This choice has 

to satisfy two requirements. On the one hand, it should reflect the performance 

specification in the control tasks, such as rise time, settling time, overshoot or 

frequency domain characteristics. On the other hand, this ideal behavior should be 

achievable for the adaptive control system, i.e., there are some inherent constraints on 

the structure of the reference model (e.g., its order and relative degree) given the  

assumed structure of the plant model. 

The controller is usually parameterized by a number of adjustable parameters 

(implying that one may obtain a family of controllers by assigning various values to 

the adjustable parameters). The controller should have perfect tracking capacity in 

order to allow the possibility of tracking convergence. That is, when the plant 

parameters are exactly known, the corresponding controller parameters should make 

the plant output identical to that of the reference model. When the plant parameters 

are not known, the adaptation mechanism will adjust the controller parameters so that 

perfect tracking is asymptotically achieved. If the control law is linear in terms of the 

adjustable parameters, it is said to be linearly parameterized. Existing adaptive control 

designs normally require linear parametrization of the controller in order to obtain  

adaptation mechanisms with guaranteed stability and tracking convergence. 

The adaptation mechanism is used to adjust the parameters in the control law. In 

MRAC systems, the adaptation law searches for parameters such that the response of 

the plant under adaptive control becomes the same as that of the reference model, i.e., 

the objective of the adaptation is to make the tracking error converge to zero. Clearly, 

the main difference from conventional control lies in the existence of this mechanism. 

The main issue in adaptation design is to synthesize an adaptation mechanism which 

will guarantee that the control system remains stable and the tracking error converges 

to zero as the parameters are varied. Many formalisms in nonlinear control can be 
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used to this end, such as Lyapunov theory, hyperstability theory, and passivity theory. 

Although the application of one formalism may be more convenient than that of 

another, the results are often equivalent. 

 

Self-tuning controllers (STC) 

In non-adaptive control design (e.g., pole placement), one computes the parameters 

of the controllers from those of the plant. If the plant parameters are not known, it is 

intuitively reasonable to replace them by their estimated values, as provided by a 

parameter estimator. A controller thus obtained by coupling a controller with an 

on-line (recursive) parameter estimator is called a self-tuning controller. Figure 2.9 

illustrates the schematic structure of such an adaptive controller. Thus, a self-tuning 

controller is a controller which performs simultaneous identification of the unknown  

plant. 

 
Figure 2.9 A self-tuning controller 

The operation of a self-tuning controller is as follows: at each time instant, the 

estimator sends to the controller a set of estimated plant parameters, which is 

computed based on the past plant input u  and output y ; the computer finds the 

corresponding controller parameters, and then computes a control input u  based on 
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the controller parameters and measured signals; this control input u  causes a new 

plant output to be generated, and the whole cycle of parameter and input updates is 

repeated. Note that the controller parameters are computed from the estimates of the 

plant parameters as if they were the true plant parameters. This idea is often called the  

certainty equivalence principle. 

Parameter estimation can be understood simply as the process of finding a set of 

parameters that fits the available input-output data from a plant. This is different from 

parameter adaptation in MRAC systems, where the parameters are adjusted so that the 

tracking errors converge to zero. For linear plants, many techniques are available to 

estimate the unknown parameters of the plant. The most popular one is the 

least-squares method and its extensions. There are also many control techniques for 

linear plants, such as pole-placement, PID, LQR (linear quadratic control), minimum 

variance control, or ∞H designs. By coupling different control and estimation 

schemes, one can obtain a variety of self-tuning regulators. The self-tuning method  

can also be applied to some nonlinear systems without any conceptual difference. 

In the basic approach to self-tuning control, one estimates the plant parameters and 

then computes the controller parameters. Such a scheme is often called indirect 

adaptive control, because of the need to translate the estimated parameters into 

controller parameters. It is possible to eliminate this part of the computation. to do 

this, one notes that the control law parameters and plant parameters are related to 

each other for a specific control method. This implies that we may reparameterize the 

plant model using controller parameters (which are also unknown, of course), and 

then use standard estimation techniques on such a model. Since no translation is 

needed in this scheme, it is called a direct adaptive control scheme. In MARC 

systems, one can similarly consider direct and indirect ways of updating the controller  

parameters. 
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CHAPTER 3 
 
Detection of Voltage Collapse for the 
Electric Power Systems 
 

 

 

 

 

 

 

 

In this chapter, we first introduce the dynamical equations of electric power 

systems that proposed by Dobson and Chiang [9]. Then, we apply the FIDF and signal  

analysis tool to the detection of voltage collapse in a power system. 

 

3.1   Dynamical Equations of Electric Power Systems  

 

It is known that load characteristic has a significant effect on a power system 

dynamics [6,35]. Therefore the voltage collapse cannot be studied using classical 

models, such as constant PQ, constant impedance, and constant current models, which 
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assume the magnitude of the load voltage to be constant. In this thesis, we adopt the  

power system model from Dobson and Chiang [9] as below: 

 

The Load Model: The nonlinear load model (3.1)-(3.2) below is originally 

introduced by Walve [31] and then modified by [9]. It includes a dynamic induction 

motor model with a constant PQ load. The combined model for the motor and the PQ  

load has the following form: 

 

P = P0 + P1 +Kpwîç +Kpv + V+ TVç
à á

                     (3.1) 

Q = Q0 + Q1 + Kqwîç + KqvV + Kqv2V2                     (3.2) 

 

where P0  and Q0 are the constant real and reactive powers of the motor, P1  and 

Q1  represent the PQ  load, and the remaining parameters are same as those given in  

[9]. 

 

The Power System Model: The power system model in this thesis is adopted from  

Dobson and Chiang [9] as shown in Figure 3.1.(a). In this model, one generator is a 

slack bus while the other has constant voltage magnitude Em and angle îm satisfies  

the following swing equation: 

 

Mîm̈ = à dmω + Pm + EmVYm sin î à îm à òm( ) + E2
mYm sin òm          (3.3) 

 

where M , dm  and Pm  denote the generator inertia, damping and mechanical 

power, respectively. In the model, Q1 is chosen as the system parameter so that 

increasing Q1 corresponds to increasing the load reactive power demand. In addition, 

the load also includes a fixed capacitor C to raise the voltage up to near 1.0 per unit. 
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To facilitate the analysis, it is convenient to account for the capacitor by adjusting E0 

and Y0  to give the Th’evenin equivalent of the circuit with the capacitor. The  

adjusted values are 

E 0
0 = E0/ 1 + C2Yà2

0 à 2CYà1
0 cos ò0

à á1/2             (3.4) 

Y00 = Y0 1 +C2Yà2
0

à 2CYà1
0

cos ò0

ð ñ1/2

              (3.5) 

ò00 = ò0 + tan
à1

1àCYà1
0

cos ò0

CYà1
0

sin ò0
ú û

                  (3.6) 

 

Obviously, the product E0
0
Y0
0 and E0Y0 are being the same constant. Then we have 

the equivalent circuit as shown in Figure 3.1.(b). 

 

 
Figure 3.1: Power system model (a) original system (b) Th’evenin equivalent system 
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By calculating VIã  of the network, the real and reactive powers supplied by the 

network are 

P = àE0
0Y

0
0V sin î+ ò0( )àEmYmV sin îà îm+ òm( )              

+ Y 0
0 sin ò00 + Ym sin òm

à á
V2                          (3.7) 

Q = E 0
0Y

0
0V cos î+ ò0( ) + EmYmV cos îà îm+ òm( )              

à Y0
0 cos ò

0
0 + Ym cos òm

à á
V2                          (3.8) 

From Eqs. (3.3) and equating (3.1)-(3.2) with (3.7)-(3.8), we have the overall  

dynamical equations for the electric power system as below: 

 

îmç = ω                                               (3.9) 

Mωç = à dmω + Pm + EmYmV sin î à îm à òm( )  

+ E2
mYm sin òm                                  (3.10)               

Kqwîç = à Kqv2V
2 à KqvV + Q îm, î, V( ) à Q0 à Q1        (3.11) 

TKqwKpvVç = KpwKqv2V
2 + KpwKqv àKqwKpv( ) V     

+ Kqw(P(îm, î, V) à P0 à P1)

à Kpw(Q(îm, î, V) à Q0 à Q1)                   (3.12) 

 

where 

Q(îm, î, V) = E 0
0Y

0
0V cos î + ò0( ) + EmYmV cos î à îm + òm( )  

à Y 0
0 cos ò

0
0 + Ym cos òm

à á
V2                   (3.13) 

P(îm, î, V) = à E 0
0Y

0
0V sin î + ò0( )à EmYmV sin î à îm + òm( )  

à Y0
0 sin ò00 + Ym sin òm

à á
V2                   (3.14) 
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In this thesis, the system parameters are adopted from [9] as follows: 

The load parameters are   

Kpw = 0.4, Kpv = 0.3, Kqw = à 0.03, Kqv = à 2.8,  

Kqv2 = 2.1, T = 8.5, P0 = 0.6, Q0 = 1.3, P1 = 0  

The network and generator parameters are 

Y0 = 20.0, ò0 = à 5.0, E0 = 1.0, C = 12.0,  

Y00 = 8.0, ò00 = à 12.0,E0
0
= 2.5,Ym = 5.0, 

òm = à 5.0, Em = 1.0, Pm = 1.0, dm = 0.05, M = 0.3  

All parameters are in per unit expect for angles, which are in degrees. 

Let x1 = îm, x2 = ω, x3 = î, x4 = V . Then Eqs. (3.9)-(3.12) can be  

written in the form of xç = f x, u( ) , u = Q 1  as below: 

x1ç = x2                                                         (3.13) 

x2ç = 3.33333 0.56422à 0.05x2( + 5x4 sin 0.08727à x1 + x3( )
à áá

 (3.14) 

x3ç = à 33.33333 à 1.3àQ1 + 2.8x4( à 15.00486x2
4  

+ 20x4 cos 0.08727 à x3( ) + 5x4 cos 0.08727 + x1à x3( )( ))     (3.15) 

x4ç = à 13.0719 à 1.111x4 + 0.84x2
4 à 0.4 à 1.3àQ1 à 12.90486x2

4

àà
 

 +20x4 cos 0.08727à x3( ) + 5x4 cos 0.08727 + x1à x3( )) 

à 0.03 à 0.6à 2.17889x2
4

à
+ 20x4 sin 0.08727à x3( ) 

 + 5x4 sin 0.08727 + x1 à x3( )
áá

                           (3.16) 

 

The system equilibrium points can then be obtain by solving f x, Q1( ) = 0 , which 

depends on the load reactive power parameter Q1 . 
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3.2  Voltage Collapse in the Electric Power Systems 

 

The study of power system stability has attracted lots of attention (see e.g., [6,28,34] 

and the references therein). Among the possible instabilities, a serious type is the 

so-called “voltage collapse.’’ This kind of instability in a power system is 

characterized by an initial slow progressive decline and then rapid decline in the 

voltage magnitude [17]. Two typical examples are shown in Figures 3.5(a) and 3.2(b). 

The voltage collapse behavior has been reported to be attributed to the increase of 

power demand that results in the operation of an electric power system near its 

stability limit [9,16,17]. As is well known, the qualitative change in the behavior of a 

nonlinear system with the change of one or more parameters is due to bifurcations. 

The variations of any parameter might result in complicated behavior and even give 

rise to system instabilities. Among the researches, for instance, Thomas and 

Tiranuchit [28] have pointed out that the induction motor dynamics could affect the 

voltage stability. Dobson and Chiang [8,9] have presented a mechanism for voltage 

collapse and introduced a simple power system model containing a generator, an 

infinite bus and a nonlinear load. They claimed that the voltage collapse behavior 

might occur around a saddle node bifurcation point. Abed et al. [1,2,32] have reported  

the oscillatory behavior of a power system using Hopf bifurcation theory.  
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3.3  Results of FIDF Design 

 

In this section, the FIDF technique will be employed to detect the occurrence of 

voltage collapse in a power system described in Section 3.2. It is observed that, when 

system experiences a heavy load, the voltage might exhibit a growing oscillation and 

then sudden breakdown if the load exceeds a critical value, however, the scenario do 

not happen for it's linearized model. With this observation, a linear-based fault 

identification filter (FIDF) design technique is proposed to detect the voltage collapse. 

This is achieved by treating the difference between the output of the power system 

and that of its linearized model at a stable operating point as a fault vector and then  

investigating the effect of the fault on the designed FIDF. 

In order to apply the FIDF results [5], we should construct the linearized model of  

the system (3.13)-(3.16) about an asymptotically stable operating point 

xT
0 Q10( ) = x10, x20, x30, x40( )T  for some given Q1 = Q10  as follows: 

xêç = Axê + BQ1ê                                  (3.17) 

where xê = x à x0  and Q1
ê = Q1 àQ10. Moreover, we assume that the available 

output of the power system has the form 

y = Cxê +DQ1ê ,                                 (3.18) 

where C ∈ Rpân  and D ∈ Rpâm  are two constant matrices. 

It is known that a linear model derived from a nonlinear one is a close 

approximation only near the operating point. To reduce the influence of the difference 

between the two models, it is suggested that the stable operating point for the power 

system be chosen to be close to the instability inception point. In this section the  

operating point is chosen to be close to the first Hopf bifurcation point. 
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Denote ynon(t)  and ylin(t)  the output for nonlinear and linear model, 

respectively. It is noted that the two outputs ynon(t) and ylin(t)  are not equal in 

general. It is shown in [18] that the steady state output of the linearized model is  

linearly dependent on the input. We describe briefly as follow: 

For the linearized model (3.17), (3.18), it is known that 

ylin(t) = CeAtxê(0) +
⎧⎭t

0
CeA(tàü)BQ1ê (ü)dü+DQ1ê (t)                (3.19) 

The first term on the right hand side of (3.19) depends only on the initial state while 

the second and third terms depend only on the input. Since the matrix A  given in 

(3.17) is a Hurwitz matrix. It follows, CeAtxê(0)→ 0  as t → ∞ . The input and  

output of the linearized model has the following relationship. 

 Y(s) = [C(sIà A)à1B + D]Q(s)                           (3.20) 

w h e r e  Q(s)  a n d  Y(s)  a r e  t h e  L a p l a c e  t r a n s f o r m s  o f  Q1
ê (t)  a n d 

ylin(t)à CeAtxê(0), respectively. If the reactive power demand maintains a constant  

Q1
ê = Q11 . By Final Value Theorem and A  is stable, we have 

lim
t→∞

ylin(t)à CeAtxê(0)    

= lim
s→0

sY(s)  

= Q11(à CAà1B+D)                                        (3.21) 

 

 This means that the steady state output of the linearized model is  

linearly dependent on the input. However, when voltage collapse happens, the load 

voltage of the nonlinear model will exhibits a growing oscillatory voltage transient 

prior to voltage collapse. With these observations, the idea is to treat the difference 

ynonà ylin as a fault vector and then apply the FIDF technique to inspect the effect 

on this fault vector before voltage collapse occurs. In these simulations, we choose the 

load voltage V  as the output which is easily measured. The output is then in the form  



 ３３

of (3.18) with 

C = 0 0 0 1( ) and D = 0                                   (3.22) 

for both the linear and nonlinear models. 

 

  It was shown from bifurcation analysis that the voltage collapse might occur when 

Q1  is near the Hopf bifurcation point 10.89 [1,2,39]. This motivates us to choose the 

operating point at Q1 = 10.8 , which gives x0 = 0.1829, 0,à 0.0068, 1.1031( )T  as 

an equilibrium point. The matrix A given in (3.17) is found to be Hurwitz with 

eigenvalues à 133.73;à 15.73;{ à 0.01æ 3.76i} . Following the FIDF design 

procedure given in the Algorithm of section 2.1 with A  and B  given by (3.17), C  

and D  given by (3.22), E 1 = 0  and E2 = 1 , the two filters H1(s)  and H2(s)  

are designed to be 

H1(s) = s+1( )s4+168.09s3+2378.4s2+2506.7s+34043
à5.2288s3à362.88s2à157.51sà5420.8

              (3.23) 

H2(s) = s+1
1

                                                 (3.24) 

The initial states are chosen as 0.2, 0.2, 0.04, 0.98( )T . The alarm signal is set to be 1  

if |residual|>0.06 and equal to 0 elsewhere. 

 

First, let the load reactive power demand be constant at 11.3 as in Figure 3.2(a). It 

is observed from Figure 3.2(b) that the load voltage collapse around t = 1.13. It 

means that the system undergoes voltage collapse for such heavy load. This is also 

recognizable from the change in the residual and alarm as displayed in Figure 3.2(c) 

and (d). The same scenario happens for small varying load as shown in Figure 3.3. 

Because the load in this case is smaller than that of Figure 3.2, the occurrence time of 

voltage collapse is clearly behind that of Figure 3.2. Next, a control effort to 

compensate reactive power is attempted in Figure 3.4 to recover from voltage collapse 
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when an alarm signal is detected. From Figure 3.4(b), the voltage collapse behavior 

disappears and the load voltage reaches an equilibrium point after a transient of 

oscillation. This can also be seen from Figure 3.4(c) and (d), where the alarm is turned 

off when the residual is less than the threshold value. This demonstrates that a proper 

control action can be applied to avoid the voltage collapse when such instabilities can 

be successfully detected. Finally, let us consider the situation about a 5% load 

variation. Figure 3.5 shows the simulation result of a 5% load variation about the 

operating point. It is observed from Figure 3.5(b) that the load voltage collapse 

around t = 38 . By applying FIDF technique, the voltage collapse is successfully  

detected around t = 34  before it occurs. It provides us enough time to initiate  

appropriate control action to prevent such instability phenomena. 
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Figure 3.2: (a) load variation Q 1( )   (b) load voltage 

(c) residual signal  (d) alarm by FIDF 

 

Figure 3.3: (a) load variation Q 1( )   (b) load voltage 

                     (c) residual signal  (d) alarm by FIDF 
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Figure 3.4: (a) load variation Q 1( )   (b) load voltage 

(c) residual signal  (d) alarm by FIDF 

 

Figure 3.5: (a) load variation Q 1( )   (b) load voltage 

(c) residual signal  (d) alarm by FIDF 
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3.4 Results of Signal Analysis 

 

In addition to FIDF detection as discussed above, it is found from simulation that, 

when voltage collapse is about to happen for possible Q1 , the residual signals appear 

to exhibit oscillation with growing amplitude and almost the same frequency. As such, 

it enables us to monitor the amplitude of such a frequency to help judge the 

occurrence of voltage collapse. An example is shown in Figure 3.6, where the load 

voltage and residual signal for Q1 ñ 11.1  are given in Figures 3.6(a) and (b), 

respectively. To avoid the influence of DC part, an averaged signal from the residual  

by the formula (3.22) below 

sa(n) = s(n)à L
1 P

k=nàL+1
n s(k), L = 100                  (3.22) 

and its spectrogram with sampling frequency fs = 100Hz  are described in Figures 

3.6(c) and (d), respectively. The oscillating frequency to be monitored is observed 

from Figure 3.6(d) to have f≈0.59Hz . The amplitude of the monitored frequency 

for the last 1024 points FFT before the occurrence of collapse versus Q1  is shown 

by the solid-line of Figure 3.7. To facilitate the detection using the monitored 

frequency, the threshold values for different Q1  are defined to be the amplitude of 

the monitored frequency 5 seconds ahead of voltage collapse, which are indicated by 

the dashed-line of Figure 3.7. Note that, the oscillating times before collapse are less 

than 5 seconds near the value of Q1 = 11.3 . With the definitions of threshold 

values, the voltage collapse for Q1 = 11.1  is shown able to be successfully 

detected using both methods, as indicated in Figures 3.8(b) and (d). The alarm for the 

second method is fired around t = 55 , which is near 5 seconds ahead of the collapse 

as desired. Finally, Figure 3.9 demonstrates the detection result for varying load using 

the threshold which is determined by the second method. Clearly, the alarm is also 
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fired nearly 5 seconds ahead of the occurrence of voltage collapse. Finally, we 

consider the situation of a 5% load variation about the operating point. Figure 3.10 

shows the detection result. It is clear that the alarm is fired nearly 5 seconds ahead of  

the occurrence of voltage collapse as our desire. 

  From these simulations, it is noted that the voltage collapse can be successfully 

detected before it occurs. By properly adjusting the threshold for generating the alarm 

signal, the FIDF may provide a precursor of avoiding undesirable effects of these 

unstable behaviors. 

 

 

 

Figure 3.6: (a) Voltage response for Q1 ñ 11.1  (b) residual signal 

(c) residual signal after averaging  (d) spectrogram 
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Figure 3.7: Amplitude of the monitored frequency versus Q1  

 

 
Figure 3.8: (a) residual signal for Q1 ñ 11.1   (b) alarm by FIDF  (c) amplitude of 

the monitored frequency  (d) alarm by monitored frequency 
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Figure 3.9: (a) load variation  (b) residual signal  (c) amplitude of the monitored 

frequency  (d) alarm by monitored frequency 

 

Figure 3.10: (a) load variation  (b) residual signal  (c) amplitude of the monitored 

frequency  (d) alarm by monitored frequency 
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CHAPTER 4 
 
Voltage Regulation of the Electric 
Power Systems 
 

 

 

 

 

In this chapter, we add an extra tap changer parallel to the nonlinear load to Dobson 

and Chiang's power system model for the purpose of voltage regulation. In Section 

4.1, we derive the dynamic equations of the power system with tap changer. Then, we 

will apply Variable Structure Control design scheme to adjust the tap changer ratio to 

achieve voltage regulation for this model. In Section 4.2, we propose a parameter 

estimator as the load monitor to provide the load variation of the power system. In 

Section 4.3, we combine the designs of VSC voltage controller and load estimator to  

design an adaptive control system. 

 

4.1 Variable Structure Controller Design 

4.1.1  Controlled Power System Model 

In this section, we add a voltage controller – tap changer to the original power 
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system model. Here, we use the tap changer ratio as the control signal for the electric 

power system. We will utilize tap changer to regulate the voltage of the electric power  

system. 

After adding a voltage controller – tap changer to the original power system model.  

The controlled model is shown as in Figure 4.1. 

 

Figure 4.1: The power system model with tap changer 

The original dynamical equations for the electric power system can be written as  

follow : 

îmç = ω                                               (4.1) 

Mωç = à dmω + Pm + n
1 E

m
YmV sin î à îm à òm( )  

+ E2
mYm sin òm                                  (4.2)               

Kqwîç = à Kqv2V
2 à KqvV + Q îm, î, V( ) à Q0 à Q1        (4.3) 

TKqwKpvVç = KpwKqv2V
2 + KpwKqv àKqwKpv( ) V     

+ Kqw(P(îm, î, V) à P0 à P1)   

à Kpw(Q(îm, î, V) à Q0 à Q1)                   (4.4) 

where 
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Q(îm, î, V) = E0
0Y

0
0V cos î + ò0( ) + n

1 EmYmV cos î à îm + òm( )  

à Y0
0 cos ò

0
0 + n2

1 Y
m
cos òm

ð ñ
V2                 (4.5) 

P(îm, î, V) = à E0
0Y

0
0V sin î + ò0( )à n

1 E
m
YmV sin î à îm + òm( )  

à Y0
0 sin ò00 + n2

1 Y
m
sin òm

ð ñ
V2                 (4.6) 

The system parameters we take are the same as those in the Section 3.1. 

 

Let x1 = îm, x2 = ω, x3 = î, x4 = V . Then, Eqs. (4.1)-(4.4) can be written  

as : 

 

x1ç = x2                                                               

x2ç = 3.33333 0.56422à 0.05x2( + 5x4nà1 sin 0.08727à x1 + x3( )
à áá

 

x3ç = à 33.33333 à 1.3àQ1 + 2.8x4( à x2
4(10.02389 + 4.98097nà2)  

+ 20x4 cos 0.08727 à x3( ) + 5x4n
à1 cos 0.08727 + x1à x3( )

à áá
 

x4ç = à 13.0719 à 1.111x4 + 0.84x2
4 à 0.4 à 1.3 àQ1 à x2

4

à
(

à
7.92389  

+ 4.98097nà2) + 20x4 cos 0.08727 à x3( ) + 5x4nà1 cos(0.08727  

+ x1 à x3))à 0.03 à 0.6 + x2
4(à 1.74311à 0.43578nà2)

à
      

+ 20x4 sin(0.08727 à x3) + 5x4nà1 sin 0.08727 + x1 à x3( )))  
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For convenience, we let u =
n
1 , and expand the above equations. Then the state  

equations become : 

 

x1ç = x2                                                          (4.7) 

x2ç = 1.88073à 0.16667x2 +
â
16.66667x4 sin(0.0827à x1 + x3)

ã
u    (4.8) 

x3ç = 43.33333à 93.33333x4 + 334.12967x2
4à 666.66667x4 cos(0.08727  

à x3) + 33.33333Q1 à
â
166.66667x4 cos(0.08727 + x1 à x3)

ã
u 

+166.03245x2
4u

2                                             (4.9) 

x4ç = à 7.03268 + 14.52288x4 à 53.09608x2
4 + (104.5752 cos(0.08727à x3)

     + 7.84314 sin(0.08727à x3))x4 à 5.22876Q1 +
â
26.1438x4  

â cos(0.08727 + x1 à x3) + 1.96079x4 sin(0.08727 + x1 à x3)
ã
u  

à 26.21518x2
4u

2                                             (4.10) 

Here, we choose the load voltage as the system output 

y = x4                                                (4.11) 

 

4.1.2 Controller Design 

  To achieve the main goal – voltage regulation, in the following, we will employ 

Variable Structure Control (VSC) technique to design controller. As recalled in 

Chapter 2, it is known that the VSC design procedure consists of two main steps. The 

first step is to choose a sliding surface, which is a function of system state and desired 

trajectory. The second step is to design a proper controller to guarantee the state  

reaching the sliding surface in a finite time and sliding toward the desired trajectory. 
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The power system has the form 

xç 4 = f(x) + g1(x)u + g2(x)u2                                (4.12) 

  y = x4                                                     (4.13) 

Suppose x4d(t)  is the desired trajectory. Define the error  

e(t) = x4(t) à x4d(t)                               (4.14) 

For the VSC design first step, we choose the sliding surface to be s(t) = 0  with 

        s(t) = e(t) = 0                                     (4.15) 

Clearly, if the system state keeps staying on the sliding surface then the tracking  

performance can be achieved. That is, e(t)→ 0 ñ x4(t)→ x4d(t)  as t→∞. 

The second step of VSC design is to design a control law in the form of 

u = ueq+ ure                                   (4.16) 

To achieve the tracking performance, where ure  plays the role of making the error 

state reach the sliding surface in a finite time and ueq keeps the sliding surface an  

invariant set and directs the error state to the origin. 

As mention in Chapter 2, the condition of forcing system state staying on sliding  

surface can be written as 

sç(t) = 0                                       (4.17) 

By solving the above equation formally for the control input, we can obtain the  

equivalent control, ueq that would maintain sç = 0 . Consider the system (4.12), the  

equivalent control can be chosen as  

ueq = h(x)                                   (4.18) 

which h(x)  would satisfy  

sç(t) = xç 4 à xç 4d      

= f(x) + g1(x)h(x) + g2(x)h(x)2 à xç 4d  

= 0                                                         (4.19) 

For voltage regulation, x4d  is constant, then xç 4d = 0 . 
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From (4.12) ~ (4.17), we can obtain 

 

sç(t) = xç 4  

= f(x) + g1(x)(ueq + ure) + g2(x)(ueq + ure)
2  

= f(x) + g1(x)ueq + g2(x)(ueq)
2
+ g1(x)ure+ 2g2(x)uequre+ g2(x)(ure)2

= [g1(x) + 2g2(x)h(x)]ure+ g2(ure)2                              (4.20) 

 

From (4.18), we have 

 

s(t)sç(t) = s(t) á [(g1(x) + 2g2(x)h(x))ure+ g2(ure)2]              (4.21) 

 

In order to satisfy the sliding condition, we impose the following assumption: 

Assumption 1 : During the control period, g1(x) + 2g2(x)h(x) 6=0 . 

From assumption 1, we select  

            u
re = g1(x)+2g2(x)h(x)

àñ sgn(s)                       (4.22) 

where sgn(á )  is the sign function, and ñ  is a positive number. 

It is note that the discontinuity of sign function will cause chattering in the close-loop 

system. In practice, the sign function sgn(s)  is often replace by the saturation  

function sat(s)  where 

sat(x) = x ,        if x| | ô 1  

   sat(x) = sgn(x) ,   if x| | õ 1                               (4.23) 

 

In order to verify that the control law can satisfy the sliding condition (2.24). We will  

discuss following possible cases : 
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A. for g2(x) < 0  

(1) s > 0 , we have   

ssç = à ñ s| |+ s á g2(x)(ure)2  

<à ñ s| | ,  for any given ñ  

 

(2) s < 0 , we have  

ssç = à ñ s| |+ s á g2(x)(ure)2  

= à ñ s| | +
(g1(x)+2g2(x)h(x))

2

ság2(x) á ñ2  

To guarantee the sliding condition, we impose the next assumption : 

Assumption 2 : (g1(x)+2g2(x)h(x))
2

g2(x)
 is bounded 

Then we have, 

ssç = à ñ s| | +
(g1(x)+2g2(x)h(x))

2

ság2(x) á ñ2  

< à kñ s| | , 0 < k < 1  

⇒ ñ <
g2(x)

(kà1)á(g1(x)+2g2(x)h(x))
2

 

 

B. for g2(x) > 0  

(1) s > 0  

ssç = à ñ s| | +
(g1(x)+2g2(x)h(x))

2

ság2(x) á ñ2  

from assumption 2, we have  ssç < à kñ s| | , 0 < k < 1  

for ñ < g2(x)

(1àk)á(g1(x)+2g2(x)h(x))
2

 

(2) s < 0 , we have   

ssç = à ñ s| |+ s á g2(x)(ure)2  

<à ñ s| | ,  for any given ñ  
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So, we know that selecting suitable ñ, the close-loop system will satisfy sliding 

condition, that is, the system state will reach the selected sliding surface in a finite  

time.  

 

4.1.3 Simulation Results 

To demonstrate the effect of our designing VSC controller, in this section we use 

the software “Matlab” as the computational tool to study numerical simulation of the  

electric power system for voltage regulation. 

  We consider the power system model (4.7)-(4.11) in the Section 4.1.1. We use the 

tap changer ratio as the control input signal for the electric power system. The desired  

voltage level x4d = 1 . We select sliding surface is s(t) = x4(t) à 1 . 

By solving sç(t) = 0 ,  

sç(t) = x4ç = f(x) + g1(x)u + g2(x)u2 = 0  

where  

f(x) = à 7.03268 + 14.52288x4 à 53.09608x2
4 + (104.5752 cos(0.08727à x3)

       + 7.84314 sin(0.08727 à x3))x4 à 5.22876Q1 à 7.03268  

g1(x) = 26.1438x4 cos(0.08727 + x1 à x3) + 1.96079x4 sin(0.08727 + x1 à x3)

g2(x) = à 26.21518x2
4  

We can obtain u = 2g2(x)

àg1(x)æ g1(x)2à4g2(x)f(x)
√

 , where u =
n
1 . n  is the tap  

changer ratio. In practice, the tap changer ratio is positive. Hence, we choose the  

equivalent control law, ueq = 2g2(x)

àg1(x)à g1(x)2à4g2(x)f(x)
√

                  (4.24) 
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In this case, g2(x) < 0 , and we select  

           u
re = g1(x)+2g2(x)ueq

àñ
                          (4.25) 

Hence, the designing control law is  

u = ueq+ ure                               (4.26) 

In this simulation, we select ñ =0.1. Simulation results are given in Figures 4.2-4.5.  

Figures 4.2 shows the simulation results for the initial state is x0 = [0, 0, 0, 1.1] , 

and the load reactive power demand Q1  is constant at 11.2. It is observed that for 

the initial error is positive (i.e. s > 0 ), it will achieve our desired voltage level by 

tuning the tap changer ratio. In Figures 4.3, we choose x0 = [0.2, 0.2, 0.04, 0.98]  

and assume Q1  is the same at 11.2. It is clear that for the error is negative, it is also  

satisfied our main goal - voltage regulation. The same results can also be found in  

Figure 4.4 and Figure 4.5, while with existence of load variation.  

   

  In many practical control problems, the controlled systems may have parameter 

uncertainty or unknown variation. In our thesis, for the power system, we do not 

know the load variation of the system actually. With the presence of uncertainty or 

unknown variation in parameters, the initially controller design may not be able to 

achieve our desired performance. As in Figure 4.6, in (4.22)~(4.26), we hypothesize 

the load reactive power demand Q1  is 11 to our initially controller design. Actually, 

the load reactive power demand Q1  is varied with Q1 = 11 + 0.1 sin(3t) . We 

can find in Figure 4.6(c), the voltage regulation may not achieve. In worse case, the 

parameter uncertainty may cause instability. In Figure 4.7(a), we can find that the 

actual load reactive power demand Q1  is varied with Q1 = 11 + sin(t) . For 

estimated Q1 = 11 , we obtain the simulation result in Figure 4.7(c) that not only 

the desired performance - voltage regulation is not able to achieve but also cause 
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voltage collapse. So, it is important to reduce the effect of the parameter uncertainty 

in a system. One way to reduce it is to use parameter estimation. A more detailed  

discussion of the parameter estimator design is provided in Section 4.2. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 



 ５１

 

 
Figures 4.2: Q1 = 11.2, x0 = [0, 0, 0, 1.1]  

 

 

Figures 4.3: Q1 = 11.2, x0 = [0.2, 0.2, 0.04, 0.98]  
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Figure 4.4: Q1 = 11.2 + 0.1 sin(3t), x0 = [0, 0, 0, 1.1]  

 

 
Figure 4.5: Q1 = 11.2 + 0.1 sin(3t), x0 = [0.2, 0.2, 0.04, 0.98]  
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Figure 4.6 Regulating Performance with Unknown Q1  

x0 = [0.2, 0.2, 0.04, 0.98]  

 
Figure 4.7 Regulating Performance with Unknown Q1  

x0 = [0.2, 0.2, 0.04, 0.98]  
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4.2 Parameter Estimator Design 

 

In practical power system, the system dynamics may have well known dynamics at 

the beginning, but will experience unpredictable load variation as the control 

operation goes on. In this section, we will propose two types of load estimator. One is  

based on gradient method, the other is based on observer approach. 

 

4.2.1  The Gradient Method [25] 

4.2.1.1  Linear Parametrization Model 

The essence of parameter estimation is to extract parameter information from 

available data concerning the system. Therefore, we need an estimation model to 

relate the available data to the unknown parameters, similarly to the familiar 

experimental data fitting scenario, where we need to hypothesize the form of a curve 

before finding specific coefficients describing it, based on the data. This estimation 

model may or may not be the same as the model used for the control purpose. A quite 

general model for parameter estimation applications is in the linear parametrization  

from 

y(t) = W(t)a                                 (4.27) 

where the n-dimensional vector y  contains the “outputs” of the system, the 

m-dimensional vector a  contains unknown parameters to be estimated, and the 

mn×  matrix W(t)  is a signal matrix. Note that both y  and W  are required to 

be known form the measurements of the system signals, and thus the only unknown 

quantities in (4.27) are the parameters in a . This means that (4.27) is simply a linear 

equation in terms of the unknown a . For every time instant t, there is such an 

equation. So if we are given the continuous measurements of y(t) and W(t)  

throughout a time interval, we have an infinite number of equations in the form of 
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(4.27). If we are given the values of y(t) and W(t)  at k  sampling instants, we 

have k  sets of such equations instead. The objective of parameter estimation is to 

simply solve these redundant equations for the m  unknown parameters. Clearly, in 

order to be able to estimate m  parameters, we need at least a total of m  equations. 

 

4.2.1.2 Predication-Error-Based Estimation Methods 

  Assume that the parameter vector in (4.27) is unknown, and is estimated to be 

aê(t)  at time t . One can predict the value of the output y(t)  based on the  

parameter estimate and the model (4.27). 

yê(t) = W(t)aê(t)                               (4.28) 

where yê  is called the predicted output at time t. The difference between the 

predicted output and the measured output y  is called the prediction error, denoted by  

e1 . 

e1(t) = yê(t) à y(t)                             (4.29) 

The on-line estimation methods we discuss in this section are based on this error, i.e., 

the parameter estimation law is driven by e1 . The resulting estimators belong to the 

so-called prediction-error based estimators, a major class of on-line parameter 

estimators. The predication error is related to the parameter estimation error, as can be  

seen from : 

e1 = Waê àWa = Waà                        (4.30) 

where aà = aê à a  is the parameter estimation error. 

The prediction-error based estimations include following methods : 

      ．Gradient estimation 

      ．Standard least-squares estimation 

      ．Least-squares with exponential forgetting 

      ．A particular method of variable exponential forgetting 
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In order to simplify the calculation and make the parameters be estimated fast, we  

adopt gradient estimation as load estimator for the power system in our thesis. In the  

following section, we take brief introduction to the gradient estimation. 

 

4.2.1.3 The Gradient Estimator 

The basic idea in gradient estimation is that the parameters should be updated so 

that the prediction error is reduced. This idea is implemented by updating the 

parameters in the converse direction of the gradient of the squared prediction error  

with respect to the parameters. 

aêç = à
2
1po ∂aê

∂[eT1e1]
                             (4.31) 

Where po  is a positive number called the estimator gain. In view of (4.28) and 

(4.29), this can be written as 

aêç = à poW
Te1                               (4.32) 

To see the properties of this estimator, we use (4.32) and (4.30) to obtain 

aàç = à poW
TWaà                             (4.33) 

Using the Lyapunov function candidate 

V= aàTaà                                     (4.34) 

its derivative is easily found to be 

Vç = à 2poaà
TWTWaà60                            

This implies that the gradient estimator is always stable. By noting that V  is actually 

the squared parameter error, we see that the magnitude of the parameter error is 

always decreasing. However, the convergence of the estimated parameters to the true  

parameters depends on the excitation of the signals. 

  It is noted that in the convergence analysis of gradient estimator, we only consider  

that the true parameters are constant. 
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4.2.1.4 Application To Power Systems 

Let us consider our power system dynamics (4.7)~(4.11) 

yç = x4ç  

= F(x, u) à 5.22876Q1                                      (4.35) 

where  

F(x, u) = à 7.03268 + 14.52288x4 à 53.09608x2
4           

+ (104.5752 cos(0.08727à x3) + 7.84314 sin(0.08727à x3))x4  

+
â
26.1438x4 cos(0.08727 + x1 à x3)  

+ 1.96079x4 sin(0.08727 + x1 à x3)
ã
u  

à 26.21518x2
4u

2  

Assume that Q1  in the model is unknown. The above model cannot be directly used 

for estimation, because the derivative of y  appears in the above equation. To  

eliminate yç  in the above equation, let us take Laplace transform of both sides 

SY à y(0) = L{F(x, u)} à 5.22876L{Q1}                 (4.36) 

Rearranging (4.36) 

(S + õf)Y à õfY à y(0) = L{F(x, u)} à 5.22876L{Q1}  

where S  is the Laplace operator and õf  is a positive constant 

⇒         Y =
S+õf

1 L{F(x, u)}+ õfY+ y(0) à 5.22876L{Q1}[ ]  

⇒      y(t) = S+õf

1 F(x, u) + õfy + y(0) à 5.22876[ ]
1
Q1

ô õ
      (4.37) 

 

This leads (4.37) to the form of linear parametrization form of (4.27) with 

W(t) =
S+õf

1 F(x, u) + õy + y(0) à 5.22876[ ]  

a(t) =
1
Q1

ô õ
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In the following, we use gradient estimator to estimate the load variation in the 

power system with output being described by (4.35). As shown in Figure 4.8. The true 

load reactive power demand is assumed to be Q1 = 11 . We let po = 10  and 

õf = 10  and the initial condition is x0 = [0, 0, 0, 1.1] . It is clear that the 

parameter error will converge to zero for a finite time. It is noted that the choices of 

estimation gain po , initial state x0 , and the õf  of filter have a fundamental 

influence on the convergence behavior of the estimator. Generally speaking, 

increasing po  and õf  leads to faster parameter convergence, especially for 

increasing õf  as shown in Figure 4.9. In the next, we consider the parameter Q1  is 

slowly time-varying, with Q1 = 11 + 0.1 sin(0.5t)  and po , õf , x0 , we take 

the same as in Figure 4.8. It is seen in Figure 4.10 that the gradient method may work 

well in the presence of parameter variation. However, if the true parameters vary fast, 

it is hard for gradient estimator to estimate accurately. It can be seen in Figure 4.11  

with fast time-varying Q1  for Q1 = 11 + 0.1 sin(5t). Obviously, the estimate is  

poor. 
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Figure 4.8: Estimation for constant load Q1 ñ 11  by Gradient method  

with õf = 10  and po = 10  

 

Figure: 4.9: Estimation for constant load Q1 ñ 11  by Gradient method  

with õf = 50  and po = 10  
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Figure 4.10: Estimation for slow time-varying load Q1 ñ 11 + 0.1 sin(0.5t)  

by Gradient method with õf = 10  and po = 10  

 

Figure 4.11: Estimation for fast time-varying load Q1 ñ 11 + 0.1 sin(5t)  

by Gradient method with õf = 10  and po = 10  
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4.2.2  An Observer Approach 

  The main goal of this section is to design a parameter observer that can real-time  

estimate the variation of the system parameter. 

  4.2.2.1  The Transformation of Decoupled Form 

  From the power system dynamics (4.1)~(4.6), the power system dynamics has four 

states x = (îm ω î V)T , and one control u =
n
1 . We assume that all the states are 

measurable and P1 , Q1  are system’s unknown parameters. Then, the power system  

dynamics has the following form :   

xç = f(x, u) + g(x)a                                        (4.38) 

where a =
Q 1

P1

ò ó
 and g(x) =

0 0
0 0
g11 g12
g21 g22

⎛⎜⎝
⎞⎟⎠  

It is clear from (4.38) that the unknown parameters only appear in the state equations 

of x3ç , x4ç  and g(x)  has rank 2. In order to obtain our desired decouple form, we 

make the following state transformation. 

z = Möx                                       (4.39) 

with 

Mö =
I2â2 0
0 M2â2

ò ó
                             (4.40) 

 

M2â2 =
g11 g12
g21 g22

ò óà1

                            (4.41) 

 

The state equations in new state variables are described as below 

zç = Möxç = Möf(x, u) +Mög(x)a  

= Möf(Mö à1z, u) +Mö g(x)a  

 = fnew(z, u) +Mö g(x)a                                  (4.42) 
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where fnew(z, u)  and Mö g(x)  are given by 

fnew(z, u) =

f1 new(z, u)
f2 new(z, u)
f3 new(z, u)
f4 new(z, u)

⎛⎜⎝
⎞⎟⎠                                 (4.43) 

and Mö g(x) =

0 0
0 0
1 0
0 1

⎛⎜⎝
⎞⎟⎠                                       (4.44) 

Under these settings, we have new state equations 

z1ç = f1 new(z, u)  

z2ç = f2 new(z, u)  

z3ç = f3 new(z, u) +Q1                                          

z4ç = f4 new(z, u) + P1                                   (4.45) 

Clearly, Q1  only appear in the state equation of z3ç , similarly P1  only appear in 

the state equation of z4ç . It makes it easy for us that to design parameter observer. The  

details are discussed in the next section. 

 

4.2.2.2 Observer Design for Constant Parameters 

 

  With the aid of transformed system (4.45), we will design a parameter observer that 

can real-time estimate the variation of the system parameter. At first, we assume that 

the true parameters are constant to design the observer in this section. However, the 

true parameters may be time varying. We will discuss the observer for time-varying  

parameters in the next section. 
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For the true parameters are constant, we design the observer and error signal as  

follows : 

ø1ç = f3 new(z, u) +Q1n+ k1(z3 à ø1)                     

ø2ç = f4 new(z, u) + P1n+ k2(z4 à ø2)                  (4.46) 

e1 = z3 à ø1    

   e2 = z4 à ø2                             (4.47) 

Here, ki > 0  for i = 1, 2 . Q1n  and P1n  are considered as the constant nominal 

values of Q1  and P1 . The difference between the nominal and actual parameter  

values is called the parameter estimated error, denoted by 

m1 = Q1 àQ1ê                            (4.48) 

m2 = P1 à P1ê                             (4.49) 

We design the estimated parameter as follow: 

Q1
ê = k1e1 +Q1n                           (4.50) 

P1
ê = k2e2 + P1n                           (4.51) 

Under this design, we will obtain the unknown parameters by the way of to observe  

the value of error signal. The details are given as follows : 

From (4.46)、(4.47)、(4.48), we can obtain 

e1 = z3 à ø1  

⇒  e1ç = z3ç à ø1ç  

= f3 new(z, u) +Q1 à (f3 new(z, u) +Q1n+ k1(z3 à ø1))  

⇒  e1ç = à k1e1 + (Q1 àQ1n)                                (4.52) 

Since k1  is assumed to be a positive constant, and m1  is constant for Q1  is 

constant. Thus, e1  will approach k1

Q1àQ1n  after a short time transient. 



 ６４

e1 ' k1

Q1àQ1n
 

Then, 

 Q1 ' k1e1 +Q1n                                             (4.53) 

Obviously, Q1
ê  will approach Q1  after a short time transient. Thus the actual  

parameter value can be obtained by (4.50). The other case can be similarly derived. 

For e2 = z4 à ø2  

⇒  e2ç = z4ç à ø2ç  

= f4 new(z, u) + P1 à (f4 new(z, u) + P1n+ k2(z4 à ø2))  

⇒  e2ç = à k2e2 + (P1 à P1n)                                 (4.54) 

After a short time transient, e2  will approach k2

P1àP1n . It follows : 

e2 ' k2

P1àP1n
 

⇒ P1 ' k2e2 + P1n                                                         

= P1
ê                                                      (4.55) 

It is noted that in order to have good estimation performance, the initial parameter 

estimates should be chosen to be as accurate as possible. Furthermore, if the true 

parameters vary, it is possible for the parameter observer to estimate accurately  

for ki  large enough. It can be found in the examples in Section 4.2.2.4. 

 

4.2.2.3  Observer Design for Time-Varying Parameters 

In this section, we will design a parameter observer to deal with time-varying 

parameters. It may guarantee to obtain good parameter estimation, even though the 

true parameters vary fast. The idea is similar to that in Section 4.2.2.2. 

  With the aid of transformed system (4.45), we design the observer and error 

signal as follows : 
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ø1ç = f3 new(z, u) +Q1ê + k1(z3 à ø1)      

          ø2ç = f4 new(z, u) + P1ê + k2(z4 à ø2)              (4.56) 

e1 = z3 à ø1    

   e2 = z4 à ø2                             (4.57) 

Here, ki > 0  for i = 1, 2 . Q1ê  and P1ê  are estimated values of Q1  and P1 . 

The difference between the estimated and actual parameter values is called the 

parameter estimated error, denoted by 

m1 = Q1 àQ1ê                            (4.58) 

m2 = P1 à P1ê                             (4.59) 

and the true parameters Q1、P1  can be written as  

Q1 = Q1n+4Q                          (4.60) 

P1 = P1n+4P                           (4.61) 

where Q1n  and P1n  are considered as the constant nominal values of Q1  and 

P1 . 4Q and 4P  are the variation of Q1  and P1 . Assume that the variations of  

parameters vary at the small region, i.e. 4Qk k < ú  and 4Pk k < ú . 

Then, we design the estimated parameter as follow: 

Q1
ê = Q1n à k1e1 + ú+ ñ( ) sat(þ

e1)                           (4.62) 

P1
ê = P1n à k2e2 + ú+ ñ( ) sat(þ

e2)                            (4.63) 

where, þ is the boundary layer of the saturation function. 

Under this design, we will obtain the unknown parameters by the way of to observe  

the value of error signal. The details are given as follows : 

 

First, we select the sliding surface s = e1 . From (4.56)、(4.57)、(4.58), we can obtain 

e1 = z3 à ø1  
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⇒  e1ç = z3ç à ø1ç  

= f3 new(z, u) +Q1 à (f3 new(z, u) +Q1ê + k1(z3 à ø1))  

⇒  e1ç = à k1e1 + Q1 àQ1ê
à á

                                

= à k1e1 + Q1n+4QàQ1ê
à á

                        (4.64) 

For s = e1  

⇒  ssç = eT1(à k1e1 +Q1n+4QàQ1
ê )                            (4.65) 

It is known that 4Qk k < ú . Hence, we design the estimated parameter Q1ê  as  

follow: 

Q1ê =Q1nà k1e1 + ú+ ñ( ) sat(
þ
e1)                             (4.66) 

From (4.65) and (4.66), we get 

ssç = eT1 4Qà ú+ ñ( )sat(þ
e1)

h i
                             (4.67) 

⇒   ssç ô à ñ s| |                                                (4.68) 

Satisfying (4.58) guarantees that the error signal e1  will approach to zero in a 

finite time.  

If e1 → 0  &  smooth enough (eç1 → 0) , then from (4.64) we can obtain 

Q1 àQ1ê
à á→ 0  in a finite time. 

The other case can be similarly derived. Details are omitted. 

 

4.2.2.4  Application to Power Systems 

Let us consider our power system dynamics (4.1)~(4.10). In order to make 

observer designing simpler, we rewrite power system dynamics in the form of  

(4.38) with the actual system parameters. 
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x1ç
x2ç
x3ç
x4ç

⎛⎜⎝
⎞⎟⎠ =

f1(x, u)
f2(x, u)
f3(x, u)
f4(x, u)

⎛⎜⎝
⎞⎟⎠+

0 0
0 0

33.33333 0
à 5.22876 à 0.39216

⎛⎜⎝
⎞⎟⎠ Q1

P1

ò ó
      (4.69) 

We select a variable transformed matrix Mö  

Mö =

1 0 0 0
0 1 0 0
0 0 0.03 0
0 0 à 0.4 à 2.55

⎛⎜⎝
⎞⎟⎠                              (4.70) 

And we set new state variables z = Möx . After state transformation, we can obtain  

the new system equations : 

zç = Möxç  

= Mö f(x, u) + Mö g(x)
Q 1

P1

ò ó
                                  (4.71) 

⇒  

z1ç = f1(x, u)  

z2ç = f2(x, u)  

z3ç = 0.03f3(x, u) + Q1  

z4ç = à 0.4f3(x, u) à 2.55f4(x, u) + P1                            (4.72) 

In the practical power system, the variation of reactive power demand is often 

greater than real power demand. In these simulations, we will show the estimation  

performance of Q1 . Similarly, P1  can obtain at same procedures. 

  In the following simulations, we will discuss the estimation of reactive power  

demand of PQ-load Q1  under the situation of P1 = 0  and u= 1. 

First, we consider the true reactive power demand of load in the uncontrolled  
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power system is constant, we design parameter observer as follow : 

ø1ç = 0.03f3(x, u) +Q1n+ k1(z3 à ø1)                     (4.73) 

The error signals are  

e1 = z3 à ø1                              (4.74) 

The estimated parameter is designed as follow: 

Q1
ê = Q1n + k1e1                           (4.75) 

As discussion in Section 4.2.2.2, the estimated parameter Q1
ê  will approach the true  

parameter Q1  in a short time transient. 

Simulations of constant parameter are provided in Figures 4.12 and 4.13. Here, We 

consider the true reactive power demand of load in the uncontrolled power system is 

Q1 = 11  under the situation of the system initial state x0 = [0, 0, 0, 1.1] . We set 

the nominal parameter value of parameter observer, Q1n = 11 , and select k1 = 10 . 

The estimation performance is displayed in Figure 4.12. It is seen that the estimated 

parameter will approach actual parameter as expected. Figure 4.13 shows the results 

when the true reactive power demand of load is Q1 = 12 with initial state being 

x0 = [0, 0, 0, 1.1]  and Q1n = 9、k1 = 10 . It is clear that estimated error may  

converge to zero. 

 In addition, in order to have good estimation performance, the nominal parameter 

value of the observer should be chosen to be as accurate as possible. The result can 

compare the estimated performance in Figure 4.12 with that in Figure 4.13. Accurate  

initial parameter estimates may lead to fast parameter convergence. 

In the next, let us consider the estimated performance of the prior designing 

parameter observer in the presence of parameter variation. First, in the presence of    

relative slow load variation in the power system, Q1 = 11 + 0.1 sin(t) , we select 
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Q1n = 11  and k1 = 10 . The estimated and true parameters are shown in Figure 

4.14. It is seen that the designing parameter observer works well in the presence of 

slow parameter variation. Then, let us consider that if the true parameter varies faster, 

what estimated performance will become? To see this, we let the load variation in the 

power system varying with relative high frequency, which Q1 = 11 + 0.1 sin(10t) , 

and selecting Q1n = 11  and k1 = 10 . The simulation result is shown in Figure 

4.15. We can find the gain k1 is not large enough so that the parameter variation can 

not be tracked sufficiently accurately. Thus, we choose larger k1 for k1 = 50 with 

the same varied frequency in the Figure 4.16. It is seen that the estimation  

performance will improve by increasing k1. 

  Finally, Let us consider the observer designing in the Section 4.2.2.3. Its estimation 

performance may be better with prior one, especially in the presence of fast parameter  

variation. 

Let us consider the true reactive power demand of load in the uncontrolled  

power system is vary, we design parameter observer as follow : 

ø1ç = 0.03f3(x, u) +Q1ê + k1(z3 à ø1)                     (4.76) 

The error signals are  

e1 = z3 à ø1                              (4.77) 

With the variation of Q1 , Q1  can be written as  

Q1 = Q1n+4Q                           (4.78) 

We design the estimated parameter as follow: 

Q1
ê = Q1n à k1e1 + ú+ ñ( ) sat(þ

e1)                  (4.79) 

Figures 4.17~4.18 show the estimation performance of different time-varying 

frequency of the load variation. In these simulations, the design parameters are taken 
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to be k1 = 1 , Q1n = 11 , ú = 0.2, ñ= 0.01 , þ= 0.001  under the situation 

of the system initial state x0 = [0, 0, 0, 1.1] . It is clear that it works quite well in  

the presence of fast parameter variation, even though the parameter vary faster. 

Finally, let us consider the situation about a 5% load variation. Figure 4.19 shows 

the estimation result of a 5% load variation about the operating point. The variation of 

reactive power demand is shown in Figure 4.19(a). It is seen that the estimated  

performance is also well. 

  We have discussed two types of estimators in this section. The gradient estimator 

has the drawback of slow convergence [25]. If the true load vary fast, it is harder for 

gradient estimator to estimate accurately. We have developed an observer approach to    

overcome the problem of convergence speed in Section 4.2. The following simulation 

will compare the convergence behavior of two estimators in the presence of load 

variation. We suppose the true load is time-varying, with Q1 = 11 + 0.1 sin(5t).  

The initial condition of power system is x0 = [0, 0, 0, 1.1] . And the design 

parameters are taken to be po = 10 , õf = 10  and k1 = 1 , Q1n = 11 , 

ú = 0.2 , ñ= 0.01 , þ= 0.001 , respectively. Figures 4.20~4.21 show the 

estimation performances of two methods. Obviously, the observer approach has faster  

convergence than gradient method. 
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Figure 4.12: Estimation result by observer method for Q1 = 11  

and k1 = 10 , Q1n = 11  

 
Figure 4.13: Estimation result by observer method for Q1 = 12  

and k1 = 10 , Q1n = 9  
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Figure 4.14: Estimation result by observer method for Q1 = 11 + 0.1 sin(t)  

             and k1 = 10 , Q1n = 11  

 
Figure 4.15: Estimation result by observer method for Q1 = 11 + 0.1 sin(10t)  

            and k1 = 10 , Q1n = 11  
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Figure 4.16: Estimation result by observer method for Q1 = 11 + 0.1 sin(10t)  

            and k1 = 50 , Q1n = 11  

 

Figure 4.17: Estimation result by observer method for Q1 = 11 + 0.1 sin(5t)  

            and k1 = 1 , Q1n = 11 , ú = 0.2, ñ= 0.01 , þ= 0.001  



 ７４

 

Figure 4.18: Estimation result by observer method for Q1 = 11 + 0.1 sin(10t)  

            and k1 = 1 , Q1n = 11 , ú = 0.2, ñ= 0.01 , þ= 0.001  

 

Figure 4.19: Estimation result by observer method for 5% variation of Q1  

               and k1 = 10 , Q1n = 10.8  
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Figure 4.20: Comparisons of estimators with observer approach and gradient method 

 

 

Figure 4.21: Estimation errors of observer approach and gradient method 
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4.3 Adaptive Control System Design 

In this section, we will employ the idea of adaptive control for voltage regulation of 

the power system. In practical, many dynamic systems to be controlled may have 

some uncertain parameters. In power system, it may be subjected to large variations in  

loading conditions. In this section, we may import the idea of adaptive control and use 

estimator as the load monitoring. We use the same VSC control law that be designed 

in Section 4.1; and use estimated parameter from estimator that be designed in Section  

4.2 in the control law to achieve voltage regulation. 

4.3.1  Control System Design 

The basic idea of adaptive control is to estimate the uncertain plant parameters 

on-line based on the measured system signal, and use the estimated parameters in the 

control input computation. An adaptive control system can thus be regarded as a 

control system with on-line parameter estimation. It is known that the control and  

estimation can be designed separately and used together by separation principle. 

In this section, we take the control law (Section 4.1) and implement it that using an 

estimated parameter of estimator (Section 4.2), the adaptive control system can be  

completed. The schematic of adaptive control power system is shown in Figure 4.22. 

 

Figure 4.22: An adaptive control system  
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4.3.2  Application to Power Systems 

  As recalled in Section 4.1, we design VSC control law to achieve voltage  

regulation with 

u = ueq+ ure                                (4.80) 

   ueq = 2g2(x)

àg1(x)à g1(x)2à4g2(x)f(x)
√

                  (4.81) 

           ure =
g1(x)+2g2(x)ueq

àñ sgn(x4à 1)                (4.82) 

where 

f(x) = à 7.03268 + 14.52288x4 à 53.09608x2
4 + (104.5752 cos(0.08727à x3)

       + 7.84314 sin(0.08727 à x3))x4 à 5.22876Q1à 7.03268  

g1(x) = 26.1438x4 cos(0.08727 + x1 à x3) + 1.96079x4 sin(0.08727 + x1 à x3)

g2(x) = à 26.21518x2
4  

  If the reactive power demand of the load Q1  is known exactly, we can use the 

above control law to achieve voltage regulation. However, we do not know the load  

variation of the power system exactly in practical.  

  In the next, let us assume that the load variation is not known exactly. We use 

estimator designing in Section 4.2 as the load monitoring to provide the estimated 

parameter Q1
ê  to the controller. For true reactive power demand of the load Q1  is  

constant, the estimated law is selected with 

Q1
ê = k1e1 +Q1n                                            (4.83) 

And for Q1  is time varying with small variation, the estimated law is selected with 

Q1
ê =Q1nà k1e1 + ú1 + ñ1( ) sat(þ1

e1)                          (4.84) 

The voltage regulation performance may depend on the quality of the load estimates 

in the estimator. 
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  In Section 4.1, we designed the VSC control law assuming that the true load 

variation is known. In the following simulations, the true parameter Q1  is  

substituted for Q1
ê . The schematic is shown in Figure 4.22. In Figure 4.23, the true 

reactive power demand of the load is assumed to be Q1 = 11.2 . The value of Q1n  

is chosen to be 11. The initial state of the system is x0 = [0, 0, 0, 1.1] , and  

the other design parameters are taken to be k1 = 10 , ñ = 0.1 . Figure 4.23 (a) (b) 

show the estimating performance; Figure 4.23 (c) shows the result of voltage 

regulation, and the variation of tap changing ratio n  is shown in Figure 4.23 (d).  

It is seen from Figure 4.23 (d), the VSC design using sign-type controller may lead to 

chattering. In practice, the chattering is undesirable. In order to eliminate chattering 

phenomenon, we can use saturation-type controller. We replace the controller of u  

the term sgn(x4 à 1)  by sat((x4 à 1)/0.001) . As shown in Figure 4.24, the 

chattering phenomenon has been improved. And Figure 4.25 shows the power system 

response with the VSC controller. Figure 4.26 shows the true reactive power demand 

of the load is a sinusoidal signal, Q1 = 11 + 0.1 sin(5t) . The value of Q1n  is 

chosen to be 11. The initial state of the system is x0 = [0, 0, 0, 1.1] , and the other 

design parameters are taken to be k1 = 1 , ú1 = 0.2 , ñ1 = 0.01 , ñ = 0.1 , 

þ1 = 0.001 . Figure 4.26 shows the simulation result. The simulation results have  

demonstrated the effectiveness of our proposed adaptive scheme. 
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Figure 4.23: Regulating performance and parameter estimation for Q1 = 11.2  

 

 

 

Figure 4.24: Regulating performance with Saturation control input 
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Figure 4.25: System response 
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Figure 4.26: Regulating performance and parameter estimation for 

Q1 = 11 + 0.1 sin(5t)  
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CHAPTER 5 
 
Control of Voltage Collapse 

 

 

 

 

 

 

 

 

 

  As discussed in Chapter 3, a major problem of electric power system is “voltage 

collapse”. This kind of instability is that the line voltage in PQ-load may jump 

sharply from the rated voltage to a deeply low voltage as PQ-load varies. In Chapter 3, 

we employ the FIDF design technique and signal analysis tool to the detection of 

voltage collapse in a power system. It is found that the voltage collapse can be 

successfully detected and generate the alarm signal by properly adjusting the 

threshold. With the announcement of warning signal, it is useful for us to initiate 

appropriate control  act ions to prevent  such instabi l i ty phenomena. 

In Chapter 4, we focus on the design of Variable Structure Control law to achieve 

voltage regulation for the electric power system. By utilizing tap changer to regulate 

the voltage level and raise the electric quality of the electric power system. Besides, 

we also design a parameter estimator as the load monitor to provide the load variation 

of the power system. It provides the accurate parameter variation to the controller to 
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have better regulating capacity. It also make controller to be able to deal with the 

existence of parameter uncertainty in a system. In this chapter, we will show a design  

of prevention of voltage collapse by employing prior designs. 

 

5.1   Control of Voltage Collapse 

 

  The effect of the tap changer ratio of the power system is that the system Hopf 

range can be decreased or even eliminated by suitable changing tap changer ratio. 

Further, with the existence of power system equilibria, it is found that the power 

system stable region can be enlarged by changing tap changer ratio. Moreover, the 

control of Hopf bifurcation is also a good design of prevention of voltage collapse. 

The details are discussed in [39].  

 

  In Chapter 3, we succeed to develop a means to detect the occurrence of voltage 

collapse in a power system and to generate a warning signal to admonish us. We also 

find that we can regulate the voltage level to raise the electric quality of the electric 

power system by utilizing tap changer in Chapter 4. Here, we will utilize the tap 

changer to prevent the occurrence of voltage collapse at the time of the detected  

equipment send out a warning signal. A detail scheme is shown in Figure 5.1. 
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Figure 5.1: A scheme of prevention of voltage collapse 
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5.2   Simulation Results 

Figures 5.2-5.3 show two examples of proposed scheme. In these simulations, the 

system initial state is x0 = [0, 0, 0, 1.1] , the reactive power demand of the load is 

Q1 = 11.3 . It makes the power system operation exceeding its stability limit. It is 

observed from Figure 5.2(b) and 5.3(b) that the system undergoes voltage collapse for 

such heavy load. Figure 5.2(b) shows the load voltage collapse around t=1.13. 

However, by properly adjusting the threshold, we can detect it before it occurs. In 

these simulations, we select threshold to be 0.06 p.u. As displayed in Figure 5.2(d) 

and 5.3(d), the voltage collapse can be successfully detected and the alarm signal is 

fired before t=1. It makes us having enough time to take a proper control action to 

avoid such instability. In Figure 5.2(e), we increase tap changer ratio to enlarge the 

power system stable region. It is found in Figure 5.2(f) that the voltage collapse 

behavior disappears and the load voltage reaches a new equilibrium point after a 

transient of oscillation. Furthermore, we shall employ the VSC control law designing 

in section 4.1 to achieve regulating the load voltage. This can be seen from Figure 

5.3(e) and Figure 5.3(f). Simulation results have demonstrated the effectiveness of our  

proposed scheme of prevention of the voltage collapse. 
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Figure 5.2: (a) load variation Q 1( )  (b) time response of load voltage without control 

(c) residual signal  (d) alarm signal by FIDF  (e) tap changer ratio n   

(f) time response of load voltage with control given by (e) 
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Figure 5.3: (a) load variation Q 1( )  (b) time response of load voltage without control 

(c) residual signal (d) alarm signal by FIDF  

(e) variation of tap changer ratio n   

(f) time response of load voltage with control given by (e) 
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CHAPTER 6 
 
Conclusions and Suggestions for 
Further Research 

 

 

 

 

 

 

 

  In this thesis, we have studied the detection of voltage collapse using a Dobson and 

Chiang's power system model. By treating the difference between the output of the 

power system model and that of its linearized model as a fault vector and employing a 

FIDF design technique, the occurrence of voltage collapse is shown to be successfully 

detected by inspecting the residual signal generated from the FIDF. The performance 

of detecting voltage collapse depends on the setting of the threshold. Simulations in  

Chapter 3 are given to demonstrate the effectiveness of this approach. 

  To raise the voltage quality of power supply for satisfactory operation of a power 

system, we add an extra tap changer parallel to the nonlinear load to Dobson and 

Chiang's power system model. We have applied Variable Structure Control design 

scheme to adjust the tap changer ratio to achieve voltage regulation. According to the 
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simulations in Section 4.1, it is shown that the designed controller can achieve the 

desired performance. However, in practical power system, the system dynamics may 

have well known dynamics at the beginning, but will experience unpredictable load 

variation as the control operation goes on. For this reason, we have proposed a 

parameter estimator as the load monitor to provide the load variation of the power 

system in Section 4.2. It provides the accurate load variation to the VSC voltage  

controller to have better regulating capacity. 

  To prevent the voltage collapse, we have proposed a scheme of prevention of 

voltage collapse based on prior designs. We utilize the tap changer to prevent the 

occurrence of voltage collapse. At the time of the detected equipment send out a 

warning signal, we tune the tap changer ratio to prevent the occurrence of voltage 

collapse. Further, we have employed the VSC controller to regulate the load voltage.  

Simulations in Chapter 5 demonstrate the effectiveness of this scheme. 

 

  In the following, we indicate some directions for further research. Firstly, for 

detection of voltage collapse, we provide a means for quick detection of voltage 

collapse but not the only one. Recently, the issue of detecting voltage collapse has 

attracted more and more attention [12,14,30]. It is a way for further research. 

Secondly, for voltage control, in addition to the use of Tap changer, another feasible 

means can also be added, such as shunt capacitors or series capacitors. To consider 

voltage control with capacitors is also a direction of study. Finally, in this thesis, we 

focus on voltage control. However, an efficient and reliable operation of power 

systems should have the property that the voltage and frequency should remain nearly  

constant. Thus, the final direction is frequency control. 
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