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國立交通大學光電工程研究所 

 

 

摘要 

以三角晶格排列的光子晶體製成耦合器，其兩條色散曲線會相交於非

耦合點(decoupling point)，當光以非耦合點的頻率入射其中一條波導時，

入射光波只會在入射的波導中傳播，並不會耦合至另一條波導。藉由廣義

的緊束縛理論對兩條缺陷波導間的耦合效應加以分析，我們發現當橫向調

變耦合器的兩條線缺陷間距時，由於耦合係數產生改變，非耦合點的本徵

頻率會有藍移的現象，因此改變了方向耦合器的非耦合點頻率及耦合長

度。另一方面，沿著波傳播方向縱向移動兩條波導，能使正方晶格的方向

耦合器產生非耦合點。 

在此論文中我們也運用數值方法，對兩種不同型態：介電柱與空氣洞

所構成的方向耦合器的色散關係加以模擬；並且成功的運用緊束縛理論，
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解釋上述將缺陷調變所引起的現象。再藉由模擬所得到的結果，提出對光

子晶體耦合器的非耦合點頻率進行調變的設計規則。 
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Abstract 

Two dispersion curves of the photonic crystal (PC) coupler with triangular lattices will 

cross at the so-called decoupling point.  When a light wave is launched into one of the 

waveguide at the frequency of this point, it will propagate only in the incident waveguide 

without coupling into the other one.  Using the extended tight-binding theory (TBT) to 

analyze the coupling effects between two defect waveguides, we found that the 

eigenfrequency of the decoupling point blue shifts as adjusting the separation of two line 

defects transversely of the coupler.  The magnitude of coupling coefficients wound also 

change to affect the decoupling frequency and the coupling length of the directional coupler 

(DC).  Longitudinal shifting two waveguides along the wave propagation direction can also 

shift the dispersion of the square lattice DC so that the decoupling point would exist in the 

square lattice DC.  In this thesis, we use numerical methods to simulate dispersion relations 

of two different types of DCs: dielectric rod and the air-hole types.  Moreover, we 

successfully use the TBT to explain these phenomena and give a designing rule based on the 

TBT for tuning the decoupling frequency of the PC coupler. 
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Chapter 1   Introduction 

1-1 Photonic crystal  

Over the recent twenties years, photonic crystals (PCs) and the related photonic bandgap 

devices have attracted a great deal of attentions in fabricating all optical integrated circuits.  

The concept of the PC was first proposed by Eli Yablonovitch [1] and Sajeev John [2] in 1987.  

Yablonovitch presented that a structure can offer a photonic bandgap (PBG), hence 

electron-hole pairs of a semiconductor cannot recombine within a range of frequencies and 

therefore no spontaneous emission occurs.  Sajeev John also proposed photons can be 

localized by the PC defect, similar as the physical property of electrons.  Afterward two 

professors used the PC and the PBG to denominate related researches of these new fields.  

A PC is usually composed of periodically arranging dielectric materials with large 

refractive index difference.  Such structure possesses a complete PBG [3].  Within the PBG 

of the PC, a certain range of frequencies of electromagnetic (EM) waves is disallowing to 

propagate and therefore suppress a band of frequencies from existing.  Because there are no 

corresponding propagation modes in the bandgap, the incident EM wave is completely 

reflected.  We can well design and construct PCs with PBGs to prevent light from 

propagating in certain directions with specified frequencies.  

There are no extended states in the PBG of a perfect PC.  As we introduce a defect to 

break the translational symmetry, the defect may permit localized modes to exist with 

frequencies within the bandgap.  Introducing defects to PCs means to have the lattice points 

or locations dissimilar from the perfect arranged structure.  Defects can change the band 

structure of a perfect PC and allow guided modes to exist inside the bandgap.  For a point 

defect, a mode can be localized whenever its frequency is in the PBG.  By using line defects, 
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one can guide light from one location to another.  We can alter the mechanisms of PCs by 

introducing various defects.  The characteristic of the PBG provides many novel applications, 

such as using a PC block to form photonic reflector [4], introducing line defects in the PC to 

construct a waveguide, or creating a point defect (or several defects) to form a PC resonant 

cavity [5]. 

1-2 Photonic crystal waveguide 

The photonic crystal waveguide (PCW) can be created by modifying a linear sequence of 

unit cells.  As we introducing a line defect into a perfect PC, a defect-guided mode is formed 

within the bandgap.  A light wave will be restricted to transmit in this channel.  In 

traditional total internal reflection waveguides, light is only restricted to propagate in high 

refractive index materials.  Besides, the bending angle for changing the light propagation 

direction of traditional waveguides cannot exceed 1 degree, otherwise the energy loss is 

significant; this disadvantage make the scale of optical devices increases.  Conversely, 

PCWs allow light to propagate in a low refractive index medium, like air.  Light that 

propagates in the PCW with a frequency within the bandgap of the PC is confined to the 

defects and can directly transfer along the defects.  Consequently, PCWs provide low energy 

loss and high light confinement even through a sharply bend [6].  The PCWs are the most 

promising elements of PCs for designing photonic integrated circuits. 

1-3 Directional coupler 

A directional coupler (DC) which can be used in light switches [7,8], beam splitters 

[9,10], and modulators [11] is formed by arranging a pair of parallel PCWs separated by one 

or several rows of partition rods or holes.  A symmetric DC possesses two dispersion curves 

with an even mode and an odd mode, respectively.  As two waveguides are quite close, their 

fields will overlap.  An EM wave with a given frequency is incident into one PCW of the 
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coupler will transfer entirely to the other waveguide as transmitted a certain distance, which is 

called the coupling length.  The coupling length is defined as kπ Δ , where Δk is the 

wavevector mismatch of the two dispersion curves at the operation frequency.  As designing 

the wavelength-selective devices such as the demultiplexer [12], the coupling length of a DC 

is considerable.  The transmission efficiency of the PC coupler can be improved by properly 

tuning the formation of defects.  Different claddings of the coupler also vary vertical 

confinements of light, which propagates in the PCWs of the DC.  With various applications, 

DCs are also major devices for the optical communication. 

1-4 Numerical methods 

To investigate the propagation of EM waves through a PC structure, there are several 

efficient and accurate algorithms such as plane wave expansion method (PWEM) [13] and 

finite-difference time-domain (FDTD) method [14].  The PWEM is well at calculating the 

bandgap for a specific polarization, dispersive properties, and eigenmodes of infinite periodic 

structures.  The FDTD method is widely used to estimate transmission and reflection spectra 

for computational EM problems. 

1-4-1 Plane wave expansion method 

From the Maxwell’s equations, we know 

                  ( , )( , ) B r tE r t
t

∂∇× = −
∂

                           (1.1) 

( , )( , ) ( , )D r tH r t J r t
t

∂∇× = +
∂

                      (1.2) 

( , ) ( , )D r t r tρ∇ ⋅ =                             (1.3) 

( , ) 0B r t∇ ⋅ = ,                               (1.4) 

where ( , )E r t  indicates the electric field, ( , )H r t  is the magnetic field, ( , )D r t  is the 

electric displacement field, ( , )B r t  is the magnetic induction, ( , )J r t  is the free current 
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density, ( , )r tρ  is the free charge density, and r  is the spatial coordinate, respectively.  

Assume the dielectric materials are lossless, linear, isotropic, non-dispersive, and 

non-magnetic, these equations can be rewritten as 

0
( , )( , ) H r tE r t
t

μ ∂∇× = −
∂

                        (1.5) 

0
( , )( , ) ( ) E r tH r t r
t

ε ε ∂∇× =
∂

                      (1.6) 

( , ) 0D r t∇ ⋅ =                              (1.7) 

( , ) 0H r t∇ ⋅ = ,                             (1.8) 

where ε0 is the permittivity of free space, ( )rε  is the relative permittivity, and 0μ  is the 

permittivity of free space.  In form of harmonic fields: 

( , ) ( ) i tE r t E r e ω−=                            (1.9) 

( , ) ( ) i tH r t H r e ω−= ,                         (1.10) 

and substituting Eq. (1.9) and Eq. (1.10) into Eq. (1.5) and Eq. (1.6), one obtains 

0( , ) ( , )E r t i H r tϖμ∇× =                        (1.11) 

0( , ) ( ) ( )H r t i r E rωε ε∇× = − .                     (1.12) 

Calculating the curl of Eq. (1.12): 

0
1[ ( )] [ ( )] 0
( )

H r i E r
r

ϖε
ε

∇× ∇× + ∇× =                 (1.13) 

and using Eq. (1.9), we get 

0 0
1[ ( )] [ ( )] 0
( )

H r i i H r
r

ϖε ϖμ
ε

∇× ∇× + = .               (1.14) 

With the speed of light 
0 0

1C
μ ε

= , Eq. (1.14) becomes 

21( ) [ ( )] ( ) ( )
( )H H r H r H r
r c

ϖ
ε

Θ = ∇× ∇× = ,                  (1.15) 

where HΘ  is the hermitian operator.  Similarly, we can get 

 21( ) [ ( )] ( ) ( )
( )E E r E r E r
r c

ϖ
ε

Θ = ∇× ∇× = .                   (1.16) 

The PC is a periodic structure, hence the dielectric function can be written as  
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( ) ( )ir rε ε= + a ,       i=1,2,3,                  (1.17) 

where { ia } are the primitive lattice vectors of the PC.  We can also define the reciprocal 

lattice vector G as 

1 1 2 2 3 3m m mG = + +b b b ,      m1, m2, m3∈Z.          (1.18) 

Here { jb } are the reciprocal lattice basic vectors and 

2i j ijπδ⋅ =a b                             (1.19) 

with ijδ  being the Kronecker’s delta function.  Expanding 1( )rε −  into Fourier series as  

1 ( )exp( )
( ) G

G iG r
r

κ
ε

= ⋅∑                       (1.20) 

and applying Bloch’s theorem to the fields, we can derive the following eigenfunctions: 

( ) ( ) exp[ ( ) ]kn kn
G

E r E G i k G r= + ⋅∑                    (1.21) 

( ) ( ) exp[ ( ) ]kn kn
G

H r H G i k G r= + ⋅∑ ,                  (1.22) 

where k indicates the wavevector and n denotes the band index.  Substituting Eq. (1.21) and 

Eq. (1.22) into Eq. (1.15) and Eq. (1.16), we get 
2

2
'

( ')( ') [( ') ( ')] ( )kn
kn kn

G
G G k G k G E G E G

c
ϖκ− − + × + × =∑           (1.23) 

2

2
'

( ')( ') [( ') ( ')] ( )kn
kn kn

G
G G k G k G H G H G

c
ϖκ− − + × + × =∑ ,         (1.24) 

where knϖ  is the eigenvalue of the specific ( )knE r  and ( )knH r .  By solving the 

eigenvalue problem of these two equations, we obtain the band diagram of a PC structure. 

1-4-2 Finite-different time-domain method 

The FDTD numerical technique is proposed by Yee in 1966 [15] to solve the Maxwell’s 

curl equations.  The method can be used to deal a real PC with finite boundary, which is hard 

to be done by the PWEM.  The FDTD method provides a straight-forward way to directly 

derive Maxwell’s equations in the time-domain on a space grid, avoiding mathematical 
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difficulties of solving frequency-domain problems.  Since the FDTD is a time-domain 

method, it is usually used to study characteristics of the EM wave propagating in a PC 

structure at different time. 

In an isotropic and lossless medium, Eqs. (1.5) and (1.6) are equivalent to the following 

scalar equations in the rectangular coordinate system: 

0

1 ( )yx z
EH E

t z yμ
∂∂ ∂= −

∂ ∂ ∂
                       (1.25) 

0

1 ( )y xz
H EE
t x zμ

∂ ∂∂= −
∂ ∂ ∂

                       (1.26) 

0

1 ( )yxz
EEH

t y xμ
∂∂∂ = −

∂ ∂ ∂
                       (1.27) 

1 ( )yx z
HE H

t y zε
∂∂ ∂= −

∂ ∂ ∂
                       (1.28) 

1 ( )y x z
E H H
t z xε

∂ ∂ ∂= −
∂ ∂ ∂

                       (1.29) 

1 ( )y xz
H HE

t x yε
∂ ∂∂ = −

∂ ∂ ∂
.                       (1.30) 

To denote a grid point of the space as 

( , , ) ( , , )i j k i x j y k z= Δ Δ Δ                        (1.31) 

and for any function of space and time, we set 

( , , , ) ( , , )nF i x j y k z n t F i j kΔ Δ Δ Δ = ,                  (1.32) 

where xΔ , yΔ , and zΔ  are spatial discretizations, and tΔ  is the time step, i, j, k, and n are 

integers.  Applying the central-difference approximations for both the spatial and temporal 

differential equations gives  

1 1
2 2( , , ) ( , , )( , , ) n nn F i j k F i j kF i j k

x x
+ − −∂ =

∂ Δ
               (1.33) 

1 1
2 2( , , ) ( , , )( , , ) n nn F i j k F i j kF i j k

y y
+ − −∂ =

∂ Δ
               (1.34) 

1 1
2 2( , , ) ( , , )( , , ) n nn F i j k F i j kF i j k

z z
+ − −∂ =

∂ Δ
               (1.35) 

1 1
2 2( , , ) ( , , ) ( , , )nn nF i j k F i j k F i j k

t t

+ −∂ −=
∂ Δ

.                 (1.36) 
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Substitute Eqs. (1.34) – (1.36) into Eq. (1.25), we can get the following finite-difference 

time-domain expression for the x component of magnetic field: 

1 1
2 21 1 1 1

2 2 2 2( , , ) ( , , )n n
x xH i j k H i j k+ −+ + = + +  

1 1
2 2

0

1 [ ( , 1, ) ( , , )]n n
z z

t E i j k E i j k
yμ

⎧Δ− + + − +⎨Δ⎩
                        

1 1
2 2

1 [ ( , , 1) ( , , )]n n
y yE i j k E i j k

z
⎫− + + − + ⎬Δ ⎭

.                    (1.37) 

Through the same procedures, we also obtain 

1 1
2 21 1 1 1

2 2 2 2( , , ) ( , , )n n
y yH i j k H i j k+ −+ + = + +  

1 1
2 2

0

1 [ ( , , 1) ( , , )]n n
x x

t E i j k E i j k
zμ

Δ ⎧− + + − +⎨Δ⎩
                        

1 1
2 2

1 [ ( 1, , ) ( , , )]n n
z zE i j k E i j k

x
⎫− + + − + ⎬Δ ⎭

                     (1.38) 

1 1 1
2 2( , , ) ( , , )n n

z zE i j k E i j k+ + = +  

1 1
2 21 1 1 1

2 2 2 2
1 [ ( , , ) ( , , )]n n

y y
t H i j k H i j k

xε
+ +Δ ⎧+ + + − − +⎨Δ⎩

 

1 1
2 21 1 1 1

2 2 2 2
1 [ ( , , ) ( , , )]n n

x xH i j k H i j k
y

+ + ⎫
− + + − − + ⎬Δ ⎭

              (1.39) 

1 1
2 21 1 1 1

2 2 2 2( , , ) ( , , )n n
z zH i j k H i j k+ −+ + = + +  

1 1
2 2

0

1 [ ( 1, , ) ( , , )]n n
y y

t E i j k E i j k
xμ

Δ ⎧− + + − +⎨Δ⎩
 

1 1
2 2

1 [ ( , 1, ) ( , , )]n n
x xE i j k E i j k

y
⎫

− + + − + ⎬Δ ⎭
                    (1.40) 

1 1 1
2 2( , , ) ( , , )n n

x xE i j k E i j k+ + = +  

1 1
2 21 1 1 1

2 2 2 2
1 [ ( , , ) ( , , )]n n

z z
t H i j k H i j k

yε
+ +⎧Δ+ + + − + −⎨Δ⎩

 

1 1
2 21 1 1 1

2 2 2 2
1 [ ( , , ) ( , , )]n n

y yH i j k H i j k
z

+ + ⎫− + + − + − ⎬Δ ⎭
             (1.41) 

1 1 1
2 2( , , ) ( , , )n n

y yE i j k E i j k+ + = +  

1 1
2 21 1 1 1

2 2 2 2
1 [ ( , , ) ( , , )]n n

x x
t H i j k H i j k

zε
+ +Δ ⎧+ + + − + −⎨Δ⎩
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1 1
2 21 1 1 1

2 2 2 2
1 [ ( , , ) ( , , )]n n

z zH i j k H i j k
x

+ + ⎫− + + − − + ⎬Δ ⎭
.            (1.42) 

Equations (1.37) – (1.39) are finite difference equations for the transverse magnetic (TM) 

wave, and Eq. (1.40) – (1.42) are equations for the transverse electric (TE) wave.  A TE 

wave is defined as the EM wave for which the magnetic field is polarized vertical to the plane 

of a waveguide.  Figure 1.1 is the Yee’s cell to describe the various field components.  

Assuming the E-components are in the middle of the edges and the H-components are in the 

center of the faces to satisfy the curl relations of Maxwell’s equations. 

 
Fig. 1.1 Field components of a three-dimensional Yee cell.  

In using the FDTD method, we have to set absorbing boundary layers to truncate the 

calculation domain without reflection.  As simulating a wave transferring in the free space, 

these ideal layers can absorb the EM wave, which propagates outward.  The perfectly 

matched layers absorbing boundary conditions proposed by Berenger [16] are the most 

efficient and widely used mechanisms.  Besides, in order to ensure the values will not 

diverge, the time step tΔ  should satisfy the restriction 
2 2 21 1 1

1
( ) ( ) ( )x y z

t
c Δ Δ Δ

Δ ≤
⋅ + +

 to get 

stable solutions.  

For the purpose of increasing the simulate accuracy, a smaller grid size is expected. 

However, the time step also reduces with the grid size, which makes time-consuming in the 
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computation.  In applying the FDTD method, electric and magnetic fields are derived by 

iterating each other in time and spatial domains.  Therefore, we can obtain the propagation 

characteristics of EM waves in the PC. 

1-5 Motivation 

Because the design and the fabrication of two-dimensional (2-D) PCs are easy, 

researches and applications are mainly about 2-D PC structure.  The DCs are frequently 

assumed with infinite height; however, a simply 2-D structure cannot strictly confine the 

radiation energy loss of vertical direction.  Besides, a 2-D PC device with infinite height is 

not suitable for the realistic usage.  As a result, we investigate the properties of the slab with 

2-D PCs in this thesis.  The PC slab is a three-dimensional structure with finite thickness to 

confine light in the vertical direction.  Generally, the PC slab can be classified into two 

forms: One is constructed of dielectric rods fabricated in air, as shown in Fig. 1.2(a); and the 

other is composed of a thin planar dielectric substrate with air holes, surrounded by dielectric 

claddings as Fig. 1.2(b). 

        

Fig. 1.2 Two types of PC slabs: (a) dielectric rod type and (b) air-hole type. 

The coupler made of two identical PCWs supports two dispersion curves, with an even 

mode and an odd mode, respectively.  It is called a symmetric DC.  Two dispersion curves 

of a symmetric DC with triangular lattice should cross.  The crossing point is called the 

decoupling point with infinite coupling length [17].  When an EM wave propagates at the 
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frequency of the decoupling point, energy is never couple into the other waveguide [18].  

While the DC is designed as a demultiplexer or a switch, to decouple two waveguides might 

be necessary sometimes.  Therefore, as designing a DC, tuning the crossing point and the 

dispersion relation to get the proper coupling length at the wanted range of frequencies is an 

important issue [19].  

Although the PCWs of a DC are usually made by removing dielectric rods or air holes 

due to less scattering loss caused by the structure disorder [8] and easier to be fabricated, the 

PCW made by removing rods or holes usually guides multimodes and the coupling length are 

quite long [9,10].  In order to prevent from multimode propagation at the operation 

frequency or to reduce the coupling length, a DC made by reducing the radius of the dielectric 

rod or enlarging the radius of the air hole seems to be a better choice if the structure disorder 

can be minimized. 

Besides, dispersion curves of the symmetric DC usually cross in the triangular lattices, 

but rarely cross in the square lattices.  This phenomenon causes restrictions as designing the 

DC.  In order to solve such problems, we adjust the DC by shifting defects of the PCWs to 

tune the dispersion relation and find a design rule for designing the coupler. 

Applying the PWEM can derive the band diagram of the DC.  And from the FDTD 

method, we can get characteristic of EM waves propagating within the PC.  These two 

methods are regularly utilized to simulate a periodical PC structure.  However, such 

numerical methods cannot provide a useful analytical result for realizing the coupling 

properties of the coupler or PCWs.  The tight-binding theory (TBT) [20,21], which provides 

analytic equations, can be applied to illustrate the coupling effects between near defects of 

PCWs and to infer the shift trend of dispersion curves as shifting defects of the coupled PCWs.  

We anticipate using the TBT to derive an analytic description to explain physical properties of 

the PC coupler. 
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1-6 Organization of the thesis 

In this thesis, we first introduce the extended TBT to describe the dispersion relation of a 

single PCW and the coupled PCWs made of slab in Chapter 2.  Second, by transversely and 

longitudinally shifting all defects in DCs, we survey variations of coupling coefficients and 

their influences on the dispersion curves using the TBT.  From the analytical derivation, we 

acquire the designing rules to tune the eigenfrequency of the decoupling point and the 

coupling length by suitably shifting line defects (PCWs) in Chapter 3.  Finally, numerical 

simulations based on the PWEM and the FDTD verify the validity of the analytical results 

derived from the TBT for the PC couplers.  The conclusion and the perspectives will be 

presented in Chapter 4. 
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Chapter 2   Theoretical Analysis 

2-1 Tight-binding theory 

The tight-binding theory (TBT) was first used to study the electronic properties in 

solid-state physics [22].  In an atom, electrons are tightly bound to the nucleus.  As the 

separation between atoms is too close comparing to the lattice constant of the crystal, their 

wavefunctions overlap.  Considering two atoms moving approaching, the Coulomb 

interaction between the nuclei and the electrons splits the energy levels, therefore energy 

bands result.  The width of the band is proportional to the intensity of the overlap interaction 

between atoms.  This analysis mode is closely related to the linear combination of atomic 

wavefunctions, and interactions between different atomic sites are considered as perturbations. 

The approximation method typically be used for calculation of the electronic band structure 

from wavefunctions of free atoms in solid-state physics is called the tight-binding 

approximation.  

The TBT provides a straightforward way to analyze the atomic energy band structure. 

Recently, the TBT was also successfully used for various photonic structures.  The theory 

can be applied to describe coupling effects between PCWs in the coupler.  In this chapter, 

the TBT is used to analyze couplings between neighboring defects of two different types of 

DCs. 

2-2 TBT in the dielectric rod slab 

Considering a TM wave propagating in a PCW, which is consists of one line defect of 

reduced rods in a square lattice.  The slab is made of dielectric rods with finite height 

fabricated in air.  The lattice constant of the PC is a, as in Fig. 2.1. 
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Fig. 2.1 The geometric structure of a single PCW dielectric rod slab with the lattice constant a. 
Pm’s are the coupling coefficients between defects within a single waveguide slab. 

From the extended TBT, the electric field in the waveguide can be written as the 

superposition of the electric field E0(r) of point defects at different sites, therefore, the time 

evolution of field amplitude ( i
nu ) at the n-th site of the PCWi (i=1,2) can be expressed in 

terms of coupling with electric fields of neighbor sites [17] 

2 3
0 0 1 1

i ( ) ( ).i i i ij j j
n n m n m n mj m

u C u C u u
t

ω + −= =

∂ = − − +
∂ ∑ ∑            (2.1) 

Here ω0 is the eigenfrequency of a point defect, 0
iC  represents a small shift of a localized 

mode due to the perturbation of the dielectric constant in both PCWs on the site n, and ij
mC  

being the coupling coefficient between the site n of the PCWi and the site n+m of the PCWj, 

defined as 

,n ,n+m

2 2

0 ,n ,n

d (r)i i jij
m

i i

C
d

ω ν ε

ν μ ε

∞

−∞
∞

−∞

⋅
=

⎡ ⎤+⎢ ⎥⎣ ⎦

∫
∫

E E

H E
.                    (2.2) 

Here Ei,n and Ej,n+m indicate electric fields of the site n in the PCWi and the site n+m in the 

PCWj, respectively, and Δε(r) is the difference between perturbed and unperturbed dielectric 

constants.   

First let us start with a single PCW only.  Let 1
0 1( ) ( )nu t U ikna i tω= − , the 

eigenfrequency of a single PCW can be expressed as 
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3

1 0 0
1

( ) 2 cos( ),m
m

k P P mkaω ω
=

= − −∑                   (2.3) 

where 0 0
ijP C=  causes the relative frequency shift for all wavevector k from ω0, and ij

m mP C=  

make the sinusoidal modulation of dispersion relations.  From the electric field distribution 

of the point defect calculated by the PWEM, we can obtain Fig. 2.2.  Ex and Ey are too small 

to influence the coupling effects that can be neglected, therefore, we only consider the 

influence of Ez.  Ez is mainly localized around the dielectric defect rod.  In the z 

polarization, the electric field has opposite sign when extending to the nearest neighbor rod in 

the x direction, i.e., E0z(r) E0z(r±ax) < 0.  In order to support only a single guided mode in 

the PBG, one reduces the radius or the refractive index of the defect rod, thus Δε is negative. 

Since Δε < 0 for rod defects, P1 is positive from the definition of Eq. (2.2).  With similar 

method can derive that P2 is of negative value. 

                    

Fig. 2.2 The z-polarization of the electric filed (Ez) of a point defect localized at the center of 
the square lattice PC slab. 

Before further consider shifting the PCW and DC either transversely (along the ±y 

direction) or longitudinally (along the ±x direction), first, study the effect of shifting a 

dielectric-rod point defect along the ±y (or ±x) axis.  We could expect that due to the electric 

field being less localized in the dielectric region [23], the eigenfrequency (ω0) will blue shift 

as the defect rod progressively moved away from the center. 

When shifting all the defect rods in a PCW along the y direction, shown in Fig 2.3(a), the 
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eigenfrequency of the point defect increases but the electric field distribution along the 

propagation direction is almost unchanged.  Therefore, the dispersion curves just blue shift.  

However, as shifting the single line defect along the x direction, shown in Fig 2.3(b), both ω0 

and P0 would be increased but only slightly change the Pm’s.  Hence, we could expect that 

the dispersion curve is almost unchanged at the small wavevector and slightly increases at the 

high wavevector by moving defect rods along the propagation direction. 

 
Fig. 2.3 Ways of shifting defect rods in the single PCW. 

When the second identical waveguide is inserted to form a symmetric DC of PCWs, as 

shown in Fig. 2.4, and the dispersion relation of this DC can be derived as [24] 

'
1 1 1( ) ( ) ( ) ( 2 cos( )) ( ) ( 2 cos( ))k k k ka k kaω ω ω α β ω α β= + Δ ± + = ± + ,       (2.4) 

where 12 21
0 0C Cα = =  and 12 21

1 1C Cβ ± ±= =  are the coupling coefficients of the PCW induced 

by the nearest-neighbor and the next-nearest neighbor defect rods of the other PCW; ω1 and ω 

are the eigenfrequencies of the single PCW and the DC, respectively.  Δω1 is caused by the 

difference of the coupling coefficients within single waveguide when the second PCW is 

inserted.  Generally, Δω1 is small, we therefore neglect this term in the following discussion.  

In the two PCWs coupler, the single guided mode for one PCW is split into two modes.  The 

plus sign stands for the odd mode and the minus sign stands for the even mode.  From 

derivations of Eq. (2.4) can obtain that two dispersion curves with different parities is 

crossing at 1k [cos ( 2 )] aβ α−= −  if 2 1β α >  [17].  Enlarging (or reducing) the distance 

between two line defects will decrease (or increase) α and β due to different field distribution 
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of defects.  Hence tuning coupling coefficients can tune the coupling length of a DC made of 

dielectric rods. 

 
Fig. 2.4 The geometric structure of a double PCWs dielectric rod slab, here α and β are the 
coupling coefficients between waveguides. 

As simultaneously shifting double line defects of the DC along the y direction, shown in 

Fig 2.5(a), we would expect a larger ω1 because the defects moved away from the center of 

the waveguide.  Besides, the coupling coefficients, α and β, are almost unchanged because 

the separation between two PCWs is fixed.  Therefore, the dispersion curves of the DC 

would only blue shift and the coupling lengths are still similar.  As increasing the separation 

between two PCWs, shown in Fig. 2.5(b), α and β would become smaller, thus two dispersion 

curves would shift together and toward the higher frequency.  On the contrary, reducing the 

distance between two PCWs, shown in Fig. 2.5(c), one increases the separation of the 

dispersion curves and both of which shift to the higher frequency.  Shifting defect rods in the 

triangular lattice DC [see Fig. 2.5(d)] show similar properties to the square lattice DC.  In the 

square lattice DC, the ratio of the coupling coefficients 2β α  is less than one so that there 

would be no decoupling point.  Moving the defect rods along the propagation direction in a 

square lattice DC, shown in Fig. 2.5(e), will also change the coupling effect.  As shifting in 

the x direction further, we expect that the structure would become similar to the triangular 
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lattice, therefore, the value of 2β α  gradually increases and finally two dispersion curves 

start crossing, just like the dispersion relation of a triangular lattice DC.  Conversely, shifting 

the defect rods along the x direction in a triangular DC [see Fig. 2.5(f)] decreases the ratio of 

2β α  and finally the decoupling point disappears. 

   

   
Fig. 2.5 Ways of shifting defect rods in the coupled PCWs. 

2-3 TBT in the air-hole slab 

In this section, the other type of slab that consists of air holes is discussed.  Considering 

a PCW made of thin slab with triangular lattice, the air holes in the PCW are enlarged to 

support a single propagation mode as shown in Fig. 2.6.  The lattice constant of the PC is a. 
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Fig. 2.6 The geometric structure of a single PCW slab made of air-hole with the lattice 
constant a.  Pm’s are the coupling coefficients between air-hole defects within a single 
waveguide. 

Similar to the derivation of the dielectric rods PCW in Section 2-3, the dispersion 

relation of a single air-hole PCW can be presented as  
3

1 0 0
1

( ) 2 cos( )m
m

k P P mkaω ω
=

= − −∑ .                  (2.3) 

Assuming a TE wave is propagates in the PCW.  From the electric field distribution of the 

point defect obtained by the PWEM, shown in Fig. 2.7, Ez is much smaller than Ex and Ey.  

And Ex and Ey are mainly localized at the connections between two air holes.  Because Ex 

seems to be quadrupole as extending in the x direction to the nearest-neighbor unit cell [see 

Fig. 2.7(a)], contribution to the coupling coefficients of single PCW from the overlap 

integration of E0x(r)E0x(r±ax) cancel out to each other and become quite small.  Therefore, it 

has minimal contribution to the dispersion of the PCW, but it plays an important role in 

waveguide coupling that will be discussed later.  Furthermore, the electric field of the 

y-polarization in Fig. 2.7(b) has opposite sign as it extends to the nearest-neighbor unit cell in 

the x direction, i.e., E0y(r) E0y(r±ax) < 0, thus, P1 is positive from the definition of Eq. (2.2) 

resulting from Δε <0 for air defect.  Similarly, P2 can be shown also positive. 

Next, consider the effect of shifting an air-hole point defect along the ±y (or ±x) axis.  

We could expect that the eigenfrequency (ω0) of a point defect increases as transversely or 

longitudinally shifting the point defect.  That is due to the electric field mainly localized in 
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the dielectric region between the defect hole and the nearest neighbor air holes.  As shifting 

the defect hole, the area of the dielectric substrate between the defect hole and the nearest hole 

is reduced, thus making the electric field extends to the air region.  Such less concentration 

of the electric field in the dielectric substrate causes a buleshift of the frequency when the 

defect hole moved away from the center.  By plotting the electric field distributions of Ex and 

Ey for the cross section views along the dash lines in Fig. 2.7(a) and (b), we found the electric 

field is localized in the dielectric connection regions (besieged by squares) as mentioned 

above; and the Ex field is less localized along the y-axis in Fig. 2.7(e) than Ey one along the 

x-axis in Fig. 2.7(f). 

 

        

Fig. 2.7 (a) Ex, (b) Ey, (c) Ez and (d) 
2

E of a point defect localized at the center.  (e) (f) are 

the field distributions of the dash lines of (a)(b), respectively.  The squares in (e) and (f) 
indicate the dielectric connection regions. 

As shifting all the air-hole defects in the single PCW along the y direction, as shown in 

Fig. 2.8(a), the eigenfrequency of the point defect will increase but the electric field 

distribution along the waveguide direction might not changed evidently because the structure 

still with symmetry.  One would expect all the coupling coefficients Pm are similar to the 

values before shifted due to almost unchanging in field distribution as the PCW shifting along 

y direction.  The shifting only causes the dispersion curve of the single PCW moving toward 

the higher frequency.   
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On the other hand, as moving the air-hole defect along the x direction, shown in Fig. 

2.8(b), both ω0 and P0 are increased thus the dispersion curve basically locates at the same 

frequency due to the smooth envelope of the electric field at low wavevectors.  Under this 

circumstance, the perfect PCs surrounding the PCW can be effectively considered as two 

uniform slabs so that the propagation frequency will not be modified as the defect moved 

along within the uniform slabs.  At large wavevector, the fast envelope distributed in 

periodic air and dielectric in the PCW makes more electric field distribute to the air region 

that cause the dispersion curves will bend toward the higher frequency at high wavevector. 

  
Fig. 2.8 Ways of shifting the defect holes in the single PCW. 

Inserting the second identical air-hole PCW on the slab separated by one partition row of 

air holes to the first PCW, shown as Fig. 2.9, a DC can be made. 

 
Fig. 2.9 The geometric structure of a double PCWs air-hole slab with the lattice constant a. 
α and β are the coupling coefficients between waveguides. 

The dispersion relation of the air-hole DC can be derived as 

1( ) ( ) ( 2 cos( ))k k kaω ω α β= ± + ,                    (2.4) 
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the same as the eigenfrequency of dielectric rod DCs discussed in Section 2-2.  In the two 

air-hole waveguides coupler, the single guided mode for one PCW is split into two modes. 

The plus and the minus signs stand for the odd and the even modes, respectively.  Changing 

the separation between two PCWs will lead to variations of the coupling coefficients. 

Therefore, we can tune the coupling lengths and the frequency of the decoupling point of an 

air-hole DC. 

As simultaneously shifting two PCWs of the DC along the y direction, as shown in Fig. 

2.10(a), we expect increasing ω1 because the air-hole defects moved into the high-field 

regions; however, α and β are almost unchanged as a result of fixed separation between two 

PCWs.  Therefore, the dispersion curves of the DC should only show a blueshift with similar 

coupling lengths.  Reducing the distance between two PCWs of the DC, shown in Fig. 

2.10(b), will not only increase the electrical potential so to raise the eigenfrequency but also 

enhance α and β.  The enhancement of waveguide coupling moves the dispersion curves 

apart as moving these two PCWs closer that shorten the coupling length.  If one moves two 

PCWs apart symmetrically, shown in Fig. 2.10(c), contrarily, the coupling coefficients α and 

β should become small.  Thus, the coupling length increases and the dispersion curves will 

also shift toward the higher frequency.   

On the other side, as we simultaneously shift two PCWs of the DC along the x-direction 

or longitudinally, as shown in Fig. 2.10(d), we expect that contribution from Ey field 

distribution would dominate the influence on coupling coefficients and cause the larger value 

of |2β /α | after moving the defect holes along the propagation direction.  Therefore, as 

moving the defect along the propagation direction, the decoupling point will move toward the 

higher wavevector. 
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Fig. 2.10 Ways of shifting the defect holes in the coupled PCWs. 
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Chapter 3   Simulation Results and Discussion 

3-1 Shifting dielectric rod defects in the photonic crystal slab 

An air-hole formed defect waveguide has two mechanisms of the light confinement: 

effects of the PBG and the index-guiding.  Instead, there is only one bandgap effect of a 

dielectric rod waveguide needs to be considered; therefore it is simpler to analyze.  Thus, 

simulation results of the dielectric rod type are discussed first in this chapter.  

In the dielectric rod type structure, a TM polarization is easier to generate the PBG, as 

shown in Fig. 3.1.  In the case of a PC slab, due to the lack of the translational symmetry in 

the vertical direction, there is no purely TE or TM mode, but rather the TE-like (even) or the 

TM-like (odd) mode.  The band diagram of a PC slab possesses a light line.  When the 

fields are spatially bounded, such as being localized around the defects, then the frequencies 

form a discrete set.  The propagation modes, which under the light line are discrete because 

their energy is localized within the PCW, called as the guided modes.  The region above the 

light line corresponds to the continuum of the extended modes.  Modes in this region will 

radiate the energy outward, called the radiation modes.  In the application of optical 

communications, we mainly consider the guided modes only. 

In this section, the PWEM and the FDTD method are used to simulate and to design the 

PC slab with the radius of rods and the height being 0.2a and 2a, respectively, where a is the 

lattice constant of the crystal.  The radius of the defect rods is 0.13a in both square and 

triangular lattice lattices.  The dielectric constant of the dielectric rods is 12, which 

corresponds to dielectric constant of silicon at 1.55μm [see Fig. 3.2].  
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Fig. 3.1 Dispersion relations of a perfect dielectric rod PC slab with square lattices of the (a) 
TM-like (the magnetic field polarized along the waveguide) and the (b) TE-like EM waves. 
The gray line indicates the light line, and the shade region is the PBG.  (c) The 1st Brillouin 
zone for a square lattice with the irreducible zone. 

 
Fig. 3.2 The refractive index of silicon at different wavelength. 
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3-1-1 Shifting a point defect 

First, making the PC different from symmetry by tuning the location of a point defect 

away from the original center and investigates the influence on the eigenfrequency.  Moving 

the point defect along the ±y (or ±x) direction in the square lattice will shift the 

eigenfrequency (ω0) of a point defect toward the higher frequency as shown in Fig. 3.3.  

 
Fig. 3.3 The eigenfrequency of the point defect with a defect rod located at different positions 
along the y-axis. 

The electric field mainly localized in the dielectric rod when there is no shift of the 

defect.  As shifting the defect rod away from the center, the portion of fields localized at the 

dielectric region is reduced, thus the electric field extends to the air region.  Figure 3.4(a) 

shows how the field distribution varies with the shift degree of the defect along y-axis.  The 

less concentration of the electric field in the dielectric substrate makes a buleshift [23].  And 

in Fig. 3.4(b), there is almost unchanged of the field distribution along the x-axis. 
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Fig. 3.4 The electric fields of the point defect made of a dielectric rod along the (a) y-axis and 
the (b) x-axis.  The defect rod is gradually shifted toward the y direction. 

3-1-2 Shifting a line defect 

Next, we will investigate a PC slab with all line defects moving along the y-axis in the 

square lattice.  The result shown in Fig. 3.5(a) indicates that the dispersion curves shift 

completely to the higher frequency, which suggests that the coupling coefficients Pm between 

defect rods are unaffected as shifting the line defects.  The frequency shift is primarily 

dominated by the variation of eigenfrequency (ω0) of the point defect as moving the rod. 

Otherwise, as the defect rods are longitudinally shifted along the x-axis, the results are 
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presented in Fig. 3.5(b).  The dispersion curve bends down in large wavevectors.  This is 

due to the reason that both ω0 and P0 would increase and cancel out the effect of changing the 

eigenfrequency ω1 in the section of small wavevectors.  Shifts of dispersion curves merely 

change apparently when the higher-order terms Pmcos(mka) become important. 

 
Fig. 3.5 Dispersion curves of a single waveguide slab with all the defect rods are moved 
toward the (a) y and (b) x directions. 
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3-1-3 Shifting line defects of directional couplers in triangular and square 

lattices 

In this section we will discuss the effects as changing the separation between two PCWs 

of the slab.  Transversely shifting two defect rows gets Fig. 3.6, which shows how the 

dispersion relation varies as changing the structure of the DC.  Here, we discuss the square 

lattice structure first.  As simultaneously moving two line defects off the center and keeping 

the separation between PCWs fixed, we find that the dispersion curves shift toward the higher 

frequency, as shown in Fig. 3.6(a).  In addition, the separation of the two dispersion curves 

does not change, i.e., the coupling length keeps fixed.  On the other hand, reducing the 

separation of two line defects to decrease the coupling between PCWs pushes the dispersion 

curves apart (see Fig. 3.6(b)), and thus increases the coupling length.  However, 

symmetrically enlarging the separation of the waveguides not only shifts the dispersion curves 

toward the higher frequencies but also makes two dispersion curves closer (see Fig. 3.6(c)). 
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Fig. 3.6 Dispersion relations of the shifted DCs, whose defect rods are moved transversely (a) 
with fixed separation, (b) to approach and (c) to apart from each other. 

Transversely shifting two PCWs of a DC in the triangular lattice and keeping the 

separation fixed, one gets the dispersion relation as in Fig. 3.7.  At the wavevector smaller 

than that of the decoupling point, two curves of the odd mode and the even mode show blue 

shifted with the coupling length unchanged, similar as the result of Fig. 3.6(a).  Generally, 

tuning PCWs of a DC in the square and the triangular lattices, we will obtain alike 

conclusions, therefore, discussions of other conditions are abbreviating in this section. 
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Fig. 3.7 The dispersion relation of a triangular lattice DC with two defect waveguides are 
shifted transversely with fixed separation. 

Besides the two dispersion curves of the symmetric DC cross at one point, there are other 

phenomena.  The frequency of the even mode is higher than that of the odd mode for lower 

wavevector.  As the wavevector becomes higher than the decoupling point, the odd mode 

owns higher frequency, namely, mode switch occurs at the decoupling point, as shown in Fig. 

3.8. 

     
Fig. 3.8 Change of parity in a symmetric dielectric rod DC. 
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Next, we inspect the results of shifting all defect rods longitudinally in Fig. 3.9.  In the 

square lattice structure, there is no decoupling point [see Fig. 3.9(a)].  After longitudinally 

moving line defects, two dispersion curves come approaching to each other.  When gradually 

shifting the defect rods, two dispersion curves begin to cross at one point at high frequency. 

As rods keep on moving further, the decoupling point will move toward the lower frequency 

or the smaller wavevector k.  Conversely, in the triangular lattice DC, the decoupling point 

moves toward the higher frequency or the larger wavevector k and eventually two dispersion 

curves do not cross [see Fig. 3.9(b)].  Whether the dispersion curves cross or not depends on 

the coupling strength, as mentioned in Section 2-3, only when the ratio 2 1β α >  [see Fig. 

3.10] that the decoupling point will appear at the wavevector 1k [cos ( 2 )] aβ α−= − . 

 

 



 32

 
Fig. 3.9 Dispersion relations of shifting double defect rod channels longitudinally in the (a) 
square lattice and the (b) triangular lattice PC slabs. 

 

Fig. 3.10 The values of (a) α, β and (b) 2β α  as defect rods shifted in x direction in a 

square lattice DC. 

3-2 Shifting air-hole defects in the photonic crystal slab 

Because an air-hole slab is relatively simple to fabricate, this type of DCs has become 

the most widely used in the practical devices.  In PC slab waveguides, not only the PBG 

provides a mechanism to restrict light propagating in the channel, but also the air-claddings 

provides better confinement to decrease the radiation loss during the light propagation [25]. 



 33

Hence, in this section we will simulate the DC slab composed of a thin planar dielectric 

substrate with air-holes and surrounded by air. 

In the air-hole DC, the electric fields of TE polarized light are localized in the dielectric 

substrate to create a bandgap; the comparative result is in Fig. 3.11.  

  

Fig. 3.11 Dispersion relations of a perfect triangular lattice air-hole PC slab of the (a) TE-like 
and the (b) TM-like polarization incident EM waves, and (c) the 1st Brillouin zone for a 
triangular lattice with the irreducible zone.  

With the intention to obtain a larger PBG, an air-hole slab is usually arranged with 

triangular lattice.  From the simulation data of Fig. 3.12, we can clearly find that there is 

almost no PBG in the square lattice air-hole slab.  Therefore, in the following simulations, 
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we only did on the air-hole PC slab with triangular lattice encircled by air.  T he radius of the 

air holes, the thickness and dielectric constant of the slab are 0.3a, 0.55a and 12, respectively.  

The radius of the defect hole in the waveguide is 0.44a. 

 

Fig. 3.12 Dispersion relations of a perfect air-hole PC slab with square lattices.  The incident 
EM wave is TE polarization. 

3-2-1 Shifting a point defect 

We will consider the shift in the eigenfrequency and the redistribution of the electric 

field in this section upon shifting the point defect along the ±y (or ±x) axis in the triangular 

lattice PC slab.  The eigenfrequency (ω0) blue shifts as the defect hole progressively moved 

away from the center shown in Fig. 3.13.  Due to the localization nature of Ey polarization, 

the field distribution has less influence or is inert subjected to displacement of the defect hole 

than that of the extended Ex component as shown in Fig. 3.14(a) with maximum Ex(0.6a) ~ 

0.15 (ΔEx ~ 0.1 on moving defect) and in Fig. 3.14(d) with maximum Ey(0.8a) ~ 0.3 (ΔEy ~ 

0.3 on moving defect).  On the other hand, the smaller change of the extended or smoother  

Ex field as moving the defect hole leads to less variation of eigefrequency of the shifted point 

defect in Ex than in Ey as in Fig. 3.13. 
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Fig. 3.13 The eigenfrequency of the air-hole point defect located at different positions shifted 
along the y and x axes, respectively. 
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Fig. 3.14 (a) Ex and (b) Ey of an air-hole point defect shifted toward the y-axis at z=0 plane.  
(c) Ex and (d) Ey of an air-hole point defect shifted toward the x-axis at z=0 plane. 

3-2-2 Shifting a line defect 

From the results done by the PWEM, we found the dispersion curves of an air-hole PC 

slab shift toward the higher frequency as moving all line defects along the y-axis.  The result 

shown in Fig. 3.15(a) indicates that the dispersion curves shift toward the higher frequency 

that are primarily dominated by the variation of eigenfrequency (ω0) of the point defects as 

moving the hole.  The dispersion curves of different y-shifted PCWs show basically parallel 

to one another except for that of the PCW having y > 0.1a.  As keeping on shifting further, 
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the defect hole is close to the nearby hole and there is no sufficient space to allow the electric 

field wholly localized in the dielectric region.  Therefore, the electric field will overflow to 

the air region that makes the high-order coupling coefficient P2 become larger than P1.  

Since the sign of P2 and P1 are both positive the dispersion curve should bend down under 

this circumstance.  The results of longitudinally moving defect holes along the x-axis are 

presented in Fig. 3.15(b).  The slope of a dispersion curve, which is the group velocity and 

defined as d dkϖ , slightly increases with the extent of shift.  This trend is mainly due to 

the increase of P1 that leads this term P1cos(ka) in Eq. (2.3) affecting the eigenfrequency ω1.  

 
Fig. 3.15 Dispersion curves of a single PCW air-hole slab with all the defect holes shifted 
toward the (a) y and (b) x directions. 
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3-2-3 Shifting line defects of directional couplers 

In this section, we will simulate different conditions of transversely moving two line 

defects.  Figure 3.16 shows how the dispersion curves vary with altering the separation of 

two line defects.  Simultaneously shifting two rows of air-hole defects away from the center 

and keeping the distance between two PCWs fixed, we obtain that the dispersion curves are 

shifted toward the higher frequency, as shown in Fig. 3.16(a).  The dispersion curves of the 

DC only blue shift with similar coupling lengths.  And the decoupling point also keeps at the 

same wavevector due to the value of 2β α  is not changed [see Fig. 3.17] but its 

eigenfrequency blue shifts accordingly.  Next, by reducing the separation of two line defects 

symmetrically to increase the coupling coefficients between PCWs, dispersion curves will 

shift apart, i.e., the coupling length decreases, and the decoupling point shifts toward the 

higher wavevector [see Fig. 3.16(b)] since the value of 2β α  becomes smaller [see Fig. 

3.18], whereas, enlarging the separation of two line defects will give the opposite trend, as 

shown in Fig. 3.16(c) and Fig. 3.19. 
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Fig. 3.16 Dispersion curves of the shifted DCs, whose defect holes are moved transversely (a) 
with separation fixed, (b) to approach, and (c) to apart from each other. 

  

Fig. 3.17 The values of (a) α, β and (b) 2β α  as defect holes shifted simultaneously in the 

y direction. 
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Fig. 3.18 The values of (a) α, β and (b) 2β α  as defect holes shifted to approach in the y 

direction. 

  

Fig. 3.19 The values of (a) α, β and (b) 2β α  as defect holes shifted to apart from each 

other in the y direction. 

Second, we investigate the influence of moving all defect holes along the x direction. 

After longitudinally shifting double line defects, two dispersion curves move toward the 

higher frequency [see Fig. 3.20] and the decoupling point also moves toward the higher 

wavecector.  As gradually shifting the air-hole defects, two dispersion curves finally no 

longer cross due to 2 1β α ≤  [see Fig. 3.21].  Contribution from Ey field dominates the 

influence on coupling coefficients, as shown in Fig. 3.14. 
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Fig. 3.20 Dispersion curves of moving all the defect holes along the x direction in the 
triangular lattice DC. 

 

Fig. 3.21 The values of (a) α, β and (b) 2β α  as defect holes shifted in x direction in the 

triangular lattice DC. 

3-3 Coupling lengths calculated by the FDTD method 

In this section, we anticipate obtaining the EM waves propagating conditions in the DC 

by the FDTD method by considering an EM wave with frequency 0.37264c/a is incident into 

the dielectric rod DC with square lattice, as shown in Fig. 3.22(a).  Without shifting the 

PCWs, the coupling length is approximately equal to 18.8a [see Fig. 3.22(b)].  As 
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transversely shifting two defect waveguides 0.2a closer, the coupling length reduces to 8.2a 

[see Fig. 3.22(c)].  The coupling lengths derived by the FDTD method are consistent with 

the results calculated by the PWEM [see Fig. 3.23]. 

 
Fig. 3.22 (a) A dielectric rod DC with square lattice.  Propagating EM waves in two 
waveguides (b) without any shift and (c) transversely shifted 0.2a closer. 

 
Fig. 3.23 The coupling lengths of different shift of waveguides in the dielectric rod DC. 
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Next, we survey the conditions of an EM wave transfers in the air-hole DC, the device 

structure is shown as Fig. 3.24(a).  The frequency of the incident wave is 0.285c/a having 

the coupling length of about 3.5a [see Fig. 3.24(b)].  As shifting the defect rows 0.1a closer 

to each other, the coupling length reduces to 4.6a [see Fig. 3.24(c)].  Comparing the results 

of the PWEM, as shown in Fig. 3.25, the FDTD method obtains similar coupling lengths.  

 

 
 

 
 

 
Fig. 3.24 (a) The air-hole DC with triangular lattice.  Propagating EM waves in two 
waveguides (b) without any shift, (c) transversely shifted 0.1a to apart from each other. 
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Fig. 3.25 The coupling lengths of different shift in the air-hole DC. 
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Chapter 4   Conclusion and Perspectives 

4-1 Conclusion 

We have demonstrated that the electric field will propagate in the incident channel 

without leaking into another as the incident frequency is chosen at the decoupling point.  By 

moving off the defect rods or holes, we can efficiently change the dispersion curves, and thus 

modify the coupling length and the decoupling frequency.  As the defect rows are moved 

away from the center, dispersion curves blue shift.  Two dispersion curves get apart or closer 

by decreasing or enlarging the separation of the coupled PCWs in both triangular and square 

structures of the PC devices.  Shifting defect waveguides would change the magnitude of the 

coupling coefficients of the first (α) and the second (β) nearest-neighbor defects of the DC, 

therefore modifies the coupling length and the location of the decoupling point.  

Longitudinally moving two PCWs along the wave propagating direction also changes the 

ratio of the coupling coefficients, therefore shifts the decoupling point of a triangular-lattice 

DC toward the higher wavecector and two dispersion curves of a square-lattice DC cross.  

By using of these properties, we can design the decoupling point for a certain operation 

frequency, no matter the DC is made of dielectric rods or air-holes.  Finally, the TBT 

successfully explains these coupling properties that can be confirmed by the PWEM and the 

FDTD method and provides a designing rule for the photonic crystal slab couplers in optical 

integrated circuits. 

4-2 Prospectives 

In this thesis, we have discussed the coupling effects of DCs without considering optical 

nonlinearity.  The characteristic of nonlinear DCs is also a considerable topic, e.g., the 
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optical Kerr effect provides possible tuning the refractive index of the dielectric material in 

respond to an applied electric field.  The dispersion relation of a defect waveguide in the 

nonlinear PC structure is different from that in the linear medium.  Utilizing this 

characteristic we can design the DC as an active component.  When an EM wave is incident 

into the nonlinear DC devices, the propagating condition can be tuned corresponds to the 

intensity of the input field.  With this notion, the active-DC can serve as a logic gate in 

optical integrated circuits.  Therefore, knowing the properties of a nonlinear DC are 

interesting and useful issues in integrated optics. 
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