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摘   要 

近幾年來，由於二維顯示器方面技術的成熟，及一般大眾對於影像娛樂需求

的提升，立體顯示器已成為目前各大廠商和學術研究的主流，並期望能藉此提供

給大眾更真實的視覺感觀效果。在目前的現實生活中，藉由透過觀察者戴眼鏡的

技術達到三維視覺效果，已普遍應用在一般商業立體電影院。然而，立體顯示技

術如何實現於一般家庭用顯示器，主要還有以下幾點需克服的議題：（一）如何

使觀察者不需戴眼鏡，即可達到近似於日常生活的立體視覺效果。（二）如何設

計整體立體顯示器，在長時間觀看下不會感到不適，並欣賞到高品質的立體畫

面。 

本篇論文，即在考量解析度、出光效率以及畫面均勻度的情況下，結合空間

多工及時間多工型兩種裸眼立體顯示器技術，提出一種新型的裸眼立體顯示器背

光，並藉由光學模擬軟體得到最佳化結構參數。最後透過硬體實現，使觀察者在

長時間欣賞由該背光系統所提供的立體影像下，不會感到不舒服並欣賞到接近日

常視覺的高品質立體影像。 
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Abstract 

Currently, stereoscopic displays are widely utilized for entertainment. 

Nevertheless, 2D multiplexed auto-stereoscopic displays are popular because of 

multi-view and without wearing eyeglasses, including spatial-multiplexed displays 

and temporal-multiplexed displays. However, spatial-multiplexed displays present 

low resolution 3D images and temporal-multiplexed displays produce limited number 

of views because of LC response time. Therefore, a four-directional temporal 

backlight was proposed to produce four viewing zones sequentially, including a 

sequential LED plate, a cylindrical lens, a dual directional prism, and a diffuser. Then, 

by adding a 240Hz LCD and a multi-views parallax barrier in front of the proposed 

backlight, a spatial-temporal hybrid 3D display was demonstrated for large panels with 

wide viewing angle, multi-view, acceptable 3D resolution and light efficiency. 
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Chapter 1  

Introduction 

1.1 Preface 

    Nowadays, display developments are pursued through needing more natural 

images. Images containing three-dimensional coordinate information are necessary for 

humans to perceive real life images. In Fig. 1-1, 3D displays, including stereoscopic 

displays and auto-stereoscopic displays, are the next generation in display technology. 

 

 

Fig. 1-1 Stereoscopic display and auto-stereoscopic display [1]. 

    The binocular parallax phenomenon and the motion parallax phenomenon cause 

stereoscopic visions in real life [2]. The binocular parallax phenomenon is that when 

an observer sees an object, the observer’s two eyes receive different 2D images. Then, 

the brain combines two 2D images to produce stereoscopic visions, as shown in Fig. 
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1-2. 3D displays utilize the binocular parallax phenomenon to produce the perceived 

depth defined in Fig. 1-3. A 3D display producing deep perceived depth presents 

obvious stereoscopic visions. 

 

 

Fig. 1-2 Binocular parallax phenomenon. 

 

 

Fig. 1-3 Definition of perceived depth behind and in front of a display. 
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The motion parallax phenomenon means that when an observer sees an object 

from different directions, the observer perceives different images continuously. 

Multi-view 3D displays can produce the motion parallax phenomenon, as shown in 

Fig. 1-4. A 3D display producing a lot of views presents lifelike 3D images. 

 

 Fig. 1-4 Motion parallax phenomenon. 

1.2 Classification of 3D Displays 

3D displays include stereoscopic displays and auto-stereoscopic displays. The 

3D display classification is shown in Fig. 1-5. Stereoscopic displays include shutter 

eyeglasses 3D displays and polarized eyeglasses 3D displays. Currently, stereoscopic 

displays are widely used in cinemas because many people can perceive the same 3D 

movies simultaneously by wearing eyeglasses. However, wearing eyeglasses and the 

motion parallax phenomenon are drawbacks in stereoscopic displays. Therefore, 

auto-stereoscopic displays were developed to introduce 3D techniques into daily life 

Multi-view 3D display
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[3], including Holographic 3D displays and 2D-multiplexed 3D displays. But 

Holographic 3D displays have color distortion and large recording data requirements 

in 3D movies. Consequently, 2D-multiplexed 3D displays are attractive because of 

multi-view, not required eyeglasses, and ease of fabrication. 

 

Fig. 1-5 Classification of 3D displays. 

1.3 Motivation and Objectives 

As mentioned in Sec. 1.2, 2D-multiplexed 3D displays, including 

spatial-multiplexed 3D displays and temporal-multiplexed 3D displays are popular 

now. However, spatial-multiplexed 3D displays present low resolution and low light 

efficiency. Temporal-multiplexed 3D displays produce limited number of views and 
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non-uniform images in large LCDs. Therefore, a spatial-temporal hybrid multi-view 

3D display was proposed to solve drawbacks in spatial-multiplexed and 

temporal-multiplexed 3D displays. 

1.4 Thesis Organization  

    The thesis is organized as follows: criteria for evaluating 3D displays are defined 

in Chapter 2. Configurations and drawbacks of existing 3D displays are also 

illustrated. In Chapter 3, structure and design of the proposed 3D display are 

presented. After that, simulation results are analyzed in Chapter 4 and experimental 

results are discussed in Chapter 5. Finally, conclusions and future works are 

presented in Chapter 6. 
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Chapter 2  

Criteria & Prior Multiplexed 3D Displays 

    This chapter defines the criteria for evaluating 3D displays. Additionally, 

configurations, mechanisms, and drawbacks of several representative 3D displays are 

reviewed and illustrated. 

2.1 Criteria of 3D Displays 

    3D displays are more complex than 2D displays due to the binocular parallax 

phenomenon and the motion parallax phenomenon. Therefore, some criteria are 

defined in this section to evaluate 3D displays [4]. 

2.1.1 Crosstalk & Average Crosstalk 

Displaying two different 2D images to the left and right eye causes the binocular 

parallax phenomenon. However, if the left eye or the right eye receives a wrong image 

due to light leakage, the brain is confused while combining two 2D images, and 

observers feel fatigue. Therefore, in multi-view 3D displays, crosstalk and average 

crosstalk are defined in Fig. 2-1 to evaluate fatigue level. A 3D display with high 

crosstalk presents distorted 3D images, as shown in Fig. 2-2. The human can tolerate 

crosstalk below 15% ~ 20%. Consequently, reducing light leakage is essential for 3D 

displays to present clear 3D images. 
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Fig. 2-1 Definition of crosstalk and average crosstalk. 

 

Fig. 2-2 3D images with and without crosstalk [5]. 

2.1.2 Number of Views & Viewing-Zone Uniformity 

    A view is the range that an observer’s eye can see clear 2D images. The left and 

right eye receives two different 2D images when the observer sees a 3D image. So a 

3D image contains two views. A multi-view 3D display produces different 3D images 

according to the observer’s location, as shown in Fig. 2-3. Therefore, 3D displays 

producing large number of views present lifelike 3D images. However, in daily life, 

an object perceived from different directions is continuous. Therefore, the 

viewing-zone uniformity is defined in Fig. 2-4. If the viewing-zone uniformity is 

below 70%, an observer perceives dark images while moving to different locations. 
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Fig. 2-3 4-views 3D displays. 

 

Fig. 2-4 Definition of viewing-zone uniformity. 
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2.1.3 Voxels and 3D Resolution 

    Display resolution means the number of distinct pixels displayed in an image. In 

a fixed size 2D display, an image with large number of pixels presents high resolution 

and clear image contents, as shown in Fig. 2-5. Similarly, in 3D displays, the voxel is 

a volume of perceived depth produced by a disparity between a left pixel and a right 

pixel, as shown in Fig. 2-6. In Fig. 2-7, the large pixel disparity produces deep 

perceived depth but low voxel number and low 3D image resolution. Because two 

views compose a 3D image, the 2D resolution per view is also a key characteristic in 

3D displays. Observers can perceive clear 3D images if the left and right eye receives 

high 2D resolution per view. 

 

Fig. 2-5 High and low resolution images. 

 

Fig. 2-6 Diagram of voxel and perceived depth[6]. 
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Fig. 2-7 Relation between pixel disparity, perceived depth, and number of voxels [6]. 

2.1.4 Light Efficiency 

A display is composed of several components, such as a polarizer and a color 

filter. However, lights from a backlight are partly absorbed while passing through 

each component, as shown in Fig. 2-8. Therefore, image brightness is much lower 

than backlight brightness. 

 

Fig. 2-8 Transmittance of each element in LCD [7]. 
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A display producing high light efficiency presents bright images for a fixed 

power consumption LCD. Because 3D displays have more elements than 2D displays, 

maintaining light efficiency to present acceptable image brightness is essential for 3D 

displays.  

2.1.5 Image Uniformity  

Currently, backlights using LEDs are popular due to low power and local 

dimming technology. High directional LEDs are also utilized in side-emitted small 3D 

displays. However, in side-emission large 3D displays, a pixel distant from LEDs is 

less bright. So the image uniformity defined in the following equation is low [8].  

                 
                        

                       
        (2 - 1) 

The measuring points of a backlight are shown in Fig. 2-9. The tolerant image 

uniformity for humans is above 80%. Therefore, in designing 3D displays, 

direct-emission backlights are preferred to side-emission backlights for directing 

lights into different views and maintaining image uniformity. 

 

Fig. 2-9 Measuring points for image uniformity. 

2.2 Stereoscopic Displays 

Stereoscopic displays include shutter eyeglasses 3D displays and polarized 
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eyeglasses 3D displays. Shutter eyeglasses 3D displays contain a 120Hz LCD, a 

detector, and shutter eyeglasses [9]. The LCD shows left and right images sequentially 

at 120 Hz and the shutter eyeglasses switches on and off correspondingly. So the left 

and right eye receives different 2D images sequentially and the observer perceives 

stereoscopic effects, as shown in Fig. 2-10.  

 

Fig. 2-10 Diagram of shutter eyeglasses 3D displays. 

 

Fig. 2-11 Diagram of polarized eyeglasses 3D displays. 
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Polarized eyeglasses 3D displays include two projectors, a scattered screen, and 

polarized eyeglasses [10]. Two projectors produce different polarized 2D images and 

the screen scatters images. By wearing polarized eyeglasses, the left and right eye 

receives different polarized 2D images and the observer perceives stereoscopic effects, 

as shown in Fig. 2-11. Both of shutter and polarized eyeglasses 3D displays are widely 

used in movie theaters because several observers can see 3D movies simultaneously. 

However, the observer need to wear eyeglasses to perceive 3D images from 

stereoscopic displays. The motion parallax phenomenon is also a drawback because 

observers at different positions still see the same 3D image. 

2.3 Auto-Stereoscopic Displays 

Although stereoscopic displays have been widely utilized, because wearing 

eyeglasses is not required, multi-view and ease of fabrication, auto-stereoscopic 

displays are preferred to introduce 3D techniques into daily life. Since Holographic 

3D displays have color distortion and large recording data requirements in 3D movies, 

several popular 2D-multiplexed 3D displays are introduced in the following. 

2.3.1 Spatial-Multiplexed 3D Displays 

2D-multiplexed 3D displays produce two different 2D images to the left and right 

eye separately. Then the brain combines two 2D images to introduce stereoscopic 

effects. The first 2D-multiplexed 3D displays are spatial-multiplexed 3D displays. As 

shown in Fig. 2-12, lights from different pixels are directed to corresponding views by 

using a parallax barrier or a cylindrical lens. The design equations of multi-view 

parallax barrier and multi-view cylindrical lens are shown in Fig. 2-13 and Fig. 2-14 

[11] [12] [13] [14]. However, spatial-multiplexed multi-view 3D displays presented 
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low resolution 3D images because the 2D resolution per view was low due to divided 

pixels, as mentioned in Sec. 2.1.3. Parallax barrier 3D displays also produced low 

light efficiency since black areas blocked rays from backlights.   

 

 

Fig. 2-12 Spatial-multiplexed 3D displays 

 

 

 

Fig. 2-13 Design equations of multi-view parallax barrier. 
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Fig. 2-14 Design equations of multi-view cylindrical lens. 

2.3.2 Temporal-multiplexed 3D Displays 

Temporal-multiplexed 3D displays were developed to solve low resolution and 

low light efficiency in spatial-multiplexed 3D displays. In Fig. 2-15 (a), a 3D mobile 

display based on sequentially switching backlight and focusing foil is proposed [15] 

[16] [17]. The crosstalk was less than 6% and image uniformity was higher than 80%. 

Another temporal-multiplexed 3D display is developed in Fig. 2-15 (b), including a 

side-emission sequential LED backlight, a 120Hz LCD, a directional light guide and a 

micro structure [18] [19] [20] [21]. Both the 3D displays presented full resolution and 

high brightness 3D images. However, the 120Hz side-emission backlight presented 

only two views and non-uniform images in large panels. Therefore, the two 

temporal-multiplexed 3D displays were only utilized in mobile applications. 
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Fig. 2-15 Side-emission sequential backlight 3D displays. 

2.3.3 Spatial-Temporal hybrid 3D Displays 

Because spatial-multiplexed 3D displays produce low resolution 3D images and 

temporal-multiplexed 3D displays were only usable in mobile application, a 

spatial-temporal-hybrid 3D display using a time division LC parallax barrier and an 

AMOLED panel is shown in Fig. 2-16 [22].  

 

Fig. 2-16 Time division parallax barrier high resolution auto-stereoscopic display. 
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By controlling the OCB parallax barrier synchronizing the panel in different 

periods, the observer can perceive full resolution 3D images. Because the backlight 

was direct-emission, the spatial-temporal-hybrid 3D display was usable in large LCDs. 

The response time of Optical Controlled Birefringence (OCB) mode parallax barrier 

was about 5ms and the frame rate in the QVGA AMOLED panel was 240frame/sec. 

The number of views was two. However, the LC response time still limited number of 

views and the parallax barrier also produced low light efficiency. 

2.4 Summary 

Currently, stereoscopic displays have been widely utilized in movies. But 

wearing eyeglasses and the motion parallax phenomenon are drawbacks. Therefore, 

auto-stereoscopic displays were developed to introduce 3D techniques into daily life, 

including spatial-multiplexed 3D displays, temporal-multiplexed 3D displays, and 

spatial-temporal hybrid 3D displays. However, image resolution, light efficiency, 

number of views and image uniformity in large panels are still drawbacks in existing 

3D displays. One solution for proposing auto-stereoscopic displays is designing 3D 

backlights because backlights are the greatest difference between 2D displays and 3D 

displays, as shown in Fig. 2-17.  

 

Fig. 2-17 2D backlight and 3D backlights. 
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In 2D displays, backlights produce uniform and bright lights. However, in 3D 

displays, backlights are not only light sources, but also light guides to produce 

viewing-zones spatially or sequentially. Therefore, by combining techniques from the 

spatial-multiplexed 3D displays and the temporal-multiplexed 3D displays mentioned 

above, a spatial-temporal hybrid multi-view 3D display was proposed. Considering 

average crosstalk, viewing-zone uniformity, resolution, light efficiency, number of 

views and image uniformity in large LCDs, designing processes of the proposed 

auto-stereoscopic display were analyzed and discussed.  
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Chapter 3  

Spatial-Temporal Hybrid 3D Display 

A spatial-temporal hybrid multi-view 3D display was proposed to solve 

drawbacks in existing auto-stereoscopic displays, including resolution, light efficiency, 

number of views, and image uniformity in large LCDs. The proposed 3D display 

includes a four-directional temporal backlight, a 240 Hz LCD and a multi-view 

parallax barrier, as shown in Fig. 3-1. The four-directional temporal backlight 

produced four viewing zones sequentially. Then the multi-view parallax barrier 

divided each viewing zone to produce multi-view 3D images. The design of each 

element is introduced in this chapter. 

 

Fig. 3-1 Structure of spatial-temporal hybrid multi-view 3D display. 
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3.1 Four-Directional Temporal Backlight 

As mentioned in Sec 2.4, backlight systems are the greatest difference between 

2D displays and 3D displays. Therefore, developing a 3D backlight makes the 3D 

display design possible. Considering the light source direction, direct-emission 

backlights are preferred to side-emission backlights to present a uniform image on 

large LCDs. Considering the backlight state, sequential backlights are better than full 

on backlights in creating high resolution 3D images. Consequently, a four-directional 

temporal backlight is shown in Fig. 3-2, including a sequential LED plate, a 

cylindrical lens, a dual directional prism, and a diffuser. Following, the function of 

each element is introduced. 

 

Fig. 3-2 Four-directional temporal backlight. 

3.1.1 Sequential LED Plate 

Cold cathode fluorescent lamps (CCFL) were widely used in display 

technologies. However, because improved power saving, longer lifetime, mercury 

issues and local dimming technology, light-emitting diodes (LED) replaced CCFL. 

Utilizing the local dimming technology, a sequential LED plate in the four-directional 
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temporal backlight is shown in Fig. 3-3. All LEDs in the backlight are white LEDs 

developed by stimulating blue LEDs to yttrium aluminum garnet (YAG). To prevent 

from flicker, four white LEDs switch on and off sequentially at 240Hz. As mentioned 

in Sec 2.3.1, a sequential LED plate not only improves image resolution, but also 

increases light efficiency in backlight systems.  

 

Fig. 3-3 240Hz sequential LED plate. 

3.1.2 Cylindrical Lens 

At the EURO SID conference in 1996, Philips proposed a cylindrical lens 3D 

display in Fig. 2-14. By using geometric optics, a cylindrical lens was designed to 

direct rays to specific viewing directions. Cylindrical lens 3D displays are easy to 

fabricate and have higher light efficiency than parallax barrier 3D displays have. 

Therefore, in the four-directional temporal backlight, by adding a cylindrical lens 

above the sequential LED plate, rays from different colors of white LEDs are directed 

at two certain viewing angles, as shown in Fig. 3-4.  
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 Fig. 3-4 Diagram of cylindrical lens. 

3.1.3 Dual Directional Prism 

After adding a cylindrical lens, two viewing zones were formed. However, as 

mentioned in Sec 3.1.1, the proposed display produced four viewing zones 

synchronizing four sequential white LEDs. So a dual directional prism must be added 

above the cylindrical lens. As shown in Fig. 3-5, in first step, the whole panel is 

divided into even rows and odd rows. Next, using refraction theory, by adding a micro 

prism 1 on even rows, light distributions of even rows shift to the right. Similarly, when 

a micro prism 2 is added on odd rows, light distributions shift to the left. Finally, by 

combining micro prism 1 and micro prism 2, a dual directional prism was fabricated 

to increase viewing zones from two to four. Therefore, the proposed 3D display 

produced four viewing zones corresponding to the sequential LED backlight. 
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Fig. 3-5 Diagram of dual directional prism. 

3.1.4 Diffuser 

A diffuser is an optical film that can scatter lights from a backlight to improve 

image uniformity. Currently, most diffusers are particle-diffusing diffusers by coating 

micro-sized beads with binding resin on a substrate, as shown in Fig. 3-6.  
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Fig. 3-6 Diagram of diffusers. 

 

The light transmittance value and the haze value are important optical criteria. 

Light transmittance affects image brightness and haze affects viewing-zone 

uniformity and image uniformity [23]. Equations for calculating transmittance and 

haze are shown in  Fig. 3-7. A diffuser with strong optical performance has a high 

light transmittance value and a high haze value. The haze value is defined as the 

scattered light measured divided by the total transmitted light measured in an 

Integrating Sphere. For example, in  Fig. 3-7, a diffuser with a haze value of 80% 

means that 20% incident light is observed in ± 5° range in a diffuser spectrum. So a 

diffuser with a high haze value has uniform light distribution and uniform images. 

Consequently, in the four-directional temporal backlight, by adding an adequate 

diffuser in front of the dual directional prism, the viewing-zone uniformity was 

increased and observers perceived continuous and uniform 3D images. 
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 Fig. 3-7 Definitions of transmittance and haze. 

3.2 240Hz LCD  

Most displays include a backlight system and a LCD. In the spatial-temporal 

hybrid 3D display, as mentioned in Sec 3.1, the four-directional temporal backlight 

gave four viewing zones sequentially at 240Hz to prevent flicker. Therefore, a LCD in 

the spatial-temporal hybrid multi-view 3D display displays images at 240 Hz, 

sequentially synchronizing the temporal backlight, as shown in Fig. 3-8. 
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Fig. 3-8 Diagram of four-directional temporal backlight and 240Hz LCD. 

3.3 Multi-View Parallax Barrier  

After designing the four-directional temporal backlight and the 240Hz LCD, the 

temporal 3D display produced four viewing zones sequentially.  

 

Fig. 3-9 Multi-views parallax barrier diagram. 
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Referring to spatial-multiplexed 3D displays in Sec. 2.3.1, when a multi-view 

parallax barrier is added, number of views increases and an observer perceive 

different 3D images while moving to different positions. For example, by adding a 

front 2-view parallax barrier, each viewing zone from the four-directional temporal 

backlight is divided into two views. So the number of views is increased from four to 

eight, and 3D images are increased from three to seven, as shown in Fig. 3-9. 

3.4 Summary 

In the spatial-temporal hybrid multi-view 3D display, the four-directional 

temporal backlight is the key to solve drawbacks in existing auto-stereoscopic 

displays, including resolution, light efficiency, number of views, and image 

uniformity in large LCDs.  

 

Fig. 3-10 Light distribution of spatial-temporal hybrid multi-view 3D display. 
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The light distribution of spatial-temporal hybrid multi-view 3D display is shown 

in Fig. 3-10. The first element in the backlight is a sequential LED plate, which is 

comprised of four white LEDs switching on and off sequentially at 240Hz. By adding 

a cylindrical lens, lights from the LED plate are directed into two specific viewing 

zones. Then, using a dual directional prism, viewing zones are increased from two to 

four synchronizing the four sequential white LEDs. Finally, by adding a diffuser on 

the dual directional prism, lights from backlight are scattered to improve 

viewing-zone uniformity and eliminate edges. Consequently, the four-directional 

temporal backlight produces four uniform viewing zones separately and sequentially. 

Finally, by using a 240 Hz LCD and a multi-view parallax barrier above the 

four-directional temporal backlight, the proposed auto-stereoscopic display not only 

presents multi-view 3D images, but also has acceptable resolution, light efficiency, 

and image uniformity in large LCDs.  
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Chapter 4  

Simulations for Proposed 3D Backlight 

This chapter evaluates the proposed 3D backlight by using Geometric Optics. 

Then the four-directional temporal backlight was also optimized for low average 

crosstalk and high viewing-zone uniformity defined in Sec. 2.1. 

4.1 Geometric Optics Evaluation of Proposed 3D Backlight  

The four-directional temporal backlight produced four viewing zones 

sequentially by using a 240Hz sequential LED plate, a cylindrical lens and a dual 

directional prism. This section uses Geometric Optics to calculate the ideal direction 

of each viewing zone and verify the backlight design proposed in Sec. 3.1. 

4.1.1 Refracted Procedure in Cylindrical lens 

    The pitch (P) and divergent angle (Θ) were parameters in the LED plate. The 

lens curvature radius (R) and distance from LEDs were parameters in the cylindrical 

lens. The first refraction phenomenon is lights illuminating from air to the cylindrical 

lens, as shown in Fig. 4-1. By using the thick lens formula, the incident angle from the 

lens to air (u1) was obtained. Then, the second refraction phenomenon is lights 

illuminating from the cylindrical lens to air, as shown in Fig. 4-2. By using Snell’s 

Law, the angle after the lens (u2) was also calculated. 
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Fig. 4-1 Refraction from air to the cylindrical lens. 

 

Fig. 4-2 Refraction from the cylindrical lens to air. 

4.1.2 Refracted Procedure in Prism 

    The parameter simulated in the prism was the obtuse angle (A). For example, in 

micro prism 2, the first refraction phenomenon is lights illuminating from the air to 

the prism, as shown in Fig. 4-3. By using Snell’s law and Geometrics, the incident 

angle from the prism to air (u3) was obtained. Then, the second refraction 

phenomenon is lights illuminating from the prism to air, as shown in Fig. 4-4. By 

using Snell’s law, the angle of each viewing zone (u4) was obtained. Calculations in 
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the micro prism 1 were similar to the micro prism 2. 

 

Fig. 4-3 Refraction from air to the prism. 

 

Fig. 4-4 Refraction from the prism to air. 

    By combing above equations together, in micro prism 2, the equation for 

calculating two viewing zones directions (u4) was obtained as follow. Another two 
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4.2 Simulations of Four-Directional Temporal Backlight 

After calculations by using Geometric Optics, this section discusses simulations 

and optimization by using optical software (LighTools 6.1.0), including a sequential 

LED plate, a cylindrical lens, a dual directional prism, and a diffuser. Finally, the 

proposed backlight was confirmed by comparing the calculation results and 

simulation results. 

4.2.1 Sequential LED Plate 

White LEDs in the backlight switched on and off at 240Hz to produce four 

viewing zones sequentially, as mentioned in Sec. 3.1.1. There are two parameters in 

the LED plate, as shown in Fig. 4-5. The first parameter was the distance between 

neighboring LEDs (P). LEDs fabricated in small package diameters have small P 

values. The distance between neighboring LEDs is as close as possible to eliminate 

hot spots phenomenon in Fig. 4-6. 

 

Fig. 4-5 Parameters of sequential LED plate. 
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Fig. 4-6 Hot spots phenomenon. 

The second parameter was the divergent angle of LEDs (Θ). As mentioned in Sec 

2.4, because 3D backlights must have directional lights, the divergent angle of LEDs 

was as small as possible. Fig. 4-7 shows comparisons between white LEDs built using 

LighTools 6.1. The model No.312 had minimum P and Θ. Therefore, optimized white 

LEDs were: (P, Θ) = (4mm, ±20°).  

 

Fig. 4-7 Comparisons between white LEDs built using LighTools 6.1. 

20

25

30

35

40

45

3

3.5

4

4.5

5

5.5

6

6 7 8 9 10 11 12

LED package diameter

LED divergent angle

300 310 312 315 500 510 515P
a
c
k

a
g

e
 d

ia
m

e
te

r:
 P

 (
m

m
)

D
iv

e
rg

e
n

t 
a
n

g
le

: 
Θ

(±
)

White LED models

O



 

34 

 

4.2.2 Cylindrical Lens 

Above the sequential LED plate, a cylindrical lens directed lights in two specific 

directions. The light distribution occurred after the cylindrical lens was related to the 

focal length and the lens location. Therefore, the curvature radius (R) and the distance 

between the lens and LEDs (D) are two parameters in designing cylindrical lens, as 

shown in Fig. 4-8.  

 

 

Fig. 4-8 Two parameters in cylindrical lens. 

In the optimization process, R was decided first. Then by adjusting D, different 

light distributions were obtained. The example of R=10mm is shown in Fig. 4-9. 

When D=12mm, angular differences between viewing zones were almost the same, so 

the crosstalk of each viewing zone was similar. Five optimized lens samples in 

different R values are shown Fig. 4-10. The sample with smallest R value had lowest 

average crosstalk. Because the lens thickness was 10mm, minimum of R was 10mm. 

Therefore, the optimized cylindrical lens was: (R, D) = (10mm, 12mm). 
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Fig. 4-9 Angular difference vs. Distance between lens and LEDs (D) as R=10mm. 

 

Fig. 4-10 Five cylindrical lens samples after optimization. 
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4.2.3 Dual Directional Prism  

After adding a cylindrical lens, lights from LEDs illuminated two specific 

viewing angles. However, as mentioned in Sec. 3.1.1, the proposed 3D backlight 

produced four viewing zones corresponding to four sequential white LEDs. So a dual 

directional prism was added to increase viewing zones from two to four. As shown in 

Fig. 4-11, micro prism 1 and micro prism 2 have the same structure but lay in opposite 

directions. The length (L), height (H) and width (W) were 20um, 12um, 4mm. The 

obtuse angle (A) was 60°. The refraction index of the prism was nearly 1.5. As shown 

in Fig. 4-12, by using Snell’s Law, micro prism 1 shifts light distributions on even 

rows to the right. Similarly, micro prism 2 shifts light distributions on odd rows to the 

left. The four viewing zone directions were 30°, 10°, -10°, and -30° in simulation. In 

calculation by using Eq. 4-1, the four viewing zone directions were 27°, 11°, -11°, and 

-27°. Consequently, the backlight produced four viewing zones separately by using 

the cylindrical lens and the dual directional prism.  

 

Fig. 4-11 Diagram and parameters of dual directional prism. 
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Fig. 4-12 Refraction on micro prism 1 and micro prism 2. 

4.2.4 Diffuser 

By using a 240Hz sequential LED backlight, a cylindrical lens and a dual 

directional prism, the proposed backlight produced four viewing zones sequentially. 

However, dark images were caused due to low viewing-zone uniformity and this issue 

was solved by adding an adequate diffuser. To optimize the diffuser, the Gaussian 

scattering angle (α) is defined in Fig. 4-13. A diffuser fabricating with a large α value 

had high average crosstalk and high viewing-zone uniformity. As mentioned in Sec. 

2.1.1 if the average crosstalk is over 15%, 3D images are distorted [24]. In Sec. 2.1.2, 

if the viewing-zone uniformity is below 70%, dark images occur. Thus, in Fig. 4-14, 

when α = 8°, the average crosstalk is below 15% and the viewing-zone uniformity is 

80%.. The four viewing zones light distribution is shown in Fig. 4-15. Therefore, the 

optimized α was 8°, and haze of the diffuser defined in Sec. 3.1.4 was 60%. Finally, 
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by utilizing the four components optimized above, the four-directional temporal 

backlight produced four viewing zones sequentially with acceptable average crosstalk 

and viewing-zone uniformity.  

 

Fig. 4-13 Diagram of Gaussian scattering phenomenon. 

 

 

Fig. 4-14 Average crosstalk & viewing-zone uniformity vs. α. 
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Fig. 4-15 Four-directional temporal backlight light distribution in simulation. 

4.3 Summary 

    The four-directional temporal backlight was designed to produce four 

viewing zones sequentially, including a sequential LED plate, a cylindrical lens, a 

dual directional prism, and a diffuser. The optimized parameter values are shown in 

Tab. 4-1. The average crosstalk and the viewing-zone uniformity in the proposed 

backlight were 14.57% and 80%. Therefore, a 3D display using the proposed 

backlight produced clear and continuous 3D images. 

 

Tab. 4-1 Optimized parameter values in four-directional temporal backlight. 
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Chapter 5  

System Tolerances & Experimental Results 

Before fabricating the proposed 3D display, system tolerances were evaluated to 

assure experimental results. Then, a spatial-temporal hybrid multi-view 3D display 

was fabricated by adding a multi-view parallax barrier above a four-directional 

temporal backlight. Finally, the ConoScope measured the proposed 3D display 

performance and compared results with the simulation model. 

5.1 Tolerance of the Four-Directional Temporal Backlight 

The four-directional temporal backlight had been optimized by simulation. 

However, because manufacture processes sometimes causes errors, fabrication results 

are easily different between simulation results. Thus, before experiment, tolerance of 

the backlight system is evaluated in this section. 

5.1.1 Distance between Neighboring LEDs (P) 

    As mentioned in Sec. 4.2.1, the optimized P was 4mm for hot spots phenomenon. 

If P < 4mm, two viewing zones behind the cylindrical lens are close. So after adding 

the dual directional prism, the average crosstalk is over 15% and the uniformity 

between view 2 and view 3 is below 70%. Similarly, if P > 4mm, since angular 

difference between two viewing zones after the cylindrical lens is distant, the 

uniformity between view 1 and view 2 and the uniformity between view 3 and view 4 

are below 70%. As shown in Fig. 5-1, the tolerance of P is below ±0.25mm. Light 

distributions of P=3mm, 4mm and 5mm are also shown in Fig. 5-2. 
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Fig. 5-1 Tolerance of distance between neighboring LEDs (P). 

 

Fig. 5-2 Light distributions of P=3mm, 4mm and 5mm.  
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5.1.2 Divergent Angle of LEDs (Θ) 

The divergent angle of white LEDs in simulation was ±20°. In Fig. 5-3, if Θ < 

±20°, angular difference between view 1 and view 2 and angular difference between 

view 3 and view 4 are close. So the uniformity between viewing zone 2 and viewing 

zone 3 is low. If Θ > ±20°, rays illuminating side of the cylindrical lens caused light 

leakage. So the average crosstalk was large. Thus in Fig. 5-4, the optimal Θ is ±20° 

and the tolerance of Θ is nearly ±4°. 

 

Fig. 5-3 Light distributions of Θ=±12°, ±20° and ±28°. 
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Fig. 5-4 Tolerance of LEDs divergent angle (Θ). 

5.1.3 Curvature Radius of Lens (R) 

A lens fabricating in small curvature radius has large curvature, and a lens with 

large curvature separates lights well and produces low average crosstalk. Because the 

lens thickness in simulation was 10mm, the R min was 10mm. As shown in Fig. 5-5, 

if R > 12mm, the average crosstalk is much larger than 15%. Thus in fabrication, the 

tolerant R was ± 2mm. 

 

 

Fig. 5-5 Tolerance of lens curvature radius (R). 
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5.1.4 Distance between Lens and LEDs (D) 

The distance between lens and LEDs related to light distributions. As shown in 

Fig. 5-6, view 2 and view 3 are close while D > 12mm. If D < 12mm, angular 

difference between view 1 and view 2 and angular difference between view 3 and 

view 4 are close. Both cases produced large average crosstalk and low uniformity. 

Therefore, in Fig. 5-7, the optimal D was 12mm and the tolerance of D is smaller than 

±1mm. 

 

Fig. 5-6 Light distributions of D=10mm, 12mm and 14mm. 
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Fig. 5-7 Tolerance of distance between lens and LEDs (D). 

5.1.5 Obtuse angle of dual directional prism (A) 

The obtuse angle of dual directional prism determined the angular shift by 

refraction. In Fig. 5-8, the optimal A is 60° and the tolerance of D is ±1°.As shown in 

Fig. 5-9, if A < 59°, the angular shift phenomenon is so strong that the uniformity 

between view 2 and view 3 is lower than 70%. If A > 61°, the angular shift 

phenomenon is weak. So view 2 and view 3 are close and the average crosstalk is over 

15%.  

 

Fig. 5-8 Tolerance of obtuse angle in dual directional prism (A). 
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Fig. 5-9 Light distributions of A=58°, 60° and 62°. 

5.2 Demonstration of Four-Directional Temporal Backlight 

The four-directional temporal backlight had been optimized in Chapter 4, 

including a 240Hz sequential LED plate, a cylindrical lens, a dual directional prism, 
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lathe. The micro prism was fabricated in Polymethylmethacrylate (PMMA) by wheel 

Machining and was divided by laser to construct the dual directional prism. The 

diffuser was particle-diffusing diffuser with Haze = 60%.  

 

Fig. 5-10 Component implementations in four-directional temporal backlight. 

 

Fig. 5-11 Light distributions of four-directional temporal backlight. 
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Then, according to the optimized model, by combining above components, four 

viewing-zones are produced successfully, as shown in Fig. 5-11. The average crosstalk 

is 35% and the viewing-uniformity is 70%. 

5.3 Spatial-Temporal Hybrid Multi-View 3D Display 

    The number of views divided by a multi-view parallax barrier was related to the 

viewing distance. As shown in Fig. 5-11, the FWHM (Full Width at Half Maximum) 

of each viewing zones is nearly 15° in the four-directional temporal backlight. Thus, 

in Fig. 5-12, different multi-view parallax barriers are designed according to 3D 

display specifications. 

 

 

Fig. 5-12 Design of multi-view parallax barrier in the proposed 3D display. 

FWHM (full width at half maximum) of each viewing zone ~15°

Angular difference between two eyes (X) = 2 tan  (             )

240Hz LCD

4-directional temporal backlight

Multi-views parallax barrier

E=65mm

L

Wb Ws

E: distance between two eyes (=65mm)
Wp:  width of pixels (=0.322mm)
L: viewing distance
N: view numbers of parallax barrier
Ws: width of slit
Wb: width of black 
D: distances between barrier and LCD

Ws=E x Wp /(E + Wp)

Wb=(N-1)Ws

D=L x Wp / (E + Wp)

D

View numbers of parallax barrier (N) = 15 / X

-1 32.5
L

As viewing distance = L( mm):



 

49 

 

 

Fig. 5-13 Light distributions of spatial-temporal hybrid multi-view 3D display. 

 

Fig. 5-14 Fabrication of spatial-temporal hybrid multi-view 3D display. 
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Fig. 5-13 shows the four viewing zones after adding a 9-view parallax barrier. 

The 9-view parallax barrier divides each viewing zone into 9 parts. Therefore, the 

number of views defined in Sec. 2.1.2 increased from 4 to 36. A spatial-temporal 

hybrid multi-view 3D display was implemented in Fig. 5-14. The number of views 

was 36 with ±40° viewing angle. Compared with the resolution and the light 

efficiency decreased to 1/36 in 36-view spatial-multiplexed 3D displays, the 

resolution and the light efficiency only decreased to 1/9 in the spatial-temporal hybrid 

multi-view 3D display. Because the LEDs were direct-emission, the four-directional 

temporal backlight was also usable to present uniform 3D images in large LCD. 
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Chapter 6  

Conclusions and Future Works 

6.1 Conclusions 

3D displays are pursued through needing more natural images. Images 

containing three-dimensional coordinate information are necessary for humans to 

perceive real life images. Nowadays, stereoscopic displays are widely used in cinemas 

due to ease of fabrication and vivid stereoscopic visions. Nevertheless, 

auto-stereoscopic displays get popular because wearing eyeglasses is not required and 

multi-view. However, image resolution, light efficiency, number of views, and image 

uniformity in large LCDs are still drawbacks in existing auto-stereoscopic displays. 

Therefore, a 2D-multiplexed 3D display combining spatial-multiplexed and 

temporal-multiplexed techniques was proposed. 

The proposed 3D display included a multi-view parallax barrier, a 240Hz LCD, 

and a four-directional temporal backlight. The four-directional temporal backlight, 

comprising a sequential LED plate, a cylindrical lens, a dual directional prism and a 

diffuser, produced four viewing zones sequentially with acceptable average crosstalk 

and viewing-zone uniformity. Then the parallax barrier divided each viewing zone to 

present multi-view 3D images. The comparisons between the proposed 3D display 

and existing 3D displays are shown in Tab. 6-1. Because of the four-directional 

temporal backlight, the proposed 3D display presented better resolution and light 

efficiency by four times than spatial-multiplexed 3D displays, and 3D images in large 

LCDs were uniform. Furthermore, by combining spatial-multiplexed and 
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temporal-multiplexed techniques, the proposed 3D display produced multi-view 3D 

images more easily than temporal-multiplexed 3D displays. 

 

 

Tab. 6-1 Comparisons between existing 3D displays and the proposed 3D display. 

6.2 Future Works 

A temporal backlight with multi-view parallax barrier was demonstrated for large 

panels with wide viewing angle and multi-view, but still kept acceptable 3D resolution 

and light efficiency. However, as mentioned in 5.2 and Fig. 6-1, the average crosstalk 

in the four-directional temporal backlight prototype was over 15% due to alignment 

between LEDs, lens, and prism. The distance between the LED backlight and the dual 

directional prism also caused vertical crosstalk, as shown in Fig. 6-2. Therefore, in Fig. 

6-3, by covering the LED backlight with the dual directional prism to improve 

distance and alignment between the LED backlight and the dual directional prism. 

Therefore, four viewing zones will also be produced with low horizontal and vertical 

crosstalk.  
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Fig. 6-1 Comparisons between simulation and experiment. 

 

 

Fig. 6-2 Vertical crosstalk phenomenon. 
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Fig. 6-3 Solutions to horizontal and vertical crosstalk. 

Finally, because the proposed backlight produces four viewing zones 

sequentially at 240Hz, the LC response time in the proposed 3D display is also 240Hz. 

Therefore, the response time of LC must be lower than 2ms. One solution is using 

OCB (Optically Compensated Bend) mode LC [25] [26]. Because there is no 

backflow while changing state in OCB mode, the response time is from 5ms to 1ms. 

OCB mode also has ease of fabrication and wide viewing angle due to the 

self-compensated property. Another solution is Blue Phase mode LCD [27] [28]. Blue 

Phase is liquid crystal phase that appear in a temperature range between the cholesteric 

phase and the isotropic phase. The electro-optical response time at room temperature 
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is 0.1 ms for the stabilized Blue Phase. Furthermore, because the Blue Phase mode 

can make alignment layers, the mechanical pressure sensitivity and the manufacturing 

steps are reduced. In SID 2008, Samsung developed the first Blue Phase LCD with 

240Hz refresh rate. Therefore, by combining the four-directional temporal backlight 

and the multi-view parallax barrier with an OCB LCD or a Blue Phase LCD, the 

spatial-temporal hybrid multi-view 3D display will be fabricated. 

However, in the synchronization between the sequential backlight system and 

240Hz LCD, if LEDs turn on too early or turn off too late, the spatial-temporal hybrid 

multi-view 3D display produces distorted 3D images due to the temporal crosstalk 

phenomenon, as shown in Fig. 6-4.  

 

Fig. 6-4 Temporal crosstalk in the synchronization between the backlight and LCD. 

Therefore, in Fig. 6-5, the tstart and tstop are defined in the backlight 

synchronization. By adjusting values of tstart and tstop, for example, the observer 

standing at position 2 can’t see the frame 1 images and frame 3 images. So the 

temporal crosstalk is reduced and the 3D display present clear multi-view 3D images 

satisfied the simulation and experiment results mentioned before. However, periodic 

structure of the parallax barrier and the LCD cause moiré pattern in 3D images, as 

shown in Fig. 6-6. Therefore, the slanted parallax barrier design is also a vital work in 

the future. 
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Fig. 6-5 Solutions to the temporal crosstalk phenomenon. 

 

Fig. 6-6 Moiré phenomenon caused by the parallax barrier and the LCD. 
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