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ABSTRACT

In this thesis, we present aimeansof the detection of voltage collapse in
a power system based on the linear-based fault identification filter (FIDF)
design technique. Moreover, in order-to promote the voltage quality of
power supply for secure operation ‘'of a power system. We employ
Variable Structure Control technique to design the voltage regulator of a
power system. In addition, a load estimator is proposed to provide the
accurate load variation to the VSC voltage regulator to have better
regulating capacity. Finally, we combine the prior designs to maintain a

secure and reliable operation of the power system.
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CHAPTER 1

Introduction

1.1 Motivation

Recently, the study of power system stability has attracted lots of attention
[6,28,34]. Among the possible instabilities, a serious type is the so-called “voltage
collapse” [1,2,8,9,17,32]. This kind of instability in a power system is characterized
by an initial slow progressive decline and then rapid decline in the voltage magnitude
[17]. The voltage collapse behavior has been reported to be attributed to the increase
of power demand that results in the operation of an electric power system near its
stability limit [8,17].

In 1988, Dobson and Chiang [9] have presented a mechanism for voltage collapse
and introduced a simple power system model containing a generator, an infinite bus
and a nonlinear load. They claimed that the voltage collapse behavior might occur
around a saddle node bifurcation point [8,9]. Abed et al. [1,2,32] have reported the
oscillatory behavior of a power system using Hopf bifurcation theory.
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In addition to distinguishing the cause of voltage collapse, to detect such instability
phenomena is also an important area of research. Traditional available methods have
relied on utilizing system Jacobian matrix of power flow [4,16,21,37], by exploiting
either its sensitivity by determining its vicinity to singularity or its eigenvalue
behavior. These approaches have the drawback of time consuming computations. And
with increased network size these Jacobian based methods will become very time
consuming and therefore inappropriate for quick detection. Thus, the first goal in this
thesis is to provide a means for quick detection of voltage collapse in the power
system. Various techniques for fault detection of a control system have been
developed (see e.g., [5,7]). Among these techniques, the so-called “fault identification
filter”” (FIDF) is one of the most effective [5,7]. The FIDF has been successfully
applied to the detection of senset fault [23], mobile robot [24] and compression
systems [19]. In this thesis, we-adopt the power system model proposed by Dobson
and Chiang [9], and employ FIDE design-technique to detect the voltage collapse. We
will show how the FIDF may "be used to detect the occurrence of voltage
collapse in a power system without complex computations.

In practical, an efficient and reliable operation of power systems should have the
property that the voltage and frequency should remain nearly constant. As is well
known, the frequency of a system is dependent on active power balance while the
voltage magnitude is dependent on reactive power balance [16,27]. From voltage
stability analysis, we know that the lack of the reactive power in the power system
may cause the voltage decrease, which may in the worst case lead to the voltage
collapse. So, an important issue for power system control is to maintain a steady
acceptable voltage under normal operation and disturbed conditions, which is referred
as the problem of voltage regulation. Thus, the second goal in this thesis is to provide

a voltage controller which can achieve voltage regulation purpose. Tap changer is
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known to be one of an effective device for voltage control. The effect of tap changer
ratio in the power system has been studied in [20,22,39,16,27]. In this thesis, we will
employ setting tap changer ratio to achieve voltage regulation. In practical, the power
systems are large scale nonlinear systems. The simplest controller design for voltage
regulation might be based on approximate linearization approach. However, this
controller is usually effective around a neighborhood of operating point. In addition,
the linearization approach might work well when a small disturbance occurs, but it
usually cannot survive a large disturbance. Recently, nonlinear control theories have
been employed to power systems voltage controller design. These designs are mainly
based on the nonlinear feedback linearization technique [10,33,38], which transforms
the power system into a linear and controllable one, and thus linear control theories
can be applied to design an effective control law.“Although the feedback linearization
approach is a powerful tool for nonlinear controller design, it is only suitable for
nonlinear affine systems (for definition;.see-e-g= [3]). Since in this thesis we take the
tap changer as control input, the ‘power system model is found to be a general
nonlinear system form @ = f(z,u) in stead of being a nonlinear affine version.
Thus feedback linearization approach can not be applied. It is known that variable
structure control (VSC) has many advantages including fast response and small
sensitivity to system uncertainties and disturbances [25,29]. It then has been widely
applied to a variety of control problem, such as power system stability control
[13,34,36], robotic control [15,26], and so on. In this thesis, we will adopt the VSC
technique in the controller design issues.

In many practical control problems, the controlled systems usually have parameter
uncertainty. The uncertainty in power system may come from a large variation in
loading condition during operation. It is known that the performance of a control

system might not be acceptable or even result in unstable if it does not take the
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parameter uncertainty into account for controller design. Thus, the third goal in this
thesis is to provide a parameter estimation scheme to help voltage controller dealing
with the power system in the presence of uncertainty or unknown variation in the
load.

Finally, we will develop a scheme of prevention of voltage collapse with the aid of
prior analysis and design. It provides us a secure and reliable operation of the power

system.

1.2 Outline

The organization of this thesis is as follows. In Chapter 2, we recall some basic tool
and theory. These include Fault Identification Filter, short-time Fourier transform,
Variable Structure Control, Adaptive Control. In. Chapter 3, we first introduce the
model of power system proposed by Debsen.and Chiang [9]. Then, we apply the
FIDF to the detection of voltage «collapse.in .a power system. In Chapter 4, we
establish the model of power system with tap changer. Then, the Variable Structure
Control scheme is applied to adjust the tap changer ratio for the purpose of voltage
regulation. In Chapter 5, a scheme of prevention of voltage collapse is proposed, and
Simulation results demonstrate the effectiveness of this scheme. Finally, conclusions

and suggestions for further research are given in Chapter 6.



CHAPTER 2

Preliminaries

In this chapter we review some basic-tool ‘and theory. These include Fault
Identification Filter [5,18], short-time’ Fourier transform [11], Variable Structure
Control [25,29], adaptive control [25]. These results will be employed in the next two
chapters to develop the detection of voltage collapse and voltage regulation for the

electric power system.

2.1 Fault Identification Filter (FIDF)

Fault Identification Filter is a tool that can provide an efficient approach to detect
the appearance of faults in a control system. In this section we recall the FIDF design

results presented in [5].



Consider a linear system is given by

x(t) = Ax(t) + Bu(t) + E, (1) 2.1)

y(t)=Cx(t)+Du(t)+ E, f(¢) (2.2)

where x(t) e R", u(t)eR", f(t) e R?,and y(r)e R’ denote the state vector, the

input vector, the fault vector, and the output vector, respectively. From (2.1) and (2.2),

by taking Laplace transform, we have

() =G, (s)u(s)+ G (s)f(s) (2.3)
where

G, (s).=C(sI=4)7' B+ D (2.4)
and G(s) =€(I=A)E| + E, (2.5)

The object of FIDF design is to obtain two proper and stable filters H,(s) and

H,(s) such that the residual vector

r(s) =H,(s)u(s)+ H,(s)y(s) (2.6)
has the following property :

r(s)—>0 ifand only if f(s) >0 (2.7)

From Egs. (2.3)-(2.6), we have

r(s) =[H,(s) + Hy ()G, ($)]u(s) + H, ()G, (5)f(5) (2.8)



The configuration of a FIDF is shown in Figure 2.1.

y

\i

PLANT

H(s) Hy(s)

r(s)

Figure 2.1: FIDF configuration

To fulfill the requirement of (2.7), we first assume that G,(s) as given by (2.5) is
invertible. The FIDF design procedure is given in.[5] then can be summarized as the
following algorithm.

Algorithm 1 (FIDF design procedure)

Step 1 : Construct H,(s) so that the transfer matrix H,(s)G  (s) is a diagonal proper

and stable one.

Step 2 : Determine H,(s) suchthat H,(s)+ H,(s)G,(s)=0

Step 3 : Establish and check r(s) according to Eq. (2.6)



Under the procedure of Algorithm 1, it is noted from Eq. (2.8) that the residual
vector is influenced only by the fault vector. Thus, by properly checking the value of
residual vector as listed in Step 3 of Algorithm 1 above, one can detect the system
fault accurately. In addition to the effect of fault vector, the system output is also
affected by nonzero initial state. Since the objective is that the residual be affected
only by the fault vector, The response to a nonzero initial state should decay to zero.

This implies that the matrix A in Eq. (2.1) should also be required to be stable.

2.2 Short-Time Fourier Transform

The short-time Fourier transform is the most widely used method for studying
nonstationary signals. The concept, behind it is,simple and powerful. Break up the
signal into small time segments and Fourier analyze each time segment to ascertain
the frequencies that existed in that secgment. That is:the basic idea of the Short-time
Fourier Transform. The totality of'such spectra indicates how the spectrum is varying

in time.

2.2.1 Window function
If we are interesting in a desired portion of a signal at time ¢, it can be obtained by
multiplying the original signal by a window function, which emphasizes the signal at
that time interval, centered at ¢, and suppresses the signal at other times.
Let ¢#(t) be areal-valued window function. Then we apply the window function

to the original signal and obtain the information of f(¢#) near ¢=2>, and express this

as f()p(t—b) = f,(t). In particular, if @(¢) = y, ., (¢), as shown in figure2.2, then

0= { f(),telb—1,b+71) 29)

0, otherwise.



where b is a sliding factor and we can slide the window function along the time axis

to analyze the local behavior of the function f(¢) in different intervals.

Figure2.2: Characteristic function

In the window function, We have the two miest important parameters, its center
and width. It is clear that the center.and the standard-width of the window function in

Figure2.2 are 0 and 27, respectively. For.a.general window function ¢(z), we define
its center ¢  as

*

t|¢(z)| dt (2.10)

and the root-mean-square (RMS) radius A ; as

||¢||U (t—1)pe) dt}/ 2.11)

The function is called a time window. For the window of Figure2.2, use (2.10) and

(2.11) to verify thatt" =0 and A 5= /3. Therefore, the RMS width is smaller

than the standard width by a factor of1/ V3.



From the function ¢#(¢) described above, similarly, we can have a frequency

window ¢f(a)) with center @ and the RMS radius A ; defined analogous to (2.10)

and (2.11) as

do) do (2.12)

o = (;2 J‘:Oa)

1 [ .2
A¢3 :=?Uw(w—a} )

(;3(@)\2 da)}% 2.13)

Theoretically, A function cannot be limited in time and frequency simultaneously.

Verifying ¢(¢) for the window of Figure2.2, @ =0 and A 4 =0, this window is

the best time window but the worst frequency window.

2.2.2 Short-time Fourier transform

We want to obtain the properties of a‘signal “ /(#) in the neighborhood of some
desired location in time ¢ = b, by.multiplying an appropriated window function ¢(z)
to produce the windowed function f,(¢) = f(¢#)#(¢ —b) and then taking the Fourier
transform of f,(¢). This is the short-time Fourier transform (STFT). Formally, we
can define the STFT of a function f(¢#) with the window function@(z) discussed in

Section 2.2.1 in the time-frequency plane as

G f (,8) = [, (Dt (2.14)
where
by (1) == p(t —b)e”™" (2.15)

Because of the windowing nature of the STFT, this transform is referred to as the

windowed Fourier transform.
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2.2.3 Time-Frequency Window

Let us consider the window function ¢(¢) in (2.15). If ¢  is the center and A P

the radius of the window function, then (2.14) gives the information of the

function f(¢) in the time window:
[t*+b—A¢,t*+b+A¢] (2.16)

To derive the corresponding window in frequency domain, apply Parseval’s identity to

(2.14). We have
Gy f(0.£):= [ St~ ble " dr (2.17)
- L[ flopo—Ee " dw
2r -
- i) (2.18)
where the symbol “v ” represemnts the inverse Fourier transform. Observe that (2.17)

has a form similar to (2.14). If @ is thé center and A¢? is the radius of the window

function qg(a)), then (2.17) gives us information about the function f (w) in the
interval
[0 +E—Ad, 0" +E+AP] (2.19)

Because of the similarity of representation in (2.14) and (2.17), the STFT give

information about the function f(¢) in the time-frequency widow:
[ +b-A,t +b+A]x[0 +E- A" +E+AP]  (2.20)

Figure 2.3 represents graphically the notion of the time-frequency windowgiven by

(2.19). Here we have assumed that ¢ =" =0.
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A
[0
27,
¢, 24,
24,
¢ 24,
24,
£y 24,
bO bl bz t

Figure 2.3: Time-frequency window for short-time Fourier transform(¢" =" =0)

2.3 Variable Structure Control

The Variable Structure Contrel(VSC)rhave the advantages of faster response and
smaller sensitivity to system uncertainties-and disturbances. In this thesis, we will
adopt VSC schemes to design our controller.-In this section we review some basic
concept of VSC theory first.
2.3.1 Sliding Surface

Consider a single-input dynamic system

x" = f(x)+b(x)u (2.21)

where the scalar x 1is the output of interest, the scalar u is the control input, and
X=[x x ... x""]" is the state vector. In system (2.21), the functions f(x)
and b(x) (in general, nonlinear) are not exactly known, but the extent of the
imprecision on f(x) is upper bounded by a known continuous function of x, and
control gain b(x) is of known sign and bounded by a known continuous function of
x, respectively. For example, the inertia of a mechanical system is only known to a

certain accuracy, and friction models only describe part of the actual friction forces.
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The control problem is to get the state x to track a specific time-varying state

X, =[x, x, .. xd("_l)]T in the presence of model uncertainty on f(x) and
b(x).
For the tracking task by using a finite control u, the initial desired state x,(0)
must be such that :
x,(0) =x(0) (2.22)
In a second-order system, for example, position or velocity can not "jump", so that
any desire trajectory feasible from z=0 necessarily starts with the same position
and velocity as those of the plant. Otherwise, tracking can only be achieved after a

transient.

Define X =x—x, is the tracking error in the variable x, and let
¥=x-x,=[% ¥ & 97l
to be the tracking error vector. Furthermore, let us define a time-varying surface S(¢)

in the state-space R by the scalar equation s(X:¢)=0, where
d el ~
s(X;t)y=(—+A)"'x (2.23)
dt
Given initial condition (2.22), the tracking problem X =X, is equivalent to that of

remaining on the surface S(z) for all #>0; indeed s=0 represents a linear

differential equation whose unique solution is X =0, given initial conditions (2.22).

Thus, the problem of tracking the n-dimensional vector x, can be reduced to that

keeping the scalar portion s at zero. More precisely, the problem of tracking the

n-dimensional vector x, can in effect be replaced by a 1" —order stabilization

problem in s. Indeed, since from (2.23) the expression of s contains X", we

only need to differentiate s once for the input u to appear. Furthermore, bounds on

s can be directly translated into bounds on the tracking error vector X, and
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therefore the scalar s represents a true measure of tracking performance. Then,

1" —order problem of keeping the scalar s at zero can be achieved by choosing the
control law u of the system (2.21) such that outside of S(¢)

1d
EESZ < —77|S| (224)

where 77 is a strictly positive constant. Practically, (2.24) states that the squared

"distance" to the surface, as measured by s>, decrease along system trajectory. Thus,
it constrains trajectories to points towards the surface S(z), as illustrated in Figure 2.4.
In particular, once on the surface, the system trajectories remain on the the surface. In
other words, satisfying sliding condition (2.24), makes the surface an invariant set.
Furthermore, as we shall see, (2.24) also implies that some disturbances or dynamics
uncertainties can be tolerated while, still, keeping the surface an invariant set.
Graphically, this corresponds tothe factithat,in Figure 2.4 the trajectories off the
surface can "move" while still pointing towards the surface. S(¢) verifying (2.24) is

referred to as a sliding surface, and the system's behavior once on the surface is called

sliding mode.

S0

Figure 2.4: The sliding condition
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The other interesting appearance of the invariant set S(z) is that once on it, the
system trajectories are defined by the equation of the set itself, namely
d

—+ )X =0

( % )
In other words, the surface S(¢) is both a place and a dynamics. This fact is simply
the geometric interpretation of the definition (2.23) allow us, in effect, to replace an
n" —order problem by a 1¥ —order one. Finally, satisfying (2.24) guarantees that
if condition (2.22) is not exactly verified, ie., if X (¢#=0) is actually off X ,(zt=0),
the surface S(¢#) will yet be reached in a finite time smaller than |s(t = 0)|/ 77 . Indeed,

assume for instance thats(z=0)>0, and let ¢ be the time required to hit the

reach

surface s =0. Integrating (2.24) between ¢#=0, and ¢ =¢ leads to

reach

0—5(1=0) =5(t =1, s@=0) < (1, ~ 0)

while implies that

lyear S8 =0)/7
Furthermore, definition (2.23) implies that once on the surface, the tracking error
tends exponentially to zero, with a time constant (n—1)/4 (form the sequence of
(n—1) filters of time constants equal to 1/ 4.
The typical system behavior implied by satisfying sliding condition (2.24) is
illustrated in Figure 2.5 for n=2. The sliding surface is a line in the phase plane, of
slope —A and containing the (time-varying) point X, =[X, X ,1". Starting from
any initial condition, the state trajectory reaches the time-varying surface in a finite
time smaller than s(t=0)/77, and then slide along the surface towards X,

exponentially, with a time-constant equal to 1/ 4.
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finite time

reaching vhase =
sliding mode

exbonential conversence

x,(f)

Figure 2.5: Graphical interpretation of equations (2.23) and (2.24) (n=2)

In summary, the idea behind equations-(2:23)-and (2.24) is to choose a well-behaved
function of the tracking error, s, according to.(2.23), and then select the feedback
control law u in system (2.21) such that s> remains a Lyapunov-like function of
the closed-loop system, despite the presence of model uncertainties and disturbances.
The controller design procedure then consists of two steps. First, a feedback control
law u 1s selected so as to verifying sliding condition. However, in order to account
for the presence of modeling uncertainties and disturbances, the control law has to
be discontinuous across S(¢). Since the implementation of the associate control
switchings is necessarily imperfect (for example, in practice switching is not
instantaneous, and the value s is not known with infinite precision), this leads to

chattering as showing in Figure 2.6.
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Figure 2.6 Chattering as result of imperfect control switching
The chattering is undesirable in:practice, since‘it involves high control activity and
further may excite high-frequency. dynamics neglected in the course of modeling
(such as unmodeled structure modes, heglected time-delays, and so on). Thus, in a
second step, the discontinuous control law..# 1S suitably smoothed to achieve an
optimal trade-off between control bandwidth and tracking precision: while the first
step accounts for parametric uncertainty, the second step achieves robustness to

high-frequency unmodeled dynamics.

2.3.2 Variable Structure Control Design

The implementation of the Variable Structure Control (VSC) consists of two main
phases. First, we should construct the sliding surface such that the system states
restricted to the sliding surface will produce the desired behavior. Second, we
construct switched feedback gain which derive the plant state trajectory to the sliding
surface in finite time and restrict the state to sliding surface. The method of equivalent

control is means of determining the system motion restricted to the sliding surface.
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Suppose at ¢, the state trajectory of the plant intercepts the sliding surface and a
sliding mode exists for all 7> ¢,. The existence of a sliding mode implies (1) s=0,
and (2) s=0 forall 7>¢,. The system's motions on the sliding surface can be given
an interesting geometric interpretation, as an "average" of the systems' dynamics on
both sides of the surface. The system while in sliding mode can be written as

s=0 (2.25)
By solving the above equation formally for the control input, we obtain an

expression for u called the equivalent control, #“ which can be interpreted as the

continuous control law that would maintain s =0 if the dynamics were exactly
known. For example, for a second-order system

X=f+u (2.26)
In order to have the system track. x(¢) = x,(#), we define a sliding surface s=0

according to (2.23), namely:
d iy T
§=(—+rA)X =X FAX (2.27)
dt
We then have:
S=¥—X,+ X =f+u—i, +Ix (2.28)
the equivalent control u“ of a continuous control law that would achieve s=0 is
u =—f+i, - Ax (2.29)
and the system dynamics while in sliding mode is
X=f+u =%, - ¥ (2.30)

Geometrically, the equivalent control can be constructed as
u“ =ou’+(l-a)u” (2.31)
1.e., as a convex combination of the value of u on both sides of the surface S(¢).

The value of « can again be obtained formally from (2.25), which corresponds to
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requiring the system trajectories be tangent to the surface. This intuitive construction
is summarized in Figure 2.7, where f*" =[x f+u’]", and similarly
f =[x f+u] and f“=[x f+u“]". Its formal justification was derived in

the early 1960's by the Russian mathematician A.F.Filippov.

S <0

Figure 2.7: Filippov's construétion of'the equivalent dynamics in sliding mode
Controller design is the second phase of the VSC design procedure. Here the goal
is to determine switched feedback gains which derive the plant state trajectory to the
sliding surface and maintain a sliding*mode ‘condition. The presumption is that the
sliding surface has been designed. Among several approach (e.g. the diagonalization
method and hierarchical control method), augmenting the equivalent control
is one popular approach. This structure of control of system (2.26) is
u=u“+u"” (2.32)
where u’® is the discontinuous or the switched part of (2.32). Consider the system

(2.26), we have u“ =—f+Xx,— A% . In order to satisfy sliding condition (2.24), we

addto u" aterm discontinuous across the surface s=0, and let

u = u“ + u”
(2.33)
= u“ — ksgn(s)
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where sgn is the sign function

1 if s>0
sgn(s)=<0 if s=0 (2.34)
-1 if s<0

By selecting k£ to be a positive scalar, then

1d .
EESZ =§-5=—ksgn(s)-s =—kl|s| < -nls|

For k is large enough, we can guarantee that (2.24) is verified.

2.4 Adaptive Control

Many dynamic systems to be centrolled have constant or slowly-varying uncertain
parameters. For instance, Power ,systems may be subjected to large variations in
loading conditions. Adaptive control is‘an-approach to the control of such system. The
basic idea in adaptive control is'to-estimate the uncertain plant parameters (or,
equivalently, the corresponding controller parameters) on-line based on the measured
system signal, and use the estimated parameters in the control input computation. An
adaptive control system can thus be regarded as a control system with on-line
parameter estimation.

An adaptive controller differs from an ordinary controller in that the controller
parameters are variable, and there is a mechanism for adjusting these parameters
on-line based on signals in the system. There are two main approaches for
constructing adaptive controllers. One is the so-called model-reference adaptive

control method, and the other is the so-called self-tuning method.
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Model-reference adaptive control (MRAC)

Generally, a model-reference adaptive control system can be schematically
represented by Figure 2.8. It is composed of four parts: a plant containing unknown
parameters, a reference model for compactly specifying the desired output of the
control system, a feedback control law containing adjustable parameters, and an

adaptation mechanism for updating the adjustable parameters.

_| reference Vi
"1 model

. /

~ "

e

1
[ e —

+ ¥

adaptation law =

a - estimated parameters

Figure 2.8 A model-reference adaptive control system

The plant is assumed to have a known structure, although the parameters are
unknown, for linear plants, this means that the number of poles and the number of
zeros are assumed to be known, but that the locations of these poles and zeros are not.
For nonlinear plants, this implies that the structure of the dynamic equations is
known, but that some parameters are not.

A reference model is used to specify the ideal response of the adaptive control
system to the external command. Intuitively, it provides the ideal plant response

which the adaptation mechanism should seek in adjusting the parameters. The choice
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of the reference model is part of the adaptive control system design. This choice has
to satisfy two requirements. On the one hand, it should reflect the performance
specification in the control tasks, such as rise time, settling time, overshoot or
frequency domain characteristics. On the other hand, this ideal behavior should be
achievable for the adaptive control system, i.e., there are some inherent constraints on
the structure of the reference model (e.g., its order and relative degree) given the
assumed structure of the plant model.

The controller is usually parameterized by a number of adjustable parameters
(implying that one may obtain a family of controllers by assigning various values to
the adjustable parameters). The controller should have perfect tracking capacity in
order to allow the possibility of tracking convergence. That is, when the plant
parameters are exactly known, the'corresponding.controller parameters should make
the plant output identical to that of the reference.medel. When the plant parameters
are not known, the adaptation mechanism-will-adjust the controller parameters so that
perfect tracking is asymptotically achieved. If'the control law is linear in terms of the
adjustable parameters, it is said to be linearly parameterized. Existing adaptive control
designs normally require linear parametrization of the controller in order to obtain
adaptation mechanisms with guaranteed stability and tracking convergence.

The adaptation mechanism is used to adjust the parameters in the control law. In
MRAC systems, the adaptation law searches for parameters such that the response of
the plant under adaptive control becomes the same as that of the reference model, i.e.,
the objective of the adaptation is to make the tracking error converge to zero. Clearly,
the main difference from conventional control lies in the existence of this mechanism.
The main issue in adaptation design is to synthesize an adaptation mechanism which
will guarantee that the control system remains stable and the tracking error converges

to zero as the parameters are varied. Many formalisms in nonlinear control can be
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used to this end, such as Lyapunov theory, hyperstability theory, and passivity theory.
Although the application of one formalism may be more convenient than that of

another, the results are often equivalent.

Self-tuning controllers (STC)

In non-adaptive control design (e.g., pole placement), one computes the parameters
of the controllers from those of the plant. If the plant parameters are not known, it is
intuitively reasonable to replace them by their estimated values, as provided by a
parameter estimator. A controller thus obtained by coupling a controller with an
on-line (recursive) parameter estimator is called a self-tuning controller. Figure 2.9
illustrates the schematic structure of such an adaptive controller. Thus, a self-tuning

controller is a controller which performs simultaneous identification of the unknown

, / |
i A

plant.

e
controller > plant -
~ Y
a
estimator -
a - estimated parameters

Figure 2.9 A self-tuning controller
The operation of a self-tuning controller is as follows: at each time instant, the
estimator sends to the controller a set of estimated plant parameters, which is

computed based on the past plant input u# and output y; the computer finds the

corresponding controller parameters, and then computes a control input u based on
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the controller parameters and measured signals; this control input u causes a new
plant output to be generated, and the whole cycle of parameter and input updates is
repeated. Note that the controller parameters are computed from the estimates of the
plant parameters as if they were the true plant parameters. This idea is often called the
certainty equivalence principle.

Parameter estimation can be understood simply as the process of finding a set of
parameters that fits the available input-output data from a plant. This is different from
parameter adaptation in MRAC systems, where the parameters are adjusted so that the
tracking errors converge to zero. For linear plants, many techniques are available to
estimate the unknown parameters of the plant. The most popular one is the
least-squares method and its extensions. There are also many control techniques for
linear plants, such as pole-placement, PID, LQR (linear quadratic control), minimum
variance control, or H” designs..By coupling. different control and estimation
schemes, one can obtain a variety of seli-tuning regulators. The self-tuning method
can also be applied to some nonlinear systems -without any conceptual difference.

In the basic approach to self-tuning control, one estimates the plant parameters and
then computes the controller parameters. Such a scheme is often called indirect
adaptive control, because of the need to translate the estimated parameters into
controller parameters. It is possible to eliminate this part of the computation. to do
this, one notes that the control law parameters and plant parameters are related to
each other for a specific control method. This implies that we may reparameterize the
plant model using controller parameters (which are also unknown, of course), and
then use standard estimation techniques on such a model. Since no translation is
needed in this scheme, it is called a direct adaptive control scheme. In MARC
systems, one can similarly consider direct and indirect ways of updating the controller

parameters.
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CHAPTER 3

Detection of Voltage Collapse for the
Electric Power Systems

In this chapter, we first introduce the dynamical equations of electric power
systems that proposed by Dobson and Chiang [9]. Then, we apply the FIDF and signal

analysis tool to the detection of voltage collapse in a power system.

3.1 Dynamical Equations of Electric Power Systems

It is known that load characteristic has a significant effect on a power system
dynamics [6,35]. Therefore the voltage collapse cannot be studied using classical

models, such as constant PQ, constant impedance, and constant current models, which
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assume the magnitude of the load voltage to be constant. In this thesis, we adopt the

power system model from Dobson and Chiang [9] as below:

The Load Model: The nonlinear load model (3.1)-(3.2) below is originally
introduced by Walve [31] and then modified by [9]. It includes a dynamic induction
motor model with a constant PQ load. The combined model for the motor and the PQ

load has the following form:

P:P0+P1+pr$+va+ (V+TV) (31)

Q=Qo+ Qi+ Kb + KoV + Ky2V? (3.2)

where F, and @y are the constant real and reactive powers of the motor, P; and

(21 represent the PQ) load, and the remaining parameters are same as those given in

[9].

The Power System Model: The power system model in this thesis is adopted from
Dobson and Chiang [9] as shown in Figure 3.1.(a). In this model, one generator is a
slack bus while the other has constant voltage magnitude Ep, and angle 0y, satisfies

the following swing equation:

Mé,, = — dpw + Py, + EpVYsin (6 — 6,, — 0,,) + E2Y,,sin 6, (3.3)

where M, dm and P, denote the generator inertia, damping and mechanical
power, respectively. In the model, Q)1 is chosen as the system parameter so that
increasing (1 corresponds to increasing the load reactive power demand. In addition,

the load also includes a fixed capacitor C to raise the voltage up to near 1.0 per unit.
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To facilitate the analysis, it is convenient to account for the capacitor by adjusting Fj
and Y, to give the Th’evenin equivalent of the circuit with the capacitor. The

adjusted values are

El = Eo/ (1+ €2, - 20V, cos 0,) (3.4)
9 1 1/2
¥, =¥ (142, * 20, cos ) (3.5)
;o _1 C'Yalsint%
00 - 90 + tan {101/;)1005 90} (3.6)

Obviously, the product EY] and E,Y; are being the same constant. Then we have

the equivalent circuit as shown in Figure 3.1.(b).

E, 20 C) [ S — LOAD C) E 20,

(@)

' 7 T
YU_(_ 6‘0 - T) VS Ym_(_ gm - T)
& 2 C =

ES—(HS - Hn)

O LOAD () B0,

(b)

Figure 3.1: Power system model (a) original system (b) Th’evenin equivalent system
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By calculating VI* of the network, the real and reactive powers supplied by the
network are
P=—E)Y,Vsin (§ + 6p) — EnY,Vsin (§ — 8, + 61)
+ (Yisin 0 4 Y, sin 6,,) V2 (3.7)
Q = EyY,Vcos (6 + 0p) + EnY,Veos (8 — 6+ 0)
— (Yjcos 0y 4 Y, cos 6,,) V2 (3.8)
From Egs. (3.3) and equating (3.1)-(3.2) with (3.7)-(3.8), we have the overall

dynamical equations for the electric power system as below:

F— (3.9)
Mo = — dypw + Pt B Y Vein (6 — 8 — 01n)
+ E2Y,,8in0pm (3.10)
Kb = — KpoV2 KgVF-Q0m 6, V) — Qo — Q1 (3.11)
TK g K poV = Kp K 02V ¥l g g = K g K o) V
+ K yu(P(0m, 8, V) — Py — Py)

— Kpuw(Q(0m, 6, V) — Qo — Q1) (3.12)

where
Q(0m,0,V) = EY Vcos (§ + 6o) + EnYVeos (0 — 8p + 0m)
— (Y cos 0 + Y, cos 6,,) V2 (3.13)
P(6,8,V) = — E{YVsin (6 + 0y) — EnY,Vsin (6 — dm + 1)

— (Y} sin 6 + Y, sin 6,,) V* (3.14)
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In this thesis, the system parameters are adopted from [9] as follows:
The load parameters are
Kpw=04,K,, =03, Kgw=—0.03, Ky =— 2.8,
Kup=21,T=85,Py=0.6,Q0=13,P =0
The network and generator parameters are
Yy =20.0,00=—-5.0, Ey=1.0,C =12.0,
Y, =8.0,6, = —12.0,E, = 2.5,Y,, = 5.0,
0, =-50F,=1.0,PFP, =1.0,d, =0.05,M=0.3
All parameters are in per unit expect for angles, which are in degrees.
Let 1 =0m, T2 =w, 3=09, x4 = V. Then Egs. (3.9)-(3.12) can be
written in the form of & = f(x,u), u = @1 as below:
T1=1T2 (3.13)

xo = 3.33333 (0.56422 — (0.05x2 + (5:1:4 sin (0.08727 — x1 + :cg))) (3.14)

T3 = — 33.33333 (— 1.3 — Qu + 2.871 =15.004862;

+ 20x4cos (0.08727 — x3) + (9x4c0s (0.08727 + x1 — 73))) (3.15)
Z4 = —13.0719 (— 1.111xy + 0.8427 — 0.4 (— 1.3 — Q1 — 12.904861

+ 20z 4 cos (0.08727 — x3) + Sxycos (0.08727 + x1 — x3))

—0.03 (= 0.6 — 2.17889x7] + 20z sin (0.08727 — x3)

+ 5x45in (0.08727 + 21 — 13))) (3.16)

The system equilibrium points can then be obtain by solving f (z, Q1) = 0, which

depends on the load reactive power parameter ().

29



3.2 Voltage Collapse in the Electric Power Systems

The study of power system stability has attracted lots of attention (see e.g., [6,28,34]
and the references therein). Among the possible instabilities, a serious type is the
so-called “voltage collapse.” This kind of instability in a power system is
characterized by an initial slow progressive decline and then rapid decline in the
voltage magnitude [17]. Two typical examples are shown in Figures 3.5(a) and 3.2(b).
The voltage collapse behavior has been reported to be attributed to the increase of
power demand that results in the operation of an electric power system near its
stability limit [9,16,17]. As is well known, the qualitative change in the behavior of a
nonlinear system with the change of one or more parameters is due to bifurcations.
The variations of any parameter might result in ¢omplicated behavior and even give
rise to system instabilities. Among the tesearches, for instance, Thomas and
Tiranuchit [28] have pointed out that the-induction motor dynamics could affect the
voltage stability. Dobson and Chiang {8,9] have presented a mechanism for voltage
collapse and introduced a simple power system model containing a generator, an
infinite bus and a nonlinear load. They claimed that the voltage collapse behavior
might occur around a saddle node bifurcation point. Abed et al. [1,2,32] have reported

the oscillatory behavior of a power system using Hopf bifurcation theory.
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3.3 Results of FIDF Design

In this section, the FIDF technique will be employed to detect the occurrence of
voltage collapse in a power system described in Section 3.2. It is observed that, when
system experiences a heavy load, the voltage might exhibit a growing oscillation and
then sudden breakdown if the load exceeds a critical value, however, the scenario do
not happen for it's linearized model. With this observation, a linear-based fault
identification filter (FIDF) design technique is proposed to detect the voltage collapse.
This is achieved by treating the difference between the output of the power system
and that of its linearized model at a stable operating point as a fault vector and then
investigating the effect of the fault on the designed FIDF.

In order to apply the FIDF results [5], we should construct the linearized model of
the system (3.13)-(3.16) about an asymptotically stable operating point
CUOT(Qlo) = (210, 20, 30, 9640)T for'somegiven /@1 = Q10 as follows:

i = A% + BQ1 (3.17)
where £ = x — xo and Ql = @Q; — Q9. Moreover, we assume that the available
output of the power system has the form

y=C%+ DQ1, (3.18)
where C' € RP*"™ and D € RP*™ are two constant matrices.

It is known that a linear model derived from a nonlinear one is a close
approximation only near the operating point. To reduce the influence of the difference
between the two models, it is suggested that the stable operating point for the power
system be chosen to be close to the instability inception point. In this section the

operating point is chosen to be close to the first Hopf bifurcation point.
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Denote Ynon(t) and ¥in(t) the output for nonlinear and linear model,
respectively. It is noted that the two outputs Ynon(t) and yiin(t) are not equal in
general. It is shown in [18] that the steady state output of the linearized model is
linearly dependent on the input. We describe briefly as follow:

For the linearized model (3.17), (3.18), it is known that
t . .
Yiin(t) = Ce3(0) + IOC€A(t_T)BQ1(T)dT+ DQ(t) (3.19)

The first term on the right hand side of (3.19) depends only on the initial state while
the second and third terms depend only on the input. Since the matrix A given in
(3.17) is a Hurwitz matrix. It follows, Ce’2:(0) — 0 as t — oo. The input and
output of the linearized model has the following relationship.

Y(s) = [C(sI — A)"'B + D]Q(s) (3.20)
where Q(s) and Y(s) aré the Waplace.transforms of Qi(t) and
Yiin(t) — Ce'2(0), respectively If the reactive power demand maintains a constant

Q1 = Q1. By Final Value Theorem-and A 'is stable, we have
lim gin(t) — Ce?'2(0)

t—o00
= lim sY¥(s)
5—0
— Qu(- CA™'B + D) (321)

This means that the steady state output of the linearized model is
linearly dependent on the input. However, when voltage collapse happens, the load
voltage of the nonlinear model will exhibits a growing oscillatory voltage transient
prior to voltage collapse. With these observations, the idea is to treat the difference
Ynon — Ylin as a fault vector and then apply the FIDF technique to inspect the effect
on this fault vector before voltage collapse occurs. In these simulations, we choose the

load voltage V' as the output which is easily measured. The output is then in the form
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of (3.18) with
C=(0001) and D=0 (3.22)

for both the linear and nonlinear models.

It was shown from bifurcation analysis that the voltage collapse might occur when
(21 is near the Hopf bifurcation point 10.89 [1,2,39]. This motivates us to choose the
operating point at Q1 = 10.8, which gives z = (0.1829,0, — 0.0068,1.1031)" as
an equilibrium point. The matrix A given in (3.17) is found to be Hurwitz with
eigenvalues {—133.73; —15.73; —0.01 +£3.76:}. Following the FIDF design
procedure given in the Algorithm of section 2.1 with A and B given by (3.17), C

and D given by (3.22), E1 =0 and F2 =1, the two filters H(s) and Hy(s)

are designed to be

Hi(s) = —5.228853—362.8852—157.515—5420.8
1 — (5+1)5%+168.09531-2378.45242506.7s 34043 (3.23)

Ho(s) = 57 (3.24)

The initial states are chosen as (0.2,0.2,0.04, O.98)T. The alarm signal is set to be 1

if [residual/>0.06 and equal to 0 elsewhere.

First, let the load reactive power demand be constant at 11.3 as in Figure 3.2(a). It
is observed from Figure 3.2(b) that the load voltage collapse around ¢ = 1.13. It
means that the system undergoes voltage collapse for such heavy load. This is also
recognizable from the change in the residual and alarm as displayed in Figure 3.2(c)
and (d). The same scenario happens for small varying load as shown in Figure 3.3.
Because the load in this case is smaller than that of Figure 3.2, the occurrence time of
voltage collapse is clearly behind that of Figure 3.2. Next, a control effort to

compensate reactive power is attempted in Figure 3.4 to recover from voltage collapse
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when an alarm signal is detected. From Figure 3.4(b), the voltage collapse behavior
disappears and the load voltage reaches an equilibrium point after a transient of
oscillation. This can also be seen from Figure 3.4(c) and (d), where the alarm is turned
off when the residual is less than the threshold value. This demonstrates that a proper
control action can be applied to avoid the voltage collapse when such instabilities can
be successfully detected. Finally, let us consider the situation about a 5% load
variation. Figure 3.5 shows the simulation result of a 5% load variation about the
operating point. It is observed from Figure 3.5(b) that the load voltage collapse
around t = 38. By applying FIDF technique, the voltage collapse is successfully
detected around t = 34 before it occurs. It provides us enough time to initiate

appropriate control action to prevent such instability phenomena.
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3.4 Results of Signal Analysis

In addition to FIDF detection as discussed above, it is found from simulation that,
when voltage collapse is about to happen for possible ()1, the residual signals appear
to exhibit oscillation with growing amplitude and almost the same frequency. As such,
it enables us to monitor the amplitude of such a frequency to help judge the
occurrence of voltage collapse. An example is shown in Figure 3.6, where the load
voltage and residual signal for ()1 = 11.1 are given in Figures 3.6(a) and (b),
respectively. To avoid the influence of DC part, an averaged signal from the residual
by the formula (3.22) below

sa(n) =s(n)—+> 7 ;. s(k), L=100 (3.22)
and its spectrogram with sampling frequency.«if s =.100H z are described in Figures
3.6(c) and (d), respectively. The oscillating frequency to be monitored is observed
from Figure 3.6(d) to have f~0.59Hz. The amplitude of the monitored frequency
for the last 1024 points FFT before the occurrence of collapse versus (1 is shown
by the solid-line of Figure 3.7. To facilitate the detection using the monitored
frequency, the threshold values for different ()1 are defined to be the amplitude of
the monitored frequency 5 seconds ahead of voltage collapse, which are indicated by
the dashed-line of Figure 3.7. Note that, the oscillating times before collapse are less
than 5 seconds near the value of Q1 = 11.3. With the definitions of threshold
values, the voltage collapse for ()1 = 11.1 is shown able to be successfully
detected using both methods, as indicated in Figures 3.8(b) and (d). The alarm for the
second method is fired around ¢ = 55, which is near 5 seconds ahead of the collapse
as desired. Finally, Figure 3.9 demonstrates the detection result for varying load using

the threshold which is determined by the second method. Clearly, the alarm is also
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fired nearly 5 seconds ahead of the occurrence of voltage collapse. Finally, we
consider the situation of a 5% load variation about the operating point. Figure 3.10
shows the detection result. It is clear that the alarm is fired nearly 5 seconds ahead of
the occurrence of voltage collapse as our desire.

From these simulations, it is noted that the voltage collapse can be successfully
detected before it occurs. By properly adjusting the threshold for generating the alarm

signal, the FIDF may provide a precursor of avoiding undesirable effects of these

unstable behaviors.
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CHAPTER 4

Voltage Regulation of the Electric
Power Systems

In this chapter, we add an extra tap changer-parallel to the nonlinear load to Dobson
and Chiang's power system model for the-purpose of voltage regulation. In Section
4.1, we derive the dynamic equations of the power system with tap changer. Then, we
will apply Variable Structure Control design scheme to adjust the tap changer ratio to
achieve voltage regulation for this model. In Section 4.2, we propose a parameter
estimator as the load monitor to provide the load variation of the power system. In
Section 4.3, we combine the designs of VSC voltage controller and load estimator to

design an adaptive control system.

4.1 Variable Structure Controller Design
4.1.1 Controlled Power System Model

In this section, we add a voltage controller — tap changer to the original power
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system model. Here, we use the tap changer ratio as the control signal for the electric

power system. We will utilize tap changer to regulate the voltage of the electric power

system.

After adding a voltage controller — tap changer to the original power system model.

The controlled model is shown as in Figure 4.1.

T
% (67
Voo

520 () C == |LOAD

7
Vo (=6 = )

O E 2o,

Figure 4.1: The power system-model with tap changer

The original dynamical equations for the electric power system can be written as

follow :
5.m =w
Mo = = dpw + P+ 3+ E_YnVsin (8= 65 — 0m)
+ E2Y,,sin 0,
Ko = — KguaV? = K V+ Q (0, 6, V) — Qo — Qu
TK g K pV = Kp K 02V? + (KpwK gp — K quKpo) V
+ K yuw(P(8m, 6, V) — Py — Py)
— Kpuw(Q(dm, 0,V) — Qo — Q1)

where
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Q(6m, 6, V) = E[YyVeos (6 + 60) + = EpYimVeos (6 — 8 + 6

- (YB cos 8, + %Ym cos 0m> 1% 4.5)
P61, 6, V) = — EQY Vsin (6 + 00) — 5+ E Y, Vsin (6 — 61 + 01)

- (YO sin )+ LY sin em) % (4.6)

The system parameters we take are the same as those in the Section 3.1.

Let 1 =0m, T2 =w, x3 =0, x4 = V. Then, Egs. (4.1)-(4.4) can be written

as :

I1 =9

2y = 3.33333 (0.56422 — 0.05z 5+ (hran ~!sin (0.08727 — z1 + x3)))

73 = — 33.33333 (— 1.3 — Q1 + 2.8z — 27(10.02389 + 4.98097n2)
+ 204 cos (0.08727 — x3) + (5z4n " cos (0.08727 + 1 — x3)))

£y = —13.0719 (= 111124 4 0.84zF — 0.4 (— 1.3 — Q1 — x} ( 7.92389
+ 4.98097n~2) + 20z 4 cos (0.08727 — x3) + 5x4n "1 cos(0.08727
+ 21— x3)) — 0.03 (= 0.6 + z3(— 1.74311 — 0.43578n )

+ 20245in(0.08727 — x3) + 5x4n ' sin (0.08727 + 21 — 23)))
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. 1 .
For convenience, we let u = -, and expand the above equations. Then the state

equations become :

551 = T2 (4.7)

22 = 1.88073 — 0.16667x2 + [16.66667245sin(0.0827 — z1 + 3)|u  (4.8)

x3 = 43.33333 — 93.33333z4 + 334.12967:@21 — 666.66667x 4 cos(0.08727
— 13) + 33.33333Q1 — [166.666674 cos(0.08727 + 1 — a3)|u
+ 166.032452u” (4.9)
4= — 7.03268 + 1452288z 4 — 53.096082> + (104.5752 cos(0.08727 — z3)
+7.84314in(0.08727 — x3)); — 5.22876Q + [26.1438x,
x c0s(0.08727 + z1 —@3) + 1.960794 8in(0.08727 + 1 — x3) |u

— 26.21518zu? (4.10)

Here, we choose the load voltage as the system output

Y =14 4.11)

4.1.2 Controller Design

To achieve the main goal — voltage regulation, in the following, we will employ
Variable Structure Control (VSC) technique to design controller. As recalled in
Chapter 2, it is known that the VSC design procedure consists of two main steps. The
first step is to choose a sliding surface, which is a function of system state and desired
trajectory. The second step is to design a proper controller to guarantee the state

reaching the sliding surface in a finite time and sliding toward the desired trajectory.
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The power system has the form
t1= f(z) + g1(z)u + ga(z)u’ (4.12)
Y= a4 (4.13)
Suppose Z44(t) is the desired trajectory. Define the error
e(t) = xa(t) — wag(t) (4.14)
For the VSC design first step, we choose the sliding surface to be s(t) = 0 with
s(t) =e(t) =0 (4.15)
Clearly, if the system state keeps staying on the sliding surface then the tracking
performance can be achieved. Thatis, e(t) — 0 = x4(t) — x44(t) as t — 00.
The second step of VSC design is to design a control law in the form of
u=u+u" (4.16)
To achieve the tracking performance, where ©"“.plays the role of making the error
state reach the sliding surface in a finite time and ©“/ keeps the sliding surface an
invariant set and directs the error state to-the origin.
As mention in Chapter 2, the conditien of forcing system state staying on sliding
surface can be written as
5(t)=0 (4.17)
By solving the above equation formally for the control input, we can obtain the
equivalent control, u“? that would maintain $ = 0. Consider the system (4.12), the
equivalent control can be chosen as
u® = h(z) (4.18)
which h(x) would satisfy
5(t) = &4 — Zaq
= f(z) + g1()h(z) + g2(z)h(2)® — daq
=0 (4.19)
For voltage regulation, Z44 is constant, then Z4q9 = 0.
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From (4.12) ~ (4.17), we can obtain

S(t) =24
= f(z) + g1(2) (u® + u") + ga(z)(u +u')”

= f(z) + g1(z)u + ga(z) (u)® + g1(x)u"® + 2g2(x)u ™ + ga(z)(u')?

= [91(2) + 2g2(x)h(x)]u" + ga(u")? (4.20)
From (4.18), we have
s(t)3(t) = s(t) - [(g91(2) + 2g2(x)h(x))u" + g2(u")?] (4.21)

In order to satisfy the sliding condition, we impose the following assumption:
Assumption 1 : During the control period,” g1(z) + 2¢g2(x)h(x)£O0.

From assumption 1, we select

u' = e 9(s) (422)

where sgn(-) is the sign function, and 7 is a positive number.
It is note that the discontinuity of sign function will cause chattering in the close-loop
system. In practice, the sign function sgn(s) is often replace by the saturation
function sat(s) where

sat(z) =z, if |z] <1

sat(x) = sgn(z), if |z|>1 (4.23)

In order to verify that the control law can satisfy the sliding condition (2.24). We will

discuss following possible cases :
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A. for g2(z) <0
(1) s > 0, we have

s$ = —nls| + s - ga(z)(u")?

< —mnls|, forany given 7

(2) s <0, we have

s5 = —nls| + s ga(z)(u")?
)

T pm—

2
a(@)2022)h(0)° ]

To guarantee the sliding condition, we impose the next assumption :

g2(x)
ASSMmptiOn 2: (gl($>+222($)h($>)2 is bounded

Then we have,

. s-g3(x) - m?
ss = —mnls| + (91(z)+2gs (@) hia))” /

< —knls

L 0<k<l

(k=1)-(g1(2)+2g2(x) h{w))?
=< 92()

B. for g2(z) >0

(1) s>0

. ) .12
s =—mnls| + (i) 20w !

from assumption 2, we have $5 < — kn|s

,0<k<1l

1—k)-(g1(2)+2g2(x)h(x))?
for 77<( )(g(g);(;)g( )h(z))

(2) s <0, we have

s§=—nls| + s ga(z)(u)?

< —mnls|, foranygiven 1
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So, we know that selecting suitable 7), the close-loop system will satisfy sliding
condition, that is, the system state will reach the selected sliding surface in a finite

time.

4.1.3 Simulation Results

To demonstrate the effect of our designing VSC controller, in this section we use

the software “Matlab” as the computational tool to study numerical simulation of the
electric power system for voltage regulation.

We consider the power system model (4.7)-(4.11) in the Section 4.1.1. We use the

tap changer ratio as the control input signal.for the electric power system. The desired
voltage level x40 = 1. We select sliding surface is* s(¢) = x4(t) — 1.

By solving $(t) =0,
5(t) = 24 = f(x) + g1(z)u + gal@)u’ =0
where

f(z) = — 7.03268 + 14.52288z4 — 53.09608z> + (104.5752 cos(0.08727 — x3)

+ 7.843145in(0.08727 — z3))z4 — 5.22876Q1 — 7.03268

g1(x) = 26.1438x4 cos(0.08727 + x1 — x3) + 1.9607924 sin(0.08727 + x1 — x3)

g2(x) = — 26.21518z22

. —g1(2)E/ 91(2)°—4gs(2) f(=) .
We can obtain U =—"" \/%lgj(x) elofle , where u:%, 1 is the tap

changer ratio. In practice, the tap changer ratio is positive. Hence, we choose the

—g1(2) =/ g1(z)*~4g2(x) f(z)
equivalent control law, ©/ = gl \/92;;]6()36) g2t (4.24)
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In this case, g2(z) < 0, and we select

re __ —n
U= ) 2gayu (4.25)
Hence, the designing control law is
u=u“4u" (4.26)

In this simulation, we select 7] =0.1. Simulation results are given in Figures 4.2-4.5.
Figures 4.2 shows the simulation results for the initial state is zo = [0,0,0, 1.1],
and the load reactive power demand ()1 is constant at 11.2. It is observed that for
the initial error is positive (i.e. s > 0), it will achieve our desired voltage level by
tuning the tap changer ratio. In Figures 4.3, we choose o = [0.2,0.2,0.04, 0.98]
and assume Q1 is the same at 11.2. It is clear that for the error is negative, it is also
satisfied our main goal - voltage regulation. The same results can also be found in

Figure 4.4 and Figure 4.5, while with existence of load variation.

In many practical control problems; the-controlled systems may have parameter
uncertainty or unknown variation. In‘our thesis, for the power system, we do not
know the load variation of the system actually. With the presence of uncertainty or
unknown variation in parameters, the initially controller design may not be able to
achieve our desired performance. As in Figure 4.6, in (4.22)~(4.26), we hypothesize
the load reactive power demand ()1 is 11 to our initially controller design. Actually,
the load reactive power demand (01 is varied with Q1 = 11 + 0.1sin(3t). We
can find in Figure 4.6(c), the voltage regulation may not achieve. In worse case, the
parameter uncertainty may cause instability. In Figure 4.7(a), we can find that the
actual load reactive power demand Q1 is varied with Q1 = 11 +sin(¢). For
estimated (J1 = 11, we obtain the simulation result in Figure 4.7(c) that not only

the desired performance - voltage regulation is not able to achieve but also cause
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voltage collapse. So, it is important to reduce the effect of the parameter uncertainty
in a system. One way to reduce it is to use parameter estimation. A more detailed

discussion of the parameter estimator design is provided in Section 4.2.
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4.2 Parameter Estimator Design

In practical power system, the system dynamics may have well known dynamics at
the beginning, but will experience unpredictable load variation as the control
operation goes on. In this section, we will propose two types of load estimator. One is

based on gradient method, the other is based on observer approach.

4.2.1 The Gradient Method [25]

4.2.1.1 Linear Parametrization Model

The essence of parameter estimation is to extract parameter information from
available data concerning the system. Therefore, we need an estimation model to
relate the available data to thejunknown parameters, similarly to the familiar
experimental data fitting scenario,,where we need. to-hypothesize the form of a curve
before finding specific coefficients describing-it, based on the data. This estimation
model may or may not be the same as the model used for the control purpose. A quite
general model for parameter estimation applications is in the linear parametrization
from

y(t) = W(t)a (4.27)

where the n-dimensional vector ¥ contains the “outputs” of the system, the
m-dimensional vector a contains unknown parameters to be estimated, and the
nxm matrix W(t) is a signal matrix. Note that both ¥ and W are required to
be known form the measurements of the system signals, and thus the only unknown
quantities in (4.27) are the parameters in a. This means that (4.27) is simply a linear
equation in terms of the unknown a. For every time instant ¢, there is such an
equation. So if we are given the continuous measurements of y(t) and W(t)

throughout a time interval, we have an infinite number of equations in the form of
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(4.27). If we are given the values of y(t) and W(t) at k sampling instants, we
have K sets of such equations instead. The objective of parameter estimation is to
simply solve these redundant equations for the 7@ unknown parameters. Clearly, in

order to be able to estimate 777 parameters, we need at least a total of 17 equations.

4.2.1.2 Predication-Error-Based Estimation Methods

Assume that the parameter vector in (4.27) is unknown, and is estimated to be
d(t) at time ©. One can predict the value of the output y(t) based on the
parameter estimate and the model (4.27).

y(t) = W(t)a(t) (4.28)
where U is called the predicted output at time . The difference between the
predicted output and the measured.output ¥ iscalled the prediction error, denoted by
€1.

ei(t) =g(th=yd) (4.29)
The on-line estimation methods we discuss. in this section are based on this error, i.e.,
the parameter estimation law is driven by €1. The resulting estimators belong to the
so-called prediction-error based estimators, a major class of on-line parameter
estimators. The predication error is related to the parameter estimation error, as can be
seen from :

e1 = Wa — Wa =Wa (4.30)
where @ = a4 — a is the parameter estimation error.
The prediction-error based estimations include following methods :
- Gradient estimation
- Standard least-squares estimation
- Least-squares with exponential forgetting
- A particular method of variable exponential forgetting
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In order to simplify the calculation and make the parameters be estimated fast, we
adopt gradient estimation as load estimator for the power system in our thesis. In the

following section, we take brief introduction to the gradient estimation.

4.2.1.3 The Gradient Estimator

The basic idea in gradient estimation is that the parameters should be updated so
that the prediction error is reduced. This idea is implemented by updating the
parameters in the converse direction of the gradient of the squared prediction error

with respect to the parameters.

1 8[6?61]

4= —3Do g (4.31)
Where p, is a positive number called the estimator gain. In view of (4.28) and

(4.29), this can be written as
a = —=p,Wle, (4.32)
To see the properties of this estimator, we use (4.32) and (4.30) to obtain
a=—pWWa (4.33)
Using the Lyapunov function candidate

V=a'a (4.34)

its derivative is easily found to be

V= —2p,a’W'Wa<0
This implies that the gradient estimator is always stable. By noting that V' is actually
the squared parameter error, we see that the magnitude of the parameter error is
always decreasing. However, the convergence of the estimated parameters to the true
parameters depends on the excitation of the signals.

It is noted that in the convergence analysis of gradient estimator, we only consider

that the true parameters are constant.
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4.2.1.4 Application To Power Systems
Let us consider our power system dynamics (4.7)~(4.11)
Y=y
= F(x,u) — 5.22876Q1 (4.35)

where

Flz,u) = — 7.03268 + 14.5228874 — 53.09608z

+ (104.5752 cos(0.08727 — x3) + 7.84314 sin(0.08727 — x3))x4

+ [26.143814 cos(0.08727 + 1 — x3)
+ 1.96079x4 sin(0.08727 + x; — :1:3)} u

— 26.21518z3u’

Assume that ()1 in the model is'unknown: The above model cannot be directly used
for estimation, because the derivative of ¢ appears in the above equation. To
eliminate ¥ in the above equation, let.us take Laplace transform of both sides
SY —y(0) = L{F(x,u)} =522876 L{Q1} (4.36)
Rearranging (4.36)
(S+A)Y =AY —y(0) = L{F(z,u)} — 5.22876L{Q1}

where S is the Laplace operator and A s is a positive constant

— Y= ﬁf [L{F(z,u)} + A\ Y+ y(0) —5.22876L{Q1}]
— y(t) = ﬁf [F(z,u) + Ay +y(0) —5.22876] Ml] (4.37)

This leads (4.37) to the form of linear parametrization form of (4.27) with

W(t) = ﬁ [F(z,u) + Ay +y(0) —5.22876]

0[]
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In the following, we use gradient estimator to estimate the load variation in the
power system with output being described by (4.35). As shown in Figure 4.8. The true
load reactive power demand is assumed to be Q1 = 11. We let p, = 10 and
A¢=10 and the initial condition is xo=[0,0,0,1.1]. It is clear that the
parameter error will converge to zero for a finite time. It is noted that the choices of
estimation gain P,, initial state o, and the A ¢ of filter have a fundamental
influence on the convergence behavior of the estimator. Generally speaking,
increasing P, and Af leads to faster parameter convergence, especially for
increasing Ay as shown in Figure 4.9. In the next, we consider the parameter 1 is
slowly time-varying, with @1 = 11 + 0.1sin(0.5¢) and p,, Af, To, we take
the same as in Figure 4.8. It is seen in Figure 4.10 that the gradient method may work
well in the presence of parameter variation. However, if the true parameters vary fast,
it is hard for gradient estimator to.estimate accurately. It can be seen in Figure 4.11
with fast time-varying Q1 for- Q=114 0.1 sin(5¢). Obviously, the estimate is

poor.
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4.2.2 An Observer Approach

The main goal of this section is to design a parameter observer that can real-time
estimate the variation of the system parameter.

4.2.2.1 The Transformation of Decoupled Form

From the power system dynamics (4.1)~(4.6), the power system dynamics has four
states = = (0 m W s V) T and one control u = % We assume that all the states are

measurable and Pj, (1 are system’s unknown parameters. Then, the power system

dynamics has the following form :

T = f(xz,u) +g(z)a (4.38)
0 0
(@ _ |10 0
where a = (Pl and 9(T) G111y G12
921 g2

It is clear from (4.38) that the unknown parameters only appear in the state equations
of #3, 4 and g(x) has rank 2. Inotderto-obtain our desired decouple form, we

make the following state transformation.

z= Mzx (4.39)
with
- Ioyo 0
M =
( 0 M2><2) (4.40)
gu g2\
Moo — 11 g12
92%2 <921 g2 (4.41)

The state equations in new state variables are described as below
(= Mz = Mf(x,u) + Mg(z)a
= Mf(M~'z,u) + Mg(x)a

= frew(2,u) + Mg(x)a (4.42)
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where fpnew(z,u) and Mg(z) are given by

fl new(z7 u)
f2 new(z7 u)
Z,u) =
frew( ) 73 new(7, ) (4.43)
f4 nem(za U)
0 O
v 0O O
and Mg(x) = 1 0 (4.44)
0 1
Under these settings, we have new state equations
Z1 = fl new(za u)
22 = f2 new(za u)
23 = f3 new(z7 u) + Ql
Zy= [y new(za U’) + P (4.45)

Clearly, Q1 only appear in the state equation of- 23, similarly Pi only appear in
the state equation of 24. It makes it easy for us that to design parameter observer. The

details are discussed in the next section.

4.2.2.2 Observer Design for Constant Parameters

With the aid of transformed system (4.45), we will design a parameter observer that
can real-time estimate the variation of the system parameter. At first, we assume that
the true parameters are constant to design the observer in this section. However, the
true parameters may be time varying. We will discuss the observer for time-varying

parameters in the next section.
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For the true parameters are constant, we design the observer and error signal as

follows :

51 = f3 new(zv u) + Q1n+ kl(z3 - 51)

€2 = f4 new(2,0) + Pip + ka(z4 — &2) (4.46)
e1=z3—&1
e2 = 24— &2 (4.47)

Here, k; > 0 for ¢ =1,2. Q1, and P, are considered as the constant nominal
values of ()1 and P’1. The difference between the nominal and actual parameter

values is called the parameter estimated error, denoted by

m1=Q1— Q1 (4.48)
mo = Ry P (4.49)

We design the estimated parameter as follow:

Q1= ker ¥ Q1 (4.50)
Py = ksesppRi (4.51)

Under this design, we will obtain the unknown parameters by the way of to observe
the value of error signal. The details are given as follows :
From (4.46) ~ (4.47) ~ (4.48), we can obtain
er1=2z3— &1
= €1=743—&1
= f3 new(zw) + Q1= (f3 new(z u) + Qun + k1(23 — 1))
= €1=—kie1+(Q, — Q1) (4.52)

Since k1 is assumed to be a positive constant, and 71 is constant for Q1 is

1n

: Q1 . .
constant. Thus, €1 will approach —— after a short time transient.
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Ql_an

Y
€1 = Tl

Then,

Q1 = ket + Qun (4.53)
Obviously, Q1 will approach ()1 after a short time transient. Thus the actual

parameter value can be obtained by (4.50). The other case can be similarly derived.
For e2 = z4 — &2
= €2 =24 — f 2

= f4 new(za u) + P — (f4 new(za u) + P+ kQ(Z4 - 52))

= €= —keea+ (P, — P1p) (4.54)
. . . Pl_Pln
After a short time transient, €2 will approach —7——". It follows :
P—P
62 ~ 1k2 1n

= P~ ksey+ Py,

=P (4.55)
It is noted that in order to have good estimation performance, the initial parameter
estimates should be chosen to be as accurate as possible. Furthermore, if the true

parameters vary, it is possible for the parameter observer to estimate accurately

for k; large enough. It can be found in the examples in Section 4.2.2.4.

4.2.2.3 Observer Design for Time-Varying Parameters
In this section, we will design a parameter observer to deal with time-varying
parameters. It may guarantee to obtain good parameter estimation, even though the
true parameters vary fast. The idea is similar to that in Section 4.2.2.2.
With the aid of transformed system (4.45), we design the observer and error

signal as follows :
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51 = f3 new(zv u) + Ql + k?l(Zg - 51)

52 = f4 new(za U) + pl + k2(2’4 — 52) (456)
e1=23—&1
e2 = 24 — §2 (4.57)

Here, k; > 0 for 2 =1, 2. Q1 and P1 are estimated values of @1 and Pi.
The difference between the estimated and actual parameter values is called the

parameter estimated error, denoted by

mi= Q1 — Q1 (4.58)
mo= P, — P (4.59)

and the true parameters ()1 ~ 1 can be written as
Q1 = Qin+ L (4.60)
Py= P, + AP (4.61)
where @1, and P, are considered as the constant nominal values of Q1 and
Pi. AQ and AP are the variation'of ()1 and’ P1. Assume that the variations of
parameters vary at the small region, i.e. [|AQ| < p and ||AP|| < p.

Then, we design the estimated parameter as follow:

Q1= Qun— kier + (p+1) sat(3) (4.62)
P, = Py, — keey + (p+n) sat(%) (4.63)

where, ¢ is the boundary layer of the saturation function.
Under this design, we will obtain the unknown parameters by the way of to observe

the value of error signal. The details are given as follows :

First, we select the sliding surface s = e;1. From (4.56)~(4.57)~(4.58), we can obtain

e1=23—&1
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= é1=23— &
= f3 new('z7 u) + Ql - (f3 new(za u) + Ql + ]471(23 - 61))
= é1:—k1€1+<Q1—Q1)

= —kie1 + (Qu, + AQ — Q1) (4.64)
For s =¢€;
= sé=el(—kies + Qi+ AQ — Q1) (4.65)

It is known that ||AQ|| < p. Hence, we design the estimated parameter (1 as

follow:
Q1= Qu— kre1+ (p +1n) sat(3) (4.66)
From (4.65) and (4.66), we get
ss=el [AQ —(p+mn) sat(%) (4.67)
= s5<—nls (4.68)

Satisfying (4.58) guarantees that the'error signal- €1 will approach to zero in a

finite time.

If e — 0 & smooth enough (él — 0) , then from (4.64) we can obtain
(Q1— Ql) — 0 in a finite time.

The other case can be similarly derived. Details are omitted.

4.2.2.4 Application to Power Systems
Let us consider our power system dynamics (4.1)~(4.10). In order to make
observer designing simpler, we rewrite power system dynamics in the form of

(4.38) with the actual system parameters.
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8

Ji(z,u) 0 0

2o | | folx,u) 0 0 Q1

3 | | Fa(z,u) | 7| 33.33333 0 ( Py ) (4.69)
T4 falz,u) —5.22876 — 0.39216

1

We select a variable transformed matrix M

10 0 0

_ 01 0 0

M =
0 0 0.03 0 (4.70)
0 0 —04 —255

And we set new state variables z = Mx . After state transformation, we can obtain

the new system equations :

z = Mz

Y v Q4

= i)+ o) (G @7
Z1 = fl(l’,U)

Z2 = f 2(1‘ ) u)
Z3=0.03f3(x,u) + Q1
Za=—04f3(x,u) — 2.55fs(x,u) + P (4.72)
In the practical power system, the variation of reactive power demand is often
greater than real power demand. In these simulations, we will show the estimation

performance of (1. Similarly, P; can obtain at same procedures.

In the following simulations, we will discuss the estimation of reactive power

demand of PQ-load (1 under the situation of Pt =0 and u = 1.

First, we consider the true reactive power demand of load in the uncontrolled
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power system is constant, we design parameter observer as follow :

&1 =0.03f3(z,u) + Qun+ k1(z3 — &1) (4.73)
The error signals are
e1 =23—&1 (4.74)

The estimated parameter is designed as follow:
Q1= Qun+ krex (4.75)

As discussion in Section 4.2.2.2, the estimated parameter ()1 will approach the true

parameter ()1 in a short time transient.

Simulations of constant parameter are provided in Figures 4.12 and 4.13. Here, We
consider the true reactive power demand,of load in the uncontrolled power system is
Q1 = 11 under the situation of'the systemvinitial'state xo = [0, 0,0, 1.1]. We set
the nominal parameter value of:parameter obsérver, €)1, = 11, and select k; = 10.
The estimation performance is displayed in‘Figure 4.12. It is seen that the estimated
parameter will approach actual parameter as'expected. Figure 4.13 shows the results
when the true reactive power demand of load is ()1 = 12 with initial state being
xo=1[0,0,0,1.1] and Q1n, =9 ~ k1 = 10. It is clear that estimated error may
converge to zero.

In addition, in order to have good estimation performance, the nominal parameter
value of the observer should be chosen to be as accurate as possible. The result can
compare the estimated performance in Figure 4.12 with that in Figure 4.13. Accurate

initial parameter estimates may lead to fast parameter convergence.

In the next, let us consider the estimated performance of the prior designing
parameter observer in the presence of parameter variation. First, in the presence of

relative slow load variation in the power system, Q@1 = 11 + 0.1sin(%), we select
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@1, =11 and k; = 10. The estimated and true parameters are shown in Figure
4.14. 1t is seen that the designing parameter observer works well in the presence of
slow parameter variation. Then, let us consider that if the true parameter varies faster,
what estimated performance will become? To see this, we let the load variation in the
power system varying with relative high frequency, which 1 = 11 + 0.1sin(10t),
and selecting (Q1, = 11 and k; = 10. The simulation result is shown in Figure
4.15. We can find the gain k1 is not large enough so that the parameter variation can
not be tracked sufficiently accurately. Thus, we choose larger k1 for k1 = 50 with

the same varied frequency in the Figure 4.16. It is seen that the estimation

performance will improve by increasing k1.

Finally, Let us consider the observer designing in the Section 4.2.2.3. Its estimation
performance may be better with prior ong;lespécially in the presence of fast parameter
variation.

Let us consider the true reactive power-demand of load in the uncontrolled

power system is vary, we design parameter observer as follow :

€1 =0.03f3(x,u) + Q1+ ki1(z3 — &) (4.76)
The error signals are
e1 = z3— &1 4.77)
With the variation of (Q1, (J1 can be written as

Q1=Qun+ AQ (4.78)

We design the estimated parameter as follow:
Q1 = Qun — kie1 + (p+n) sat(%) (4.79)

Figures 4.17~4.18 show the estimation performance of different time-varying

frequency of the load variation. In these simulations, the design parameters are taken
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tobe k1=1, Quu=11, p=0.2, n=0.01, » =0.001 under the situation
of the system initial state xo = [O, 0,0, 1.1]. It is clear that it works quite well in
the presence of fast parameter variation, even though the parameter vary faster.

Finally, let us consider the situation about a 5% load variation. Figure 4.19 shows
the estimation result of a 5% load variation about the operating point. The variation of
reactive power demand is shown in Figure 4.19(a). It is seen that the estimated
performance is also well.

We have discussed two types of estimators in this section. The gradient estimator
has the drawback of slow convergence [25]. If the true load vary fast, it is harder for
gradient estimator to estimate accurately. We have developed an observer approach to
overcome the problem of convergence speed in Section 4.2. The following simulation
will compare the convergence behavior of two estimators in the presence of load
variation. We suppose the true-load is time-varying; with Q1 = 11 + 0.1sin(5%).
The initial condition of power system_is_zo =0,0,0,1.1]. And the design
parameters are taken to be Po=10, Xr=10 and k1=1, Q1. =11,
p=02, n=0.01, ¢=0.001, respectively. Figures 4.20~4.21 show the
estimation performances of two methods. Obviously, the observer approach has faster

convergence than gradient method.

70



11.0005 estimated

= 11

10.9955 + .

10999 | | | | 1 | | | |
1] 02 04 06 08 1 1.2 1.4 1.6 1.8 2

0aF .

estimated error of 1

_15 | | | | 1 | | | |

Figure 4.12: Estimation resalt by observer method for Q1 = 11

and k1 =10, Q=11

—
—
T
-
-
1

.y
[}
T

1

a 02 04 06 08 1 1.2 1.4 1.6 1.8 2

estimated error of Q11

Figure 4.13: Estimation result by observer method for Q1 = 12

and k1 =10, Q1 =9

71



10.95

109

0.01

0.003

-0.005

estimated error of Q11
(]

0.01 ¢

Figure 4.14: Estimation result by observerimethod for ()1 = 11 + 0.1sin(¢)

and k1 =10, @1, =11

11.05

11

21

10.95

1091

0.1

0.05

-0.05

estimated error of Q1
o }

_I:I'] | | | | 1 | | | |
1] 02 04 06 08 1 1.2 1.4 1.6 1.8 2

Figure 4.15: Estimation result by observer method for @1 = 11 + 0.1sin(10¢)

and k1 =10, Q1, =11

72



1

o

10.95

109

0.0z

0.01

-0.01

estimated error of Q1
(]

-0.02

Figure 4.16: Estimation result by obsétver method for ()1 = 11 + 0.1sin(10¢)

and k1 =50, @1, =11

1

o

10.95

109

estimated error of G
(]

Figure 4.17: Estimation result by observer method for @)1 = 11 + 0.1 sin(5¢)

and ki=1, Qu=11, p=02, n=0.01, ¢ =0.001

73



1

o

10.95

109

estimated error of G
(]
1

Figure 4.18: Estimation result by obsétver method for ()1 = 11 + 0.1sin(10¢)

and k1 =1, Qin =111 p=10.2:7n=0.01, ¢=0.001

o

1081 .

-]DE 1 1 1 1 1 1 1 1 1

005 F .

estimated error of G

01k ]

Figure 4.19: Estimation result by observer method for 5% variation of (1

and k1 =10, Q1, = 10.8

74



11.03

11.06

11.04

11.02

10.93

10.96

10.94

actual value
ohserver
- gradient

I

10.92

109 R L L .
0 02 04 06 08 1 12 14 1B 18 2

Figure 4.20: Comparisons of estimatefs with observer approach and gradient method

I:I15 T T T T T T T T T

— obserer

---- gradient
01r S a

g
0.05 i : f A
:

—_——— — —

estimated error of G1
=
= o
I
|
|
1

I
]
—

T

-

.

-
1

]

iy

m
T

1

02 04 06 08 1 12 14 16 1.8 2

Figure 4.21: Estimation errors of observer approach and gradient method

75



4.3 Adaptive Control System Design

In this section, we will employ the idea of adaptive control for voltage regulation of
the power system. In practical, many dynamic systems to be controlled may have
some uncertain parameters. In power system, it may be subjected to large variations in
loading conditions. In this section, we may import the idea of adaptive control and use
estimator as the load monitoring. We use the same VSC control law that be designed
in Section 4.1; and use estimated parameter from estimator that be designed in Section
4.2 in the control law to achieve voltage regulation.

4.3.1 Control System Design

The basic idea of adaptive control is to estimate the uncertain plant parameters
on-line based on the measured system signal, and use the estimated parameters in the
control input computation. An adaptive control’system can thus be regarded as a
control system with on-line parameter estimation. It is known that the control and
estimation can be designed separately. and-used-together by separation principle.

In this section, we take the control law (Section 4.1) and implement it that using an
estimated parameter of estimator (Section 4.2), the adaptive control system can be

completed. The schematic of adaptive control power system is shown in Figure 4.22.

/ 1 X y

VSC ‘
»- Plant = H —»
controller
o)
estimator -
C:)1 --- estimated parameter

Figure 4.22: An adaptive control system
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4.3.2 Application to Power Systems
As recalled in Section 4.1, we design VSC control law to achieve voltage

regulation with

w=u 4 u" (4.80)
o —91(@) =/ g1(2)~4g2(x) f(x)
u q — 292(I) (481)
U = e (a— 1) (4:82)

where
f(x) = — 7.03268 4+ 14.52288x4 — 53.0960850?1 + (104.5752 cos(0.08727 — 5[73)

+ 7.84314 sin(0.08727 — x3))x4 — 5.22876Q)1 — 7.03268
g1(x) = 26.1438x4 cos(0.08727 + x1 — x3) + 1.96079x4 sin(0.08727 + x1 — x3)
g2(x) = — 26.21518z7
If the reactive power demand of the load €)1 is'known exactly, we can use the
above control law to achieve voltage regulation. However, we do not know the load
variation of the power system exactly in‘practical.

In the next, let us assume that the load variation is not known exactly. We use

estimator designing in Section 4.2 as the load monitoring to provide the estimated
parameter Q1 to the controller. For true reactive power demand of the load Q1 is
constant, the estimated law is selected with
Q1 = kier + Qi (4.83)
And for )1 is time varying with small variation, the estimated law is selected with
Q1= Qi —kier + (o1 +m) sat(%) (4.84)

The voltage regulation performance may depend on the quality of the load estimates

in the estimator.
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In Section 4.1, we designed the VSC control law assuming that the true load

variation is known. In the following simulations, the true parameter Q1 is

substituted for QL The schematic is shown in Figure 4.22. In Figure 4.23, the true

reactive power demand of the load is assumed to be )1 = 11.2. The value of Q1n,
is chosen to be 11. The initial state of the system is xo = [0,0,0,1.1], and
the other design parameters are taken to be k1 = 10, 1 = 0.1. Figure 4.23 (a) (b)
show the estimating performance; Figure 4.23 (c) shows the result of voltage
regulation, and the variation of tap changing ratio 7 is shown in Figure 4.23 (d).
It is seen from Figure 4.23 (d), the VSC design using sign-type controller may lead to
chattering. In practice, the chattering is undesirable. In order to eliminate chattering
phenomenon, we can use saturation-type controller. We replace the controller of u
the term sgn(z4 — 1) by sat((zs—1)7/0:00%). As shown in Figure 4.24, the
chattering phenomenon has been improved.-And Figure 4.25 shows the power system
response with the VSC controllér, Figure 4:26-shows the true reactive power demand
of the load is a sinusoidal signal, Q1 =114 0.1sin(5¢). The value of Q1 is
chosen to be 11. The initial state of the system is zo = [0,0,0, 1.1], and the other
design parameters are taken to be k1 =1, p1 =02, 171 =0.01, n=0.1,
¢1 = 0.001. Figure 4.26 shows the simulation result. The simulation results have

demonstrated the effectiveness of our proposed adaptive scheme.
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CHAPTERSS

Control of Voltage Collapse

As discussed in Chapter 3, a-major-problem,of electric power system is “voltage
collapse”. This kind of instability+is-that the lhne voltage in PQ-load may jump
sharply from the rated voltage to a deeply low voltage as PQ-load varies. In Chapter 3,
we employ the FIDF design technique and signal analysis tool to the detection of
voltage collapse in a power system. It is found that the voltage collapse can be
successfully detected and generate the alarm signal by properly adjusting the
threshold. With the announcement of warning signal, it is useful for us to initiate
appropriate control actions to prevent such instability phenomena.

In Chapter 4, we focus on the design of Variable Structure Control law to achieve
voltage regulation for the electric power system. By utilizing tap changer to regulate
the voltage level and raise the electric quality of the electric power system. Besides,
we also design a parameter estimator as the load monitor to provide the load variation

of the power system. It provides the accurate parameter variation to the controller to
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have better regulating capacity. It also make controller to be able to deal with the
existence of parameter uncertainty in a system. In this chapter, we will show a design

of prevention of voltage collapse by employing prior designs.

5.1 Control of Voltage Collapse

The effect of the tap changer ratio of the power system is that the system Hopf
range can be decreased or even eliminated by suitable changing tap changer ratio.
Further, with the existence of power system equilibria, it is found that the power
system stable region can be enlarged by changing tap changer ratio. Moreover, the
control of Hopf bifurcation is also a good .design of prevention of voltage collapse.

The details are discussed in [39].

In Chapter 3, we succeed to develop a-means to-detect the occurrence of voltage
collapse in a power system and to generate a warning signal to admonish us. We also
find that we can regulate the voltage level to raise the electric quality of the electric
power system by utilizing tap changer in Chapter 4. Here, we will utilize the tap
changer to prevent the occurrence of voltage collapse at the time of the detected

equipment send out a warning signal. A detail scheme is shown in Figure 5.1.
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5.2 Simulation Results

Figures 5.2-5.3 show two examples of proposed scheme. In these simulations, the
system initial state is xo = [0, 0,0, 1.1], the reactive power demand of the load is
(21 = 11.3. It makes the power system operation exceeding its stability limit. It is
observed from Figure 5.2(b) and 5.3(b) that the system undergoes voltage collapse for
such heavy load. Figure 5.2(b) shows the load voltage collapse around t=1.13.
However, by properly adjusting the threshold, we can detect it before it occurs. In
these simulations, we select threshold to be 0.06 p.u. As displayed in Figure 5.2(d)
and 5.3(d), the voltage collapse can be successfully detected and the alarm signal is
fired before t=1. It makes us having enough time to take a proper control action to
avoid such instability. In Figure 5.2(e), we increase tap changer ratio to enlarge the
power system stable region. It is'*found in Figure 5.2(f) that the voltage collapse
behavior disappears and the lead.voltage reaches a new equilibrium point after a
transient of oscillation. Furthermore,iwe-shall-employ the VSC control law designing
in section 4.1 to achieve regulating the load voltage. This can be seen from Figure
5.3(e) and Figure 5.3(f). Simulation results have demonstrated the effectiveness of our

proposed scheme of prevention of the voltage collapse.
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CHAPTER 6

Conclusions and Suggestions for
Further Research

In this thesis, we have studied the detection of voltage collapse using a Dobson and
Chiang's power system model. By treating the difference between the output of the
power system model and that of its linearized model as a fault vector and employing a
FIDF design technique, the occurrence of voltage collapse is shown to be successfully
detected by inspecting the residual signal generated from the FIDF. The performance
of detecting voltage collapse depends on the setting of the threshold. Simulations in
Chapter 3 are given to demonstrate the effectiveness of this approach.

To raise the voltage quality of power supply for satisfactory operation of a power
system, we add an extra tap changer parallel to the nonlinear load to Dobson and
Chiang's power system model. We have applied Variable Structure Control design

scheme to adjust the tap changer ratio to achieve voltage regulation. According to the
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simulations in Section 4.1, it is shown that the designed controller can achieve the
desired performance. However, in practical power system, the system dynamics may
have well known dynamics at the beginning, but will experience unpredictable load
variation as the control operation goes on. For this reason, we have proposed a
parameter estimator as the load monitor to provide the load variation of the power
system in Section 4.2. It provides the accurate load variation to the VSC voltage
controller to have better regulating capacity.

To prevent the voltage collapse, we have proposed a scheme of prevention of
voltage collapse based on prior designs. We utilize the tap changer to prevent the
occurrence of voltage collapse. At the time of the detected equipment send out a
warning signal, we tune the tap changer ratio to prevent the occurrence of voltage
collapse. Further, we have employed the VSC controller to regulate the load voltage.

Simulations in Chapter 5 demonstrate the effectiveness of this scheme.

In the following, we indicate some. directions for further research. Firstly, for
detection of voltage collapse, we provide a means for quick detection of voltage
collapse but not the only one. Recently, the issue of detecting voltage collapse has
attracted more and more attention [12,14,30]. It is a way for further research.
Secondly, for voltage control, in addition to the use of Tap changer, another feasible
means can also be added, such as shunt capacitors or series capacitors. To consider
voltage control with capacitors is also a direction of study. Finally, in this thesis, we
focus on voltage control. However, an efficient and reliable operation of power
systems should have the property that the voltage and frequency should remain nearly

constant. Thus, the final direction is frequency control.
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