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消除影像熱像素雜訊 

之選擇性向量指向濾波器 

學 生: 陳 瑞 俊          指 導 教 授: 張 志 永 博士 

國立交通大學電機與控制工程所 

摘 要 

熱影像雜訊成為數位相機系統的困擾已有多年。人們看到所拍到的影像，若

被熱影像雜訊所污染，視覺上感到不舒服，因為這種雜訊破壞整個照片的逼真與

美感。然而，數位相機已漸漸成為每個家庭的生活必需品，因此發展熱像素雜訊

的移除技術的方法，是必須且重要的。本論文提出消除影像中熱像素雜訊之選擇

性向量指向濾波器。我們建構的選擇性濾波器，是以一般向量指向濾波器的概念

為基礎。一般向量指向濾波器雖然比其他常見的濾波器耗時，卻在多維影像處理

裡，因為有優異的成果而聞名。由實驗結果證明，我們所提出的選擇性向量指向

濾波器，比一般向量指向濾波器節省時間，而且在一些測量法裡有較好的成果。

雜訊偵測並過濾的正確比率，在實驗結果裡呈現出來，由此可以明顯看出，我們

所提出的濾波器，比一般向量指向濾波器的性能好；甚至，以加權式 PSNR(WPSNR)

值衡量，也跟一些其他濾波器有相近的結果。 
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Decision-Based Vector Directional Filter 

for Hot Pixel Noise Removal 

STUDENT: JUI-CHUN CHEN   ADVISOR: Dr. JYH-YEONG CHANG  

Institute of Electrical and Control Engineering 

National Chiao-Tung University 

ABSTRACT 

Hot spot like noise has been an annoying problem for years in the filed of digital 

camera system. The contaminated images degraded by this kind of noise do not 

delight people in human’s visual perception since the contaminations destroy the 

sense of authenticity and beauty over the images people shoot. Because the digital 

cameras have almost become the necessities for our everyday life, hence, it is 

necessary and important to develop a technique to remove hot spot noise in a digital 

camera. The thesis introduces decision-based vector directional filter to reduce the 

digital camera corruption incurred by hot spot noise. The decision-based filter we 

construct is based on the concept of generalized vector directional filter, which is 

well-known by its outstanding performance in multi-channel image processing 

although it takes much more time than the other conventional filters. By the 

simulation results, the proposed decision-based vector directional filter has 

demonstrated its lower time consumption and higher performance in some measure in 

comparing to generalized vector directional filter. From the true positive and false 

positive of the noise reduction obtained in the simulation, it is obviously that the 
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performance of our proposed filter excels that of the generalized vector directional 

filter. Furthermore, the performance of our proposed filter is comparable to those of 

some other filters in terms of weighted peak signal to noise ratio.       
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Chapter 1  Introduction 
 

 

The digital cameras have almost become the necessities for every family around 

the world recently. People record their lives, traveling spots, celebrations, what ever 

the scenes they want to preserve, even trivial little things, they just need to press the 

shutter and keep the images in the memory or hardware storage for reviewing latter. 

However, the most popular types of the digital cameras are cheaper and less quality 

due to their simple designing and weak sensitivity of sensor. On account of reason 

mentioned just previously, these point and shoot cameras seem to be easy to incur 

noise and degrade images that users are not supposed to want it happens. 

 

In this thesis, we are interesting in the image hot spot noise (also called hot spot 

like noise) reduction which is one topic of major researches for digital camera’s noise 

removing. The degraded pixels are commonly also named Hot Pixels [1], [2]. They 

will be explicitly expounded in latter chapters. The particular issue we will address is 

to construct a decision-based model to a suitable retrieval filter for post image process 

under the structure of digital camera system that may incur hot spot noise in capturing 

a picture. 

 

1.1 Literature Survey 

 
The noise reduction of image process has been investigated for decades. The 

origination of it was starting with monochrome image. Since the techniques of the 

digital camera hardware make progress at a tremendous pace, color images have 
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become the trend nowadays. However, those traditional methods, such as mean filter 

[3], conventional median filter (CMF) [4]–[7], vector median filter (VMF) [8], [9], 

and decision-based vectorized median filter (DBVMF) [10], are typically suitable for 

monochrome image process, as a result of exploiting only the intensity-information of 

processing image and especially are useful for impulsive or Gaussian noise removal. 

Though, these filters have not bad performances in the single channel image process 

and can be applying on multi-channel image process by combining with the concept 

of color space. Nevertheless, they are not color-originated concepts and beyond 

question must lose certain advantages because of making least use of the information 

in other two color spaces. 

 

The general vector directional filter (GVDF) [11]-[13] is thus developed 

exuberantly in recent decades. This new approach is better getting close to the nut of 

concept rising in color space. GVDF separates the processing of vector-valued signals 

into directional processing and magnitude processing. Its instinctive color property 

from the view of color space leads to outstanding performance on multi-channel 

image process. GVDF applies not only in color image processing, but also in satellite 

image data processing and multi-spectral biomedical image processing. In this thesis, 

GVDF is modeled by a decision-based structure and is aiming at reducing hot spot 

noise, a defect observed in the digital camera system. 
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Chapter 2  Origination of Hot Spot Noise 
 

 

2.1 Hot Spot Like Noise and Its Origination 

“Hot pixel” is a general term used to describe bright or colored specks in an 

image. It stands for the overcharged、 misfires or destroying detail in the image. 

Various factors lead to yield this outcome. In general, some pixels in the sensor array 

of a digital camera are over sensitive to light of varying degrees as these pixels on the 

CCD have some abnormal charge leakage. Supposing long exposure or high 

temperature of the camera, the hot pixels appearing rate are increasing consequently 

and mostly they appear more frequently in images that were captured in low light 

condition. If hot spot noise is bad enough, it would be annoying on regular shots. That 

is why people pay so much attention to modify the post image process in the digital 

camera system.    

A real size crop of a hot (Pink!) pixel on Nikon 990 at 1/11 second against a  

normal light background (a door) is shownin Fig. 2.1 [2].  

 

 

                 Fig. 2.1. A real size crop of a hot (Pink!) pixel. 
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2.2 Template Noise 
Since in the real world, we can only acquire the contaminated image that 

corrupted by hot spot like noise, it is impossible for us to figure out the performance 

of our designing from comparing original clean image and the processed image. To 

solve this problem, we construct a model to generate image noise that resembles the 

hot spot like noise and the algorithm is produced by observing the hot spot like noise 

in the corrupted images as the following steps [10]. 

1) First we inspect the hot pixel typical pattern model contained in a real world 

image, the blob nearly contains 3 â 2 pixels and hence a 3 â 2 noise mask 

has been chosen to be the hot pixel blob in an image. 

2) Then we choose a window size of 3 â 3 blocks, each contains a sub-block blob 

of size 3 â 2 pixels. Let the blob containing the hot pixel to be in the center 

block of the window, there are 54 pixels in the extended window. 

3) Using the column vector of 3 â 2 hot pixel blob as the center of an extended 

window of size 9 â 6 pixels, calculate the average u of this extended window 

by 

u = N

P
x(iàs,jàt)

ììì(s, t) ∈ pixel in the extended window      (1) 

where W is a window of size 9 â 6 pixels. Therefore, the noise pixels blob 

is n(i, j) = x(i, j) à u(i, j)|(i, j) ∈ pixels in the hot pixel blob,  and there 

are six pixels in the hot pixel blob. 

4) After having the simplest noise model, we add the noise blob into the original 

picture. Noise n(i, j) is add to an original image f(i, j) [14] to generate an 

image f1(i, j) corrupted by hot pixel noise by 
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     f1(i, j) = f(i, j) + n(i, j)                      (2) 

5) From the steps above, the noisy images were originated from the original images. 

Although we have already added the above noise in the template image, the 

contaminated image is still a little different from the ideal noise model. The 

noise pixel n(i, j) is needed to be adjusted for producing more closely replica 

of the true hot pixel noise. We observe that the hot pixel noise is somewhat 

proportional to the gray level of the local value of the pixel. To reflect this, we 

add the inversely factors u(i, j)
p

 and the random number ra(i, j) to the noise 

pixel n(i, j). The nh(i, j) modified from n(i, j) is described below. 

  
nh(i, j) =

ô
1 +

u(i,j)

1
q õ

n(i, j) 1 + ra(i, j)[ ]                (3) 

where ra(i, j) is a random number from 0 to 0.5 to allow some randomness. As 

mentioned above, the u(i,j)
1

q
 in Eq. (3) is introduced to reflect the hot pixel is 

more eminent in the dark area than usual. By this setting, if u(i, j) is small, 

then u(i,j)
1

q
 becomes large, and vice versa. Then n(i, j) as given by Eq. (2) is 

replaced by nh(i, j) on Eq. (3), and therefore,  

         fh(i, j) = f(i, j) + nh(i, j)                      (4) 

     

Following the steps, the hot pixel template noise can be easily added to a known 

image. Thus, we can have both the noisy and original images to assess the noise 

reduction performance in term of the quantification measures. An original image and 

its hot pixel noisy images are shown in Fig. 2.2 and Fig. 2.3. Fig. 2.2 is the original 
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image “Lena.” Fig. 2.3 is the noisy image with six mixed hot pixel noise patterns. 

 

Fig. 2.2.  Example of original image “Lena.” 

 

Fig. 2.3.  Zoomed “Lena” with six mixed hot pixel noise patterns. 
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Chapter 3  Decision-Based General Vector Directional 

Filter for Hot Pixel Removal 
 

The conventional filters for the image processing are mostly directly applying in 

the spatial domain by operating a specific or a set of functions individually on the 

independent channel of the given image. For the single channel image processing, 

different spatial filter has different effect respectively, but they are not good enough 

for the multi-channel image processing [11]. Separately processing on each channel 

and then reconstruct the multi-channel image seems to be less of consistency and fail 

to utilize the inherent correlation that is usually presented in multi-channel images. 

The general vector directional filter (GVDF) [11]-[13] provides a better approach than 

the spatial filters, those with inherent drawback, and considers the multi-channel 

image as a pack of vectors so as to take directional processing and magnitude 

processing into account. With this separation, GVDF can achieve good filtering on the 

color image, multi-channel image, for various noise source models.   

 

3.1 General Vector Directional Filter 
 

GVDF processes the input image in the concept of vector. A vector is formed in 

the color space [11], [15], and [16] by three-color components of an input pixel of the 

processing image, thus vector direction and magnitude are generated. GVDF can be 

divided into two components, the first component is the directional processing and the 

other is magnitude processing. In the first component of GVDF filter, the distance 

criterion is adopted by the angle difference and the stage aim in this step is to 

eliminate the atypical directions in the operating vectors. In this thesis, the introduced  
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directional processing is applying by a general vector directional filter, and its  

definition is as below [11]. 

 

Definition: The output of the generalized vector directional filter (GVDF), for input  

fi, i= 1, 2, ..., n{ }, is the set SGD = GVDF f1, f2, ..., fn[ ], 

 where   SGD = f(1), f(2), . . ., f(k)
è é

, f(i) ∈ fj, j = 1, 2, . . ., n{ }          

                               ∀i= 1, 2, ..., k. 

Let ëi correspond to fi and be defined as 

 
 
ë i = P

j=1

n
A ( f i, f j) , i = 1, 2, ..., n.

 
where A(fi, fj) denotes the angle between the vectors fi and fj , 

0 6A(fi, fj) 6 ù. 

An ordering of the ëis  

       ë(1) 6 ë(2) 6 ...6 ë(k) 6 ...6 ë(n). 

implies the same ordering to the corresponding fis 

f(1) 6 f(2) 6 ...6 f(k) 6 ...6 f(n). 

The first k  terms of the ordered sequence f(i) constitute the output of the GVDF. 

 

GVDF outputs set of vectors whose angle difference from others in one 

processing are smaller. It trims out the unwanted or the more contaminated-likely 

pixel that particularly has atypical vector direction to the most of the other vectors. In 

other words, the output set of GVDF in the mask filtering can preserve the chromatic 

and intensity tendency in the local processing region since chromaticity and intensity 

for a color vector are highly correlated to the vector’s direction and its magnitude in 

the color cube. Indeed, chromatic difference between two color vectors is affected by 

the angle and the magnitude difference of the corresponding two color vectors. 
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Furthermore magnitude difference causes the intensity disparity. Thus, in this 

component, we want to ensure the output pixel’s chromaticity is not going too far  

away from its neighborhood. 

 

    In the second component of GVDF filter, the output of magnitude processing is 

obtained from specific gray-scale filter such as: the ë–trimmed mean [16], [17], the 

morphological open-close [18], and the multistage max/median [19]. Here the 

gray-scale median filter [16], [20] is introduced on the processing image. From this 

filter, we can appropriately substitute the possible outlier pixel with one that has more 

centered intensity in the output of component one , and that prevent from miss  

employing the substitute by selecting the pixel with more extreme intensity.  

 

3.2 Decision-based Vector Directional Filter 
    Generally speaking, GVDF has good performance on the multi-channel image 

processing. When it is applied on the purpose of removing hot spot noise in the image 

processing, however, the output performance is barely satisfied. Moreover, it possibly 

changes too much details to retrieve the corrupted image. That is to say GVDF fails to 

preserve the most pixels in the original input image and it violates the original 

intention of our filter design. Consequently, we develop a decision-based vector  

directional filter (DBVDF) to enhance the performance of the GVDF.  

 

The algorithm of DBVDF involves 2 criterions and 5 stages. Two criterions 

for hot spot noise detection comes from the concept of using information of four 

neighborhood adjoin pixels, as shown in Fig. 3.1., to determine whether the 

processing pixel is to filter or not. Decisions made in these two criterions are 
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responsible for fast processing and high detection rate of proposed filter. The 

parameters in these two criterions are obtained from observing and summarizing. 

Besides, three of five stages have thresholds as decision. The 3rd stage is applied 

GVDF only, though the trimming length in the directional processing of GVDF is also  

a selected decision too. The whole DBVDF procedure is simply represented in the 

flowchart, as shown in Fig. 3.2. Thereafter, we will interpret the contents stage by  

stage explicitly. 

 

Two Criterions: 

    Our proposed algorithm exploits low computation characteristic of two criterion 

to achieve the fast filtering and high noise detection rate. The definitions of Matrix 

Cross, Matrix Cros12, Matrix Cross23 , Matrix Cross1234 and ò0 , all in the intensity 

sense, help to clearly describe the algorithm of adopted criterion in the first two 

components of DBVDF. It is noticed that the principal content in the criterion 1 is 

aiming at fast hot spot noise detection. The parameters in the description are 

experienced and experimental results. In addition, it is unnecessary to adjust these 

parameters for different processing images since the performances change slightly. In 

the criterion 2, there are four situations to comment. Different numbers of 

contaminated-likely neighborhood needs to be considered respectively. Indeed, the  

criterion 1 owns more severe restriction than criterion. 

 

 

 

 

 

 
Fig. 3.1. Four neighborhood adjoin pixels around the processing pixel 
       in the moving mask. 
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Definition:  

Matrix Cross=sort{x(i,j-1),x(i-1,j),x(i,j+1),x(i+1,j)}. 
        Matrix Cross12=Mean{Cross(1), Cross(2)}. 
        Matrix Cross23=Mean{Cross(2), Cross(3)}. 
        Matrix Cross1234=Mean{Cross(1), Cross(2), Cross(3), Cross(4)}. 

ò0=(255-Cross1234)/(255-x(i,j)). 
Criterion 1: 

a) x(i,j)>=1.25âCross23          
b) ò0>=1.45 
c) x(i,j)=255 

Criterion 2: 
a) x(i,j)>=235 
b) x(i,j)>=1.2âCross12 AND Cross(3)>=220 AND Cross(4)>=220 
c) Cross(2)>=210 AND Cross(3)>=210 AND Cross(4)>=210 
d) ò0>=1.35 AND Not{Cross(1)>=210 AND Cross(2)>=210 AND 

Cross(3)>=210 AND Cross(4)>=210} 

Stage 1: 

In the region of our 3 â 3 moving processing mask, the intensity of every pixel 

is not supposed to vary too much because of the characteristic of nature light [1]. That 

is to say that intensities in limited-area local region seem to be somewhat continuous. 

Thus, we use the sum of intensity difference as a criterion to restrict the filtering so 

that the processing area with little intensity variation will be bypassed. It’s not only 

decreasing our image processing time but preserving the most uncontaminated part of 

the original input. Consequently, the output resembles the image without noise much 

more and the rate of correction gains high.  

 

The threshold picked in this stage arises from the contents in the previous listed 

reasons. Considering a 3 â 3 moving processing mask as in Fig. 3.3, decision  
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restrains as ò1  [21],  

where

    

ò1 =
P
j6=i
j=1

9

xi à xjk k1
 

           =
P
j6=i

j=1

9

xi à xj| | , i = 1, 2, . . ., 9       

                       xi  and xj  denote the intensity of the indexed pixel  

if ò1  is greater than the threshold picked in this stag, then the proposed decision  

mechanism is meant to regard the processing pixel as an outlier one. 

Stage 2: 

    As the assumption in the stage 1, the color difference in the neighborhood of 

moving processing mask is supposed not to alter abruptly. In these two stages, we are 

expected to process comparatively normal contaminated-images with no abnormal 

intensity and color difference bounces. Once we filter a particular input that has a lot 

of edges in its detail, however, so long as the threshold selected in this stage be 

enlarged enough to prevent from modifying the complex color variation regions 

(usually refer to edges) as far as possible. Since contaminated pixels mostly are 

discontinuous in color with its neighbor clean pixels and usually have a great jump in 

every dimension of 3 color components with uncontaminated neighborhood, this stage 

employs the characteristic of the hot pixel noise to decide whether the moving mask is 

  

 

 

 

 

x1 x2 x3 

x4 x5 x6 

x7 x8 x9 

Fig. 3.3. 3 â 3 moving window mask with every entry indexed in stage 1. 
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going to be processing or just neglect the filtering in this pixel. This step saves lots of  

processing time again and even preserves the originality of the most pixels of input  

image further. 

Considering a 3â3 moving processing mask as in Fig. 3.2, decision restrain  

is selected by ò2 ,  

where 

    

ò2 =
P
j6=i
j=1

9

yi à yjk k1
 

            =
P
j6=i

j=1

9

yi à yj| | , j = 1, 2, . . ., 9  

              yi and yj  denote the three principal chroma of the indexed pixel  

if ò2  is greater than the threshold picked in this stage, then the proposed decision  

mechanism is meant to regard the processing pixel as an outlier one. 

         

Both of the stage 1 and stage 2 are highly related to the performing time cost. It 

is because that they determine whether the processing pixel is to be filtering or not. 

By these two stage’s criterions, we can save the a large quantity of processing time 

cause proceeds on filtering the uncontaminated-likely pixels with the GVDF in the  

next stage would takes a huge amount of time for its vast complexity of  

computations.   

  

Stage 3: 

Every pixel in the image can be seen as a vector as in Fig. 3.4. On account of 

color characteristic, we introduce the GVDF as a main filter in whole. The GVDF 

utilizes its principal viewpoint based on the color space concept and this is more close 

to the fundamental property in color image processing than any other filters. Although 
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GVDF costs considerably long time, it still has an outstanding performance in the 

multi-channels signal process. That’s the reason why we use the GVDF as a main 

filter [11] in the entire process. What is more in our design, the filter is appended the 

restrictions previously in this stage like those in stage 1 and stage 2, thus we can 

decrease the processing time effectively by the way of adequately choosing the more 

possible contaminated-likely pixels to handle.  

 

The strategy here is to adopt the 3â3 moving mask too while signal length 

criterion should be take into consideration so that the output signal length of GVDF is 

not varying far from the adjoining pixels of input. In the algorithm of GVDF, we take 

half numbers of input signals (that is in general) to be the trimming target. Therefore, 

four input pixels that deviate from the other five inputs are passed over because they 

are seemed to be noise-like ones.   

 

Stage 4: 

In fact, the GVDF uses a cascade of directional processing and magnitude 

processing that is shown in Fig. 3.5. As we describe at the previous chapter, three  
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            Fig. 3.4. Perspective representation of the color cube. 

 

 

filters have been used for the step of magnitude processing: the ë-trimmed mean [16], 

[17] the morphological open-close [18], and the multistage max/median [19]. 

 

However we do not expect to replace the processing pixel directly with the 

output of vector directional filter (VDF) [11] or output of GVDF cascaded with one of 

these three different kinds of filters. Instead of those filters, the mean filter in the 

intensity sense is adopted in the step of magnitude processing. Nevertheless it is just 

only a reference so that we can make decision of what pixel is selected to replace the 

current processing contaminated-likely pixel. In other words, decision in this stage is 

that we substitute the contaminated-like pixel (judged via our algorithm) by the one 

whose intensity is more probably closed to the original uncontaminated pixel, of  

course, they are all in the moving mask. It really makes the retrieval pixel with  

intensity more continuous nearby the processing region.  

 

The substitution is implemented in all the three color channels, thus, the output 

turns to be more excellent and more continuous with neighborhood in the color sense 

than that directly processed by GVDF and cascaded ordinary filter.  

 

Stage 5:       

In order to restore the most uncontaminated pixel of the input image, the last 

criterion is to let the output of our design much more resemble the original without 

too much artificial alteration. It is compensating for the condition once our decision 

goes wrong that results in filtering the clean pixel. We set a threshold ò3  to achieve 



 17

this goal in this stage. First we duplicate a copy of original input image. If the 

chromatic difference (absolute value) of the processing pixel in the original 

contaminated image and the output of stage 4 is smaller than ò3 , then we do not 

modify the local processing pixel in the copy image. In case of the difference is 

greater than the threshold, we substitute the processing pixel in the duplicated image 

by the output of stage 4. In other words, we try to preserve the most original 

appearance in the input image again. The threshold should not be set too low so that 

the image contains too much artificial modification and most of that often are 

somehow dissimilar from the original. On the other hand, the duplicated copy may be 

remain unchanged for the most part as input image if the threshold is set too high so  

that we lose to filter out the hot spot like noise. 

 

To summarize our design, we develop a decision-based GVDF applying on 

multi-channel image processing for removing the hot pixel like noise. The GVDF 

with a proper decision criterion is good because it would considerably reduce the 

required time for processing and attain a more excellent performance than that is 

implemented by GVDF only. Consequently we design a five-stage decision-based 

GVDF that considers both the chromaticity and the intensity content. In the 

simulation section, we will discuss its advantage by some assessment criterion. 

 

 

 

 

   

Fig. 3.5. Multi-channel image processing using a cascade of directional 

processing and magnitude processing.  

GVDF F 

Directional
Processing

Magnitude
Processing
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Chapter 4  Simulation Results 
 

 

We will show the efficiency of the DBVDF comparing against the GVMF with 

respect to the processing time. Moreover, quantitative measures in terms of the 

performance of each filter have also been provided. Of course, the experimental 

results in images will be shown as well.   

 

4.1  Image with Synthetic Hot Pixel Noise 

4.1.1  Experimental Results of the Decision-Based 

Vectorized Median Filtering 

The best threshold of the decision-based Vectorized Median Filter (DBVMF) has 

been found around 1.40. The experimental results for the commonly adopted images 

“Airplane,＂ “Lena,＂ “Peppers,＂ “Sailboat,＂ with the threshold ò=1.40 

from the thesis [10] published in 2003 are shown in Fig. 4.1. We show the zoomed 

images so that the details could be revealed. Obviously, it can be seen that some hot 

spot noise remains in the filtered image and the sharpness of the image is lost over the 

whole image. That is, the DBVMF fails to filter all the hot spot noise in the corrupted 

image and diverts the attention of the viewer from the subject of the filtered image.  
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(a) 

 

 

(b) 
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(c) 

 

 
(d) 

Fig. 4.1. (a) Zoomed “Airplane＂ filtered by the decision-based VMF with 

ò = 1.40 . (b) Zoomed “Lena＂ filtered by the decision-based VMF with ò = 1.40 . (c) 

Zoomed “Peppers＂ filtered by the decision-based VMF with ò = 1.40 . (d) 

Zoomed“Sailboat＂ filtered by the decision-based VMF with ò = 1.40 . 
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4.1.2  DCE AutoEnhance and Hot Pixels Eliminator 
 

DCE AutoEnhance and Hot Pixels Eliminator [22], [23] which are famous web 

sites concerning hot pixel reduction in the world wide web. The algorithms of these 

two methods are not available but executable programs are provided in the web. It has 

been proved that the decision-based VMF outperforms both of these two methods. Fig. 

4.2 shows the filtered Airplane, Lena, Peppers, and Sailboat images from DCE 

AutoEnhance and Hot Pixels Eliminator, respectively. Again, we show the zoomed 

images for the purpose of clearly observing the texture and color contents in the 

filtered images. If we compare the images filtered by these two methods with the 

input processing images, we can find that the color and luster alter too much in the 

filtered images that we might think they possibly are not the results of the processing 

image. The filtered images looks like being shot under different light sources or in 

which the contents are appeared to be in different hues and saturations. Despite the 

two methods filtering out nearly all the hot spot noise, they are barely satisfied for the 

severe drawback of losing nature color of original input processing images.  

 

Although DBVMF, DCE AutoEnhance, and Hot Pixels Eliminator have their 

defect respectively, they all possess the characteristic of low processing time which is 

the ultimate drawback of the VDF and DBVDF.  
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(a) 

 

 

(b) 
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(c) 

  

(d) 

Fig. 4.2. (a) Zoomed “Airplane＂ filtered by the DCE AutoEnhance filter. (b) 

Zoomed “Airplane＂ filtered by the HotPixels Eliminator filter. (c) 

Zoomed“Lena＂ filtered by the DCE AutoEnhance filter. (d) Zoomed “Lena＂ 

filtered by the HotPixels Eliminator filter. 
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4.1.3 Generalized Vector Directional Filter and  

Decision-Based Vector Directional Filter 

Fig. 4.3 and Fig. 4.4 show the experimental results via GVDF and DBVDF 

respectively. We may see that images filtered by DBVDF has effectively reduced the 

hot spot noise, and better preserve the texture of the original image than GVDF. The 

output images of DBVDF are more realistic because of the fundamental characteristic 

of the DBVDF algorithm. And it might be easily perceived since images filtered by 

DBVDF are more natural in coloring comparing to those filtered by GVDF. Although 

the proposed filter outperforms GVDF, the slightly excessive pixels filtered by 

DBVDF seem to be observable than the other type of filters, because of over detection 

mentioned previously. However, our proposed filter bypasses the most uncontami- 

nated pixels to preserving the details and sharpness of the input processing images. 

The quantitative tables will be listed in the following section and we will show the 

excellence of DBVDF comparing to the other filters introduced in this thesis, 

especially comparing to GVDF which is the basic model adopted in our filter＇s 

framework.kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkframework 
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(a) 

 

       

(b) 
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(c) 

 

       

(d) 

Fig. 4.3. (a) Zoomed “Airplane＂ filtered by the generalized vector directional 

filter. (b) Zoomed “Lena＂ filtered by the generalized vector directional filter. (c) 

Zoomed “Peppers＂ filtered by the generalized vector directional filter. (d) Zoomed 

“Sailboat＂ filtered by the generalized vector directional filter. 
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(a) 

 

       
(b) 
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(c) 

 

       

(d) 

Fig. 4.4. (a) Zoomed “Airplane＂ filtered by the decision-based vector 

directional filter. (b) Zoomed “Lena＂ filtered by the decision-based vector 

directional filter. (c) Zoomed “Peppers＂ filtered by the decision-based vector 

directional filter. (d) Zoomed “Sailboat＂ filtered by the decision-based vector 

directional filter. 
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4.1.4  Experiment of Real World Image Corrupted with 

Hot Pixel Noise 

Here, two images corrupted with the real hot pixel noise will be tested. Figs. 4.5 

and 4.6 show the tested image and filtered image, respectively.  

 

        

(a) 
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(b) 

 

        

(c) 
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(d) 

 

 
(e) 
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(f) 

Fig. 4.5. (a) A real world image corrupted with hot pixel noise. (b) The noisy 

resulting image filtered by the decision based vectorized median filter at ò = 1.40 . (c) 

The noisy resulting image filtered by the DCE AutoEnhance filter. (d) The noisy 

resulting image filtered by the Hotpixels Eliminator filter. (e) The noisy resulting 

image filtered by the vector directional filter. (f) The noisy resulting image filtered by  

the decision-based vector directional filter. 
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(a) 

 

 

(b) 
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(c) 

 

        

(d) 
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(e) 

 

(f) 

Fig. 4.6. (a) A real world image corrupted with hot pixel noise. (b) The noisy 

resulting image filtered by the decision based vectorized median filter with CMF at 

ò = 1.40 . (c) The noisy resulting image filtered by the DCE AutoEnhance filter. (d) 

The noisy resulting image filtered by the Hotpixels Eliminator filter. (e) The noisy 

resulting image filtered by the vector directional filter. (f) The noisy resulting image 

filtered by the decision-based vector directional filter. 
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4.2  Performance Comparison 

4.2.1  Normalized Mean Square Error and Mean  

Chromaticity Error 

From the experimental results above, the resulting images by the introduced filter: 

BDVMF, DCE AutoEnhance, VDF, and DBVDF methods are difficult to assess 

visually. We find that the proposed DBVDF method provides high efficiency in 

eliminating the hot spot noise by the human vision perception. Two quantitative 

measures are employed to compare the performance of these filters [11]. The first is 

the normalized mean squared error NMSE( ) , which is a standard measure as given 

by 

      
NMSE = P

i=0

N1 P
j=0

N2
f(i,j)k k2

P
i=0

N1 P
j=0

N2
f(i,j)àfê(i,j)k k2

,
                          

(5)
 

where N1  and N2  are the image dimensions, and f(i, j) and fê(i, j) denote 

the original and the estimated image vector at pixel (i, j), respectively. The second 

measure is the mean chromaticity error MCRE( ) . Since the GVDF and DBVDF 

operate as chromaticity filters, consequently their performance in terms of 

chromaticity error should be evaluated. MCRE is defined as  

      
MCRE =

N1N2

P
i=0

N1 P
j=0

N2
C f(i,j),fê(i,j)[ ]

,
                          

(6)
 

where N1 ,N2 ,f(i, j), and fê(i, j) are as in (5) and C f(i, j), fê(i, j)
h i

 is the 

chromaticity error between vectors f(i, j), and fê(i, j). It is defined as the distance 
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PPê between the two points P and Pê, which are the intersection points of f(i, j), 

and fê(i, j) with the Maxwell triangle, respectively. This is shown graphically in  

Fig. 4.7 and we summarize the results in Tables I and II which respectively show the 

NMSE and MCRE of the various filters we introduced. However, we cannot, in 

practice, calculate the NMSE or MCRE to compare the efficiency about the real 

world corrupted images with our proposed DBVDF and the other filters owing to the 

lack of the images uncorrupted with the hot pixel noise. 

 

4.2.2  Noise Detection and Weighted Peak Signal to  

Noise Ratio 

 
The noise detection and filtering rate of hot spot noise for the images  

“Airplane,” “Lena,” “Peppers,” and “Sailboat” are shown in Tables VI-X. It is to be   

noticed that the true positive values of our proposed filter are almost 100% for these 

four images and false negative values are higher than the other filters. That is,   

our proposed filter detects all the hot spot noise in the contaminated images and  

keeps most uncorrupted pixels unchanged. In addition to the quantitative evaluation  

presented above, a qualitative evaluation is necessary since the visual assessment of  

the processed image is, the must subjective measure of the efficiency of any method.  

Therefore we introduce weighted peak signal to noise ratio WPSNR( )  to stress on  

reducing the hot spot noise or not of the filters. The weight vector W~ = W1,W2,W3( ) is  

adopted to reflect the hot pixels by weights to account the removing capability of the  

filters. In the above, W1  indicates the weight to emphasize the hot spot noisy pixel  

that is detected to be contaminated and then the processing filter filtered indeed. W2   
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indicates the weight to the hot spot noisy pixel not detected to be contaminated. W3  

indicates the weight to the clean pixel is detected contaminated and filtered. The  

processing results of the introduced filters are shown in Tables III–XI.  

     

It is obviously seen that our proposed filter is better than the other filters in 

the three of four processing images on the access measure of NMSE and MCRE, even 

in WPSNR. We might find that when the threshold ò3  increases in the experiment, 

the false detection of hot spot noise of our proposed filter decreases meanwhile leaves  

more uncontaminated pixels bypass. However, there are more hot spot noise not 

detected in the mean time, that represents the capability of filtering out hot spot noise 

decreases. The adjustability is the crucial reason that makes our filter more  

competitive and selective than DBVMF. 

 

 

 

 

 

 

 

Green

Blue 

Red

Maxwell Triangle 

f̂

fP̂

P

0 

Fig. 4.7. Definition of the chromaticity error for two vectors f̂ . 
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TABLE I 

NMSE (×10à6) FOR THE IMAGES 

filters or ò3
 Airplane Lena Peppers Sailboat 

DBVMF   104.4   142.4   279.2   500.8 
DBVMF+CMF   104.3   139.9   262.9   487.0 

DCE 15240.4 19484.8 10026.3  9207.6 
GVDF  5086.0  5159.5  9347.8 14460.9 

DBVDF     
100   113.0   193.3   260.0   550.8 
110   112.5   191.5   258.4   542.6 
120   110.7   186.3   255.8   532.1 
130   108.2   180.6   252.4   516.1 
140   107.3   174.7   246.5   500.2 
150   104.9   168.1   234.2   484.7 
160   102.1   160.2   223.2   464.3 
170    98.2   157.2   217.4   440.8 
180    91.1   152.1   209.7   410.6 
190    88.9   147.6   208.8   382.4 
200     87.4*    132.6*    193.7*    361.4* 

  GVDF: cascaded with median filter 
  Thresholds in stage 1 and 2: both defined as 500  
 
 

TABLE II 

MCRE (×10à6) FOR THE IMAGES 

filters or ò3
 Airplane Lena Peppers Sailboat 

DBVMF   17.3   22.0   26.0    18.4* 
DBVMF+CMF   17.3   22.0   25.4    18.4* 

DCE  361.1 1725.1  588.1  885.4 
GVDF 1570.2 1051.8 2645.7 4107.2 

DBVDF     
100   11.3   21.3   24.9   57.8 
110   11.1   21.0   24.3   56.9 
120   10.9   20.2   23.8   55.0 
130   10.7   19.3   23.4   53.2 
140   10.5   18.3   22.5   50.7 
150   10.3   17.7   20.0   48.8 
160   10.1   16.7   18.9   46.2 
170   9.6   16.5   17.5   43.2 
180   9.3   16.0   16.7   38.7 
190   8.8   15.2   16.3   35.8 
200    8.5*    13.3*    14.5*   33.2 

  GVDF: cascaded with median filter 
Thresholds in stage 1 and 2: both defined as 500 
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TABLE III 
NOISE DETECTION AND FILTERING OF THE IMAGE “AIRPLANE” (PIXELS) 

filters or ò3
 True Positive True Negative False Positive False Negative

DBVMF  49 100 204943  57052 
DBVMF+CMF  49 100 204942  57053 

DCE 133  16 261994      1 
GVDF 149   0 229241  32754 

DBVDF     
100 142   7    203 261792 
110 137  12    194 261801 
120 133  16    180 261815 
130 129  20    161 261834 
140 115  34    147 261848 
150 108  41    132 261863 
160  99  50    117 261878 
170  87  62     96 261899 
180  83  66     75 261920 
190  73  76     62 261933 
200  64  85     52 261943 

Total numbers of pixel: 512â512 
GVDF: cascaded with median filter 
Thresholds in stage 1 and 2: both defined as 500 

 

TABLE IV 
DETECTION RATE OF THE IMAGE “AIRPLANE” (%) 

True  False 

filters or ò3
 Positive Negative  Positive 

DBVMF  33 67  78 22 
DBVMF+CMF  33 67  78 22 

DCE  89 11 100  0 
GVDF 100  0  87 13 

DBVDF     
100  95  5   0 100 
110  92  8   0 100 
120  89 11   0 100 
130  87 13   0 100 
140  77 23   0 100 
150  72 28   0 100 
160  66 34   0 100 
170  58 42   0 100 
180  56 44   0 100 
190  49 51   0 100 
200  43 57   0 100 

GVDF: cascaded with median filter 
Thresholds in stage 1 and 2: both defined as 500 
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TABLE V 
NOISE DETECTION AND FILTERING OF THE IMAGE “LENA” (PIXELS) 

filters or ò3
 True Positive True Negative False Positive False Negative

DBVMF 120 34 121908 140082 
DBVMF+CMF 120 34 121906 140084 

DCE 153  1 261990      0 
GVDF 154  0 233542  28448 

DBVDF     
100 148  6    180 261810 
110 148  6    174 261816 
120 148  6    159 261831 
130 147  7    144 261846 
140 146  8    131 261859 
150 146  8    118 261872 
160 144 10    102 261888 
170 139 15     92 261898 
180 133 21     80 261910 
190 127 27     69 261921 
200 120 34     47 261943 

Total numbers of pixel: 512â512 
GVDF: cascaded with median filter 
Thresholds in stage 1 and 2: both defined as 500 

 
 

TABLE VI 
DETECTION RATE OF THE IMAGE “LENA”  (%) 

True  False 

filters or ò3
 

Positive Negative  Positive 
DBVMF  78 22  47  53 

DBVMF+CMF  78 22  46  53 
DCE  99  1 100   0 

GVDF 100  0  89  11 
DBVDF     

100 96  4   0 100 
110 96  4   0 100 
120 96  4   0 100 
130 95  5   0 100 
140 95  5   0 100 
150 95  5   0 100 
160 94  6   0 100 
170 90 10   0 100 
180 86 14   0 100 
190 82 18   0 100 
200 78 22   0 100 

GVDF: cascaded with median filter 
Thresholds in stage 1 and 2: both defined as 500 

 



 42

TABLE VII 
NOISE DETECTION AND FILTERING OF THE IMAGE “PEPPERS” (PIXELS) 

filters or ò3
 True Positive True Negative False Positive False Negative

DBVMF 118 36 171891  90099 
DBVMF+CMF 118 36 171874  90116 

DCE 125 29 261848    142 
GVDF 154  0 231515  30475 

DBVDF     
100 143  11   169 261821 
110 143  11   164 261826 
120 143  11   157 261833 
130 143  11   150 261840 
140 143  11   140 261850 
150 143  11   122 261868 
160 143  11   101 261883 
170 139 15    96 261894 
180 136 18    87 261903 
190 133 21    82 261908 
200 130 24    66 261924 

Total numbers of pixel: 512â512 
GVDF: cascaded with median filter 
Thresholds in stage 1 and 2: both defined as 500 

 

TABLE VIII 
DETECTION RATE OF THE IMAGE “PEPPERS” (%) 

True  False 

filters or ò3
 Positive Negative  Positive 

DBVMF  77 23  66  34 
DBVMF+CMF  77 23  66  34 

DCE  81 19 100   0 
GVDF 100  0  88  12 

DBVDF     
100 93  7   0 100 
110 93  7   0 100 
120 93  7   0 100 
130 93  7   0 100 
140 93  7   0 100 
150 93  7   0 100 
160 93  7   0 100 
170 90 10   0 100 
180 90 10   0 100 
190 86 14   0 100 
200 84 16   0 100 

GVDF: cascaded with median filter 
  Thresholds in stage 1 and 2: both defined as 500 
 
 



 43

TABLE IX 
NOISE DETECTION AND FILTERING OF THE IMAGE “SAILBOAT” (PIXELS) 

filters or ò3
 True Positive True Negative False Positive False Negative

DBVMF 101 52 172971  89020 
DBVMF+CMF 101 52 172966  89025 

DCE 153  0 261980     11 
GVDF 153  0 231526  30465 

DBVDF     
100 138 15    542 261449 
110 136 17    511 261480 
120 133 20    478 261513 
130 133 20    438 261553 
140 133 20    405 261586 
150 129 24    374 261617 
160 125 28    337 261654 
170 122 31    300 261691 
180 119 34    259 261732 
190 116 37    223 261768 
200 111 42    197 261794 

Total numbers of pixel: 512â512 
GVDF: cascaded with median filter 

  Thresholds in stage 1 and 2: both defined as 500 
 
 

TABLE X 
DETECTION RATE OF THE IMAGE “SAILBOAT” (%) 

True  False 

filters or ò3
 

Positive Negative  Positive 
DBVMF  66 34  66     34 

DBVMF+CMF  66 34  66    34 
DCE 100  0 100     0 

GVDF 100  0  88    12 
DBVDF     

100 90 10   0 100 
110 89 11   0 100 
120 87 13   0 100 
130 87 13   0 100 
140 87 13   0 100 
150 84 16   0 100 
160 82 18   0 100 
170 80 20   0 100 
180 78 22   0 100 
190 76 24   0 100 
200 73 27   0 100 

GVDF: cascaded with median filter 
  Thresholds in stage 1 and 2: both defined as 500 
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TABLE XI 
WPSNR comparisons of “Airplane,＂ “Lena,＂ “Peppers,＂ and “Sailboat＂  

by five different filters with different ò3  
(a) 

filters or ò3
 Airplane Lena Peppers Sailboat 

GVDF: cascaded with median filter 
  Thresholds in stage 1 and 2: both defined as 500 

(b) 

filters or ò3
 Airplane Lena Peppers Sailboat 

GVDF: cascaded with median filter 
  Thresholds in stage 1 and 2: both defined as 500 

(w1, w2, w3)=(40,40,20) WPSNR 

DBVMF 23.66 25.04 23.01 20.05 
DBVMF+CMF 23.67 25.12 23.23 20.18 

DCE 3.06 4.44 8.00 7.71 
GVDF 7.84 10.22 8.43 5.76 

DBVDF     
100 25.15 25.04 24.52 20.04 
110 25.14 25.09 24.55 20.11 
120 25.19 25.23 24.60 20.19 
130 25.27 25.37 24.67 20.32 
140 25.19 25.52 24.78 20.46 
150 25.23 25.71 25.04 20.59 
160 25.28 25.91 25.28 20.76 
170 25.32 25.90 25.33 20.97 
180  25.61* 25.93 25.49 21.26 
190 25.54 25.92 25.41 21.55 
200 25.44  26.23*  25.71*  21.75* 

(w1, w2, w3)=(50,50,20) WPSNR 

DBVMF 23.18 24.57 22.67 19.88 
DBVMF+CMF 23.18 24.65 22.86 20.00 

DCE 3.06 4.43 7.94 7.70 
GVDF 7.83 10.22 8.43 5.76 

DBVDF     
100 25.00 24.87 24.33 19.93 
110 24.98 24.91 24.36 19.98 
120 25.01 25.04 24.41 20.06 
130 25.07 25.17 24.48 20.19 
140 24.94 25.31 24.59 20.33 
150 24.94 25.49 24.83 20.45 
160 24.94 25.66 25.06 20.60 
170 24.91 25.59 25.07 20.79 
180  25.15* 25.57 25.21 21.07 
190 25.00 25.50 25.09 21.33 
200 24.84  25.69*  25.33*  21.50* 
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(c) 

filters or ò3
 Airplane Lena Peppers Sailboat 

GVDF: cascaded with median filter 
  Thresholds in stage 1 and 2: both defined as 500 

 

4.2.3  Time Consumption 

Table XII shows our proposed DBVDF saves lot of processing time via GVDF. 

In fact, the elapsed time is correlated to the threshold we defined in DBVDF and the 

complexity of the input image. Obviously, huge computational complexity 

significantly limits GVDF practical usability. It is proved that DBVDF considerably 

reduces the computational complexity of the GVDF because of its decision-based 

algorithm. The speed improvement achieved nearly 100 times of simply applying 

GVDF only.  

 

(w1, w2, w3)=(60,60,10) WPSNR 

DBVMF 23.78 25.25 23.81 21.84 
DBVMF+CMF 23.78 25.31 23.92 21.96 

DCE 6.04 7.38 10.56 10.66 
GVDF 10.83 13.21 11.43 8.76 

DBVDF     
100  27.10* 26.81 26.22 22.19 
110 27.00 26.84 26.25 22.23 
120 26.94 26.95 26.29 22.27 
130 26.87 27.00 26.34 22.38 
140 26.49 27.07 26.42 22.49 
150 26.32 27.21 26.60 22.57 
160 26.14  27.24*  26.78* 22.64 
170 25.81 26.93 26.58 22.74 
180 25.83 26.65 26.64 22.90 
190 25.43 26.31 26.34 23.03 
200 25.06 26.10 26.36  23.06* 
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TABLE XII 
PROCESSING TIME (sec) FOR EACH FILTER 

Image Airplane Lena Peppers Sailboat 
VDF 2859.45 2803.00 2796.64 2807.89 

DBVDF   40.62   25.28   28.39   32.34 

  GVDF: cascaded with median filter  
  Thresholds in stage 1 and 2: both defined as 500 
  ò3 : defined as 100 
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Chapter 5  Conclusion 
 

 

In this thesis, a decision-based vector directional filter is proposed to reduce the 

hot spot noise in the images. In this scheme, we construct a two criterion and 

five-stage filter that saves lot of the processing time and preserves the image details 

better than the GVDF, as demonstrated in the experimental results. Indeed, we 

enhance the functionality of GVDF and exploit its original chrominance characteristic, 

which is very important in visual perception of color image, when applying on 

reducing the hot spot noise. Moreover, it can be implemented easily. Comparing to the 

conventional filter, DBVMF, and the famous filters on the web site: DCE  

AutoEnhance, DBVDF outperforms each of these filters. In the image processing, 

DBVDF demonstrates its effectiveness in less time consumption comparing to GVDF 

and in fidelity to the original uncontaminated image than the other filters. These 

features are reflected on the measures of NMSE and the detection rate. In the era of  

color image, DBVDF is supposed to be the most attractive filter for its internal color  

conception. Of course, DBVDF is on using in recovering the contaminated images  

corrupted by the hot spot noise.  

 

    Though DBVDF improves GVDF in both time consumption and details 

preservation, it is difficult to implement DBVDF in the real time designing mainly  

because it is still intrinsically computative. Future work about this field should be  

concentrated on the promotion of time efficiency, and that is expected to be a great 

challenge, a giant milestone in the meantime, in the progress of vector directional  

filter. 
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